
CS100J 17 February 2005

More on Methods. Functions, procedures, constructors. The

return statement in a function. Static vs non-static methods.

More on executing method calls.

 Read section 2.3 but NOT 2.3.8!!!!

Do the self-review exercises in 2.3.4

Oxymoron: a combination for epigrammatic effect of contradictory

or incongruous words (as cruel kindness, laborious idleness)

airline food State worker

military intelligence peace force

Microsoft Works computer security

sanitary landfill tight slacks

religious tolerance business ethics

A procedure does something

/** print the smallest of b, c, d */

public static void smallest(int b, int, c, int d) {

if (b <= c && b <= d) {

 System.out.println(b);

 return ;

 }

 // { The smallest is either c or d }

 if (c <= d) {

 System.out.println(c);

 return;

}

 // { the smallest is d }

System.out.println(d);

}

Execution of statement

return; terminates

execution of the proc-

edure body.

Nothing else is done in

the procedure body.

A function produces a result

/** = smallest of b, c, d */

public static int smallest(int b, int, c, int d) {

if (b <= c && b <= d) {

 return b;

 }

 // { The smallest is either c or d }

 if (c <= d) {

 return c;

 // { the smallest is d }

 return d;

}

Assertions

Execution of statement

 return <expr> ;

terminates execution of the

procedure body and yields the

value of <expr> as result of

function call

Execution of a function body must end by executing a return statement.

Syntax of procedure/function/constructor and calls

public <result type> <name> (<parameter declarations>) { … }

public void <name> (<parameter declarations>) { … }

public <class-name> (<parameter declarations>) { … }

function

procedure

constructor

<name> (<arguments>)

<name> (<arguments>) ;

new <class-name> (<arguments>)

function call

procedure call

constructor call

Exec. of a function body must terminate by executing a statement

“return <exp> ;”, where the <exp> has the <result type>.

Exec. of a proc body may terminate by executing statement “return ;”

Exec. of a constructor body initializes a new object of class <class-name>.

Local variable: a variable declared in a method body

Scope of local variable: the sequence of statements following it.

/** s contains a name in the form “David Gries”.

 Return the corresponding String “Gries, David”.

 There may be 1 or more blanks between the names. */

public static String switchFormat(String s) {

 // Store the first name in variable f and remove f from s

 int k; // Index of the first blank in s

 k= s.indexOf(' ');

 String f; // The first name in s.

 f= s.substring(0,k);

 s= s.substring(k);

 // Remove the blanks from s

 s= s.trim();

 return s + ", " + f;

}

scope of k

scope of f

Local variable: a variable declared in a method body

Scope of local variable: the sequence of statements following it.

/** = the max of x and y */

public static int max(int x, int y) {

 // Swap x and y to put the max in x

 if (x < y) {

 int temp;

 temp= x;

 x= y;

 y= temp;

 }

 return x;

 }

scope of temp

You can’t use temp down here

The frame (the box) for a method call

Remember: Every method is in a folder (object) or in a file-drawer.

method name, instruction counter scope box

local variables

parameters

scope box contains the

name of the file-drawer or

the name of the object that

contains the method

the number of the statement of

method body to execute next.

Helps you keep track of what

statement to execute next.

frame for a call

/** = the max of x and y */

public static int max(int x, int y) {

 if (x < y) {

 int temp;

 temp= x;

 x= y;

 y= temp;

 }

 return x;

 }

1

2

3

4

5

6

max: 1 C

Assume this method

is in class C

temp

x

y

frame for a call on max

frame for a call

public class K {

 int p ;

 public int getP() {

 return p;

 }

}

1

getP: 1 a0

frame for a call on

getP of a0

ao

K

p

getP()

frame for a call

public class K {

 int p ;

 public int getP() {

 return p;

 }

}

1

getP: 1 a0

frame for a call on getP

of a0

ao

K

p getP()

Execution of a method call:

1. Draw the frame for the call (method

name, 1 for instruction counter, scope

box, local vars, and parameters).

2. Assign arg values to pars.

3. Execute method body. Look in frame

for names; if not there, use scope box

to see where to look next.

4. Erase frame (and, if it is a function,

give the value of the return exp as the

value of the call).

