
1

CS100J 15 February 2005

Rsrecah on spleilng

Aoccdrnig to a rscheearch at Cmabirgde Uinervtisy, it

deosn't mttaer in waht oredr the ltteers in a wrod are,

the olny iprmoetnt tihng is that the frsit and lsat ltteer

be at the rghit pclae. The rset can be a total mses and

you can sitll raed it wouthit porbelm.Tihs is bcuseae

the huamn mnid deos not raed ervey lteter by istlef,

but the wrod as a wlohe.

Methods: procedures, functions, constructors

You are responsible for: Sections 2.1, 2.2. It’s a good idea

to do the self-review exercises at the end of 2.2.4, 2.3.4

2

Notes on assignment A2

2. In FamilyMemberTester:

public void testFirstConstructor(…) {

 FamilyMember m1= new FamilyMember(…)

 …

 assertEquals(1, FamilyMember.getFamilySize());

 }

public void testFirstConstructor(…) {

 FamilyMember fa= new FamilyMember(…)

 FamilyMember m1= new FamilyMember(…)

 …

 assertEquals(?, FamilyMember.getFamilySize());

 }

1. Warning from Javadoc. disregard it:

Warning: warning - First sentence is interpreted to be:

Note: The CMS

allows you to

submit an

assignment

several times.

We grade only

the last one

submitted.

3

Notes on assignment A2

3. Testing for null

 /** = "fm is this family member's brother". Precondition: fm not null. */

 public boolean isBrother(FamilyMember fm) {

 // No need to test for null. It’s the caller’s duty not to have fm null.

 }

 /** = "fm1 and fm2 are not null and fm1 and fm2 are siblings */

 public static boolean areSiblings(FamilyMember fm1,

 FamilyMember fm2) {

 // The result depends on fm1, fm2 not being null, and the

 // return expression should somehow include that test.

return …

 } In FamilyMemberTester, when testing areSiblings,

need to test calls like

areSiblings(m1, null)

areSiblings(null, m2)
4

Procedure: a form of method

/** Print a, b, and their sum on one line */

public static void print(int a, int b) {

 System.out.println(a + “ ” + b + “ ” + (a+b));

}

Definition: a parameter is a variable that is declared

within the parentheses of the method header.

Parameters: a and b.

The comment is a specification of the method. It says

WHAT the method does.

Method body: the “block” { … }

header

This procedure call prints out the value of

its argument, i.e the expression within () .

See top of page 58 for

declaration of procedure

and function

5

/** Print b, c, and their sum */

public static void print(int b, int c) {

 System.out.println(b);

 System.out.println(c);

 System.out.println(b + c);

}

/** Print b */

public static void print (int b) {

 System.out.println(b);

}

Parameters b and c are variables. They are

created when the method is called and

destroyed when the method call is finished.

The scope of a parameter --the places

where it can be referenced or used, is the

method body itself.

6

Procedure call

/** Print a, b, and their sum on one line */

public static void print(int a, int b) { …}

When writing or understanding a call on a method, look

only at the specification and not the method body.

What does this call do?

 print(3+4, 6);

 Print 3+4, 6, and their sum on one line.

header

call, with arguments 3+4 and 6

Procedure call has the syntax:

 <procedure name> (<arguments>) ;

<arguments> is a list of expressions, separated by

commas. The type of each expression must match the

type of the corresponding parameter of the procedure.

See top of

page 59 for

procedure call

7

/** Print b, c, and their sum */

public static void print(int b, int c) {

 System.out.println(b);

 System.out.println(c);

 System.out.println(b + c);

}

How is a call like this executed? print(5, 6)?

b

c

Step 1: Draw a box that contains the

parameters (variables).

Step 2: Assign the argument values to the

parameters.

Step 3: Execute the method body --execute its

statements, one at a time.

Step 4: Erase the box.

print

name of method

being called

8

A method can call another method
/** Print b, c, and the sum of their squares */

public static void print(int b, int c) {

 System.out.println(b);

 System.out.println(c);

 printSum(b*b, c*c);

}

/** Print b + d */

public static void printSum(int b, int d) {

 System.out.println(b+d);

}

We execute the call print(3, 4);

Two methods can have

a parameter with the

same name. The b in

print is diffferent from

the b in printSum. A

parameter (a variable)

is in existence only

when the method body

is being executed.

9

The if-statement

// Set y to the maximum of x and y

 if (x >= y)

y= x;

Semantics: to execute if-statement: evaluate

the if-condition; if it is true, execute the the

<statement>

if (<boolean expression>)

<statement>

Syntax

if-condition

10

The if-else-statement

// Set z to the maximum of x and y

 if (x >= y)

z= x;

 else z= y;

Semantics: to execute if-statement:

evaluate the if-condition; if it is true, execute the

<statement1>; otherwise, execute <statement2>

if (<boolean expression>)

<statement1>

else <statement2>

Syntax

11

The block: a sequence of

statements/declarations enclosed in { }

// Swap x and y (if necessary) to place their maximum in x

 if (y > x) {

temp= y;

y= x;

 x= temp;

 }

from

here to

here is

a block

Statements that you

know about:

• Assignment statement

• Procedure call

• If-statement

• If-else-statement

• Block

12

Another procedure

/** print the smallest of b, c, d */

public static void smallest(int b, int, c, int d) {

if (b <= c && b <= d) {

 System.out.println(b);

 return ;

 }

 // { The smallest is either c or d }

 if (c <= d) {

 System.out.println(c);

 return;

}

 // { the smallest is d }

System.out.println(d);

}

Assertion: a true-false

statement; we are

asserting that it is true

at the point it appears

Execution of

statement return;

terminates execu-

tion of the proc-

edure body. Noth-

ing else is done in

the procedure body.

