
1

CS100J Final Class on Classes 10 February 2005

Attitude by Charles Swindoll.

The longer I live, the more I realize the impact of attitude on life.

Attitude, to me, is more important than facts, the past, education,

money, failures, circumstances, success, and what other people

think, or say, or do.

It is more important than appearance, giftedness, or skill. It will

make or break a company, a church, a home.

The remarkable thing is we have a choice every day regarding the

attitude that we will embrace for that day. We cannot change the

past. We cannot change the fact that people will act in a certain way.

We cannot change the inevitable. The only thing we can change is

our attitude.

I am convinced that life is 10% what happens to me and 90% how I

react to it. And so it is with you also. We are all in charge of our own

attitude.
2

Help: Get it now if you need it!!

• One-on-one help from TAs. For info, get on the course

website and click "Staff-info".

• Call Cindy Pakkala 255-8240 for an appointment with Gries.

• See a consultant in the eng. library during the day and at

Purcell Union in the evening. --they aren't very busy now. Click

on "consulting hours" on the home page for the course.

• Peer tutoring (free). On http://www.engineering.cornell.edu,

click on "student services". On the page that comes up, click

on "Learning Initialives (L.I.F.E.) in the left column, upper part.

Then, click on "peer tutoring" in the left column.

3

Content of this lecture

This lecture contains some final miscellaneous points to round

out your knowledge of classes and subclasses. There are a few

more things to learn after that, but we’’ll handle them much later.

•Inheriting fields and methods and Overriding methods.
 Sec. 4.1 and 4.1.1: pp. 142–145

• Function toString. Sec. 3.1.4, pp. 112–113.

• Purpose of super and this. Sec. 4.1.1, pp. 144–145.

• More than one constructor in a class; another use of this.

 Sec. 3.1.3, pp. 110–112.

• Method equals in class Object. Sec. 4.3 and 4.3.1, pp. 154–155.

 (We do not cover the method at the end of Sec. 4.3.1.)

• Constructors in a subclass —calling a constructor of the

 super-class. Sec. 4.1.3, pp. 147–148.

4

public class Employee {/** Instance: a person's name, year hired, and salary */

 private String name; // Employee's name

 private int start; // Year hired

 private double salary= 50000; // Salary

 /** Constructor: a person with name n, year hired d, salary s */

 public Employee(String n, int d) { name= n; start= d; salary= s;}

 /** = name of this Employee */

 public String getName() { return name; }

 /** Set the name of this Employee to n */

 public void setName(String n) { name= n; }

 /** = year this Employee was hired */

 public int getStart() { return start; }

 /** Set the year this Employee was hired to y */

 public void setStart(int y) { start= y; }

 /** = Employee's total compensation (here, the salary) */

 public double getCompensation() { return salary; }

 /** Change this Employee’s salary to d */

 public void changeSalary(double d) { salary= d; }

 /** = String representation of this Employee */

 public String toString()

 { return getName() + ", year " + getStart() + ", salary " + salary; } }

This class is on

page 105 of the

text. It will also

be placed on the

web site

5

Employee c= new Employee(“Gries”, 1969, 50000);

c.toString()

a0

Object

name “Gries” start 1969

salary 50,000.00

getName() setName(String n) …

toString()

equals(Object) toString()

Employee

c a0

Which method toString()

is called?

Overriding rule:

To find out which is used,

start at the bottom of the

class and search upward

until a matching one is

found.

Also called the bottom-up rule.

Terminology. Employee inherits methods and fields from

Object. Employee overrides function toString.

Sec. 4.1,

page 142

6

In Object, all toString can do is to give the name on the folder.

In Employee, toString can tell you the values of the fields

/** = String representation of this Employee */

public String toString() {

 return getName() + ", year ” + getStart() + ", salary ” + salary;

}

Nice Java rule. If you use the name c of a folder in a place where a

String is needed, Java uses the value of c.toString().

Sec. 3.1.4,

page 112

Purpose of function toString: to give a string repre-

sentation of the folder (object) in which it appears.

7

Purpose of super and this

Use this to refer to the object in which it appears

Use super to refer to components in the super-class partition of the

object (and above).

/** = String representation of this Employee */

public String toString() {

 return this.getName() + ", year ” + getStart() + ", salary ” + salary;

}

ok, but unnecessary

/** = toString value from superclass */

public String toStringUp() {

 return super.toString();

}

necessary

Sec. 4.1, pages

144-145

8

A second constructor in Employee

Provide flexibility, ease of use, to user

/** Constructor: a person with name n, year hired d, salary s */

public Employee(String n, int d, double s)

 { name= n; start= d; salary= s; }

/** Constructor: a person with name n, year hired d, salary 50,000 */

 public Employee(String n, int d)

 { name= n; start= d; salary= 50000; }

/** Constructor: a person with name n, year hired d, salary 50,000 */

 public Employee(String n, int d)

 { this(n, d, 50000); }

First constructor

Second constructor;

salary is always 50,000

Another version of second

constructor; calls first constructor

Here, this refers to the other constructor

Sec. 3.1.3,

page 110

9

Function does not override

equals in Object because the

parameter has a different type.

It’s a new, different function.

We’ll fix redo this function

later in the course.

Method equals in class Object.

/** = “the name of this object is the same

 as the name of obj */

public boolean equals(Object obj)

{ return this == obj; }

a0

Object

name “Gries” start 1969

salary 50,000

equals(Object)

equals(Object)

Employee

/** = “e is an Employee, with the same fields as this Employee */

public boolean equals(Employee e) {

 return e != null

 && this.name == e.name

 && this. start == e.start

 && this. salary == e.salary;

 }

Write equals in class Employee

Sec. 4.3.1,

page 154

10

Subclass Executive/** An executive: an employee with a bonus. */

public class Executive extends Employee {

 private double bonus; // yearly bonus

 /** Constructor: name n, year hired d, salary 50,000, bonus b */

 public Executive(String n, int d, double b) {

 super(n, d);

 bonus= b;

 }

 /** = this executive’s bonus */

 public double getBonus() { return bonus; }

 /** = this executive’s yearly compensation */

 public double getCompensation()

 { return super.getCompensation() + bonus; }

 /** = a representation of this executive */

 public String toString()

 { return super.toString() + ", bonus " + bonus; }

}

super(n,d) calls a constructor in the super-

class to initialize the superclass fields

super. means that

the function in the

superclass will be

called.

11

Subclass Executive

and its folders

 public class Executive extends Employee {

 private double bonus;

 public Executive(String n, int d,

 double b) { … }

 public double getBonus() { … }

 public double getCompensation()

 { … }

 public String toString() { …}

}

50,000.00

a0

Object

name “Gries” start 1969

salary

10,000

Employee(String, int) setName(String)

toString() getCompensation()

equals(Object) toString()

Employee

Executive
bonus

Executive(String, int, double)

getBonus() getCompensation()

toString()

50,000

12

a0

Object

name “Gries” start 1969

salary

10,000

Employee(String, int)

toString() getCompensation()

toString() …

Employee

Executive
bonus

Executive(String, int, double)

getBonus() getCompensation()

toString()

50,000

Calling a superclass

constructor from the

subclass constructor

public class Executive extends Employee {

 private double bonus;

 /** Constructor: name n, year hired

 d, salary 50,000, bonus b */

 public Executive(String n, int d, double b) {

 super(n, d);

 bonus= b;

 }

} The first (and only the first) statement in a

constructor can be a call to a constructor

of the superclass. If you don’t put one in,

then this one is automatically used:

super();

Principle: Fill in superclass fields first.

Sec. 4.1.3, page 147

