
1For more info: http://www.mailmsg.com/history.htm

CS100J 08 February 2005

In 1968, the Defense Department hired Bolt Beranek and Newman (BBN)

of Boston to help develop the ARPANET, which later turned into the

internet. In 1971, Ray Tomlinson of BBN was given the task of figuring out

how to send files from one person to another. He created email with file

attachments. He selected @ as the separator between an email name and

location.

Here are names for @ in other languages:

Italian: *chiocciolina* = little snail

French: *petit escargot* = little snail

German: *klammeraffe* = spider monkey

Dutch: *api* = short for apestaart (monkey's tail)

Norwegian: *kanel-bolle* = spiral-shaped cinnamon cake

Danish: *snabel* = an "A" with a trunk

Israeli: *strudel* = a pastry

Finnish: *miau* = cat tail

Spanish: *un arroba* = a unit of about 25 pounds

2

CS100J 08 February 2005. Testing. Static components.

1. Testing --using Junit. Pages 385-388 (through Sec. 14.1.1).

2. Static variables. Read section 1.5 (page 47).

Bug: Error in a program.

Testing: Process of analyzing, running program, looking for bugs.

Test case: A set of input values, together with the expected output.

Debugging: Process of finding a bug and removing it.

We want (you) to get in the habit of writing test cases for a

method from the specification of the method even before you

write the method.

A feature called Junit in DrJava helps us develop test cases

and use them. You have to use this feature in assignment A2.

3

CS100J 08 February 2005. Start at class Chapter

/** Each instance describes a chapter in a book * */

public class Chapter {

 private String title; // The title of the chapter

 private int number; // The number of chapter

 private Chapter previous; // previous chapter (null if none)

 /** Constructor: an instance with title t, chap n, previous chap c */

 public Chapter(String t, int n, Chapter c)

 { title= t; number= n; previous= c; }

 /** = title of this chapter */

 public String getTitle() { return title; }

 /** = number of this chapter */

 public int getNumber() { return number; }

 /** = (name of) the previous chapter (null if none) */

 public Chapter getPrevious() { return previous; }

}

Beginning of class

Chapter: a

constructor and three

getter methods

4

1. c1= new Chapter(“one”, 1, null);

Title should be: “one”; chap. no.: 1; previous: null.

2. c2= new Chapter(“two”, 2, c);

Title should be: “two”; chap. no.: 2; previous: c1.

To create a framework for testing in DrJava, select menu File

item new Junit test case…. At the prompt, put in the class

name ChapterTester. This creates a new class with that name.

Immediately save it —in the same directory as class Chapter.

The class imports junit.framework.TestCase, which provides

some methods for testing.

We need a way to run these test cases, to see whether the

fields are set correctly. We could use the interactions pane,

but then repeating the test is time-consuming.

Here are two test cases

5

/** A JUnit test case class.

 * Every method starting with the word "test" will be called when running

 * the test with JUnit. */

public class ChapterTester extends TestCase {

 /** A test method.

 * (Replace "X" with a name describing the test. You may write as

 * many "testSomething" methods in this class as you wish, and each

 * one will be called when testing.) */

 public void testX() {

 }

}

One method you can use in testX is

assertEquals(x,y)

which tests whether expected value x equals y
6

A testMethod to test first constructor
/** Test first constructor and getter methods getTitle,

 getNumber, and getPrevious */

public void testFirstConstructor() {

 Chapter c1= new Chapter("one", 1, null);

 assertEquals("one”, c1.getTitle(),);

 assertEquals(1, c1.getNumber());

 assertEquals(null, c1.getPrevious());

 Chapter c2= new Chapter("two", 2, c1);

 assertEquals("two”, c2.getTitle());

 assertEquals(2, c2.getNumber());

 assertEquals(c1, c2.getPrevious());

}

Every time you click button Test in DrJava, this method

(and all other testX methods) will be called.

first test case

second test case

7

A testMethod to test first constructor
/** Test first constructor and getter methods getTitle,

 getNumber, and getPrevious */

public void testFirstConstructor() {

 Chapter c1= new Chapter("one", 1, null);

 assertEquals("one”, c1.getTitle(),);

 assertEquals(1, c1.getNumber());

 assertEquals(null, c1.getPrevious());

 Chapter c2= new Chapter("two", 2, c1);

 assertEquals("two”, c2.getTitle());

 assertEquals(2, c2.getNumber());

 assertEquals(c1, c2.getPrevious());

}

Every time you click button Test in DrJava, this method

(and all other testX methods) will be called.

assertEquals(x,y)

tests whether x equals y

and prints an error mes-

sage and stops the method

if they are not equal.

x is the expected value, y

the actual value.

A few other methods that

can be used are listed on

page 488.

8

A testMethod to test setter methods
/** Test Setter methods setTitle, setNumber, and setPrevious */

public void testSetters() {

 Chapter c1= new Chapter("one", 1, null);

 c1.setTitle("new title");

 c1.setNumber(18);

 Chapter c2= new Chapter("two", 2, null);

 c1.setPrevious(c2);

 assertEquals("new title", c1.getTitle());

 assertEquals(18, c1.getNumber());

 assertEquals(c2, c1.getPrevious());

}

assertEquals(x,y)

tests whether x equals y

and prints an error mes-

sage and stops the method

if they are not equal.

x is the expected value, y

the actual value.

/** = the chapter no of this chapter is <= c’s chapter number */

public boolean isAtMost(Chapter c) {…}

For the method below, use THREE test cases: one when <,

one when =, one when >

9

A static field does not appear in each folder.

It appears in the file drawer, by itself, on a piece of paper.

There is only ONE copy of it.

public class Chapter {

 private String title; // title of chapter

 private static int numberChaps= 0; // no. of folders created

}

Reference the static variable using Chapter.numberChaps

a0

Chapter
title “peace”

a1

Chapter
title “truth”

numberChaps 2
File drawer for class Chapter 10

A static field does not appear in each folder.

It appears in the file drawer, by itself, on a piece of paper.

There is only ONE copy of it.

public class Chapter {

 private int title; // title of chapter

 private static int numberChaps= 0; // no.of folders created

}

a0

Chapter
title “peace”

a1

Chapter
title “truth”

numberChaps 2
File drawer for class Chapter

Use a static variable when you want to maintain

information about all (or some) folders.

11

Make a method static when it does not refer to any of

the fields or methods of the folder.

public class Chapter {

 private int number; // Number of chapter

 private static int numberOfChapters= 0;

 /** = “This chapter has a lower chapter number than Chapter c” */

 public boolean isLowerThan(Chapter c) {

return number < c.number;

 }

}

/** = “b’s chapter number is lower than c’s chapter number” */

public static boolean isLower(Chapter b, Chapter c) {

 return b.number < c.number;

}

12

About method specifications

A precondition is a restriction that a call of a method must satisfy. The

method need not check for it.

/** = the chapter number of Chapter c. Precondition: c should not be null */

public static boolean chapterNumber(Chapter c) {

return c.number;

}

/** = “c is not null and has chapter number 0” */

public static boolean isZero(Chapter c) {

return c != null && c.number == 0;

}

Up to caller to make sure

c is not null; don’t check

in method body.

The fact that c is not null is not given as a precondition but as

something that the method body should check.

