
1

CS100J 05 February 2005

Today’s topic: Customizing a class (continued)

Quiz 1 is today

Quiz 2 is next Tuesday

Quote for the day:

There is no reason anyone would want a computer in their

home. --Ken Olson, president, chairman and founder of Digital

Equipment Corp., 1977.
The company was a huge player in computer hardware and software in CS

academia in the 1970’s. The old PDP machines were well known. The VAX

had unix on it, and C, and Lisp. It was the main computer in most CS

departments of any stature. The company was bought by COMPAQ in the late

1990’s.

2

CS100J, 03 February 2005

Reading for this lecture: Section 1.4, 1.5, and 1.7 (not 1.6).

Read all the “style notes”, too.

Summary of lectures: On course home page, click on

“Handouts” and then “Outline of lectures held so far”.

Today: Class Object, method toString()

 Fields (variables in a folder).

 Constructors.

 Static components.

3

CS100J, 03 February 2005

Reading for this lecture: Section 1.4, 1.5, and 1.7 (not 1.6).

Read all the “style notes”, too.

Summary of lectures: On course home page, click on

“Handouts” and then “Outline of lectures held so far”.

Today: Fields (variables in a folder).

 Constructors.

 Static components.

4

Class Object: The superest class of them all

See 1/2-page section 4.3.1 on page 154.

The reason for this will become clear later.

You need this information to do assignment A1.

Every class that does not extend another one automatically

extends class Object.

public class C { … }

is equivalent to

public class C extends Object { …}

5

Class Object: The superest class of them all

Bill

Patient
name B. Clinton

address New York

owes $250.00

See 1/2-page section 4.3.1 on page 154.

Bill

Patientname B. Clinton

address New York

owes $250.00

equals(Object)

toString()

this is really this

Object

6

Method toString()

Bill

Patientname B. Clinton

address New York

owes

toString()

$250.00

equals(Object)

toString()

Object

Convention: c.toString() prints a

representation of folder c.

Put following method in Patient.

public String tostring() {

 return name + “ “ + address +

 “ “ + owes;

}

The expression c

automatically does c.toString()

7

Field: a variable that is in each folder

a0

Chapter
title …

number …

previous …

public class Chapter {

 private String title; // Title of the chapter

 private int number; // Number of the chapter

 private Chapter previous; // previous chapter (null if none)

}

We generally make fields

private instead of public, so

that they cannot be referenced

from methods that are outside

the class.

8

Getter and setter methods

a0

Chapter
title …

number …

previous …

/** An instance describes a chapter of

 a book */

public class Chapter {

 private String title; // Title of the chapter

 /** = the title of the chapter */

 public String getTitle() {

 return title;

 }

 /** Set the title of the chapter to t */

 public void setTitle(String t) {

 title= t;

 }

}

Getter methods get or retrieve

values from a folder.

Setter methods set or change

fields of a folder

getTitle() setTitle(String t)

9

We need a way to initialize fields

when a folder is first created

new Chapter()

creates a folder but doesn’t allow us to

say what values should be in it.

We would like to be able to say:

new Chapter(“I am born”, 1, null)

to set the title to “I am born”, the

chapter number to 1, and the previous

chapter to null.

For this, we use a new kind of method, the constructor.

a0

Chapter
title …

number …

previous …

getTitle() setTitle(String t)

10

The purpose of a constructor is to initialize (some) fields

of a newly created folder
/** An instance describes a chapter of

 a book */

public class Chapter {

 private String title; // Title of chapter

 private int number; // No. of chapter

 private Chapter previous; // previous

 // chapter (null if none)

 /** Constructor: an instance with title t,

 chapter number i, and previous

 chapter p (null if none) */

 public Chapter(String t, int i,

 Chapter p) {

 title= t;

 number= i;

 previous= p;

 }

}

a0

Chapter
title …

number …

previous …

getTitle() setTitle(String t)

Chapter(String t,

 int i, Chapter c)

The name of a constructor is the name of the class.

Do not put a type or void here

11

New description of execution of a new-expression

new Chapter(“I am born”, 1, null)

1. Create a new folder of class Chapter,

 with fields initialized to default

values (0 for int, for example).

2. Put the folder in file-drawer Chapter.

3. Execute the constructor call

Chapter(“I am born”, 1, null)

4. Use the name of the new folder as

 the value of the new-expression.

Memorize this new definition! Today! Now!

a0

Chapter
title …

number …

previous …

getTitle() setTitle(String t)

Chapter(String t,

 int i, Chapter c)

12

You can have more than one constructor

/** Constructor: an instance with title t,

 chapter number i, and previous chapter

 p (null if none) */

public Chapter(String t, int i, Chapter p) {

 title= t;

 number= i;

 previous= p;

}

/** Constructor: an instance with title t,

 chapter number i, and previous chapter null */

public Chapter(String t, int i) {

 title= t;

 number= i;

 previous= null;

}

Makes it easier, more flexible, for the

“user” who is using the class

13

A static field does not appear in each folder.

It appears in the file drawer, by itself, on a piece of paper.

There is only ONE copy of it.

a0

Chapter
title “peace”

public class Chapter {

 private int title; // Number of chapter

 private static int numberOfChapters= 0;

}

a1

Chapter
title “truth”

numberChaps 2
File drawer for class Chapter

Reference the static

variable using

Chapter.numberChaps

14

A static field does not appear in each folder.

It appears in the file drawer, by itself, on a piece of paper.

There is only ONE copy of it.

a0

Chapter
title “peace”

public class Chapter {

 private int title; // Number of chapter

 private static int numberOfChapters= 0;

}

a1

Chapter
title “truth”

numberChaps 2
File drawer for class Chapter

Use a static variable when

you want to accumulate

information about all (or

some) folders

