
CS100J Spring 2001: Project 4 Grading Guide

Notes
• Please carefully review all notes written on your grading form and project.

• Find the codes for these notes below.

• Try to understand why you received the note so that you may avoid it on your next project.

• * means the item is worth twice

Scores
• Bonus may be applied for exemplary work or doing additional tasks

• Give 1 bonus point for each valid and justified response to Question 5 and 6.

• Let c and s be the number of correctness and style: see table, below

• For each program not included, remove one correctness and style point

1. General
(s1a) grading form provided for each partner, as coversheet

(s1b) grading form properly filled out and signed

(s1c) title sheet and table of contents provided (OK if unified)

(s1d) pages numbered and properly bound

(s1e) all work typed

(s1f) lines of text/code not chopped off or misaligned

2. Algorithm
(s2a) written in pseudocode as a series of steps – not an essay

(s2b) included all the steps to be executed in a run

(s2c) gives high-level description

3. Program Correctness
(c3a) simulation continues as long as tray 4 is emptied by worker 4.

(c3b) each worker starts with a random starting efficiency between 85 and 100% (both inclusive).

(c3c) the efficiency should always be within the range specified and should be able to take any value in the range:

• Code, like Math.random()*(high-low+1)+low or (Math.random()*(100-85+1)+85)/100,

will not work – they can achieve values > high,

• Code, like (int)(Math.random()*(100-85+1)+85))/100, cannot get values like 90.5% (i.e.,

0.905).

(c3d) the run # is displayed for each run.

(c3e) *both old contents and new contents are shown for each run.

(c3f) the total # of items taken so far is displayed after every run.

(c3g) the first run printed shows old contents trays 2,3,4 as 0 – only tray 1 may be non-empty. If the output included does

not show runs starting from the beginning, check to make sure that the first run displayed is after the trays have

shifted and a new tray has entered with a random # of items on it.

(c3h) trays 1,2,3 shifted right in proper order: tray4=tray3, tray3=tray2, tray2=tray1

(c3i) tray 1 enters with random # of items

(c3j) capacity of a worker is a random # between 2 and 6 (both inclusive) multiplied by efficiency.

(c3k) workers may choose to skip items half the time - the choice is random.

(c3l) code, like items-= items*(1-MyMath.random(0,1))/2, will not work because integer division has

precedence – items will never be decremented i.e., no skipping takes place

(c3m) the # of items skipped depends on position.

(c3n) check that the # of items extracted is at most the # of items on the tray.

(c3o) worker efficiency decreases by 5% of previous efficiency - not 5% points.

(c3p) * no syntax errors (as much as you can make out) – program should compile.

(c3q) output should be correct.

(c3r) **program output matches with the code - no FAKING of output.

4. Style
(s4a) *separate Worker class provided.

category
Points

0 1 2 3 4 5

correctness
nothing

turned in

style
nothing

turned in

c 16≥ 12 c 15≤ ≤ 8 c 11≤ ≤ 4 c 7≤ ≤ 0 c 3≤ ≤

s 17≥ 13 s 16≤ ≤ 9 s 12≤ ≤ 4 s 8≤ ≤ 0 s 3≤ ≤

(s4b) *separate Tray class provided.

(s4c) Belt class provided.

(s4d) a main simulation/driver class provided.

(s4e) class such as MyMath provided which contains code for random # generation.

(s4f) Belt class has 4 Trays as members i.e., Trays participate in has-a relationship with Belt.

(s4g) *simulation class sets up the model by creating Workers, Belt.

(s4h) *private members are used.

(s4i) efficiency and position are private member fields of Worker class.

(s4j) #_of_items on a tray is a private member of Tray class and Total_#_of_items extracted is a private member of the

Belt class.

(s4k) *getters and setters used.

(s4l) method provided to change worker efficiency.

(s4m) methods for getting #_of_items on a tray, filling a tray, removing items from tray.

(s4n) static/final variables used to represent ranges

(s4o) code is properly indented.

(s4p) comments included for major lines of code and methods.

(s4q) *modular code – methods used to subdivide larger tasks and/or perform repetitive tasks

(s4r) clear, readable code – avoiding needless complication/redundancy.

(s4s) output included with program.

(s4t) output shown is for >=10 runs.

5. Discussion
(c5a) answers to each question typed separately – no essays

(c5b) (1) average # of runs: 18-24; # of items extracted: 35-50. This could vary depending on when the data is rounded

e.g., items=(int)(efficiency*(Math.random(6-2+1)+2)) can give more runs than

items=(int)(effciency*(int)(Math.random(6-2+1)+2))
(c5c) (2) average # of runs decreases as #_of_items on a tray increases

(c5d) (3) average # of runs increases as #_of_items on a tray decreases

(c5e) (4a) simulation continues forever if all trays contain 0 items because # of items extracted is 0

(c5f) (4b) approximate lower bound is 17 +/- 2 is fine.

(c5g) (5) difficult to predict: Suppose each worker has capacity = 4, starts with efficiency 1. Average efficiency of

workers = (1+.95+.95*.95+.95*.95*.95)/4=0.9275 (since worker 1 has eff. 1 in run 1, worker 2 has eff. 0.95 in run

2 and so on). So # of items that can be extracted = 4 (workers)*4 (capacity)*0.9275 (efficiency)=14.84. If each

worker starts with efficiency 0.85, # of items that can be extracted = 12.6. We haven’t taken into account workers’

willingness to skip items which can only decrease # of items extracted. So the predicted lower bound doesn’t match

the lower bound obtained.

(c5h) (6) grading is flexible: since an average of >= 4 items have to be removed per run, the range for #_of_items on tray

should be >= 0-10 or so. It is preferable to have the lower end point as 0. Even after 25 runs due to efficiency loss at

each run, the efficiency reduces to < 28% of original value, so it is very unlikely that the simulation runs for 50

runs. The simulation most probably would run for 30-35 runs so the extraction rate should be ~ 6-8 items per run.

Also the average efficiency of a worker in the first 25 runs(assuming he/she starts with 100%) is 57.8%. So roughly

speaking, the maximum capacity should be 14-16 items per run and the worker capacity and efficiency ranges need

to be narrow. The ranges obtained were: #_of_items on tray: 0-15, worker capacity: 13-18, worker efficiency : 90-

100%.

(c5i) (7) grading is flexible: if the answer is reasonable and there is some justification, credit is awarded. Ways could be

more realistic efficiency function, more accurate data to model worker capacities and efficiency, better way of

modeling uncertainty than a simple random distribution, factoring in different worker skills/abilities/attitudes,

differences in types of items, and more. Essentially, imagine the real-world situation and ask what’s been glossed

over/approximated in the model.

6. Miscellaneous
(c6a) New contents displayed AFTER extracting items and BEFORE shifting items

(c6b) miscellaneous

	CS100J Spring 2001: Project 4 Grading Guide
	Notes
	Scores
	1. General
	(s1a) grading form provided for each partner, as coversheet
	(s1b) grading form properly filled out and signed
	(s1c) title sheet and table of contents provided (OK if unified)
	(s1d) pages numbered and properly bound
	(s1e) all work typed
	(s1f) lines of text/code not chopped off or misaligned

	2. Algorithm
	(s2a) written in pseudocode as a series of steps – not an essay
	(s2b) included all the steps to be executed in a run
	(s2c) gives high-level description

	3. Program Correctness
	(c3a) simulation continues as long as tray 4 is emptied by worker 4.
	(c3b) each worker starts with a random starting efficiency between 85 and 100% (both inclusive).
	(c3c) the efficiency should always be within the range specified and should be able to take any v...
	(c3d) the run # is displayed for each run.
	(c3e) *both old contents and new contents are shown for each run.
	(c3f) the total # of items taken so far is displayed after every run.
	(c3g) the first run printed shows old contents trays 2,3,4 as 0 – only tray 1 may be non-empty. I...
	(c3h) trays 1,2,3 shifted right in proper order: tray4=tray3, tray3=tray2, tray2=tray1
	(c3i) tray 1 enters with random # of items
	(c3j) capacity of a worker is a random # between 2 and 6 (both inclusive) multiplied by efficiency.
	(c3k) workers may choose to skip items half the time - the choice is random.
	(c3l) code, like items-= items*(1-MyMath.random(0,1))/2, will not work because integer division h...
	(c3m) the # of items skipped depends on position.
	(c3n) check that the # of items extracted is at most the # of items on the tray.
	(c3o) worker efficiency decreases by 5% of previous efficiency - not 5% points.
	(c3p) * no syntax errors (as much as you can make out) – program should compile.
	(c3q) output should be correct.
	(c3r) **program output matches with the code - no FAKING of output.

	4. Style
	(s4a) *separate Worker class provided.
	(s4b) *separate Tray class provided.
	(s4c) Belt class provided.
	(s4d) a main simulation/driver class provided.
	(s4e) class such as MyMath provided which contains code for random # generation.
	(s4f) Belt class has 4 Trays as members i.e., Trays participate in has-a relationship with Belt.
	(s4g) *simulation class sets up the model by creating Workers, Belt.
	(s4h) *private members are used.
	(s4i) efficiency and position are private member fields of Worker class.
	(s4j) #_of_items on a tray is a private member of Tray class and Total_#_of_items extracted is a ...
	(s4k) *getters and setters used.
	(s4l) method provided to change worker efficiency.
	(s4m) methods for getting #_of_items on a tray, filling a tray, removing items from tray.
	(s4n) static/final variables used to represent ranges
	(s4o) code is properly indented.
	(s4p) comments included for major lines of code and methods.
	(s4q) *modular code – methods used to subdivide larger tasks and/or perform repetitive tasks
	(s4r) clear, readable code – avoiding needless complication/redundancy.
	(s4s) output included with program.
	(s4t) output shown is for >=10 runs.

	5. Discussion
	(c5a) answers to each question typed separately – no essays
	(c5b) (1) average # of runs: 18-24; # of items extracted: 35-50. This could vary depending on whe...
	(c5c) (2) average # of runs decreases as #_of_items on a tray increases
	(c5d) (3) average # of runs increases as #_of_items on a tray decreases
	(c5e) (4a) simulation continues forever if all trays contain 0 items because # of items extracted...
	(c5f) (4b) approximate lower bound is 17 +/- 2 is fine.
	(c5g) (5) difficult to predict: Suppose each worker has capacity = 4, starts with efficiency 1. A...
	(c5h) (6) grading is flexible: since an average of >= 4 items have to be removed per run, the ran...
	(c5i) (7) grading is flexible: if the answer is reasonable and there is some justification, credi...

	6. Miscellaneous
	(c6a) New contents displayed AFTER extracting items and BEFORE shifting items
	(c6b) miscellaneous

