Debugging Java Programs with CodeWarrior
for CS100 and CS211

Hal Perkins

Fall 1998

CodeWarrior includes an interactive debugger that
you can use to examine your program as it executes.
This handout gives an overview of the debugger and
how to use it effectively.

Some of the information in this handout may not
make much sense until later in the course. Skim over
unfamiliar material now and read it again later at the
appropriate time.

Note: The CodeWarrior Pro 3 debugger has been
changed. It is now part of the IDE, and not a separate
application. And, some of the keyboard shortcuts for
debugger commands are different.

1 Perspective

An interactive debugger allows you to run your pro-
gram a few statements at a time and observe the
values of variables. A good interactive debugger is
an invaluable tool for finding problems and verifying
that a program works.

But a debugger is no substitute for thinking. The
best way to eliminate errors (bugs) is not to create
them in the first place. Time spent carefully design-
ing a program is more than repaid in time saved dur-
ing testing and debugging. Before you start writing
detailed code, be sure you understand the problem
and the algorithms you plan to use to solve it. After
you’ve written the code, carefully check it (proofread-
ing, tracing, etc.) before you try running it.

Don’t rush to get something on the computer. You
may be tempted to type in the first thing that comes
to mind and start tinkering with it, because it some-
times feels like no progress has been made until the
machine is involved. But if you hack before you know
what you are doing, it will take much longer to get a
correct program and the code will be much worse.

Rather than tinkering with your code, randomly
changing things in the hope that bugs will go away,
get away from the computer and think.

Take advantage of all error-detecting features pro-
vided by CodeWarrior. Turn on any options that you

can find to generate warning messages. Use any avail-
able software tools to look for potential bugs. Don’t
waste your time on problems the computer could have
caught for you.

Once you have carefully designed and typed your
program, your task is to verify that it works as ex-
pected. The debugger can be a great help with this,
allowing you to stop execution at “interesting” places
and check that variables have their expected values,
that expected output has been produced, and that
nothing unexpected has happened.

2 Using the Debugger

Select Project|Enable Debugger. (On a Mac, this
changes command Run in menu Project to Debug.)
Then select Project|Debug to have the debugger exe-
cute your program.

The debugger’s program and new class browser
windows usually open automatically when the debug-
ger starts. If they don’t appear, you can select them
from menu Window. In the screen snapshot on the
last page of this handout, the browser window is in
the upper right corner with the program right below
it.

The program window contains two panes on top
and one on the bottom. It displays information about
currently active methods and the source files that
contain them. The upper-left panel contains a list
of active methods. The bottom panel displays the
source file containing the method whose name is se-
lected in the list and the upper-right panel displays
its local variables. An arrow appears to the left of the
next statement to be executed in each active method.
Initially, execution is paused at the first statement of
method main.

The browser window looks much like the program
window, but it contains three panes at the top. It can
be used to view any file in the program, not just those
containing currently active methods. The upper-left
pane contains a list of files in the program. When a

file name is selected, the middle pane contains a list
of the methods in that file. Select a method name to
view its source code in the bottom pane.

Arrange the debugger’s windows on the screen
so they don’t overlap other windows, like the in-
put/output console window, that you want to see
while debugging. You can change the size of the de-
bugger’s windows by dragging the lower right corner,
as usual. To adjust the size of individual panes in
the windows, use the mouse to drag the vertical or
horizontal bars between them.

When the debugger begins executing your pro-
gram, it usually pauses at the first statement. You
can cause execution to proceed by selecting Project|
Run. Select Run twice if the first selection only brings
the program window forward without actually exe-
cuting the program. Alternatively, you can execute
the program one statement at a time, as discussed in
Section 2.3.

2.1 Breakpoints

Before you run your program, you can set break-
points: places in the code where you want execution
to pause so you can examine the situation before con-
tinuing. Breakpoints can be set in both the program
and browser windows. In the source panes of these
windows, there are dashes to the left of most state-
ments, indicating places where breakpoints can be
set. (This is a good reason to put individual state-
ments on separate lines. Breakpoints can be placed
only at the beginning of a line, not in the middle.)

To set a breakpoint, click one of the dashes. It
will turn into a small red dot. When the execution
reaches an active breakpoint, the program pauses and
control returns to the debugger.

The breakpoints window contains a list of all the
breakpoints in the program. If it is not on the screen,
you can select it from menu Window.

You can temporarily disable a breakpoint without
removing it entirely by clicking the red dot next to
it in the breakpoints window. The dot changes to a
dash. The breakpoint still exists in the program, but
execution won’t pause there. This is useful, for exam-
ple, if you want to stop at a breakpoint the first time
it is reached but not after. To reactivate a breakpoint,
click the dash in the left column of the breakpoint
window to cause the red dot to reappear.

A breakpoint may have a condition attached to
it —a logical expression (e.g. sum >= 17). When
execution reaches a breakpoint with a condition, it
pauses only if the breakpoint is active and the con-
dition is true. Conditions are entered in the break-

points window to the right of the affected breakpoint.

You can view the location of a breakpoint in the
source program by double clicking it in the break-
points window. The browser window will jump to
that location.

To permanently remove a breakpoint from the pro-
gram, click the red dot next to the statement in the
program window or symbol window (not the break-
points window). The dot will change back to a dash
to indicate that the breakpoint is gone.

2.2 Stopping Execution of a Program

Macintosh. To stop a program you are debug-
ging (perhaps because it is in an infinite loop), type
control-command-/. This should return control to the
debugger. The program window will show the loca-
tion in the program where execution is paused, and
you can use the debugger to appraise the situation.

If control-command-/ doesn’t work, try forcing ter-
mination by pressing Option-Command-Esc. If you
want to continue debugging, you will have to start
from the beginning.

Occasionally a problem will cause the machine to
lock up or freeze. If neither of the above steps sal-
vages the situation, restart the machine. Don’t do
this unless you have to —all unsaved work in open
applications will be lost.

Windows. Usually, you can stop execution of a pro-
gram by selecting a debugger window and then se-
lecting Debug|Stop or Debug|Kill.

2.3 Incremental Execution

Once a program is stopped, you may want to look
around and run it slowly, a few statements at a time.
The commands in menu Debug do this.

The step commands run the program one state-
ment at a time. Step Over and Step Into both execute
the next statement in the program. If the statement
calls a method, Step Over executes the entire method
call in a single step. Step Into moves into the body of
the method so you can trace its execution. Use Step
Into to examine your own methods and Step Over for
methods supplied by us or CodeWarrior.

Step Out completes execution of the current
method and stops at the place where the method was
called.

Project—Resume resumes execution until another
breakpoint is reached or the program terminates.

Stop terminates execution and returns control to
the debugger. Execution can be resumed after exe-
cuting any desired debugger commands.

Kill terminates execution of the program.

Note: The debugger’s toolbar has buttons for Run,
Stop, Kill, Step Over, Step Into, and Step Out. In the
Windows version, this toolbar is near the top left of
the program window. [

2.4 Examining a Program

When the program is stopped, you can examine the
values of variables, check whether certain conditions
are true or false, evaluate expressions, etc.

2.4.1 The Call Stack

The call stack in the upper-left corner of the pro-
gram window displays a list of currently active meth-
ods. The name of the currently executing method
appears at the bottom of this list, the name of
the method that called it is just above, and so
forth. For example, if method main called sort_1list,
which called move_smallest_to_front, which called
move_element, the call stack would be:

main
sort_list
move_smallest_to_front

move_element

Additional methods may be listed above main. These
methods are either part of CodeWarrior or part of the
operating system. Normally you will be interested
only in the ones from main down.

You can view the source code and local variables
of any method in the call stack by selecting its name.

2.4.2 Local Variables

The upper right corner of the program window shows
the local and global variables of the method currently
selected in the call stack. The current value of each
variable appears to the right of its name.

The values of simple variables, with types like int,
double, and char, are displayed to the right of the
variable name. For arrays and structures, the mem-
ory location of the variable is shown and there is a
boxed “+4” to the left of the variable name. Click
this button to see the components of the variable (ar-
ray elements or structure fields). More complex data
structures may contain fields that can be further ex-
panded by clicking such a button.

Note: Uninitialized variables may appear to have
nonsense values. For example, if an integer variable
has not been initialized, something bizarre like -14853
might be displayed as its value. [

To view the value of a variable in a separate win-
dow, double click its name or select Open Variable
Window from menu Data.

Other commands in menu Data control how infor-
mation about variables is displayed.

Show Types displays the type of each variable along
with its value.

View As... allows you to set the type according to
which a variable is displayed. This is primarily useful
for machine level debugging.

Open Array Window displays an array in a separate
window. Option-double-clicking a variable name is a
shortcut for this command.

To change the value of a variable during debugging,
double-click its current value and enter a new one.

Warning: This changes the value of the variable
only for the current execution of the program. To
make a permanent change, you must change the orig-
inal program. [

2.4.3 Expressions

You can evaluate expressions in the expressions win-
dow. Expressions may include program variables or
Java operators, but not method calls. To enter a new
expression, select Data|New Expression, type the ex-
pression and press Return. You can copy and paste
an expression from the source program.

To modify an expression, double-click it and make
the desired changes. Hit Return to display its value.

2.5 When You’re Done

If you plan to run your program with the debugger
again, quit your program (Java console window) but
leave the debugger application running. Use Code-
Warrior to make any needed changes. When you se-
lect Debug again (command-r) the debugger will re-
sume control of the program.

To run the program without the debugger, select
Project|Disable Debugger. To resume debugging, se-
lect Project|Enable Debugger again.

Remember to quit the debugger when you are done:
Select File|Quit.

