CS100, Spring 2000, Project 7 Decryption Write-Up: Cracking the Code

1 Overview

1.1 The Story Line

You work for Bureau 13, a top-secret government organization that protects the public from all kinds of
nasty things. In the past week, Bureau 13 has intercepted an email message from a nefarious society called
the Evil Group of People (EGOP) that’s bent on destroying the world. Unfortunately, the email message
seems garbled even though EGOP used ASCII. Unclear as to EGOP’s intent, your supervisors, Yan and
Dis, have assigned you the task of deciphering the message. You are the perfect choice because you took
CS100 in college and learned how to decrypt messages. Having become a highly skilled programmer, you
will hopefully save the world in completing Project 7.

1.2 How This Write-Up Differs From the Project 6 Write-Up

Sections 2 and 3 have a few small changes from the Project 6 Write-Up, e.g. Section 2.3 defines cracking
more carefully and Section 3.6 is new. Sections 4 and onwards are new.

2 Background: Encryption and Decryption

2.1 Characters

Your bosses informed you that the information EGOP sent is text written in English. Each English letter
is called a character. In general, a language uses a set of characters to build words. Since sets have no
implied order, we organize the character sets into alphabets, which usually sort characters.

2.2 Hidden Information

Suppose part of EGOP’s message contains the passage of text "TUBSU SIF BUUBDL". Assuming EGOP uses
English, this portion doesn’t appear to contain meaningful text. However, you might notice a pattern to
the letters — try to substitute a letter “one-lower” in the alphabet for each given letter. So, the letter
'B’ becomes 'A’, the letter 'C’ becomes ‘B, and so on. Eventually, you will discover that EGOP “hid” the
message "START THE ATTACK".

2.3 Encryption and Decryption
Zounds! EGOP hid a secret message! How did they do that?

e The process of hiding information is called encryption or encoding.

e The process of “unhiding” information is called decryption or decoding.
Both processes are required! Encryption provides privacy and protection for information, like messages
proclaiming intentions to take over the world. But, what good is the ability to hide something if you can’t
find (“unhide”) it, and what good is the ability to unhide if nothing can be hidden?

To hide or unhide information, something must change the information. The set of rules for performing
this transformation is called a key:

e Encryption transforms text using an encryption key.

e Decryption transforms text using an decryption key.
A eryptosystem consists of both the rules for encryption and the rules for decryption. That is, a cryp-
tosystem is an encryption key together with the corresponding decryption key:

e To encrypt text, transform unencrypted text with an encryption key.

e To decrypt text, transform encrypted text with a decryption key.

You might sometimes hear or see the term cracking, which means figuring out the unencrypted text
from encrypted text without knowing the decryption key.! Note that it suffices to find the decryption key: if
you can figure out the decryption key, then you can use it to decrypt the encrypted text and thereby extract
the unencrypted text.

2.4 Substitution Ciphers

A cipher is a cryptosystem where the encoding and decoding is done character-by-character, as opposed
to being done on words, phrases, or blocks of 1024 characters. From undercover agent Artemov, you know
that EGOP failed to study any computer science and, fortunately, chose one of the simplest cryptosystems:
a substitution cipher. A substitution cipher, or mapping/permutation, changes each character to
another character. For example, in Section 2.2, EGOP’s substitution cipher exchanges each letter of the
English alphabet with the “next” letter. Note that 'Z’ “wraps around” to 'A’. The notation 'A’—’B’ means,
“’A’ maps to 'B’”, which also means, “replace each ’A’ with 'B””. You must follow two rules with a substitution
cipher:

1. Use every character from a given character set.
2. Map every character to only one other character.

Rules 1 and 2 means a character uniquely maps to another character. For example, if 'A’—’B’ is part of the
encryption key, then neither 'A’—’c’ nor 'c’—’B’ can be part of the encryption key.

2.5 Encryption Key

Sometimes we might say encipher or encode instead of encrypt. A cipher uses an encryption key to
encode text. So, applying the encryption key to text encrypts, or “hides”, that text. Represent an encryption
key by writing two lines:

1. On the top line, write the character set.

2. On the bottom line, write the conversion for each character.

Figure 1 shows the encryption key for the famous substitution cipher called the Caesar cipher, which
Julius Caesar supposedly used. The Caesar cipher simultaneously renames each letter with the letter 3
positions “down” in the alphabet and “wraps around” back to ’a’ after the letter 'z’.

abcdefghijklmnopqgrstuvwxyz top line: alphabet
L R R R A

defghijklmnopgrstuvwxyzabc bottom line: encoding of each letter of the alphabet

Figure 1: Encryption Key for Caesar Cipher

An encryption key renames each character on the first row to the character just below on the second row.
Using mapping notation, you may express the encryption key in Figure 1 as 'a’—'d’, 'b’—'e’,
'¥'—='a’, 'y’ =Y’ and 'z'—’'c’, where each character is used exactly once on the top and exactly once on the
bottom.

How do you encipher a message using an encryption key? Call the unencrypted message plaintext and
the encrypted message ciphertext. Figure 2 places the plaintext on the top line above the ciphertext on the
bottom line. Observe that each plaintext letter is replaced by the appropriate character from the encryption
key for the Caesar cipher. For example, 'w'—'z’, 'e’—'h’, the space maps to a space, 'a’—'d’, 'p’—’s’, and
so forth. In both Figures 1 and 2, the bottom line is the encoded version of the top line. (But, see also
Figures 6-8.) Note that the encryption key does not require the top line to be sorted. See Figure 3 for an
equivalent representation of the Caesar cipher. Once more, each line uses each character from the character

set exactly once.

— -
LW =zl

In many cryptosystems, the decryption key is “easy” to compute from the encryption key. Therefore, the encryption key
must be hidden for the cryptosystem to be secure. However, there are some cryptosystems where it is (believed to be) infeasible
to compute the decryption key from the encryption key, in which case it is OK for the encryption key to be public. So-called
public key cryptosystems have this property, e.g. PGP/RSA.

we apologize for the inconvenience top line: unencoded plaintext

L R Ay

zh dsrorjlch iru wkh lqfrqyhqlhqfh bottom line: encoded ciphertext

Figure 2: Encryption Example Using the Caesar Cipher

abnocdgpwxyefqrstuvhijklmz top line: alphabet, in random order

L R R R R A A

deqrfgjszabhituvwxyklmnopc bottom line: encoding of each character

Figure 3: Equivalent Encryption Key for the Caesar Cipher

2.6 Decryption Key

To produce understandable decrypted text, you need to decrypt the encrypted text. Sometimes we might
say decode or decipher instead of decrypt. To decrypt, we undo encryption, i.e. “run encryption in reverse”
to transform ciphertext into plaintext, as shown Figure 4.

we apologize for the inconvenience top line: unencoded plaintext

A B O B B B A O A A A R R
zh dsrorjlch iru wkh 1qfrqyhqlhqfh bottom line: encoded ciphertext

Figure 4: Intermediate Decryption Example Using the Caesar Cipher

Observe that Figure 4 has flipped the arrows upside down to show that decryption transforms the bottom
line into the top line. Now, compare the character mappings used in Figures 2 and 4:

e Figure 2: 'w'—'z’, 'e’—'h/, the space maps to a space, 'a’—’d’, 'p’—’s’, and so forth.
e Figure 4: 'w'«'z’, 'e’<'h’, the space maps to a space, 'a’<'d’, 'p’<’s’, and so forth.

The mappings in Figure 4 reverse the mappings in Figure 2, which corresponds to the idea of “running
encryption in reverse”. So, to form the decryption key for decoding ciphertext, reverse all the mappings
in the encryption key. Figure 5 shows this process for the encryption key from Figure 1.

abcdefghijklmnopqrstuvwxyz top line: alphabet
TTTTTITI I I T e eI e e eeeeest

defghijklmnopqrstuvwxyzabc bottom line: encoding of each character

Figure 5: Intermediate Decryption Key for the Caesar Cipher

For conciseness and consistency omit arrows but understand that they implicitly point down. So, you
must flip Figures 4 and 5 upside down, yielding Figures 6 and 7. Figure 8 summarizes the different types
and arrangements of keys.

we apologize for the inconvenience top line: unencoded plaintext
zh dsrorjlch iru wkh 1lqfrqyhqlhqfh bottom line: encoded ciphertext

Figure 6: Final Decryption Example Using the Caesar Cipher

2.7 Inversion

What is an inwverse? The inverse of a process is its “opposite”. For example, the opposite of increment by
2 is decrement by 2. For a given operation, the inverse of a value is its opposite value. For example, for

defghijklmnopgrstuvwxyzabc top line: encoded alphabet
abcdefghijklmnopqrstuvwxyz top line: alphabet

Figure 7: Final Decryption Key for the Caesar Cipher

General Key Encryption Key Decryption Key
Top Line alphabet unencoded alphabet encoded alphabet
Bottom Line | transformed alphabet encoded alphabet unencoded alphabet

Figure 8: Summary of Keys

addition, the inverse of 2 is —2. For cryptosystems, encryption and decryption are inverse processes. For
the operation of transforming text, encryption and decryption keys are inverse “values”.

To form a decryption key, you swap the top and bottom lines of an encryption key. More formally,
swapping the top and bottom lines is called inverting:

e inverting an encryption key produces a decryption key

e inverting a decryption key produces an encryption key
Why the term inverse? If you transform plaintext using an encryption key, i.e. encrypt, you produce
ciphertext. If you then transform the ciphertext using the decryption key, i.e., decrypt with the inverse

of the encryption key, you produce the original plaintext. That is, the encryption key and decryption key
“undo” each other and are inverses of each other. Mathematically speaking, for plaintext p,

encode(decode(p)) = encode(decode(p)) = p.

For instance, 'a’—'d’ followed by ‘d’—'a’ yields the mapping 'a’—’d’—’a’.

f\

plaintext ciphertext

&J

Figure 9: Encryption and Decryption are Inverse Processes

3 Foundation for Cracking: Frequency Analysis

To crack EGOP’s message, you need to know how to compute a decryption key without knowing the en-
cryption key — EGOP tries to keep theirs a secret. Before finding the decryption key, you need to review
some basics of natural languages.

3.1 Natural Languages

In computer science, a language is any set of words over some alphabet. A natural language, as opposed
to a programming language, has native human speakers. Natural languages have lots of structure, such as
grammar, semantics, and syntax, which assist decryption. To perform your task, consider only frequencies,
as discussed below.

3.2 Frequencies

How might you crack a cryptosystem that uses character mappings? Consider how frequently certain char-
acters appear in text. If you could spot repeated patterns in encoded text and then match them to known

patterns in “regular” text, you might be able to crack the cryptosystem! For example, the letter 'u’ almost
always follows the letter 'q’.? Natural languages have other patterns, too. A frequency is a measure of how
often a pattern appears in a body of text. You may measure frequency of a pattern as either:

e a tally: the number of times the pattern appears
the number of times the pattern appears

e a fraction or percentage: the ratio
f p g the total number of patterns

Recall that 2% = 1;%0 and observe that the fraction is always between 0% = 0 and 100% = 1.0.

There are published tables of frequencies of single letters and pairs of letters for different languages.®> We
refer to these frequencies as unigram and bigram frequencies:

e unigram = 1 letter, where uni = 1 and gram = letter

e bigram = 2 letter pair, where bi = 2 and gram = letter

Note that the order of letters matters, e.g. "qu" and "uq" are different! Higher-order frequencies, like
trigrams, are also studied and would help our task, but for simplicity, do not consider them.

3.3 Example

For brevity, consider an invented language with the 4-letter alphabet {a,b,c,d}. Mark spaces between words
with a hyphen (-) and assume no punctuation. Figure 10 shows a portion of text using this invented language.
The following sections demonstrate how to collect and organize frequency data using frequency tables.

| —a—aaa—-abba-abc-ac-ad-ada-add-baa-bad-cab-cb-cdc-dab-dad-dada-dc- |

Figure 10: Example Text for Invented Language

3.4 Unigram Frequencies

You may collect unigram frequencies in tables using either tallies or percentages. From Figure 10, count the
number of times -/, ‘a’, 'b’, 'c’, and 'd’ each appear. Each character count produces a tally, tabulated in
Figure 11. Compute each character’s frequency as a ratio of the number of times that character appears and
the total number of characters. You may tabulate the frequencies as ratios, as shown in Figure 12. These
tables are called unigram tables.

- a b ¢ d - d b ¢ a
17 20 8 7 12 ot 17 12 8 7 20

Figure 11: Unigram Frequencies (Tallies)

- a b c d - d b c a
or

27 31 13 11 19 27 19 13 11 31

Figure 12: Unigram Frequencies (Percentages (%))

Although the tables might appear two dimensional, the numbers are in a single row. So, think of the
set of unigram frequencies as a 1-D table. Why two tables for each table of unigram frequencies? You may
choose to count characters in any order, so the tables in each pair are equivalent. However, note that the
count and percent frequencies differ! To access a frequency for a particular character, use the notation freg;,
where j is any character from the character set, including '-’. For example, freq:,» = 31% tells you that ’a’
occurs 31% of the time.

2Why not always? Because of typos, abbreviations, words borrowed from other languages, and people in advertising that
like to mess around with spelling.

3See http://www.cs.wright.edu/people/faculty/fdgarber/740/ascii/ascii2freq.html for an example of frequencies in
just words.

3.5 Bigram Frequencies

A bigram frequency measures how often a pair of letters occurs. For instance, take the ratio of the number
of times ¢’ comes before 'd’ (1 time) with the total number of pairs (64 times). You will find that the pair
"cd" appears 2% (1/64) of the time in the text shown in Figure 10. To collect all bigram frequencies, use a
2-D table called a bigram table, as shown in Figures 13 and 14.

j — /d/] — /d/
l l
- a b c¢c d - d b c¢c a
-10 8 2 3 4 or -10 4 2 3 8
a|l6 3 4 1 6 dl{4 1 0 2 5
b{3 3 1 1 0 b3 0 1 1 3
i='c’—sc|4 1 1 0 1 i='¢c" s c|4 1 1 0 1
d|4 5 0 2 1 al6 6 4 1 3
Figure 13: Bigram Frequencies (Tallies)
j — /d/] — /d/
! |
- a b c¢c d - d b c a
-10 13 3 5 6 or -10 6 3 5 13
al9 5 6 2 9 d({6 2 0 3 8
b|5 5 2 2 0 b|5 0 2 2 5
i='c" = c |6 2 2 0 2 i='c’" = c|6 2 2 0 2
d({6 &8 0 3 2 al9 9 6 2 5

Figure 14: Bigram Frequencies (Percentages (%))

Using the bigram table, how do you store and access particular frequencies? Let the notation freg; ;
indicate a frequency stored in the bigram table located at row ¢ and column j:

e Row i indicates the first letter in a pair.

e Column j indicates the second letter in a pair.

In Figures 13 and 14, the i labels are to the left of the j labels, just like how they appear in words. So, you
may express the pair i, j as, “character i before character ;7. More formally, determine the frequencies of
pairs of characters with the following formula:

number of times the pair 4,j appears

req; ; =
f i,j total number of pairs

For instance, freq.. 1y refers to the frequency 2% located at row 'c’ and column ‘d’ in Figure 14. Other
examples include freqr, /.o = 9%, freq._r 1,0 = 13%, and freqry »y = 6%. Some observations you should note:
e freq; ; doesn’t necessarily equal freq; ; because the pairs might occur a different number of times.

e freg:s s is 0 because the example has no double-spaces.

e By convention, we require the labels on the top be in the same order as the labels to the left.

The bigram tables in Figures 13 and 14 are equivalent.

Accounting for roundoff-error, adding up frequencies in each row or column in the bigram table yields
the frequencies in the unigram table. For example, in Figure 13, the sum of column b’ produces
244414140 = 8 and the sum of row 'b’ produces 34+3+1+1+0 = &8, which matches the unigram tally
of v’ in Figure 11. Similarly, in Figure 14, the sum of column v’ produces 3% + 6% + 2% + %2 = 13%
and the sum of row v’ produces 5% + 5% + 2% + 2%=13%, which matches the unigram percentage of
"o’ in Figure 12.

3.6 Example of Bigrams

The string "abccc" has bigrams "-a", "ab", "bc", "cc", "cc", and "c-". Where did the "-a" and "c-"
come from? We insert spaces at the start and the end of each line of text to mark the start of the first
word and end of the last word in each line of text. Figure 14 collects and organizes the tallies of unigrams
and bigrams for "abccc". Observe that the unigram tallies are equal to the row and column sums of the

Bigram

- a b c
“To 1 0 o| Ur-71
al0 0 1 0] ilall
b|0 0 0 1| 8|b|1
cl1 0 0 2| alc|3

m

Unigram

- a b c

I 1 1 3 [6] Total

Figure 15: Tallies for Example String "abccc"

bigram tallies. Further observe that the total number of unigrams is equal to the total number of bigrams.
You might wonder why the number of spaces is 1. This is because we treat the inserted spaces at the front
and end of each line of text as half-spaces or shared spaces; this also makes the bigram and unigram tables
match.

3.7 Enciphering and Deciphering

What happens to the frequencies when plaintext is scrambled after applying an encryption key? Figure 17
shows the ciphertext generated by encrypting the plaintext from Figure 10 using the encryption key shown
in Figure 16.

Figure 16: Example Encryption Key

-a-aaa-abba-abc-ac-ad-ada-add-baa-bad-cab-cb-cdc-dab-dad-dada-dc- plaintext
-c-ccc-cbbc-cbd-cd-ca-cac-caa-bcc-bca-dcb-db-dad-acb-aca-acac-ad- ciphertext

Figure 17: Encoded Text for Figure 10

What happened to the frequencies? Inspect the unigram and bigram tables of frequency tallies in Fig-
ures 18 and 19. As expected, the tables do change. The numbers appear to change, but do they really? For
instance, yes, freq/,» changes from 20 to 12 in unigram table. However, notice that number 20 still appears,
but now is freg:s. In retrospect, this is not surprising: the encryption key maps each ‘a’ to 'c’. So, the old
frequency of 'a’ is the new frequency of 'c’. Similarly, in the bigram table, freq.y /o in the plaintext table
moves to freq:, 1 in the ciphertext table because the encryption key simultaneously maps ‘d" to a’” and ‘a’
to ’c¢’. That is, enciphering “scrambles” frequencies by rearranging them. Decryption maps the ciphertext
back to plaintext, restoring the frequencies back to their positions in the original table. Thus, decryption
not, only “unscrambles text”, but also “unscrambles frequencies”.

plaintext ciphertext
- a b c¢c d - a b ¢ d
17 20 8 7 12 17 12 8 20 7

Figure 18: Unigram Tallies

plaintext ciphertext
- a b ¢ d - a b c¢c d
-10 8 2 3 4 -0 4 2 8 3
al6 3 4 1 6 al4 1 0 5 2
b{3 3 1 1 O b|3 0 1 3 1
c|4 1 1 0 1 c|6 6 4 3 1
d|l4 5 0 2 1 d|4 1 1 1 0

Figure 19: Bigram Tallies

4 Using Frequencies for Decryption

4.1 Recap — Where are we, and where are we going?

The previous section ended with the following key observations:

e We say that the original frequencies of plaintext are unscrambled.
e Enciphering rearranges, or scrambles, frequencies.

e Deciphering restores the original arrangement of, or unscrambles, frequencies.

We can restate the last observation as, if ciphertext is deciphered, then frequencies will be “unscrambled”,
i.e. frequencies will be restored to the original positions they had for plaintext. Three questions now arise:

1. Can we turn that if-then statement around? That is, does unscrambling ciphertext frequencies suffice
to decipher ciphertext?

2. If so, given that we don’t know the plaintext, how do we recognize/identify that a table of frequencies
is unscrambled?

3. When we rearrange frequencies to unscramble them, what kinds of rearrangements are both legal and
effective?

To answer these questions, we need to know more about frequencies of actual plaintexts and to study the
effects of encryption on frequencies. To help you keep track of things, we will periodically summarize where
we are and where we are going with a Roadmap.

Roadmap
Section 3.7 Encipher plaintext = seramble frequencies.
Section 3.7 Decipher ciphertext = unscramble frequencies.
— | Section 4.2 Q: Does “unscramble ciphertext frequencies” suffice to “decipher ciphertext”?
Section 4.3 Q: How do we recognize that a table of frequencies is unscrambled?
Section 5 Q: What are legal and effective ways to rearrange frequencies?

4.2 Decryption and Frequencies: How Might Frequencies Help?

Let A stand for text is decrypted. Let B stand for frequencies are unscrambled. By definition, unencrypted
text has unscrambled frequencies. Therefore, if A is true, then B must be true. This can be suggestively
written in formal, logical notation as A = B.

What we are now wondering about is whether we can turn things around: Is A <= B true? That is, if we
somehow make B become true, then does that necessarily mean we made A become true?

Unfortunately, a little thought shows us that the answer is no! For example, consider an encryption key
that does nothing except rename ‘a’ to 't and vice versa. The effect on unigram frequencies of applying this

key to text is to swap the frequencies of ‘a’ and ‘t’. Since plaintext "a theta" and ciphertext "t aheat"
have exactly the same unigram frequencies, both have unscrambled unigram frequencies. (But note that the
bigram frequencies are different.)

However, we should not give up hope because maybe, if we somehow make B become true —especially
if we look at bigram frequencies— then although in theory we aren’t guaranteed that we’ve made A become
true, perhaps in practice we are very likely to have made A become true. This turns out to be the case, an
empirical “fact” that you will verify in Project 7.

In order to apply this idea, given a table of frequencies, we have to be able to recognize that it is
unscrambled. We consider how to do that in the next subsection.

Roadmap
Section 3.7 Encipher plaintext = scramble frequencies.
Section 3.7 Decipher ciphertext = unscramble frequencies.
Section 4.2 (Hope) Unscramble frequencies = decipher ciphertext
— | Section 4.3 Q: How do we recognize that a table of frequencies is unscrambled?
Section 5 Q: What are legal and effective ways to rearrange frequencies?

4.3 Recognizing Unscrambled Frequencies

To use the idea “unscramble frequencies to crack a cryptosystem”, we need to study unscrambled frequencies
(frequencies of plaintext) to look for recognizable structures/patterns that identify frequencies as being
unscrambled.

So, let us look at plaintexts from a wide range of areas: If we look at a narrow range, then we might
draw conclusions that apply to only a narrow range. So, let us consider the following three plaintexts:

e (fenesis from the 1970 edition of The New English Bible, available at
http://etext.library.cornell.edu/cgi-bin/bie-idx?type=HTML&byte=116542360&rgn=book
e An edition from 1597 of William Shakespeare’s Romeo and Juliet, available at
http://etext.library.cornell.edu/cgi-bin/shakeEd-idx?type=HTML&byte=186196093&rgn=play
e A slightly old version of the Announcements page for CS100, available at
http://courses.cs.cornell.edu/cs100/2000sp/oldannounce. txt
Each of these documents contains a corpus or large plaintext. To compute frequency tables, we must deal

with both upper- and lower-case letters, punctuation, and possibly accents. We defer the details of what we do
to Section 4.3.1, and move immediately to Figure 20 for the unigram frequencies of these corpuses. Amazing!

Unigram Frequencies (%)

-—abcd efghijklmnopgqrstuvwxyz
Romeo and Juliet (95K) [206 12311 215501435710557302020
Genesis (185K) {2072 2410216501325610557212020
Announcements (I7K) | 18 513311 223501325720567312010

Figure 20: Unigram Frequencies for Three English Corpuses

These wildly different plaintexts all have very similar frequencies! (Although not shown for space reasons,
the bigram frequencies are also very similar.) This might lead us to postulate that English has frequencies
that are intrinsic or inherent to its very nature, and indeed this is the case: English has intrinsic frequencies
that large plaintext is very likely to “closely” approximate. Therefore, a good approximation to intrinsic
frequencies can be obtained from just about any corpus.

If you try other natural languages, you will discover that they, too, have intrinsic frequencies. This means
that as long as we continue to use nothing specific to English we will develop an algorithm that works for
natural languages besides English.

Recall that we studied plaintext frequencies to find a way to recognize “unscrambled frequencies”. Since
we have seen that frequencies of large plaintext are “close” to intrinsic frequencies, we can use that as
our criterion: If frequencies are “close” to intrinsic frequencies, then we will consider/assume them to be
“unscrambled”. Thus, unscramble frequencies means bring “close” to intrinsic frequencies. This has three
immediate consequences:

e We need to figure out how to define what “close” means precisely enough for use in a computer program.

e We need a way to compute intrinsic frequencies. But as we've already observed, we can simply use
the frequencies from just about any large plaintext, since it is very likely to have frequencies that
closely approximate intrinsic frequencies. A large plaintext used in this fashion is called training text
because it “teaches” our program what the right answer is.

e We need medium to large size ciphertext so that its unscrambled frequencies are close to intrinsic fre-
quencies: Small plaintext, like words or brief sentences, tends to not contain enough letter combinations
to be representative of intrinsic frequencies.*

Roadmap
Section 3.7 Encipher plaintext = scramble frequencies.
Section 3.7 Decipher ciphertext = unscramble frequencies.
Section 4.2 (Hope) Unscramble frequencies = decipher ciphertext
Section 4.3 Unscramble = Bring “close” to intrinsic frequencies

Approximate intrinsic frequencies with training text

Assume ciphertext is medium to large so that unscrambled frequencies resemble
intrinsic frequencies

Q: How do we compute frequencies for real texts, e.g. deal with punctuation?

Q: How do we measure “closeness” or distance?

Q: What are legal and effective ways to rearrange frequencies?

Section 4.3.1
Section 4.4
Section 5

4.3.1 Assumptions and Conventions

Before we continue, note that when we gave Figure 20, we did not specify how we computed the data since
text can have upper- and lower-case letters, accents (e.g. “codperation”), punctuation, and other non-letters.
Here are the assumptions and conventions we used:

e Map upper-case letters to lower-case letters.

!’

e Substitute a blank space '-’ for any character that is not a letter.

e Assume no accents.

4.4 Distance

We need a way of comparing two equal-sized tables for “similarity” or “closeness”. Suppose you wish to
compare the Genesis and Romeo and Juliet frequencies. As shown in Figure 21, a first step is to subtract
the frequencies for each character. Since the sign (positive or negative) of the differences have nothing to do

-—-abcd efghijk 1mn opgrs t uvwxyz
Romeo and Juliet | 20 6 1 23 11215501 435 71055 7 302020
Genesis 20722410216501 325 61055 7 212020
Differences 01001-1001000-100-10000-1-110000
Magnitudes 0601001 1001000 100-10000 1 110000

Figure 21: Unigram Differences and Magnitudes of Differences

with how big the differences are, take the absolute value of each difference to get its magnitude. The last

4Ouvroir de Litterature Potentielle (“Potential Literature Workshop”) is a group about game-like methods of writing.
Member Georges Perec wrote La Disparition without using the letter ‘e’. The English translation, A Void, by Gilbert Adair
also has no ’e’. Besides as a gimmick, Perec wrote without ’e’ for plot/thematic reasons. Le Ton Beau De Marot: In Praise
of the Music of Language, by Douglas R. Hofstadter, discusses both the original and the translation.

10

row shows the magnitude of each difference. (The differences do not quite jibe with the original frequencies
because of rounding.)

The list of magnitudes gives us an idea of closeness, but it is cumbersome to deal with so much data.
With bigrams, the tediousness would be even worse. Therefore, we would like to combine the magnitudes
into a single number that measures the distance between two equal-sized tables. There are many possi-
bilities of what function to use for distance, usually all based on the magnitudes of the differences between
corresponding elements. For example,®

e Maximum or L*° distance: maximum magnitude
e [2 distance: square root of the sum of the squares of the magnitudes

e Manhattan or taxicab or L' distance: sum of the magnitudes

For simplicity, choose the last one, the L' distance d. Why? It’s simple and, as you will discover, tends to
work. To compute d, pick two unigram or bigram tables with frequencies you wish to compare. Let N be
the size of the character set, including a space. The values may contain either percentages or tallies, but
both tables must have the same type of frequency! Take each absolute value of the difference between each
element from the pair of tables and add all differences together:

unigram distance d = Z ‘ freq;-ablel — freq;-able2 bigram distance d = Z ‘ frequ‘.blel - frquz.bleZ)

J 1,

Your choice of tablel and table2 is irrelevant because of the absolute value. Index i ranges over all rows 1..IV;
index j ranges over all columns 1..N.

One question that we must answer is, what distances count as “close”?

4.4.1 A Note About Distance and Labels

One thing to note is that when we compute the distance between two tables, we ignore the labels: ¢, j range
over rows and columns, not over labels.

Roadmap

Section 3.7 Encipher plaintext = seramble frequencies.

Section 3.7 Decipher ciphertext = unscramble frequencies.

Section 4.2 (Hope) Unscramble frequencies = decipher ciphertext

Section 4.3 Unscramble = Bring “close” to intrinsic frequencies
Approximate intrinsic frequencies with training text
Assume ciphertext is medium to large so that unscrambled frequencies resemble
intrinsic frequencies

Section 4.4 Use the L! distance to measure “closeness”; ignore labels.

(—) | Section 4.5 Q: What distances count as “close”?

Section 5 Q: What are legal and effective ways to rearrange frequencies?

4.5 Closeness

To try to calibrate what distances count as close we can compute the distances between the large plaintexts
we used to discover intrinsic frequencies. Figure 22 shows the unigram and bigram distances between the
same three corpuses used for Figure 20. Figure 22 suggests that distances of “around” 20% or less count as
“close” for unigram distances and distances of “around” 50% or less count as “close” for bigram distances,
but “around” is still too vague. For example, should 70% count as close for bigram distances?® Therefore,
we replace the imprecise goal bring “close” to intrinsic frequencies by the more specific goal bring as close
as possible to intrinsic frequencies.

At this point, we should also perform a sanity check. We should check at least one example to see that
frequencies for ciphertext are not “close” to intrinsic frequencies: If ciphertext frequencies are also “close”
to intrinsic frequencies, then “closeness” is not a good criterion for recognizing unscrambled frequencies. We
use the following as our sample ciphertext:

5These distances belong to the class of LP (pronounced “ell-pee”) norms: the pth root of the sum of the pth powers of the
magnitudes. The limit as p goes to infinity is the L*° norm.

6When you do Project 7, you will discover that 70% does count as close. Although 70% does sound high, keep in mind that
it is still relatively far away from the maximum possible distance of 200%.

11

Distances (%):

unigram = 11

bigram = 36

Genesis sra Romeo and Juliet

Distances (%): Distances (%):
unigram = 19 unigram = 13
bigram = 47 bigram = 46

Announcements

Figure 22: Unigram and Bigram Distances for Large Plaintexts

e Enciphered Announcements, the encryption of Announcements using the Caesar Cipher. Enciphered
Announcements is available at

http://courses.cs.cornell.edu/cs100/2000sp/cryptannounce.txt

Figure 23 shows that the distances between our large plaintexts and Enciphered Announcements is indeed
much larger than the distances between the plaintexts.

Distance (%) from

Enciphered

Unigram Frequencies (%) Announcements

-—-abcd efg hijklmnopqgqrstuvwzxy z unigram bigram

Romeo and Juliet | 20 6 1 2 311 21 5501435710557302020 85 148

Genesis 2072241021 6501325610565 7212020 82 150

Announcements 1851331122 350132572056 7312010 86 149

Enciphered (180105 13311223501325720567312] (0 (0
Announcements

Figure 23: Unigram and Bigram Distances Between Ciphertext and Large Plaintexts

Roadmap
Section 3.7 Encipher plaintext = seramble frequencies.
Section 3.7 Decipher ciphertext = unscramble frequencies.
Section 4.2 (Hope) Unscramble frequencies = decipher ciphertext
Section 4.3 Unscramble = Bring “close” to intrinsic frequencies
Approximate intrinsic frequencies with training text
Assume ciphertext is medium to large so that unscrambled frequencies resemble
intrinsic frequencies
Section 4.4 Use the L' distance to measure “closeness”; ignore labels.
(—) | Section 5 Q: What are legal and effective ways to rearrange frequencies?

5 Attempts at Decryption

This section introduces progressively more sophisticated attempts at decryption. Although these attempts
do not actually work —they produce incorrect results, are logically unsound, or run too slowly to be of any
use— they are worth considering for the following three reasons:

e They rule out “obvious” approaches.
e They introduce techniques that we will use in our final attempt.

e They motivate (the need for) the more advanced techniques we end up adopting.

Before we look at specific attempts, let us consider ways to test them out:

12

e Try it out on ciphertext for which we already know the plaintext — that way we can see if the attempt
worked.

e Try it out on plaintext. That is, what happens if we try to “decrypt” plaintext? It should be reasonably
clear that any good decryption algorithm should leave plaintext unchanged, rather than scrambling it!

Roadmap

Section 3.7 Encipher plaintext = secramble frequencies.

Section 3.7 Decipher ciphertext = unscramble frequencies.

Section 4.2 (Hope) Unscramble frequencies = decipher ciphertext

Section 4.3 Unscramble = Bring “close” to intrinsic frequencies
Approximate intrinsic frequencies with training text
Assume ciphertext is medium to large so that unscrambled frequencies resemble
intrinsic frequencies

Section 4.4 Use the L' distance to measure “closeness”; ignore labels.

Section 6.2 Q: What are legal and effective ways to rearrange frequencies?

(—) | Section 5.1 Q: Does sorting unigram frequencies work?

5.1 Sort Unigram Frequencies

Here is an “obvious” approach that you, like we did, might think of. Although the discussion in Section 4.2
already warns us it might not work, it is still worth trying. Form the encryption key as follows:

1. Sort unigrams on the top line by their frequency in training text.

2. Sort unigrams on the bottom line by their frequency in the ciphertext.

Let’s try this approach on Enciphered Announcements and also apply the sanity check mentioned earlier of
trying to “decrypt” plaintext. Figure 24 shows the alphabet for each corpus sorted in decreasing unigram
frequency: Pairing the two lines of letters from any two corpuses yields a key. Figure 25 shows the resulting

Unigram Frequencies (%)

Romeo and Juliet | - etoaihrnsludmwyfcgbpkvxaqgljz
2011 7765555543332222111100000
Genesis - eathonsridlmuwyfcbgpvkijzxaqg
20107766555543222222211110000
Announcements - etosianrluhdcmpwgfybvkxjaqz
1811 7765555333332222211110000
Enciphered - hwrvldquoxkgfpszjibeynamtec
Announcements 1811 7765555333332222211110000

Figure 24: Sorting Unigram Frequencies

distances between pairs of corpuses after their unigram frequencies have been sorted. Although it might look
like we are partly successful, in fact these figures show us a disaster!

At first, it looks like we are partly successful if we look at only the sorted unigram frequencies for
Announcements and Enciphered Announcements. The unigram and bigram distances are 0, which is as
close as you can get. Furthermore, you can read off the encryption key (top line "etosian...", bottom line
"hwrvld...") from the labels! That is, we have discovered the following important potential fact:

e If the frequency tables for plaintext and ciphertext match, then the labels from the frequency tables
form the top and bottom lines of the encryption key.

However, the fact that pairing ciphertext and its plaintext works tells us very little: In general, we do not
have the plaintext decryption of the ciphertext. Therefore, to evaluate our attempted approach, we must
look at other pairings of our texts. These other pairings constitute the sanity check from Section 4.5 of
trying to “decrypt” plaintext.

13

Distances (%):

unigram = 6
bigram = 92
Genesis sttt Romeo and Juliet
Distances (%): Distances (%):
unigram = 10 unigram = 9
bigram = 99 bigram = 86
Announcements

Distances (%):
unigram = 0
bigram = 0

Enciphered Announcements

Figure 25: Distances after Sorting Unigram Frequencies

Observe that for all other pairs of plaintexts, letters are not properly matched up, e.g. 't’ in Romeo and
Juliet is matched in Genesis to 'a’ instead of 't’. Also observe that although the distance between unigram
frequencies (percentages) went down as a result of sorting —indeed, sorting makes unigram tables as close
as possible— we got a bogus encryption/decryption key. That is, since we “decrypted” plaintext, the key
should identical top and bottom lines since no letters are renamed. However, the key we get by reading off
the labels has top line etoai. .. and bottom line eatho. . .: attempting to “decrypt” Genesis with this key
would yield gibberish. These results pretty conclusively show that using unigram frequencies will not work.”

However, observe that it “almost” works. Although the two lines of labels should are not identical as
they should be, i.e. no letters should be renamed,the two lines are not “too different”. That is, not every
letter is matched with itself, but letters are not “too far” from where they should be, e.g. ‘a’ in Romeo
and Juliet is “two positions” away from the ‘a’ in Genesis. An experienced human could probably take the
“almost-solution” and play around with it to get to the correct solution by thinking of higher-order patterns.
For example, vowels and consonants tend to alternate and we're pretty sure that v’ will follow 'q’. But,
higher-order frequencies reflect higher-order patterns, and bigrams are the next higher-order pattern after
unigrams! And indeed, if you look at the L! distance between bigram frequencies (percentages), you’ll see
that our attempted approach made these distances go up, indicating that we are moving farther away from
a solution. Thus, it makes sense to base our next attempted approach on bigram frequencies.

Roadmap
Section 3.7 Encipher plaintext = seramble frequencies.
Section 3.7 Decipher ciphertext = unscramble frequencies.
Section 4.2 (Hope) Unscramble frequencies = decipher ciphertext
Section 4.3 Unscramble = Bring “close” to intrinsic frequencies
Approximate intrinsic frequencies with training text
Assume ciphertext is medium to large so that unscrambled frequencies resemble
intrinsic frequencies
Section 4.4 Use the L! distance to measure “closeness”; ignore labels.
Section 5 Q: What are legal and effective ways to rearrange frequencies?
Section 5.1 Sorting unigram frequencies does not work, but “almost” does
(Hope) When the frequency table for ciphertext matches the table for training text,
read the encryption key off of the labels
(—) | Section 5.2 Q: Does sorting bigram frequencies work?

7 Actually, since different letters probably do have at least slightly different intrinsic unigram frequencies, if we have “large
enough” training and ciphertexts, then their frequencies will converge to identical, intrinsic frequencies, in which case sorting
unigram frequencies would work. The problem is, our experiments show that “large enough” appears to be on the order of
multiple books or more.

14

5.1.1 Sorting implies Swapping

In our attempted approach above, we said to “sort letters according to their unigram frequencies”. How
would we write a program to do that? We need to sort frequencies and keep track of the corresponding
letters. Thus, we would use two parallel arrays: letters on top, frequencies on bottom. We would sort the
frequencies, e.g. using selection sort, and every time we swap two frequencies, then we would swap the two
corresponding letters.

Swapping will turn out to be extremely important throughout our attempts.

5.2 Sort Bigram Frequencies?

Sorting unigram frequencies almost worked, and we have reason to believe using bigram frequencies would
work better. Therefore, a natural first reaction is to consider the following;:

1. Sort bigrams in the top line by their frequency in training text.

2. Sort bigrams in the bottom line by their frequency in ciphertext.

3. Somehow read off the encryption/decryption key.

Unfortunately, “sort bigrams by frequency and read off the key” is problematic. For example, what should
we do in the situation pictured in Figure 267 Matching "th" with "ab" suggests 'h'—'b’ (and 't’'—'a’) is

most frequent bigram second most frequent bigram
training text "th" "he"
ciphertext "ab" "cd"

Figure 26: Attempt to Sort Bigrams by Frequency and Read Off the Key

part of the encryption key, whereas matching "he" with "cd" suggests 'h’—c is part of the encryption key,
which is a contradiction: A key must map each letter to exactly one letter. A key is not allowed to map 'h’
to both 'b” and 'c’.

One intuition as to why this approach is problematic is that with sorting unigram frequencies, swapping
two frequencies corresponds to swapping two letters. However, with sorting bigram frequencies, swapping
two frequencies does not correspond to swapping two letters: Swapping two letters affects a whole set of
associated frequencies.

In Section 6.3 we will carefully investigate how swapping two letters affects the table of bigram frequencies.
However, for now, we will suppress the details, except to point out that that there are details that must be
considered, and rule out “sort bigram frequencies” as a simple approach.

Roadmap
Section 3.7 Encipher plaintext = seramble frequencies.
Section 3.7 Decipher ciphertext = unscramble frequencies.
Section 4.2 (Hope) Unscramble frequencies = decipher ciphertext
Section 4.3 Unscramble = Bring “close” to intrinsic frequencies
Approximate intrinsic frequencies with training text
Assume ciphertext is medium to large so that unscrambled frequencies resemble
intrinsic frequencies
Section 4.4 Use the L! distance to measure “closeness”; ignore labels.
Section 5 Q: What are legal and effective ways to rearrange frequencies?
Section 5.1 Sorting unigram frequencies does not work, but “almost” does.
(Hope) When the frequency table for ciphertext matches the table for training text,
read the encryption key off of the labels
Section 5.2 “Sort bigram frequencies” is problematic.
(—) | Section 5.3 Q: Why not try all decryption keys?

5.3 Exhaustive Search

Our goal can be formulated as follows: Find a decryption key that when applied to ciphertext unscrambles
bigram frequencies. This is a search, and one fundamental search algorithm is to try all possibilities:

15

Enumerate (generate) all candidate (possible or potential) decryption keys.

Apply each key to ciphertext.

Compute the distance between the resulting frequencies and intrinsic frequencies.

Keep track of the “best” key, i.e. the key that brings us closest to intrinsic frequencies.

o Use the “best” key as the decryption key.

We can enumerate all keys by progressively listing more and more keys. This algorithm is shown in Figure 27.
(If you wish to see a justification for this algorithm to enumerate all keys, see Section 6.2.)

e Start with any single key on the list, e.g. with the sorted alphabet as both its
top and bottom lines.

e For each key on the list, include all keys obtainable by swapping —we told
you swapping would be important!— two letters in the bottom line.

e Repeat until the list stops changing.

Figure 27: Algorithm to Enumerate All Keys via Swaps

For instance, suppose you have a three element character set ‘a’, '1’, 'n’. Figure 28 shows all possible
decryption keys for this character set — only the bottom lines are shown and a<»n means “swap 'a’ with

)
n-.

aln
a—1 a<n ln
lan nla anl

a—l a~—n l<n a«—1l a<n l<n a—l a<n l<n
aln 1lna nal nal aln 1lna lna nal aln

Figure 28: Using the Algorithm in Figure 27 to List of All Keys of aln

Suppose you need to decrypt a ciphertext that uses this three-letter character set and a '~/ for spaces.

Apply all candidate decryption keys from Figure 28 to the ciphertext.® Each time you apply a different key
to the ciphertext, you generate something you hope is plaintext. Collect the frequencies from the hoped-
for-plaintext. Choose as the decryption key and the plaintext the key and text with frequencies closest to
intrinsic frequencies.® Figure 29 shows this exhaustive search, and note that indeed the minimum distance
15 corresponds to the decrypted ciphertext.

For “small” alphabets, we can reasonably perform an exhaustive search. However, what if the language
has a relatively “large” character set? Consider English, which has 26 letters, not counting punctuation.
There are 26! = 4 x 1026 decryption keys for a 26-letter alphabet! Machines these days cannot perform more
than about a billion (10%) operations per second, so even if they could look at a billion ciphers per second,
it would still take 4 x 10'7 seconds, or over 10” years! So, you will have to find a better approach to crack
EGOP’s message since you have until May 4, 2000!

Therefore, we must use an incomplete search that looks at only a (small) subset of the keys. We answer
the questions “Which keys?” and “How do you pick them?” in the next section.

8Conceptually, we have said to compute the table of bigram frequencies for each key by transforming ciphertext and then
counting. We will see in Section 6.3 how we instead rearrange the frequencies in the original bigram table, thereby allowing us
to omit the step of transforming ciphertext.

9 A human could visually inspect the hoped-for-plaintext and simply choose the one that is readable. However, without more
complex algorithms that involve pattern recognition, a computer program has “trouble” visually inspecting text. Therefore, we
stick to our idea of bringing the frequencies as close as possible to intrinsic frequencies.

16

candidate
decryption
key

distance
from “decrypt”
to “training”

| training text

| ciphertext | table of || table of || differences
| “decrypt” ciphertext using candidate decrypt. key| “decrypt”|| “training”|| between

| Taintert | bigram bigram “decrypt”
P tallies tallies and

| encrypt plaintext using candidate encrypt. key | “Yraining”

Labels (omitted) are’~',a’, 1’0/

Decrypt. Key cipher [n na nanl naa nl nll nllna anln Decrypt Training Differences
aln decrypt | n na nanl naa nl nll nllna anln 0107 0611 0516
aln plain | a al alan all an ann annal lana 3102 5235 2133
Distance encrypt | a al alan all an ann annal lana 3022 0410 3412
training | aaa ala alan allan ana anna la nan || 2450 3301 1151
Decrypt. Key cipher | n na nanl naa nl nll nllna anln Decrypt Training Differences
aln decrypt | 1 la laln laa 1ln 1lnn lnnla alnl 0170 0611 0561
anl plain | a al alan all an ann annal lana 3120 5235 2115
Distance encrypt | a an anal ann al all allan nala 2405 0410 2015
training | aaa ala alan allan ana anna la nan || 3022 3301 0321
Decrypt. Key cipher [n na nanl naa nl nll nllna anln Decrypt Training Differences
aln decrypt | n nl nlna nll na naa naanl lnan 0017 0611 0606
lan plain | a al alan all an ann annal lana 3202 5235 2033
Distance encrypt | 1 la laln laa 1ln lnn lnnla alnl 3012 0410 3402
training | aaa ala alan allan ana anna la nan || 2540 3301 1241
Decrypt. Key cipher | n na nanl naa nl nll nllna anln Decrypt Training Differences
aln decrypt | 1 1n 1lnla lnn la laa laaln nlal 0071 0611 0660
nal plain | a al alan all an ann annal lana 3220 5235 2015
Distance encrypt | 1 1n 1nla 1nn la laa laaln nlal 2504 0410 2114
training | aaa ala alan allan ana anna la nan || 3021 3301 0320
Decrypt. Key cipher | n na nanl naa nl nll nllna anln Decrypt Training Differences
aln decrypt | a al alan all an ann annal lana 0710 0611 0101
1lna plain | a al alan all an ann annal lana 2045 5235 3210
Distance encrypt | n na nanl naa nl nll nllna anln 3210 0410 3200
% training | aaa ala alan allan ana anna la nan || 320 2 3301 0101
Decrypt. Key cipher | n na nanl naa nl nll nllna anln Decrypt Training Differences
aln decrypt | a an anal ann al all allan nala 0701 0611 0110
nla plain | a al alan all an ann annal lana 2054 5235 3221
Distance encrypt | n nl nlna nll na naa naanl lnan 3220 0410 3210
training | aaa ala alan allan ana anna la nan || 3201 3301 0100

Figure 29: Distances for Each Candidate Decryption Key: Minimum 15 is Marked with “x”

17

Roadmap

Section 3.7
Section 3.7
Section 4.2
Section 4.3

Section 4.4
Section 5.1

Section 5.2
Section 5.3

Encipher plaintext = scramble frequencies.

Decipher ciphertext = unscramble frequencies.

(Hope) Unscramble frequencies = decipher ciphertext

Unscramble = Bring “close” to intrinsic frequencies

Approximate intrinsic frequencies with training text

Assume ciphertext is medium to large so that unscrambled frequencies resemble
intrinsic frequencies

Use the L' distance to measure “closeness”; ignore labels.

Sorting unigram frequencies does not work, but “almost” does.

(Hope) When the frequency table for ciphertext matches the table for training text,
read the encryption key off of the labels

“Sort bigram frequencies” is problematic.

Ezxhaustive search is too slow; therefore, need an incomplete search.

(—) | Section 6.2

Q: How do we perform an effective, incomplete search?

6 Improving Decryption Methods with Swaps

Recall that it is infeasible to exhaustively search over all the keys, so we must look at a small subset of all
the possible keys, i.e. perform an incomplete search. To motivate our incomplete search algorithm, let us

take another look at the exhaustive search from Figure 29 in the previous section.

6.1 Introduction to “Hill-Climbing”

Figure 30 summarizes the distances of bigram tables for each key for Figure 29, reorganized as follows. The
corners of the “hexagon” indicate each key with its corresponding bigram distance nearby. Two keys/corners

are connected with a line if each key is obtainable from the other key by swapping two letters.

Rather than inspecting each key, here is a modifed approach. Consider trying to reach the best key "1na"
from the starting key "aln" by traveling along a “path” in Figure 30. One “path” is from "aln" to "nla"

lan 37 /a/<—>/n/ 15 1na

aln 39

17 nla

anl 35 'a’—'n 33 nal

Figure 30: Reformulation of Keys and Distances from Figure 29

to "1na", which has the property that from each key we go to its best “neighboring” key:

e start at "aln", which has distance 39.

— from "aln", swap ‘a’ and 1’ to get to neighboring key "lan", which has distance 37.

— from "aln", swap ‘a’ and 'n’ to get to neighboring key "nla", which has distance 17.

— from "aln", swap ‘1’ and 'n’ to get to neighboring key "anl", which has distance 35.

e go the best neighbor "nla", which has distance 17.

— from "nla", swap ‘a’ and 1’ to get to neighboring key "nal", which has distance 33.

18

— from "nla", swap ‘a’ and 'n’ to get to neighboring key "aln", which has distance 39.
— from "nla", swap ‘1’ and 'n’ to get to neighboring key "1na", which has distance 15.

e go to the best neighbor "1na", which has distance 15.

— from "1na", swap ‘a’ and 1’ to get to neighboring key "anl", which has distance 35.
— from "1na", swap ‘a’ and 'n’ to get to neighboring key "lan", which has distance 37.
— from "1na", swap ‘1’ and 'n’ to get to neighboring key "nla", which has distance 17.

e all the neighbors are worse, so stay at "1na" and stop looking.

This approach of going to the best neighbor is hill-climbing and is fleshed out in Section 7.1. In the
meantime, note the following:

e We do not have to skip keys we’ve already seen. (Doing so takes time and space and doesn’t always
save time in the long run.)

e We do not have to store all the keys or even all the neighbors: Compute the keys as needed and “throw
away” the rest.

e You can get from “anywhere” to “anywhere”. That is, you can get from every key in Figure 30 to
every other key in Figure 30 by a path of 0 or more swaps.

Swaps keep coming up! This suggests we should take a closer look at swaps.

Roadmap
Section 3.7 Encipher plaintext = seramble frequencies.
Section 3.7 Decipher ciphertext = unscramble frequencies.
Section 4.2 (Hope) Unscramble frequencies = decipher ciphertext
Section 4.3 Unscramble = Bring “close” to intrinsic frequencies
Approximate intrinsic frequencies with training text
Assume ciphertext is medium to large so that unscrambled frequencies resemble
intrinsic frequencies
Section 4.4 Use the L! distance to measure “closeness”; ignore labels.
Section 5.1 Sorting unigram frequencies does not work, but “almost” does.
(Hope) When the frequency table for ciphertext matches the table for training text,
read the encryption key off of the labels
Section 5.2 “Sort bigram frequencies” is problematic.
Section 5.3 Exhaustive search is too slow; therefore, need an incomplete search.
Section 6.2 Q: How do we perform an effective, incomplete search?
Section 6.1 (Idea) Hill-Climbing: pick the best “neighbor”
(—) | Section 6.2 Why swaps are so important, e.g. used to generate “neighbors”

6.2 Why Swaps Are so Important

We've tried to motivate the importance of swaps since Section 5.1, where our first decryption attempt
involved sorting unigram frequencies: Most sorting algorithms are based on swaps. We saw swaps again
when considering enumerating all keys for an exhaustive search, and yet again in our tentative exploration
of hill-climbing. Why are swaps so important, e.g. why are they used for sorting? First of all, rearrangement
or permutation is a fundamental operation in all of these areas:

e Sorting = rearranging elements in a list in order.

e Bottom line of a key = a rearrangement of the top line.

e Generating all keys = generating all rearrangements of the top line for use in the bottom line.
Now that we see that permutations are important, we also have the following fundamental fact:

e “Transpositions, i.e. swaps, generate all permutations”.

19

debac ’d’ is out of place, so swap 'd’<»'c’ to put ’d’ in place

cebad ’c’ is out of place, so swap 'c’<’a’ to put ‘c’ in place
aebcd ‘e’ is out of place, so swap ‘e’«<'b’ to put 'e’ in place
abecd ’a’is out of place, so swap 'a’<’b’ to put b’ and coincidentally ‘a’ in place

baecd

Figure 31: Using Swaps to get from "debac" to "baecd"

That is, every permutation can be modified into every other permutation by a “path” or sequence of 0 or
more swaps, e.g. no matter what key we start with, we can reach the decryption key using a sequence of 0
or more swaps.

The justification for this fundamental fact is simply that we can sort using swaps: As long as an item is
out of order, swap it into place; repeat until done. (Selection sort does these swaps in a specific order, e.g.
right-to-left.) For example, Figure 31 shows one way to get from "debac" to "baecd" using swaps. So we
know that we can always get from one permutation to another:

e Swaps can be used for sorting, because no matter what order the numbers are in, it is possible to swap
them into sorted order.

e Our algorithm for generating all keys (permutations) will work because swaps generate all permutations.

e Our hill-climbing algorithm is not inherently prevented from reaching the decryption key: No matter
what key we start with, there is a path of 0 or more swaps to the decryption key.?

Now that we understand why swaps are important, let us investigate them further: What effect do swaps
have on bigram tables?

Roadmap
Section 3.7 Encipher plaintext = seramble frequencies.
Section 3.7 Decipher ciphertext = unscramble frequencies.
Section 4.2 (Hope) Unscramble frequencies = decipher ciphertext
Section 4.3 Unscramble = Bring “close” to intrinsic frequencies
Approximate intrinsic frequencies with training text
Assume ciphertext is medium to large so that unscrambled frequencies resemble
intrinsic frequencies
Section 4.4 Use the L' distance to measure “closeness”; ignore labels.
Section 5.1 Sorting unigram frequencies does not work, but “almost” does.
(Hope) When the frequency table for ciphertext matches the table for training text,
read the encryption key off of the labels
Section 5.2 “Sort bigram frequencies” is problematic.
Section 5.3 Exhaustive search is too slow; therefore, need an incomplete search.
Section 6.2 Q: How do we perform an effective, incomplete search?
Section 6.1 (Idea) Hill-Climbing: pick the best “neighbor”
Section 6.2 Why swaps are so important, e.g. used to generate “neighbors”
(—) | Section 6.3 The effect of swaps on bigram tables

6.3 The Effects of Swaps on Bigram Tables

Let us look at the effect of swapping two letters in a key on bigram frequency tables. In Figure 33 we
take some plaintext through a series of Stages. Figure 32 shows the plaintext, summarizes the Stages, and
includes the encryption keys that could be used to transform the plaintext into the text at each Stage.

10However, it is true that hill-climbing can get “stuck” at a local optimum, where all the “local” neighbors are farther away
from training frequencies, so we will not reach the global optimum, the solution that is closest overall to training frequencies.

20

Stage 0, plaintext encryption key: a b ¢ d
swap 'a’«<’'d’

ab d

Stage 1 encryption key: d b ¢ a
swap 'c’<'d’

bcd

Stage 2 encryption key: ¢ b d a
swap 'a’<'c’

abc

Stage 3 encryption key: a b d c
swap 'c’<'d’

abcd

Stage 4, plaintext again encryption key: a b ¢ d

Plaintext: |a aaa abba abc ac ad ada add baa bad cab cb cdc dab dad dada dc

Figure 32: The Pipeline of Stages that Plaintext Goes Through

Figure 33 has a lot of information. Let us look at it a bit at a time.

At each Stage, we show the text so far and three pairs of unigram and bigram frequencies. These
form three separate columns (left, middle, right) of frequency tables. For brevity, we use tallies instead of
percentages. Verify the observation from Section 3.5 that adding up the tallies in each row or each column
in the bigram table yields the tallies in the unigram table. (This property is also true for percentages.)

The left and middle columns contain the same frequency information the unigram and bigram frequen-
cies of the text so far— but organize it slightly differently; we will explain the right column in Section 6.4.
A little terminology at this point will be helpful. Let us call the frequencies, the numbers themselves, the
contents of a table, as distinguished from the the character labels.

e The left column leaves the contents of the unigram and bigram tables unchanged, but swaps labels.
This directly reflects two letters getting renamed to each other.

e The middle column leaves the labels unchanged, but rearranges the contents of the unigram and bigram
tables to reflect the new frequencies.

Take a careful look to see that the left and middle columns do contain the same frequency information,
namely the unigram and bigram tallies for the text so far. For example, in Stage 1, "-d" is shown to occur
8 times in both the left and middle bigram tables and also in the ciphertext.

Now take a closer look at how the contents of the tables in the middle column are rearranged. On the far

right between each stage, we have a large brace } labeled with the following information: the two letters

that were swapped, and a picture of the changes to bigram table in the middle column — entries that are
changed are drawn as xs. Observe that when two letters are swapped, the effect on the tables in the middle
column are to swap the corresponding rows and columns. This makes sense: If two letters are swapped
(renamed to each other), then their corresponding frequencies get swapped, e.g. if ‘a’ and ’'d’ are swapped,
then the frequencies of "ab" and "db" are swapped (rows ‘a’ and 'd’ are swapped), as are the frequencies of
"ba" and "bd" (columns ‘a’ and ‘d" are swapped).

This tells us how to quickly (re)compute bigram frequencies when we swap two letters in text. Instead
of recounting all the bigram frequencies by scanning the text, we merely take the old bigram table and swap
the corresponding two rows and swap the corresponding two columns!

So, we have learned the effects of swaps on bigram frequency tables.

However, there is still more information to be learned from Figure 33.

21

Text: —a—aaa—abba-abc-ac-ad-ada-add-baa-bad-cab-cb-cdc-dab-dad-dada-dc-

unigram unigram unigram
- a b ¢ d - a b c¢ d - c b d a
17 20 8 7 12 17 20 8 7 12 17 20 8 7 12

bigram bigram bigram

- a b ¢ d - a b ¢ d - d b a c¢
-0 8 2 3 4 -0 8 2 3 4 -0 8 2 3 4
al6 3 4 1 6 al6 3 4 1 6 d|{6 3 4 1 6
b3 3 1 1 0 b|3 3 1 1 0 b(3 3 1 1 0
c|4 1 1 0 1 c|4 1 1 0 1 a4 1 1 0 1
d|4 5 0 2 1 d|{4 5 0 2 1 c|4 5 0 2 1

Text: ~d-ddd-dbbd-dbc-dc-da-dad-daa-bdd-bda-cdb-cb-cac-adb-ada-adad—-ac-

unigram unigram unigram
- d b ¢ a - a b c¢ d - a b d c
17 20 8 7 12 17 12 8 7 20 17 12 8 7 20

bigram bigram bigram

- d b c¢c a - a b c¢c d - a b d c
-0 8 2 3 4 -0 4 2 3 8 -0 4 2 3 8
d(6 3 4 1 6 al4 1 0 2 5 a|l4 1 0 2 5
b3 3 1 1 0 b({3 0 1 1 3 b({3 0 1 1 3
c|4 1 1 0 1 c|4 1 1 0 1 dlf4 1 1 0 1
a|l4 5 0 2 1 d|6 6 4 1 3 c|6 6 4 1 3

Text: —c-ccc-cbbc-cbd-cd-ca-cac-caa-bcc-bca-dcb-db-dad-acb-aca-acac—ad-

unigram unigram unigram
- c b d a - a b c d - a b c d
17 20 8 7 12 17 12 8 20 7 17 12 8 20 7

bigram bigram bigram

- ¢ b 4 a - a b ¢ d - a b ¢ d
-10 8 2 3 4 -10 4 2 8 3 -10 4 2 8 3
c|6 3 4 1 6 al4 1 0 5 2 a|l4 1 0 5 2
b3 3 1 1 0 b(3 0 1 3 1 b3 0 1 3 1
a|4 1 1 0 1 c|6 6 4 3 1 c|6 6 4 3 1
a|l4 5 0 2 1 a4 1 1 1 0 d|4 1 1 1 0

Text: —a-—aaa—abba-abd-ad-ac-aca-acc-baa-bac-dab-db-dcd-cab-cac-caca-cd-

unigram unigram unigram
- a b d c - a b c d - c b a d
17 20 8 7 12 17 20 8 12 7 17 20 8 12 7

bigram bigram bigram

- a b 4 c¢ - a b ¢ d - ¢ b a d
-0 8 2 3 4 -0 8 2 4 3 -0 8 2 4 3
a|l6 3 4 1 6 a|l6 3 4 6 1 c|6 3 4 6 1
b3 3 1 1 0 b(3 3 1 0 1 b3 3 1 0 1
df4 1 1 0 1 c|4 5 0 1 2 a|l4 5 0 1 2
c|4 5 0 2 1 a4 1 1 1 0 d|4 1 1 1 0

Text: —a-—aaa—abba-abc-ac-ad-ada-add-baa-bad-cab-cb-cdc-dab-dad-dada-dc-

unigram unigram unigram
- a b ¢ d - a b c d - c b d a
17 20 8 7 12 17 20 8 12 7 17 20 8 12 7

bigram bigram bigram

- a b d c¢ - a b ¢ d - d b a c¢
-0 8 2 3 4 -0 8 2 3 4 -0 8 2 3 4
al6 3 4 1 6 al6 3 4 1 6 a6 3 4 1 6
b3 3 1 1 0 b|3 3 1 1 0 b3 3 1 1 0
c|4 1 1 0 1 c|4 1 1 0 1 a4 1 1 0 1
d|4 5 0 2 1 d|{4 5 0 2 1 c|4 5 0 2 1

Figure 33: Effects of Swaps on Bigram Frequencies

22

[eRUSR RN

=)

@ 0RQ XU

—_

DR+

[\V]

OoR X+

w

[eR SRR)]

W~

Swap ‘a’—'d’

Bigram Changes
—-abcd

- X X

XXXXX
X X
X X

Qa0 o e

XXXXX

Swap 'c¢’—'d’

Bigram Changes
—abcd

- XX

a XX

b XX

C XXXXX

d xxxXX

Swap 'a’«’c’

Bigram Changes
-abcd
- X X
XXXXX
X X
XXXXX

a0 o e

X X

Swap 'c¢’’d’

Bigram Changes
—abcd

- XX

a XX

b XX

C XXXXX

d xxxXX

6.4 Continuing to Investigate Figure 33, e.g. The Mysterious Right Column

Here are some further observations about Figure 33.

e As suggested in Section 5.1, we can read the bottom line of canonical (sorted top-line) encryption keys
shown in Figure 32 off of the labels of the tables in the left column of Figure 33. Why? Well, if we
unscramble frequencies, then the ciphertext labels should match up with the plaintext labels.

e Again, as in Section 5.1, in this example, we were matching frequencies for ciphertext to frequencies
for plaintext, which is an unusual situation: Usually, we do not know the plaintext — that is why we
need to crack the cryptosystem! Thus, normally we try to match ciphertext frequencies as best we can
with training text frequencies.

e Aside: Here is a sanity check.

Remember, the frequencies at each Stage are those of the ciphertext obtained by applying the encryp-
tion key to the plaintext. Note that there is nothing in that description about the path taken, i.e.
which swaps were used and what order they were performed. Thus, the frequencies should depend on
the key but not the path taken to reach the key. We see that at least in Figure 33 that this is indeed
the case.

Consider the ciphertext at Stage 2:
c ccc cbbc cbd cd ca cac caa bcc bca dcb db dad acb aca acac ad
Observe that Figure 33 shows two ways to reach the ciphertext from plaintext:
Stage 0 — Stage 1 — Stage 2 and Stage 2 < Stage 3 < Stage 4.
Figure 33 also shows two ways to reach plaintext from the ciphertext:
Stage 0 < Stage 1 < Stage 2 and Stage 2 — Stage 3 — Stage 4.

In all cases above, the path taken to reach Stage 2 or Stage 0/4 does not affect the resulting frequencies.

e At Stage 2, we can easily compute (count frequencies!) the middle table from the ciphertext but not
the left table — figuring out the order of the labels is equivalent to decrypting!

e At Stage 2, the left table (which matches the table for plaintext) is (assumed to be) close to training
text.

e The contents of the middle table are not close to the original table in Stage 0. Therefore, the middle
table is not close to training text.

Thus, using bigram frequencies still looks hopeful, i.e. it looks like maybe ciphertext frequencies appear to
(usually) be far from intrinsic frequencies.

Let us elaborate a bit on “read key off of the labels”. Suppose we go back to Stage 2 and copy the middle
table into the right column. What happens if, when we perform the swaps shown in the middle column, we
modify both the labels and the contents? This is shown in the right column. Observe that again, no matter
whether we take the path Stage 0 « Stage 1 « Stage 2 or Stage 2 — Stage 3 — Stage 4 we end up with
a table that is (close to) the original, i.e. we have unscrambled frequencies. Furthermore, in both paths, we
can indeed read off the encryption key!

Thus, we use swaps to generate and search for the best table, i.e. the table closest to the table of intrinsic
frequencies (as approximated from training text). When we do a swap, we modify both the labels and the
corresponding rows and columns of frequencies. (Conceptually, this means we do not rename letters during
the search, merely reorganize the frequency information.) When we get a close match to training text —
which we assume is close to plaintext— we read off the encryption/decryption key from the labels, which
allows us to decipher the ciphertext.

It remains now only to clarify how to perform the search.

23

Roadmap
Section 3.7 Encipher plaintext = seramble frequencies.
Section 3.7 Decipher ciphertext = unscramble frequencies.
Section 4.2 (Hope) Unscramble frequencies = decipher ciphertext
Section 4.3 Unscramble = Bring “close” to intrinsic frequencies
Approximate intrinsic frequencies with training text
Assume ciphertext is medium to large so that unscrambled frequencies resemble
intrinsic frequencies
Section 4.4 Use the L! distance to measure “closeness”; ignore labels.
Section 5.1 Sorting unigram frequencies does not work, but “almost” does.
(Hope) When the frequency table for ciphertext matches the table for training text,
read the encryption key off of the labels
Section 5.2 “Sort bigram frequencies” is problematic.
Section 5.3 Exhaustive search is too slow; therefore, need an incomplete search.
Section 6.1 (Idea) Hill-Climbing: pick the best “neighbor”
Section 6.2 Why swaps are so important, e.g. used to generate “neighbors”
Section 6.3 The effect of swaps on bigram tables
(—) | Section 7.1 Clarifying Hill-Climbing

7 Decryption by Optimization

The problem of optimization is to find (search for) the “best” solution, where we have the following two
ingredients:

e Some way of measuring “best”.
e Some way to generate all candidate solutions, i.e. all possible solutions.

We meet these two conditions: “best” is “closest in L' distance to training text” and Section 6.2 explained
that swaps generate all possible keys. Therefore, we can look at known algorithms for solving optimization
problems:

e We have already seen exhaustive search and eliminated it as being infeasible.

e Let us now look more closely at hill-climbing.

7.1 Hill-Climbing: Don’t worry, be happy/optimistic: choose the best neighbor

From any given rearrangement, using a single swap produces a comparatively small set of additional candidate
rearrangements. We think of these as neighbors that are reachable in one step. If you think about paths
starting from the current candidate, including paths to the best solution, they all start off by taking a next
step. The neighbors are exactly those next steps.

Recasting optimization in terms of paths and neighbors, we want to know how to pick a path —hopefully
the shortest path, but we’ll take what we can get— that takes us to the best solution.

We have seen earlier that we cannot simply try out all paths. Therefore, we must somehow throw away
some possibilities. One way to do that is to be optimistic and pick the path that looks “best”. What might
make a path look good? Well, if it takes us closer to a solution. Therefore, we might simply decide to look
at all the neighbors, and pick the best one. Ties may be broken arbitrarily. If the current solution is better
than all the neighbors, then we’re done. Otherwise keep taking steps until improvements are marginal or
some time limit is reached.

Let us now apply hill-climbing to an example a little bit bigger than in Section 6.1. Figure 34 shows the
training text and plaintext that we use, plus the encryption key we use to generate the ciphertext.

Figures 35 through 38 show the steps that hill-climbing takes. Keep in mind that we are trying to make
ciphertext frequencies match the frequencies of the training text — pretend we don’t know the plaintext
and are trying to extract it by cracking the ciphertext. At each step, all the neighboring bigram tables are
computed one at a time and their distances from the training frequencies computed. The one that is closest
to training frequencies is chosen as the next table to continue searching from.

Figure 38 shows the final step, where we see that all neighbors of the table with labels “raset” are
farther than it is from the training frequencies. This tells us the canonical (sorted top-line) encryption key is

24

Training text

aerate arrear arrest as
aster at ear east eat
era erase ere err estate
ester eta raster rate
rater sat seat see start
state stater stearate
strata stress tart tater
terse test treat tsar

Plaintext
a are area art ass
assert assess asset ate
attest ease eater errata
rare rat rear rest sea
sear seater set star
stare steer street tar
tartar taste tat tea
tear tease tee teeter
tree tress

r rsa rsar rst ree
reeast reeaee reeat rta
rttaet area artas assrtr
srsa srt sars saet ear
ears eartas eat etrs
etrsa etaas etsaat trs
trstrs treta trt tar
tars tarea taa taatas
tsaa tsaee

Encryption Key:

aerst
raset

Ciphertext

- aers t - a e rs t - aer s t

- 0 610 39 6 - 010 3 4811 - 0 3 810 411
a 301 8514 a b 0 0127 7 a 9 5410 6 4
e 97 1125 1 e 910 5 64 4 e 3 96 0 0 7
r 10 8 5 31 2 rl10 3 9 10 3 rr 5 07 012 7
s 22 4 0113 ss 309 06 7 sf 10 9 0 3 1 3
t| 10 814 31 0 tt 9 812 30 1 tf 9120 8 3 1
Distance from aerst

to training text: 178

Figure 34: Training text, Plaintext, Encryption Key, and Ciphertext
aerst . L . . .
hopefully raset | and indeed it is! Thus, our hope that unscrambling frequencies would lead to cracking

ciphertext is (probably) validated!

Observe that we looked at 44 keys, counting duplicates (we looked at 36 unique keys), which is better
than looking at all 5! = 120 keys. This again suggests that hill-climbing is effective in this situation at
finding the best table, whereas exhaustive search would take much too long.

¢ O R v

Swap ‘a’«<’e’; 150 Swap ‘a’<'r’; 150 Swap 'a’«'s’; 182 Swap ‘a’—'t’; 146 Swap ‘e’ «'r’; 148
- ears t - reast - serat - ter s a - arest
0 8 310 411} -{ 0108 3 411} 4 0 4810 311| -/ O 11 810 4 3| -| 0O 310 8 411
3 69007 5 07 012 7| sf10 10 3 9 3| ¢t 9 10 8 312 9 510 4 6 4
9 4 510 6 4| ¢ 3 06 9 0 7| ¢ 3 06 09 7| ¢ 3 76 00 9| rf 5 0 0712 7
5 7 0 012 7 9104 5 6 4| f 5127 0 0 7| f 5 77 012 0| ¢ 3 9 06 0 7
009 31 3| sf10 30 9 1 3 9 6410 5 4| sf 10 30 3 1 9| sf10 9 30 1 3
9 012 8 3 1| tf 9 8012 3 1| ¢t 9 30 812 1| a 9 4 410 6 5| tf 912 80 3 1
Swap ‘e’'«<'s’; 150 Swap ‘e’'<'t’; 148 Swap 'r'<—'s’; 144x Swap 'r'<'t’; 156 Swap 's’«<'t’; 160
- asret - atrse - aesrt - aet sr - aer t s
0 3 410811 4 0O 31110 48| |/ 0 38 41011 | O 3 811 410 o{ O 3 81011 4
9 5 610 4 4 9 5 410 6 4 9 54 610 4| a 9 54 4 610 9 5410 4 6
10 91 30 3] tf 912 1 8 30| ¢ 3 96 00 7| ¢ 3 967 00| ¢ 3 96070
5 012 07 7 rf 5 0 7 012 7| sf10 90 1 3 3| ¢t 9120 1 3 8/ 5 07 0 712
3 9006 7| 10 93 310z 5 0712 0 7] s10 903 1 3| ¢t 9120 8 1 3
912 3 80 1| ¢ 3 97 0 06| tf 9120 3 8 1| f 5 07 712 0| sf10 90 3 3 1

Figure 35: Hill-Climbing, Step 1: Go from aerst, 178 to aesrt,

25

144, marked “x”.

Swap ‘a’«'e’; 138 Swap ‘a’«'s’; 142 Swap 'a’«'r’; 164 Swap 'a’«'t’; 156 Swap 'e’«'s’; 150
- e asr ¢t - s e ar t - r e s a ¢t - t e s r a - a s er t
- 0 8 3 41011 4 O 48 31011} -{ 010 8 4 311 -| O 11 8 410 3| | 0O 3 4 81011
e 3 6 900 7| 10 109 3 3| 5 0712 0 7] tf 9 10 3 812 a4 9 5 6 410 4
a 9 45 610 4/ ¢ 3 06 9 0 7| e 3 06 0 9 7| e 3 76 00 9] sf10 910 3 3
s 10 0 91 3 3| a 9 64 510 4f sf10 30 1 9 3| s{10 301 3 9| ¢ 3 9 06 0 7
¥y 5 7012 0 7| rf 512 7 0 0 7| a 9104 6 5 4| xf 5 7 712 0 0| ry 5 012 7 0 7
tt 9 012 3 8 1| tf 9 3012 8 1| tf 9 80 312 1| a 9 44 610 5| tf 912 3 0 8 1
Swap 'e’<'r’; 106% Swap ‘e’<'t’; 118 Swap 's’«—'r’; 178 Swap 's’<'t’; 126 Swap 'r'<'t’; 136
- ar s e t - a t s r e - aer s t - ae t r s - ae s tr
- 0 310 4 811 -/ 0O 311 410 8| o| O 3 810 411 0 381110 4 -4 0 3 8 41110
a 9 510 6 4 4| 4 9 5 4 610 4 a8 9 5410 6 4| af 9 54 410 6| a4 9 5 4 6 410
ryf 5 0 012 7 7] tf 912 1 3 80| ¢ 3 96 00 7| ¢ 3 96 7 00| ¢ 3 96 070
sf 10 9 3 10 3| s 10 93 1 30| 56 07 012 7| tf 9120 1 8 3| sf10 90 1 3 3
e 3 9006 7| ry 5 0 712 07| {10 90 3 1 3| rf 5 07 7 012| ¢ 9120 3 1 8
tft 912 8 30 1| ¢ 3 97006 tf 9120 8 3 1| s 10 90 3 3 1| r 5 0712 7 0
Figure 36: Hill-Climbing, Step 2: Go from aesrt, 144 to arset, 106, marked “x”.

Swap 'a’'r’; 88x Swap ‘a’«<'s’; 130 Swap 'a’«'e’; 138 Swap 'a’«'t’; 100 Swap 'r’«'s’; 150
- r a s e t - s r ae t - e r s a t - t r s e a - a s re t
- 010 3 4811 | 0 410 3 811| -4 O 810 4 311 - O 1110 48 3| -| 0 3 410 811
¥y 5 0 012 7 7] sf10 1 3 90 3| ¢ 3 6 00 9 7| ¢t 9 1 8 3012 a 9 5 610 4 4
a 910 5 64 4| rf 512 0 07 7| xf 5 7 012 0 7| rf 5 7 012 7 0| 10 9 1 3 0 3
sf 10 3 9 10 3| a 9 610 54 4| sf10 0 3 1 9 3| sf10 3 3 10 9| f 5 012 07 7
e 3 09 06 7| ¢ 3 0096 7| a 9 410 6 5 4| ¢ 3 7 0 06 9] ¢ 3 9006 7
tt 9 812 3 0 1| tf 9 3 812 0 1| tf 9 0 8 312 1| a 9 410 6 4 5| tf 912 3 8 0 1
Swap 'r’<'e’; 144 Swap 'r’<'t’; 128 Swap 's’+'e’; 148 Swap 's’<'t’; 140 Swap ‘e’<'t’; 144
- ae sr t - a t s e r - are s t - ar t e s - ar s t e
- 0 38 41011 -4 0 311 4 810 -| O 310 8 411 0 31011 8 4, -{ 0 310 411 8
a 9 54610 4] a 9 5 4 6 410 o 9 5104 6 4| a 9 510 4 4 6| a 9 510 6 4 4
e 3 96 00 7|t 912 1 30 8 r 5 00712 7 rf 56 0 0 7 712 r{ 5 0 012 7 7
sf 10 90 1 3 3| 810 9 3 10 3| ¢ 3 906 0 7| tf 912 8 10 3| sf10 9 3 1 30
ryr 5 0712 0 7| ¢ 3 9 7 06 0| s{f10 9 30 1 3| ¢ 3 90 76 0] t 912 8 3 10
tf 9120 3 8 1| f 5 0 712 7 0] ¢ 912 8 0 3 1| s{10 9 3 3 0 1| ¢ 3 9 0 0 76
Figure 37: Hill-Climbing, Step 3: Go from arset, 106 to table raset, 88, marked “x”.
Roadmap

Section 3.7 Encipher plaintext = seramble frequencies.

Section 3.7 Decipher ciphertext = unscramble frequencies.

Section 4.2 (Hope) Unscramble frequencies = decipher ciphertext

Section 4.3 Unscramble = Bring “close” to intrinsic frequencies
Approximate intrinsic frequencies with training text
Assume ciphertext is medium to large so that unscrambled frequencies resemble
intrinsic frequencies

Section 4.4 Use the L' distance to measure “closeness”; ignore labels.

Section 5.1 Sorting unigram frequencies does not work, but “almost” does.
(Hope) When the frequency table for ciphertext matches the table for training text,
read the encryption key off of the labels

Section 5.2 “Sort bigram frequencies” is problematic.

Section 5.3 Exhaustive search is too slow; therefore, need an incomplete search.

Section 6.1 (Idea) Hill-Climbing: pick the best “neighbor”

Section 6.2 Why swaps are so important, e.g. used to generate “neighbors”

Section 6.3 The effect of swaps on bigram tables

Section 7.1 Hill-climbing and unscrambling frequencies appear to work

(—) | Section 7.2 Hill-climbing in the abstract
Section 7.3 Improvement/alternative to hill-climbing

26

Swap 'r’«’a’; 106 Swap 'r’«'s’; 132 Swap 'r’—'e’; 138 Swap 'r’—'t’; 152 Swap ‘a’—’s’; 122

- ar set - s aret - easr t - t aser - r s aet
- 0 310 4811 4 O 4 310811 |4 O 8 3 41011 -/ O 11 3 4 810 o| 0 10 4 3 811
a9 510 6 4 4| {10 1 9 30 3| ¢ 3 6 9 00 7| ¢t 9 112 30 8| r 5 012 07 7
rr 5 00127 7| a 9 6 5104 4 af 9 4 5 610 4| a 9 4 5 6 410| sf10 3 1 90 3
sf10 9 3 10 3| 512 0 07 7| sf/10 0 9 1 3 3| sf10 3 9 1 0 3| a 9 10 6 5 4 4
e 3 9006 7| e 3 0906 7 rf 570120 7 ¢ 3 7906 0] ¢ 3 00967
t 912 8 30 1| ¢ 9 312 80 1| ¢t 9 012 3 8 1| rf 5 7 012 7 0| ¢t 9 8 312 0 1

Swap ‘a’«—'e’; 164 Swap ‘a’<'t’; 120 Swap 's’«'e’; 124 Swap 's’<'t’; 108 Swap ‘e’ «—'t’; 136

- resat - rtsea - r ae s t - r ate s - r aste
- 0108 4 311 4 01011 48 3| | 010 3 8 411 010 311 8 4| -4 0 10 3 411 8
rr 5 0712 0 7y rf 5 0 7127 O xrf 5 0 0 712 7| ry 5 0 0 7 712 [5 0 012 7 7
e 3 06 0 9 7| ¢t 9 81 3012 a 910 54 6 4| a 910 5 44 6| a 910 5 6 4 4
sf10 301 9 3| s{10 3 3 10 9| ¢ 3 096 0 7|t 9 812 10 3| sf10 3 91 30
al 91046 5 4| ¢ 3 0706 9 s10 3901 3] ¢ 3 09 760| ¢t 9 812 3 10
tf 9 80 312 1| a 910 4 6 4 5| tf 9 812 0 3 1|)10 3 9 30 1| ¢ 3 0 9 0 76

Figure 38: Hill-Climbing, Step 4: Stay at raset, 88 — neighbors are worse.

7.2 Hill-Climbing in the Abstract

Let us continue to consider in the abstract how to solve optimization problems. Suppose you're placed on
hilly terrain in a vehicle with tons of controls (e.g. 26 of them) for movement but only sensors for your
current position (so you can tell if you’re going up or down). Further suppose you wish to ascend to the
highest peak. The difficulties you face are the large number of choices and a lack of knowledge of how the
choices (controls) interact. What do you do?

Hill-climbing assumes there is a single, smooth hill. In this case, your best choice is to take the steepest
step.

But what if there are lots of bumps — lots of big hills, each with medium hills, each with small hills,
etc.? Then hill-climbing is likely to get stuck on a local max, a small hill on a medium hill that is not the
biggest hill. The problem with hill-climbing is that being optimistic gets you trapped locally. This is because
the “best” local choice is always taken, even if to get to the best solution requires taking some steps down.
Therefore, one must occasionally take steps “backwards”, which is what simulated annealing does.

7.3 Simulated Annealing

(Never mind the name, which is for historical reasons that many don’t find helpful.) The key idea behind
simulated annealing is to randomly take steps “backwards” every now and then. Initially, backwards
steps are taken relatively frequently, but as time goes on, they are taken less frequently.

The idea is as follows. First find the biggest hill. So go up and down and all around. If it is the
biggest/steepest, then chances are you’ll end up near it, rather than some medium or small hill. However,
on the biggest hill, there can still be local maxima that would trap hill-climbing. Therefore, on the biggest
hill, you need to explore to find the true peak, rather than a distracting medium hill. Therefore, still take
backwards steps occasionally, but since you want to stay on the biggest hill overall, don’t go backwards
too often. Once you’re on the true peak, there are still perhaps small hills, and then tiny hills, and then
eensy-weensy hills. Therefore, still go backwards from time to time, but with progressively rarer frequency.

If you're not clear why this should work, that is not surprising. There are reasonably good justifications
for it, but they’re a bit complicated.

If you’re not clear on what rate to use to reduce the probability of backwards steps, that is because the
answer is not known. Generally, people just try something ad hoc, which is just a fancy way of saying, they
make something up. If it works, great; otherwise, they try changing the rate in a different way.

27

