CS 100: Programming Assignment P3

Due: Friday, February 26, 5pm, Carpenter Lab (or in lecture 2/25)

You may work in pairs. Do not submit your assignment for grading unless you have read and understand the CS100 webpage on Academic Integrity. Follow the course rules for the submission of assignments or lose points.

Background

The number of possible 5-card poker hands is given by

\[
\binom{52}{5} = \frac{52 \cdot 51 \cdot 50 \cdot 49 \cdot 48}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} = 2598960
\]

The number of different ways to form a 6-person hockey team from a pool of 550 CS 100 students is

\[
\binom{550}{6} = \frac{550 \cdot 549 \cdot 548 \cdot 547 \cdot 546 \cdot 545}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6} = 37407576030825
\]

In general, the number of possible ways to pick \(k \) objects from a set of \(n \) objects is prescribed by the binomial coefficient

\[
\binom{n}{k} = \binom{n-1}{k-1} \cdot \frac{n}{k} \cdot \frac{n-1}{k-1} \cdot \ldots \cdot \frac{n-k+1}{2} \cdot \frac{n-k}{1}
\]

Sometimes this quantity is referred to as “\(n \)-choose-\(k \)”. Get familiar with the formula for \(n \)-choose-\(k \) by evaluating it for small examples like 10-choose-4.

Note that with the convention

\[
\binom{n}{0} = 1
\]

we have the “update” formula

\[
\binom{n}{k} = \binom{n-1}{k-1} \cdot \frac{n-k+1}{n-k+1} \cdot \frac{n-k}{n-k}
\]

assuming that \(k > 0 \). This suggests that binomial coefficients can be computed by repeated multiplication/division:

\[
\begin{align*}
b &= 1; & \text{// } b \\ b &= b \cdot 52 / 1; & \text{// } b \text{ has value } 52 \text{-choose-0} \\ b &= b \cdot 51 / 2; & \text{// } b \text{ has value } 52 \text{-choose-1} \\ b &= b \cdot 50 / 3; & \text{// } b \text{ has value } 52 \text{-choose-2} \\ b &= b \cdot 49 / 4; & \text{// } b \text{ has value } 52 \text{-choose-3} \\ b &= b \cdot 48 / 5; & \text{// } b \text{ has value } 52 \text{-choose-4} \\ b &= b \cdot 47 / 6; & \text{// } b \text{ has value } 52 \text{-choose-5}
\end{align*}
\]

(In the world of integer arithmetic it is important to do the multiplication first. Why?)

It is not hard to show that \(n \)-choose-\(k \) can also be computed from the formula

\[
\binom{n}{k} = \frac{n!}{k!(n-k)!}
\]
Note that with the Stirling approximation
\[
 s_j = \sqrt{2\pi j} \left(\frac{j}{e} \right)^j = j!
\]
we can approximate \(n \)-choose-\(k \) with \(b(n,k) \) where
\[
 b(n,k) = \frac{s_n}{s_k s_{n-k}}.
\]
This is useful in situations where an approximation to a large binomial coefficient is sufficient.

In this assignment you develop a class \texttt{MyMath} with methods that can be used to solve a selection of problems that involve binomial coefficients. These include methods that produce \(n \)-choose-\(k \), the Stirling approximation for factorial, and the approximation \(b(n,k) \). The Stirling approximation requires a square root and a power and you will write methods for these calculations in lieu of using \texttt{Math.sqrt} and \texttt{Math.pow}. The Java goal of the assignment is for you to learn about static methods.

Getting Set Up

At the end of the handout you will find listings of two files that contain the classes \texttt{P3A} and \texttt{MyMath}. They are available on the website. In the CodeWarrior environment proceed as follows:

- Create a file \texttt{P3A.java} and copy into it from the web the class \texttt{P3A} (including the preceding \texttt{import} statement.)
- Create a file \texttt{MyMath.java} and copy into it from the web the class \texttt{MyMath}.
- Create a project using the application stationary. Remove \texttt{CUCSApplication.java} from the project. Add \texttt{P3A.java} and \texttt{MyMath.java} to the project.
- Set the main class target to \texttt{P3A}.

Improving the sqrt Method

Notice \texttt{P3A.java} is practically all comments except for a few lines that involve a call to \texttt{MyMath.sqrt}. When the program is run you should observe that the method \texttt{MyMath.sqrt} isn’t very good, at least when applied to the problem of computing the square root of one million.

Before we can rectify this we need to understand the underlying algorithm which is Newton’s method for square roots. The main idea is quite intuitive. Think of \(y \) as the current “best guess” of the required square root. To visualize the quality of \(y \), picture a rectangle with base \(y \) and height \(x/y \). This rectangle has area \(x \). If the sides had equal length, then \(y \) would be an exact square root. Note that the “perfect” side length we are after is in between the base and the height. So we can make the rectangle “more square” by resetting the base to be the average of the “current base” \(y \) and the current height” \(x/y \). This averaging process is repeated twelve times in \texttt{MyMath.sqrt}. Apparently, twelve iterations is not enough.

One solution would be to set the iteration maximum \(KMAX \) to some huge number just to be safe. But that would be inefficient because it turns that the number of iterations required to get full precision (about 16 significant digits) depends on the input value \(x \). To address this contingency you are to change \texttt{MyMath.sqrt} so that the iteration is under the control of a \texttt{while}-loop. The \texttt{while} loop should terminate if either of the following criteria is met:

1. The number of iterations exceeds \(KMAX = 100 \) where \(KMAX \) is a class constant.
2. The value of \(y \) is close to the square root in that \(|x-y^*y| \leq TOL^*x \) where \(TOL \) is a class constant set to \(10^{-16} \).

Use \texttt{Math.abs} for the absolute value. Rerun \texttt{P3A} and you should observe an improvement. Notice that since the specification of \texttt{MyMath.sqrt} didn’t change, programs that use the method (like \texttt{P3A}) do not have to be rewritten.

Write Your Own Absolute Value Method

Your improvement to \texttt{Math.sqrt} now requires access to the absolute value method in the class \texttt{Math}. Our plan is to remove this dependency. Proceed by implementing a method \texttt{abs} in the class \texttt{MyMath} that computes the absolute value. It
should have a single type `double` input parameter and it should return a type `double` value that is its absolute value. Then “uncover” the statements in `P3A.java` that are placed there to test `MyMath.abs`. (Do this by removing the appropriate “//” symbols.) When you are confident that it is working, modify `Math.sqrt` so that it refers to the `abs` method in `MyMath` and not the `abs` method in `Math`.

A Method for Binomial Coefficients

Implement in `MyMath` a method for computing binomial coefficients with the following specification:

```java
public static long binCoeff ( int n, int k )
```

It should assume $0 \leq k \leq n$ and return n-choose-k. Make your implementation efficient by exploiting the fact that

$$
\binom{n}{k} = \binom{n}{n-k}.
$$

In particular, if $k > n/2$, then your method should compute n-choose-k via the right hand side since it involves less arithmetic. For example, the identity says that

$$
\binom{10}{7} = \binom{10}{3}.
$$

It is clear that the quotient

$$
\binom{10}{7} = \frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7} = 120
$$

involves more arithmetic than

$$
\binom{10}{10-7} = \binom{10}{3} = \frac{10 \cdot 9 \cdot 8}{1 \cdot 2 \cdot 3} = 120
$$

The formula that involves the least amount of work should be used in your implementation.

To check that things are working, uncover the statements in `P3A.java` that compute and print the number of possible 5-card poker hands. Run the program and confirm that it computes 52-choose-5 correctly and that the same value is produced when it is applied to the 52-choose-47 problem.

A Method for Powers and the Stirling Approximation

The Stirling approximation (3) requires an exponentiation. For that purpose, implement in the class `MyMath` a method

```java
public static double pow(double x, int n)
```

that returns the value of x raised to the nth power. The method may assume that n is nonnegative. Check things out by uncovering the statements in `P3A.java` that compute and print 2-to-the-50. Once you are confident that your power method is working correctly, implement a method

```java
public static double stirling(int n)
```

that returns the Stirling estimate of $n!$. For the exponentiation of (n/e), it should use the `pow` method in the class `MyMath`. For the square root, it should use the `sqrt method in `MyMath` developed above. For e and π make $E = 2.71828182845905$ and $PI = 3.14159265358979$ type `double` class constants and reference them instead of `Math.PI`
and Math.exp(1.0). Check things out by running P3A.java with the statements uncovered that compute and print the Stirling approximation to 5!.

An Approximate Method for Binomial Coefficients

Implement in the class MyMath a method

```java
public static double binCoeffApprx( int n, int k )
```

that returns the approximate binomial coefficient \(b(n, k) \) defined in (4). The input parameters must satisfy \(0 <= k <= n \). Uncover the statements in P3A.java that compute and print \(b(52,5) \) and \(b(550,30) \) and run the program.

The P3A Submission

Submit a listing of the class MyMath which at this point should include the constants TOL, KMAX, E, and PI, and the static methods sqrt, abs, binCoeff, pow, stirling, and binCoeffApprx. Submit a listing of the “completely uncovered” P3A.java and a copy of the output it produces which should feature

- The square root of one million.
- The absolute value of -10.
- The absolute value of 10.
- The number of possible 5-card poker hands.
- The binomial coefficient 52-choose-47.
- The 50th power of two.
- The Stirling approximation to 5!.
- The approximate number of 5-card poker hands.
- The approximate number of 30-student CS100 sections.

Remember that nowhere in your implementation of MyMath should there be a reference to anything from the class Math. In addition, major style points will be deducted if the methods in MyMath are insufficiently commented. The specification for a method must be clearly written and detailed enough so that one can use the method just by reading its specification.

The P3B Submission

Suppose you are dealt \(n \) cards from a conventional deck of 52 cards. For \(n = 2, \ldots, 14 \) the probability that you are holding exactly one pair is given by

\[
p_n = \frac{13 \left(\begin{array}{c} 4 \\ 2 \end{array} \right) \left(\begin{array}{c} 12 \\ n-2 \end{array} \right) 4^{n-2}}{\left(\begin{array}{c} 52 \\ n \end{array} \right)}.
\]

Write a program P3B.java that prints a table which displays \(n \) and \(p_n \) (to four decimal places) for \(n = 2, \ldots, 14 \). Add P3B.java to the current project and change the main class target setting so that P3B.java is executed when the project runs. P3B.java should make effective use of the methods in the class MyMath. In particular, all powers should be computed using MyMath.pow and all binomial coefficients should be computed using MyMath.binCoeff. It should not reference any method in the Math class. Submit a listing of P3B.java and the output that it produces. Make sure you get the computation of 4-choose-2 “out of the loop.”
Listings of P3A.java and MyMath.java

// P3A: Tests the methods in MyMath
import java.io.*;
public class P3A
{
 public static void main(String args[])
 {
 TokenReader in = new TokenReader(System.in);

 // The square root of 1,000,000.
 double y = MyMath.sqrt(1000000.0);
 Format.println(System.out,"The square root of one million = %20.15f", y);

 // The absolute value of -10.
 double ten = MyMath.abs(-10.0);
 System.out.println("The absolute value of -10 is " + ten);

 // The absolute value of 10.
 ten = MyMath.abs(10.0);
 System.out.println("The absolute value of 10 is " + ten);

 // Number of poker hands
 long nPokerHands = MyMath.binCoeff(52,5);
 System.out.println("The number of possible 5-card poker hands = " + nPokerHands);
 nPokerHands = MyMath.binCoeff(52,47);
 System.out.println("The binomial coefficient 52-choose-47 = " + nPokerHands);

 // Two-to-the-50.
 long twoE50 = (long) MyMath.pow(2,50);
 System.out.println("The 50th power of two = " + twoE50);

 // Stirling approximation to 5!
 double z = MyMath.stirling(5);
 System.out.println("The Stirling approximation to 5! = " + z);

 // Number of poker hands via Stirling
 long nPokerHandsApprx = (long) MyMath.binCoeffApprx(52,5);
 System.out.println("The approximate number of 5-card poker hands = " + nPokerHandsApprx);

 // The number of possible 30-student sections in CS100
 double nSections = MyMath.binCoeff(550,30);
 System.out.println("The approximate number of 30-student CS 100 sections = " + nSections);

 in.waitUntilEnter();
 }
}

// This class contains methods that can be used to answer various combinatoric questions
// that involve binomial coefficients.
public class MyMath
{
 public static final int KMAX = 12; // #Newton square root iterations

 // Yields the square root of x.
 // The value of x must be nonnegative.
 public static double sqrt(double x)
 {
 double y = x; // The current approximation to the square root.
 int k;
 // Perform KMAX steps of Newton’s method.
 for(k=1;k<KMAX;k++)
 {
 y = (y+x/y)/2.0;
 }
 return y;
 }
}