CS 100 Spring 1998
Assignment 6

“Arrays and Even More Loops”
Due: at the end of lecture Tuesday March 10. Assignments will not be accepted late

This time there are essentially two questions. The first should be done be done in the same style as those of the previous
assignment, using static functions as appropriate inside main. The second will use classes which in main will be instantiated. To make
the organisation of this easier, you will be directed to add code to files to be downloaded from the web site. The question itself gives an
overview of how that program works, together with hints on constructing the missing code. In all these questions, we ask you to test
your program with suggested data (and you should turn in your code together with the output with this data as a minimum), however,
we recommend that you also run your programs with other data of your own choosing. You are encouraged to work with one partner.

1. Two exercises manipulating 1-dimensional arrays.

(i) Write a program which will take a given array A[] of doubles, and replace each entry by the average up to (and including) that
term in the array. Use as little extra storage as you can to do this. As an example, if

Al] = {1,3,11,13,5, 21},

then A[] would become
A[]=1{1,2,5,75,66,9).

You should test your program by applying it to the above example, and also to the array comprising all the prime numbers from
3 up to 97 inclusive. (It’s up to you whether merely to write in the values of these primes, or to write code to generate them —
whatever amuses you!)

(il) Write a program which will take a given array B[] of integers, and reverse the order of its terms. Be careful to check that your
program works if B[] should have an odd number of terms or an even number of terms. Again, use as little extra storage as
you can to do this. As an example, if

B[]

{1,3, 11,13, 5, 21},
then B[] would become

B[] = {21,5,13,11, 3, 1}.

You should test your program by applying it to the above example, and also to the array comprising all the prime numbers from
17 up to 97 inclusive.

2. This is an extension of last time’s Lateasean land agent problem. The objective is to compute the area of any region bounded by
the kinds of fences we had on Assignment 5. To keep things simple, we’ll restrict ourselves to triangular regions. This will also be a
class-based exercise in inheritance, but to ease your sanity, you will be adding code where marked in a file you can download from the
course web site. (By the time you’ve finished this problem, you should ensure that you understand how this whole program works.)
In 1899, Pick (an ancestor of the First Surveyor) discovered that the area of any of these Lateasean regions is always exactly equal
to 1
E(boundary) + inside — 1,

where boundary is the number of calumin stakes on the boundary, and inside is the number of stakes genuinely inside the boundary.
You already have a function which will find the number of stakes on a straight fence, so you will find yourself using this to count the
number of stakes on a triangular boundary. You will have to write from scratch a function to count the inside points, but we will give
you some major hints for this shortly.

There will be three points P and @ and R, given by pairs of integers x1,y1 and x2,y2 and x3,y3. The overall organisation of the
program has a ‘parent’ class Grid and a ‘child’ class GridTriangle.

The class Grid has fields for P and @ (also fields n for size of square grid, draw explained shortly, « and y for the location of the
upper left corner of the picture, and spacing for the spacing of the dots — all these are used by the program internally, you can use
these, but don’t change them), two explicit constructors for initialising any instance of Grid, a function fence (which you’ve essentially
already written!), a boolean draw which is used to check if the picture will be too big to be worth attempting to draw (this is written
and used for you), a function drawGrid which draws a square grid of ‘stakes’ (you’ll write a pair of nested loops together with £i110val
as indicated in the downloaded file) and also draws the fence from P to @ (this bit is written for you).

The class GridTriangle inherits P, @ (and the other internal fields listed above), fence, and drawGrid from Grid, and additionally
has a field of its own for R (as the pair of integers (x3,y3). It also has its own constructor for initialising any instance of GridTriangle
exploiting its parent’s constructor (courtesy of super). It has some functions of its own, namely a function boundary (which you
will define using three calls to fence) which uses the inherited fence function to return the number of stakes on the boundary (be
careful not to double-count any stakes), a function inside to return the number of stakes inside the boundary (hints follow), a function
drawGridTriangle which uses the inherited drawGrid to draw the grid and then has its own calls to drawLine to draw the three fences
of its boundary (this is written for you), and finally a function area to return the area.

The way all this might be used is

Grid Sausage = new Grid(1,2,11,20);
int stakes = Sausage.fence(1,2,11,20);

which will draw a grid together with Sausage’s fence from (1, 2) to (11, 20), provided the requested grid isn’t too big to draw, and then
make stakes take the value of the number of stakes along the fence. More usefully,

GridTriangle Rhubarb = new GridTriangle(1,2,11,20,7,16);
int entrails = Rhubarb.inside();

int skin = Rhubarb.boundary();

double bigness = Rhubarb.area() ;

which will draw a grid together with Rhubarb’s triangle, and then makes entrails, skin and bigness take the values of the number
of inside stakes, the number of boundary stakes, and the area of Rhubarb, respectively.
Now for some hints for the inside function. Consider a triangle whose base is horizontal.

Let the max vertex y—values be bot and the min y—value be top (Java coordinates!). Since there won’t be any inside points with
bot or top as their y—values, have an outside loop counting from y = top + 1 to bot - 1. Now for each y, have an inside loop testing
how many x’s on that horizontal line lie between the two sloping lines. To do this, let the min vertex z—value be 1left and the max
z—value be right, then as x moves from left - 1 to right + 1 (for each y), check if the slope of the line from the top point to (z,y)
lies between the slopes of the left and right sides of the triangle. (Note that Math.max(a,b) and Math.min(a,b) each take only two
arguments.)

It shouldn’t be hard for you to modify this to deal with a triangle whose top is horizontal.

You already now have routines to do the special cases we looked at, so first test to see if y1, y2 and y3 are all different. If two
of them are the same, then you have an earlier special case. If they are all different, then let the max be BOT, the min be TOP, and
the other one be MID. Imagining a horizontal line drawn with y—value MID almost gives a copy of each of our earlier special cases —
almost, because although the z—value for the vertex with y = MID is integer, the x—value for the facing side when y = MID is probably
not integer. However, this is not a problem for us. Since we did our x moving from left - 1 to right + 1, if we still check the slopes
as before, we will get a correct count in each ‘half’ of the original triangle, though to get the boundary line slopes you must use the
original triangle’s vertices. The only remaining thing is to remember to count (once!) the stakes along the imaginary horizontal line
you drew to separate the general triangle into the two special cases! (Note that to find the max of three numbers you will have to do
something like Math.max(a , Math.max(b,c)), and similarly for min.)

Try this with several triangles of your choice, including the triangles P = (z1,yl) = (2,1), @ = (22,y2) = (20,25) and R =
(x3,y3) = (17,19) and the triangle P = (z1,y1) = (2,1), Q@ = (22, y2) = (2106, 2587) and R = (23, y3) = (466, 1257).

