Answering the four loopy questions. Example 2

We give a second example of answering the four loopy questions, this time where the precondition, postcondition, and loop invariant are given as pictures. But we do it differently. We develop the initialization and loop using the four loopy questions. To help you remember the four loopy questions, we give the general flowchart for a loop with initialization: \textbf{init; while (B) S}.

\begin{center}
\begin{tikzpicture}
 \node[rectangle,draw] (Q) {Q};
 \node[rectangle,draw, right=of Q] (P) {P};
 \node[rectangle,draw, right=of P] (B) {B \&\& P};
 \node[rectangle,draw, right=of B] (S) {S};
 \draw[->] (Q) -- (P);
 \draw[->] (P) -- (B);
 \draw[->] (B) -- node[below] {!B \&\& P} (S);
 \draw[->] (B) -- node[below] {!B \&\& P implies R} (S);
\end{tikzpicture}
\end{center}

In precondition Q below, the query “?” means that we know little about the values in array segment b[0..k]. The purpose of the algorithm we are going to write is to rearrange the values in b[0..k] so that postcondition R is true. Evidently, we are supposed to put all the non-positive values on the left and the positive ones the right.

Postcondition R can be written in mathematics like this: b[0..h-1] \leq 0 \&\& b[h..k] > 0.

\begin{center}
\begin{tabular}{c|c|c}
Q: b & k & ? \\
0 & & \\
\end{tabular}
\hspace{1cm}
\begin{tabular}{c|c|c|c}
R: b & h & k \\
\leq 0 & & > 0 \\
0 & & \\
\end{tabular}
\end{center}

Note that the algorithm may not change k. The algorithm deals not with the whole array but only with its first k+1 elements.

We will use invariant P shown below. It is a generalization—we’ll explain that word later—of the pre- and post-conditions.

\begin{center}
\begin{tabular}{c|c|c|c|c}
P: b & h & j & k \\
\leq 0 & ? & > 0 \\
0 & & & \\
\end{tabular}
\end{center}

1. \textbf{First loopy question}: Does the algorithm start right: is \{Q\} initialization \{P\} true?

We have to find the initialization. Initially, for invariant P to be true, it must look like precondition Q. This means that segments b[0..h-1] and b[j+1..k] of P must be empty. By our formula \textit{Follower minus the First}, the number of elements in b[0..h-1] is h–0. So initially, h must be 0. In the same way, the number of values in b[j+1..k] is k–j, so j must equal k. Therefore, the initialization is:

h= 0; j= k;

Wasn’t that easy?

2. \textbf{Second loopy question}: Does it stop right: Does P \&\& !B imply R?

The loop must end with R true. To make invariant P look like R, query segment b[h..j] must be empty. Looking at the invariant, you can see that b[h..j] is not empty when h \leq j — if h = j, b[h..j] has 1 element. So the loop condition B is h \leq j and !B is h = j+1.

3. \textbf{Third and fourth loopy questions}: Does the repetend make progress toward termination and keep the invariant true?

The repetend will get closer to termination by reducing the size of query segment b[h..j]. That means that at least one element in the query segment must be moved to either b[0..h] or b[j+1..k]. Let’s see how to do this.

Look at element b[h]. Either b[h] \leq 0 or b[h] > 0, and we should do something different in each case. So we will use an if-statement as shown to the right. If b[h] \leq 0, then b[h] can be placed in the leftmost segment simply by increasing h by 1. To see this in pictures,
we change

\[
\begin{array}{cccc}
0 & h & j & k \\
P: b & \leq 0 & \leq 0 & ? & > 0 \\
\end{array}
\]

...to...

\[
\begin{array}{cccc}
0 & h & j & k \\
P: b & \leq 0 & \leq 0 & ? & > 0 \\
\end{array}
\]

That’s done using \(h = h + 1 \).

If \(b[h] > 0 \), then that value belongs in the last segment. So, as shown below, we swap \(b[h] \) with \(b[j] \) and then decrease \(j \). Variable \(h \) should not be increased, since we do not know what is in it.

\[
\begin{array}{cccc}
0 & h & j & k \\
P: b & \leq 0 & > 0 & ? & ? & > 0 \\
\end{array}
\]

\[
\begin{array}{cccc}
0 & h & j & k \\
P: b & ? & ? & > 0 & > 0 \\
\end{array}
\]

\[
\begin{array}{cccc}
0 & h & j & k \\
P: b & \leq 0 & > 0 & ? & ? \\
\end{array}
\]

\[
\begin{array}{cccc}
0 & h & j & k \\
P: b & \leq 0 & > 0 & ? & ? \\
\end{array}
\]

This yields the algorithm

\[
\begin{array}{l}
//
\text{Rearrange values of } b[0..k] \text{ to put the positive values on the right} \\
\text{int } h = 0; \\
\text{int } j = k; \\
//
\text{invariant } P: \text{ show above in a picture} \\
\text{while } (h <= j) \{ \\
\quad \text{if } (b[h] <= 0) \{ h = h + 1; \} \\
\quad \text{else} \{ \\
\quad\quad \text{Swap } b[h] \text{ and } b[j]; \\
\quad\quad j = j - 1; \\
\quad \} \\
\} \\
// \text{postcondition } R: \text{ shown above in a picture} \\
\end{array}
\]