Problems with typical array implementations of sets

A mathematical set is simply a bunch of distinct, or different, elements. The typical operations on a set \(s \) appear to the right.

A simple implementation uses an array \(b \), with, say, the \(n \) integers occupying \(b[0..n-1] \). We show an example with \(n = 5 \).

\[
\begin{array}{cccccc}
\text{b} & 0 & 1 & 2 & 3 & 4 & n \\
5 & 8 & 3 & 4 & 1 & \\
\end{array}
\]

A request to add an element involves first determining whether the element is already in \(b[0..n-1] \), because it can’t be added if it’s already there. Similarly, a request to remove an element involves determining whether the element is in \(b[0..n-1] \).

A search for \(e \) is typically made starting at the beginning and looking at every element until \(e \) is found—or until the end is reached, meaning \(e \) is not in the set. This takes expected-case time \(O(n) \) and worst-case time \(O(n) \), so operations add and remove take \(O(n) \) time.

\[
\begin{array}{cccccc}
\text{b} & 0 & 1 & 2 & 3 & 4 & n \\
1 & 3 & 4 & 5 & 8 & \\
\end{array}
\]

If the elements are from an ordered set, we could keep \(b[0..n-1] \) in ascending order and then use binary search to see whether a value is in the set. This reduces the look-up time to \(O(\log n) \). However, operation add would still take expected-case and worst-case time \(O(n) \) because adding a very small value requires moving everything up one element. For example, adding 2 to \((1, 3, 4, 5, 8) \) requires moving \((3, 4, 5, 8) \) up one position in the array.