Merging two adjacent sorted segments

To the left below are two adjacent sorted segments, \(b[h..e] \) and \(b[e+1..k] \). We want an algorithm to merge them in stable fashion into the single sorted segment \(b[h..k] \) shown to the right.

\[
\begin{array}{c|c|c}
 h & e & k \\
 \hline
 2 & 4 & 5 \\
 & 1 & 2 \ 3 \ 6 \ 7
\end{array}
\quad
\begin{array}{c|c|c}
 h & e & k \\
 \hline
 1 & 2 & 3 \ 4 \ 5 \ 6 \ 7 \ 7
\end{array}
\]

To do this, first copy \(b[h..e] \) into another array \(c[0..e-h] \), as shown below. We have written ? for values in \(b[h..e] \) not because values aren’t there but because we don’t care what is in that segment after the copy.

\[
\begin{array}{c|c|c}
 h & e & k \\
 \hline
\end{array}
\quad
\begin{array}{c|c|c}
 0 & e-h \\
 \hline
 2 & 4 & 4 & 5 & 7
\end{array}
\]

The goal now is to merge \(b[e+1..k] \) and \(c[0..e-h] \) in stable fashion into \(b[h..k] \). We show three steps. When an integer is moved, we replace it by ?

Start with this:

\[
\begin{array}{c|c|c|c|c|c|c|c|c|c}
\end{array}
\quad
\begin{array}{c|c|c|c|c|c|c|c|c|c}
 0 & e-h & 2 & 4 & 4 & 5 & 7
\end{array}
\]

Move smaller of \(b[e+1] \) and \(c[0] \):

\[
\begin{array}{c|c|c|c|c|c|c|c|c|c}
\end{array}
\quad
\begin{array}{c|c|c|c|c|c|c|c|c|c}
 0 & e-h & 2 & 4 & 4 & 5 & 7
\end{array}
\]

Move \(c[0] \), not \(b[e+2] \) (stable sort):

\[
\begin{array}{c|c|c|c|c|c|c|c|c|c}
\end{array}
\quad
\begin{array}{c|c|c|c|c|c|c|c|c|c}
 0 & e-h & ? & 4 & 4 & 5 & 7
\end{array}
\]

Move smaller of \(b[e+2] \) and \(c[1] \):

\[
\begin{array}{c|c|c|c|c|c|c|c|c|c}
\end{array}
\quad
\begin{array}{c|c|c|c|c|c|c|c|c|c}
 0 & e-h & ? & 4 & 4 & 5 & 7
\end{array}
\]

That should be enough to give you the idea: At each iteration of a loop, the smallest unmoved (non-?) element in the two segments \(b[e+1..k] \) and \(c[0..e-h] \) is moved to the next available position (the first ?) in \(b[h..] \).

In order to write the loop, we need a loop invariant. We need three variables \(i, j, \) and \(m \) to indicate three positions in the arrays. We define them below; to the right we show them after the last move shown above.

1. The position \(i \) in which to place the next merged integer in \(b[h..] \).
2. The position \(j \) of the first unmoved value in \(b[e+1..k] \).
3. The position \(m \) of the first unmoved value in \(c[0..e-h] \).

The loop invariant has four parts:

- Invariant: \(b[h..i-1] \) contains the moved values, stably sorted,
- \(b[j..k] \) contains the unmoved values in \(b[e+1..k] \),
- \(c[m..e-h] \) contains the unmoved values in \(c[0..e-h] \),
- \(b[h..i-1] \leq b[j..k] \) and \(b[h..i-1] \leq c[m..e-h] \)

The algorithm is shown to the right. After truthifying the invariant by initializing \(i, j, \) and \(m \), a while-loop moves values as long as both segments \(b[j..k] \) and \(c[m..e-h] \) contain a value to move. This makes the code a bit easier to write and to read.

A second loop then moves remaining values in \(c[m..e-h] \). There is no need to move remaining values in \(b[j..k] \) because, if there are any, one can verify that they are already in the correct place at the end of \(b[j..k] \).

Space and time complexity

The time complexity is \(O(k+1-h) \). Extra space is used for array \(c \), so the space is \(O(e+1-h) \).

```c
int i, j, m = 0;
while (j <= k && m <= e-h) {
    if (c[m] <= b[j]) { b[i] = c[m]; m++; i++; }
    else { b[i] = b[j]; j++; i++; }
}
while (m <= e-h) {b[i] = b[m]; m++; i++; }
```

©David Gries, 2018