The partition algorithm of quicksort

Suppose \(b[h..k] \) looks like the precondition given below. Here, \(x \) is not a program variable but just a name for the contents of \(b[h] \). We assume that \(h < k \) —that is, \(b[h..k] \) has at least two elements. The partition algorithm swaps the values of \(b[h..k] \) and stores a value in \(j \) to truthify postcondition \(\text{Post} \), shown to the right. If \(b[h..k] \) contains several elements equal to \(x \), it doesn’t matter whether they are placed in the left or the right segment.

\[
\begin{array}{c}
\text{Pre:} & b & h & ? & k \\
\text{Post:} & b & \leq x & x & \geq x
\end{array}
\]

You may have seen the development of a partition algorithm using the invariant shown to the right. Instead, let’s try something different. We use a different invariant, and you will see that the algorithm makes at most \((k+1-h)/2\) swaps.

Let’s leave the \(x \) in \(b[h] \) and swap values in \(b[h+1..k] \) to truthify postcondition \(\text{Post}_1 \):

\[
\begin{array}{c}
\text{Post}_1: & b & h & j & k \\
\end{array}
\]

Then, to truthify \(\text{Post} \) above, all we have to do is swap \(b[h] \) and \(b[j] \).

Given precondition \(\text{Pre} \), we want an algorithm that swaps elements of \(b[h+1..k] \) to truthify \(\text{Post}_1 \). We develop the loop invariant in the standard way:

\[
\begin{array}{c}
\text{Inv}_1: & b & h & t & j & k \\
\end{array}
\]

The initialization is: \(t = h+1; \ j = k; \).

The loop must continue as long as the ? section contains a value, i.e. as long as \(t \leq j \). We see that if \(j = t-1 \), postcondition \(\text{Post}_1 \) holds.

The repetend will make progress by reducing the size of section \(b[t..j] \). If \(b[t] \leq x \), increase \(t \). If \(b[j] \geq x \), decrease \(j \); if \(b[j] \leq x < b[t] \), swap \(b[t] \) and \(b[j] \), increase \(t \), and decrease \(j \). We end up with this code, which we call \(\text{Partition}_1 \):

```java
Partition1: int t = h+1;
            int j = k;
            // invariant: Inv1
            while (t <= j) {
                if (b[t] <= x) t = t+1;
                else if (b[j] >= x) j = j-1;
                else { Swap b[t] and b[j]; t = t+1; j = j-1; }
            }
```

Putting it all together, we write this partition algorithm as a method:

```java
/** Give precondition \( \text{Pre} \) (above) swap elements of \( b[h..k] \) to truthify \( \text{Post} \) and return \( j \). */
public static int partition(int b, int h, int k) {
    // Pre
   Partition1
    // Post1
    Swap b[h] and b[j];
    // Post
    return j;
}
```

It is readily seen that this method takes time proportional to the size of \(b[h..k] \) It makes at most \((k+1-h)/2\) swaps. It uses \(O(1) \) space.

©David Gries, 2018