Recursion termination: the bound function

Bound function

Recursive function pow to the right has the base case \(k = 0 \) and the recursive case \(k > 0 \). To show that a call like \(\text{pow}(20) \) terminates, we have to show that at some point the base case is reached. It’s easy to see with this function because the recursive call \(\text{pow}(k-1) \) has an argument that is one less than parameter \(k \), so the call \(\text{pow}(20) \) will result in the recursive call \(\text{pow}(19) \), which will result in the recursive call \(\text{pow}(18) \), etc., until the call \(\text{pow}(0) \) is executed.

Often, when we write recursive functions, as above, it is easy to see that they terminate. But sometimes termination can be trickier to show. Below, we use this example to give a general method for proving that a recursive method terminates.

A recursive method may have a list of several parameters. Let’s use \(p \) for the name of this list. For example, for function \(\text{pow} \) above, \(p \) is \((k) \), and for procedure \(\text{QS} \) (for quicksort) whose header is shown to the right, \(p \) is \((b, h, k) \). Similarly, we use \(a \) for the list of arguments of a recursive call.

We formalize the notion of proving termination as follows.

Proof of termination of recursive calls of method \(f(p) \)

To prove termination of a call \(f(p) \), exhibit a bound function \(bf(p) \) with the following properties:

1. For a base case \(p \), \(bf(p) \leq 0 \).
2. For a recursive case \(p \), \(bf(p) > 0 \).
3. The arguments of recursive call are “smaller” in the sense of bound function \(bf \) than the parameters of the method: \(f(a), bf(a) < bf(p) \).

Example 1. For function \(\text{pow} \) above, use the following bound function. You can easily check that the three properties are satisfied.

\[
bf(k) = k.
\]

Example 2. For procedure \(\text{QS} \) whose heading is given above, use

\[
bf(b, h, k) = k - h \quad \text{i.e. (size of segment } b[h..k]) - 1.
\]

The base case will be when \(b[h..k] \) has 0 or 1 values, for then \(b[h..k] \) is already sorted. In that case \(bf(b, h, k) \) is \(-1\) or 0. If \(b[h..k] \) has 2 or more values, \(bf(b, h, k) > 1 \). To prove termination, then, we would have to show point 3 above: the segment to be sorted by each recursive call has to be smaller than segment \(b[h..k] \).

Example 3. Function \(\text{gcd} \) to the right calculates the greatest common divisor of \(b \) and \(c \). For example, \(\text{gcd}(5, 3) = 1 \) and \(\text{gcd}(9, 6) = 3 \). The function rests on these properties of \(\text{gcd} \) for \(b > 0 \) and \(c > 0 \):

1. \(\text{gcd}(b, b) = b \)
2. \(\text{gcd}(b, c) = \text{gcd}(b, c-b) = \text{gcd}(b-c, c) \)

We search for a bound function \(bf(b, c) \). Looking at the two recursive calls, we think of using

\[
bf(b, c) = \max(b, c)
\]

since if \(b > c \), we have \(\max(b-c, c) < \max(b, c) \) and if \(c > b \), we have \(\max(b, c-b) < \max(b, c) \). That’s good. However, in the base case, when \(b = c \), we have \(bf(b, c) = \max(b, c) = b > 0 \), while the properties for proving termination require \(bf(b, c) \leq 0 \). Thus, we modify our choice of bound function to:

\[
bf(b, c) = \max(b, c) - \text{gcd}(b, c)
\]

Discussion. This example shows that our rules for proving termination could be made more flexible. We could instead require that there exist a \(k \) such that for a base case, \(bf(p) \leq k \), and for a recursive case, \(bf(p) > k \).
Recursion termination: the bound function

Example 4. To the right, function `isPal` determines whether its parameter `s` is a palindrome — whether `s` reads the same forward and backward. An obvious bound function `bf` is:

\[
bf(s) = s.length() - 1
\]

The base case is \(s.length() \leq 1 \), and in this case, \(bf(s) \leq 0 \). Second, in the recursive case, when `s` has at least 2 characters, \(bf(s) > 0 \). Third, the argument of the recursive call has 2 less chars in it than parameter `s`.

Example 5. We leave it to you to show that a suitable bound function for recursive function `fib`, to the right, is

\[
bf(n) = n - 1
\]

```java
/** = "s is a palindrome" */
public static boolean isPal(String s) {
    if (s.length() <= 1) return true;
    // { s has at least 2 chars }
    int n= s.length()-1;
    return s.charAt(0) == s.charAt(n) &&
    isPal(s.substring(1, n));
}
```

```java
/** = fibonacci(n), for n \geq 0 */
public static int fib(int n) {
    if (n <= 1) return n;
    // { 1 < n }
    return fib(n-2) + fib(n-1);
}
```