
Testing	assert	statements	

ÓDavid Gries, 2018

A method with a precondition may have assert statements to test that precondition, as in these examples:

 /** Constructor: a P with grandparent p. /** Change the name of the person to n.
 * Precondition: x is not null */ * Precondition: n has at least one character. */
 public P(P p) { public void changeName(String n) {
 assert p != null; assert n != null && n.length() < 1;
 … …

JUnit 5 testing of assert statements
Junit 5, also associated with the name Jupiter test, provides a simple way of testing that an assert statement

works properly. It uses what is called an anonymous function, or lambda. Anonymous functions will be explained in
more detail in other places. Here is an anonymous function:

	 ()	->	{new	P(null);}	

The	first	part,	(),	is	the	list	of	parameters	of	the	function,	delimited	by	‘(‘	and	‘)’.	In	this	case,	there	are	no	
parameters.	After	->	comes	the	body	of	the	function.	This	body	simply	creates	a	new	object	of	class	P	and	then	
returns.	

In	a	JUnit	5	testing	class,	place	this	method:	

	 @Test	
 void testPconstructor() {	
 assertThrows(AssertionError.class, () -> {new P(null);});	

 }

Remember	that	execution	of	an	assert	statement	throws	an	AssertionError	if	its	boolean	expression	is	false.	
The	call	on	procedure	assertThrows	has	two	arguments:	

1. The	exception	that	is	expected	to	be	thrown	followed	by	.class.	
2. An	anonymous	function	that	is	to	be	called.	

Execution	of	this	call	on	assertThrows	calls	the	anonymous	function.	If	that	call	results	in	throwing	an	Asser-
tionError,	fine.	If	it	doesn’t	throw	an	AssertionError,	then	the	call	fails,	and	you	see	a	red	line	in	the	JUnit	test-
ing	pane.	

You can test for the throwing of any exception. For example, the first assertThrows call below is executed with-
out error, but the second fails because exception IllegalArgumentException is not thrown:

assertThrows(ArithmeticException.class, () -> {int b= 5 / 0;});
assertThrows(IllegalArgumentException.class, () -> {int b= 5 / 0;});

Note: When you create a new JUnit testing class using menu item File -> New -> JUnit Test Case, you will be asked
which JUnit version to use. Choose “New Junit Jupiter test” or “JUnit5”, whichever option is given to you.

Note: When you first write a call on assertThrows, you may get a message saying that it is not available. In that
case, insert this import statement:

 import static org.junit.jupiter.api.Assertions.*;

JUnit 4 testing of assert statements
If you are using JUnit 4, you need to test assert statements as shown below, using a try-statement. You don’t

have to fully understand this if you haven’t learned about exception handling yet. Just copy a try-statement given
below and replace the red new-expression or method call in it by your appropriate call.

Testing an assert statement in a constructor

The following code placed in a testing procedure tests the assert statement in the constructor given above. The
new-expression has an offending call on the constructor —its argument is null.

Testing	assert	statements	

ÓDavid Gries, 2018

 try {new P(null); fail("no exception thrown");}
 catch (AssertionError e) {if (e.getMessage() != null) fail();}

Case 1. The assert statement throws an AssertionError with a null detail message. The AssertionError is caught.
Since e is null, the if-condition is false and the catch-block and thus the try-statement terminate normally. The assert
statement was tested and it worked properly.

Case 2. Suppose the assert statement is not present in the constructor. Suppose the constructor call is executed with-
out throwing an exception. Then the red new P(null); is executed to completion and the following fail statement is
executed. It throws an AssertionError with a non-null detail message. This is caught, and since e is non-null, the if-
condition is true and the statement fail(); is executed. The try-statement terminates abnormally. It worked properly.

Case 3. Suppose the assert statement is not present and the constructor call throws some other exception. That ex-
ception is not caught by the catch-block and is thrown out further. Thus, the try-statement terminates abnormally. It
worked properly.

Testing a call on a method

Now consider checking the assert statement in procedure changeName, shown to the right at the top of the page.
Before we can call changeName, we need an object that contains that method. So, we use the following code. First,
create an new P object and store it in p. Then, have two try-statements, the first to check n != null and the second to
check n.length() < 1 . That’s it!

 P p= new P(…); // Store in p an object that has method changeName

 try {p.changeName(null); fail("no exception thrown");}
 catch (AssertionError e) {if (e.getMessage() != null) fail();}

 try {p.changeName(""); fail("no exception thrown");}
 catch (AssertionError e) {if (e.getMessage() != null) fail();}

A note on formatting

Generally, we would not scrunch up a try-statement onto to lines, the way we did above. We want a program to
be as readable as possible. But this code has a certain structure, and only the stuff in red changes from test case to
test case. We may have several of these in a testing procedure —even 5 or 6 or 10. In such a situation, scrunching
the code up like this is preferred.

