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Batch Learning from Bandit Feedback

* Data
S = ((xlﬂ }71; 61)5 ey (xn; Yn: 671))

(_ context )
(_ mp action )™

- Partial Information (aka “Bandit”) Feedback
* Properties

— Contexts x; drawn i.i.d. from unknown P (X)

— Actions y; selected by existing system my: X = Y

— Feedback §; drawn i.i.d. from unknown §: X XY - R
* Goal of Learning

— Find new system 7 that selects y with better §

[Zadrozny etal., 2003] [Langford & Li], [Bottou, et al., 2014]

. reward / loss )

* Context x:
— User

* Actiony:

— Portfolio of newsarticles
I

* Feedback §(x,y):

— Reading time in minutes

Historic Interaction Logs:
News Recommender

Historic Interaction Logs:
Ad Placement

* Context x:
— User and page
* Actiony:
— Ad that is placed
* Feedback 6(x,y):
— Click / no-click

* Context x:
— Query

* Actiony:
— Ranking

* Feedback §(x,y):
— win/loss against baseline ]
in interleaving

Historic Interaction Logs:
Search Engine

Comparison with Supervised Learning

Batch Learning from | Full-Information
Bandit Feedback Supervised Learning

Train example  (x,y,8) (x,y%)

Context x drawn i.i.d. from drawn i.i.d. from
unknown P(X) unknown P(X)

Actiony selected by existing N/A

systemmg: X > Y
Feedback & Observe §(x,y) only Assume known loss
for y chosen by 1, function A(y, y™)
- know feedback
8(x,y) for every
possible y




Learning Settings

Full-Information Partial-Information
(Labeled) Feedback | (Bandit) Feedback

Outline of Lecture

* Batch Learning from Bandit Feedback (BLBF)
S = ((X]_, Y1 61)! ey (xn' Yo 6n))
-> Find new system T that selects y with better §
—> « Learning Principle for BLBF
— Hypothesis Space, Risk, Empirical Risk, and Overfitting
— Counterfactual Risk Minimization
* Learning Algorithm for BLBF
— POEM for Structured Output Prediction
* Improved Counterfactual Risk Estimators
— Self-Normalizing Estimator

Online Learning ¢ Perceptron * EXP3
* Winnow * UCB1
* Etc. * Etc.
Batch Learning ¢ SVM * Offset Tree
* Random Forests * (Off-Policy RL)
¢ Etc.
Hypothesis Space

Definition [Stochastic Hypothesis / Policy]:

Given context x, hypothesis/policy 7 selects action
y with probability m(y|x)

Note: stochastic prediction rules O deterministic
prediction rules

Risk

Definition [Expected Loss (i.e. Risk)]:
The expected loss / risk R(h) of policy 7 is

R(r) = j j 5Ce,y)n(y PP () dx dy

IYX) T[Z&

On-Policy Risk Estimation

Given S = ((x1,y1, 81), -, (X, Y, 8,)) collected
under hy,

. v

R(my) = ;Z 5

- A/B Testing
Field hy: Draw x ~ P(x), predict y ~ y(Y|x ), get §(x,y)
Field h,: Draw x ~ P(x), predicty ~ m,(Y|x ), get 5(x, y)

Field hyy): Draw x ~ P(x), predict y ~ m(Y]x), get §(x, y)

Approach 1:
Model the World

* Approach [Athey & Imbens, 2015] for Y = {yo, y1}:
— Learning: estimate CATE E[5(x, y,) — 6(x, ¥o)|x] via
regression 5( )/ if
—oxuYi)/bi Y Yi=DYo
f(x) from x to {+5(xi,yi)/pi otherwise

_ iov: Gi _lyo iff<o
New policy: Given x, select y = {}’1 otherwise

- More general: “reward simulator approach”, “model-based
reinforcement learning”, ...




Approach 2:
Model the Selection Bias

Given S = ((x1,y1,61), -, (X, Y, 8,) ) collected
under 1,

R(m) = 126 m(ylx)

nda (il

i=1

‘/" Propensity
NP

- Get unbiased estimate of risk, if propensity
nonzero everywhere (where it matters).

[Horvitz & Thompson, 1952] [Rubin, 1983] [Zadrozny et al., 2003] [Langford, Li, 2009.]

Partial Information
Empirical Risk Minimization

n

. x.
h == argmingey ZW 6;
i

* Training

i

[Zadrozny etal., 2003] [Langford & Li], [Bottou et al., 2014]

Generalization Error Bound for BLBF

* Theorem [Generalization Error Bound]

— For any hypothesis space H with capacity C, and for all
m € H with probability 1 —n

R(1) < R(m) + 0 (YVar(m/n) + 0(C)
OUnbiased™  Variance™, ~Capacity™
“Estimator” \_control ./ \_Control ./
R(k) = Wean ("2 )

13

Var(h) = Var (@ 5;)

3

- Bound accounts for the fact that variance of risk
estimator can vary greatly between different m € H

[Swaminathan & Joachims, 2015]

Outline of Lecture

* Batch Learning from Bandit Feedback (BLBF)
S= ((xl! Y1 61' pl): ey (xru Yno 611' pn))
-> Find new system h that selects y with better §
* Learning Principle for BLBF
— Hypothesis Space, Risk, Empirical Risk, and Overfitting
— Counterfactual Risk Minimization
—> ¢« Learning Algorithm for BLBF
— POEM for Structured Output Prediction
* Improved Counterfactual Risk Estimators
— Self-Normalizing Estimator

Counterfactual Risk Minimization
* Theorem [Generalization Error Bound]
R(m) < R(m) + 0 (VVar(m)/n) + 0(C)

-> Constructive principle for designing learning algorithms

n

R 1 Ix; _ - dx) o
R(n):Zzn(yp&& Var(n):%Z(ﬂyp;W 6i> - R(m)*

i

[Swaminathan & Joachims, 2015]

POEM Hypothesis Space

Hypothesis Space: Stochastic prediction rules

1
n(ylx,w) = 700 exp(w - ®(x, y))

with
— w: parameter vector to be learned

— ®(x,y): joint feature map between input and output
— Z(x): partition function

Note: same form as CRF or Structural SVM




POEM Learning Method

* Policy Optimizer for Exponential Models (POEM)
—Data: § = ((xl: Y1, 61! pl)! - (Xn, Yo 6‘)1! pn))

— Hypothesis space: m(y|x, w) = exp(w - ¢(x,¥))/Z(x)
— Training objective: Let z;(w) = w(y;|x;, w)é;/p;

i=1 i=1 i=1

n n n 2
1 1 1 2
= in|= E ) - E w2 (= E .
w a:vg;;;}vn = z;(W) + A4 (n Zl(W)> (n Zl(W)> + 22| Iwl]

Capacity \
Control ~ /

Unbiased Risk
. Estimator _/

Variance
AN Control o

[Swaminathan & Joachims, 2015]

POEM Experiment
Multi-Label Text Classification

Data: § = ((x1:}’1: 81,01)) s (X ynv6nvpn))

— x: Text document

— y: Predicted label vector

— &: number of incorrect labels in y

— Py propensity under logging policy hy

Results: Reuters LYRL RCV1 (top 4 categories)

— POEM with H isomorphic to CRF with one weight vector per label
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[Swaminathan & Joachims, 2015]

Does Variance Regularization
Improve Generalization?

IPS: w = argmin [’R\(W) +12||W||2]
weRN

Rw) + 14 ( /W(w)/n> + /12||w||2}
HammingLoss | Scene|  Yeast|  TMC| LWL
h,

POEM:

W = argmin
weRN

0 1.543 5.547 3.445 1.463
IPS 1.519 4.614 3.023 1.118
POEM 1.143 4.517 2.522 0.996
# examples 4*1211 4*1500 4*21519  4*23149
# features 294 103 30438 47236
# labels 6 14 22 4

POEM Efficient Training Algorithm

Training Objective:

1 n 1 n 1 n 2
0PT=V£I€1&I}V ZZzi(w)+ll <z 1zi(w)2>—<;. 1Zi(W)>
= =

i=1 i

Idea: First-order Taylor Majorization

— Majorize V. at current value

— Majorize —( )? at current value
n

o1
OPT < min, [ZZ A; zz(w) + B; zi(w)z]

Algorithm:
— Majorize objective at current w,
— Solve majorizing objective via Adagrad to get w;, 1

[De Leeuw, 1977+] [Groenen et al., 2008] [Swaminathan & Joachims, 2015]

How computationally efficient is

POEM?
CPUSeconds | _Scene| _ Yeast| __TMC| _LVRL
POEM 4.71 5.02 276.13 120.09
IPS 1.65 2.86 49.12 13.66
CRF (L-BFGS) 4.86 3.28 99.18 62.93
# examples 4%¥1211 4*¥1500 4*21519 4*23149
# features 294 103 30438 47236
# labels 6 14 22 4
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Counterfactual Risk Minimization

* Theorem [Generalization Error Bound]

R(m) <R(m)+0 (\/ V/ﬁr(n)/n) +0(0)

- Constructive principle for designing learning algorithms

R =2y O, Va,(,,)__Z(n(y;xl) ) .

[Swaminathan & Joachims, 2015]

Propensity Overfitting Problem

* Example ® ®
— Instance Space X = {1, ..., k} ®
— Label Space Y = {1, ..., k} X ®
_)=2 ify==x @)
~ Lossd(xy) = {—1 otherwise O
— Training data: uniform x,y sample @
— Hypothesis space: all deterministic functions Y

> Tope(x) = x with risk R (o) = 2

10 m(yilx)

T \Y;lX;
R() = min— E LSL- =-
TEH N bi i

i

- Problem 1: Unbounded risk estimate!

Propensity Overfitting Problem

* Example 8 5 -
— Instance Space X = {1, ..., k} O B
— Label Space Y = {1, ..., k} X8 s
—Loss & = lf y==X
0ss 8(x,y) = {qu otherwise 8 s
— Training data: uniform x,y sample Y

— Hypothesis space: all determlnls&gfbncnons
> Mope () = x with risk R(op.) =

ﬂ(yllxl)
R = E s =
@) = m in — o & ‘
L
- Problem 2: Lack of equivariance!

Control Variates

« Idea: Inform estimate when expectation of correlated
random variable is known.
— Estimator: n
. 1 dx;
RGm) = _Z m(yilx) 5
n& pi
— Correlated RV with known expectation:

S = nzn(ym

E[S(m)] = Zf n(yllxl) ﬂo(Yi|xi)P(xi)d}’idxi =1

o (yilx;
- New Risk Estimator: Self- normalizing estimator
o R(m
fov Gy - R
S(m)

Norm-POEM Learning Method

* Method:
—Data: § = ((xlr Y 611 pl)t = (Xn, Yn 611.' pn))

— Hypothesis space: n(y|x, w) = exp(w - (x, y))/Z(x)
— Training objective: Let z;(w) = n(y;|x;, w)é;/p;

w= argmln [RSN(W) + 24 Var(RSN(W)) + /12||w|| ]
weRN

§ N : B
~ Self-Normalized ""' Variance \ /" Capacity \
Risk Estimator _/ . Control /\_Control /
S —_— —

{Swamiathan & Joachims, 2015]

How well does Norm-POEM
generalize?

Hamming Yeast LYRL
[

1.511 5.577 3.442 1.459
POEM 1.200 4.520 2.152 0.914
Norm-POEM 1.045 3.876 2.072 0.799
# examples 4*1211 4*1500 4*21519 4*23149
# features 294 103 30438 47236
# labels 6 14 22 4




Conclusions

* Batch Learning from Bandit Feedback (BLBF)

S = (G0, ¥1, 61,1, +» (X Y, 6y D))

* Learning Principle for BLBF

- Counterfactual Risk Minimization
¢ Learning Algorithm for BLBF

- POEM for Structured Output Prediction

- Efficient Training Method
* Open Questions

— Counterfactual Risk Estimators

- Self-normalizing Estimator

— Exploiting Smoothness in Loss Space

— Exploiting Smoothness in Predictor Space

— Propensity Estimation




