Batch Learning from Bandit Feedback

(Adith Swaminathan), Thorsten Joachims

Department of Computer Science
Department of Information Science
Cornell University

Funded in part through NSF Awards IIS-1247637, IIS-1217686, IIS-1513692.

Batch Learning from Bandit Feedback

• Data

$$S = ((x_1, y_1, \delta_1), ..., (x_n, y_n, \delta_n))$$
context
$$\pi_0 \text{ action} \text{ reward /loss}$$

- → Partial Information (aka "Bandit") Feedback
- Properties
- Contexts x_i drawn i.i.d. from unknown P(X)
- Actions y_i selected by existing system $\pi_0: X \to Y$
- Feedback δ_i drawn i.i.d. from unknown $\delta \colon X \times Y \to \Re$
- Goal of Learning
 - Find new system π that selects y with better δ

(Zadrozov et al. 2002) (Lanaford & Li) (Botton et al. 2014)

Historic Interaction Logs: News Recommender

- Context x:
 - User
- Action y:
 - Portfolio of newsarticles
- Feedback $\delta(x,y)$:
 - Reading time in minutes

Historic Interaction Logs: Ad Placement

- Context x:
 - User and page
- Action y:
- Ad that is placed
- Feedback $\delta(x,y)$:
 - Click / no-click

Historic Interaction Logs: Search Engine

- Context x:
 - Query
- Action y:
- Ranking
- Feedback $\delta(x, y)$:
 - win/loss against baseline in interleaving

Comparison with Supervised Learning

	Batch Learning from Bandit Feedback	Full-Information Supervised Learning
Train example	(x, y, δ)	(x, y^*)
Context x	drawn i.i.d. from unknown $P(X)$	drawn i.i.d. from unknown $P(X)$
Action y	selected by existing system $\pi_0: X \to Y$	N/A
Feedback δ	Observe $\delta(x,y)$ only for y chosen by π_0	Assume known loss function $\Delta(y, y^*)$ \rightarrow know feedback $\delta(x, y)$ for every possible y

Learning Settings

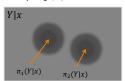
	Full-Information (Labeled) Feedback	Partial-Information (Bandit) Feedback
Online Learning	PerceptronWinnowEtc.	• EXP3 • UCB1 • Etc.
Batch Learning	SVMRandom ForestsEtc.	• Offset Tree • (Off-Policy RL)

Outline of Lecture

- Batch Learning from Bandit Feedback (BLBF) $S = ((x_1, y_1, \delta_1), \dots, (x_n, y_n, \delta_n))$
 - ightarrow Find new system π that selects y with better δ
- Learning Principle for BLBF
 - Hypothesis Space, Risk, Empirical Risk, and Overfitting
 - Counterfactual Risk Minimization
- · Learning Algorithm for BLBF
 - POEM for Structured Output Prediction
- Improved Counterfactual Risk Estimators
 - Self-Normalizing Estimator

Hypothesis Space

Definition [Stochastic Hypothesis / Policy]: Given context x, hypothesis/policy π selects action y with probability $\pi(y|x)$

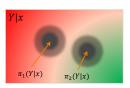


Note: stochastic prediction rules ⊃ deterministic prediction rules

Risk

Definition [Expected Loss (i.e. Risk)]: The expected loss / risk R(h) of policy π is

$$R(\pi) = \int \int \delta(x, y) \pi(y|x) P(x) dx dy$$



On-Policy Risk Estimation

Given $S = \left((x_1, y_1, \delta_1), \dots, (x_n, y_n, \delta_n)\right)$ collected under h_0 ,

$$\widehat{R}(\pi_0) = \frac{1}{n} \sum_{i=1}^n \delta_i$$

→ A/B Testing

Field h_1 : Draw $x \sim P(x)$, predict $y \sim \pi_1(Y|x)$, get $\delta(x,y)$ Field h_2 : Draw $x \sim P(x)$, predict $y \sim \pi_2(Y|x)$, get $\delta(x,y)$

Field $h_{|H|}$: Draw $x \sim P(x)$, predict $y \sim \pi_{|H|}(Y|x)$, get $\delta(x,y)$

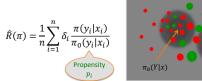
Approach 1: Model the World

- Approach [Athey & Imbens, 2015] for $Y = \{y_0, y_1\}$:

 Learning: estimate CATE $E[\delta(x, y_1) \delta(x, y_0)|x]$ via regression $f(x) \text{ from } x \text{ to } \begin{cases} -\delta(x_i, y_i)/p_i & \text{if } y_i = y_0 \\ +\delta(x_i, y_i)/p_i & \text{otherwise} \end{cases}$
 - New policy: Given x, select $y = \begin{cases} y_0 & if \ f(x) < 0 \\ y_1 & otherwise \end{cases}$
- $\boldsymbol{\rightarrow}$ More general: "reward simulator approach", "model-based reinforcement learning", ...

Approach 2: Model the Selection Bias

Given $S = ((x_1, y_1, \delta_1), \dots, (x_n, y_n, \delta_n))$ collected under π_0 ,

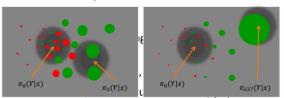


→ Get unbiased estimate of risk, if propensity nonzero everywhere (where it matters).

[Horvitz & Thompson, 1952] [Rubin, 1983] [Zadrozny et al., 2003] [Langford, Li, 2009.]

 $\pi(Y|x)$

Partial Information Empirical Risk Minimization



• Training $h \coloneqq \operatorname{argmin}_{\pi \in H} \sum_{i}^{n} \frac{\pi(y_i|x_i)}{p_i} \ \delta_i$

Zadrozny et al., 2003] [Langford & Li], [Bottou et al., 2014

Generalization Error Bound for BLBF

- Theorem [Generalization Error Bound]
 - For any hypothesis space H with capacity \mathcal{C} , and for all $\pi \in H$ with probability $1-\eta$

$$R(\pi) \leq \hat{R}(\pi) + O\left(\sqrt{\hat{Var}(\pi)/n}\right) + O(C)$$
Unbiased
Estimator

$$Capacity
Control$$

$$Capacity
Control

$$R(y_i|x_i) \leq N$$$$

$$\widehat{R}(h) = \widehat{Mean} \left(\frac{\pi(y_i|x_i)}{p_i} \delta_i \right)$$

$$\widehat{Var}(h) = \widehat{Var} \left(\frac{\pi(y_i|x_i)}{p_i} \delta_i \right)$$

 \rightarrow Bound accounts for the fact that variance of risk estimator can vary greatly between different $\pi \in H$

[Swaminathan & Joachims, 2015]

Counterfactual Risk Minimization

• Theorem [Generalization Error Bound]

$$R(\pi) \le \hat{R}(\pi) + O\left(\sqrt{\widehat{Var}(\pi)/n}\right) + O(C)$$

→ Constructive principle for designing learning algorithms

$$\pi^{crm} = \operatorname*{argmin}_{\pi \in H_i} \widehat{R}(\pi) + \lambda_1 \left(\sqrt{\widehat{Var}(\pi)/n} \right) + \lambda_2 \mathcal{C}(H_i)$$

$$\widehat{R}(\pi) = \frac{1}{n} \sum_{i}^{n} \frac{\pi(y_i | x_i)}{p_i} \delta_i \qquad \qquad \widehat{Var}(\pi) = \frac{1}{n} \sum_{i}^{n} \left(\frac{\pi(y_i | x_i)}{p_i} \ \delta_i \right)^2 - \widehat{R}(\pi)^2$$

[Swaminathan & Joachims, 2015]

Outline of Lecture

- Batch Learning from Bandit Feedback (BLBF) $S = \left((x_1, y_1, \delta_1, p_1), \dots, (x_n, y_n, \delta_n, p_n) \right)$
 - ightarrow Find new system h that selects y with better δ
- · Learning Principle for BLBF
 - Hypothesis Space, Risk, Empirical Risk, and Overfitting
 - Counterfactual Risk Minimization
- Learning Algorithm for BLBF
 - POEM for Structured Output Prediction
 - Improved Counterfactual Risk Estimators
 - Self-Normalizing Estimator

POEM Hypothesis Space

Hypothesis Space: Stochastic prediction rules

$$\pi(y|x,w) = \frac{1}{Z(x)} \exp(w \cdot \Phi(x,y))$$

with

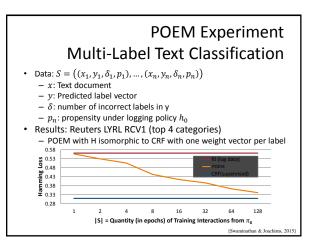
- − w: parameter vector to be learned
- $-\Phi(x,y)$: joint feature map between input and output
- Z(x): partition function

Note: same form as CRF or Structural SVM

POEM Learning Method

- Policy Optimizer for Exponential Models (POEM)
 - Data: $S = \left((x_1, y_1, \delta_1, p_1), \dots, (x_n, y_n, \delta_n, p_n)\right)$
 - Hypothesis space: $\pi(y|x,w) = \exp(w \cdot \phi(x,y))/Z(x)$
 - Training objective: Let $z_i(w) = \pi(y_i|x_i, w)\delta_i/p_i$

$$w = \underset{w \in \Re^N}{\operatorname{argmin}} \left[\frac{1}{n} \sum_{l=1}^n z_l(w) + \lambda_1 \sqrt{\left(\frac{1}{n} \sum_{l=1}^n z_l(w)^2\right) - \left(\frac{1}{n} \sum_{l=1}^n z_l(w)\right)^2} + \lambda_2 \left|\left|w\right|\right|^2} \right]$$
Unbiased Risk
Estimator
Capacity
Control



Does Variance Regularization Improve Generalization?

- IPS: $w = \underset{w \in \mathbb{R}^N}{\operatorname{argmin}} \left[\widehat{R}(w) + \lambda_2 ||w||^2 \right]$
- POEM: $w = \underset{w \in \Re^N}{\operatorname{argmin}} \left[\widehat{R}(w) + \lambda_1 \left(\sqrt{\widehat{Var}(w)/n} \right) + \lambda_2 ||w||^2 \right]$

Hamming Loss	Scene	Yeast	TMC	LYRL
h_0	1.543	5.547	3.445	1.463
IPS	1.519	4.614	3.023	1.118
POEM	1.143	4.517	2.522	0.996
# examples	4*1211	4*1500	4*21519	4*23149
# features	294	103	30438	47236
# labels	6	14	22	4

POEM Efficient Training Algorithm

• Training Objective:

$$OPT = \min_{w \in \Re^{N}} \left[\frac{1}{n} \sum_{i=1}^{n} z_{i}(w) + \lambda_{1} \sqrt{\left(\frac{1}{n} \sum_{i=1}^{n} z_{i}(w)^{2}\right) - \left(\frac{1}{n} \sum_{i=1}^{n} z_{i}(w)\right)^{2}} \right]$$

- · Idea: First-order Taylor Majorization
 - Majorize √ at current value
 - Majorize ()² at current value

$$OPT \le \min_{w \in \Re^N} \left[\frac{1}{n} \sum_{i=1}^n A_i \ z_i(w) + B_i \ z_i(w)^2 \right]$$

- المالية المالية
 - Majorize objective at current \boldsymbol{w}_t
 - ${\bf -}$ Solve majorizing objective via Adagrad to get w_{t+1}

[De Leeuw, 1977+] [Groenen et al., 2008] [Swaminathan & Joachims, 2015

How computationally efficient is POEM?

CPU Seconds	Scene	Yeast	TMC	LYRL
POEM	4.71	5.02	276.13	120.09
IPS	1.65	2.86	49.12	13.66
CRF (L-BFGS)	4.86	3.28	99.18	62.93
# examples	4*1211	4*1500	4*21519	4*23149
# features	294	103	30438	47236
# labels	6	14	22	4

Outline of Lecture

Batch Learning from Bandit Feedback (BLBF)

$$S = ((x_1, y_1, \delta_1, p_1), ..., (x_n, y_n, \delta_n, p_n))$$

- ightarrow Find new system h that selects y with better δ
- · Learning Principle for BLBF
 - Hypothesis Space, Risk, Empirical Risk, and Overfitting
 - Counterfactual Risk Minimization
- · Learning Algorithm for BLBF
 - POEM for Structured Output Prediction
- Improved Counterfactual Risk Estimators
 - Self-Normalizing Estimator

Counterfactual Risk Minimization

• Theorem [Generalization Error Bound]

$$R(\pi) \le \hat{R}(\pi) + O\left(\sqrt{\widehat{Var}(\pi)/n}\right) + O(C)$$

→ Constructive principle for designing learning algorithms

$$\pi^{crm} = \operatorname*{argmin}_{h \in H_i} \widehat{R}(\pi) + \lambda_1 \left(\sqrt{\widehat{Var}(\pi)/n} \right) + \lambda_2 \mathcal{C}(H_i)$$

$$\hat{R}(\pi) = \frac{1}{n} \sum_{i}^{n} \frac{\pi(y_i|x_i)}{p_i} \, \delta_i$$

$$\widehat{R}(\pi) = \frac{1}{n} \sum_{i}^{n} \frac{\pi(y_i | x_i)}{p_i} \delta_i \qquad \qquad \widehat{Var}(\pi) = \frac{1}{n} \sum_{i}^{n} \left(\frac{\pi(y_i | x_i)}{p_i} \ \delta_i \right)^2 - \widehat{R}(\pi)^2$$

Propensity Overfitting Problem

- - Instance Space $X = \{1, \dots, k\}$
 - Label Space $Y = \{1, \dots, k\}$

$$- \operatorname{Loss} \delta(x, y) = \begin{cases} -2 & \text{if } y == x \\ -1 & \text{otherwise} \end{cases}$$

- Training data: uniform x,y sample
- Hypothesis space: all deterministic functions $\rightarrow \pi_{opt}(x) = x$ with risk $R(\pi_{opt}) = -2$

$$R(\widehat{\pi}) = \min_{\pi \in H} \frac{1}{n} \sum_{i}^{n} \frac{\pi(y_{i}|x_{i})}{p_{i}} \delta_{i} = \frac{1}{n}$$

→ Problem 1: Unbounded risk estimate!

Propensity Overfitting Problem

- Example
 - Instance Space $X = \{1, \dots, k\}$
 - Label Space $Y = \{1, \dots, k\}$
 - $-\operatorname{Loss} \delta(x, y) = \begin{cases} 20 & \text{if } y == x \\ 1 & \text{otherwise} \end{cases}$
 - Training data: uniform x,y sample
 - Hypothesis space: all deterministic functions $\rightarrow \pi_{opt}(x) = x$ with risk $R(\pi_{opt}) =$

$$R(\hat{\pi}) = \min_{\pi \in H} \frac{1}{n} \sum_{i}^{n} \frac{\pi(y_i | x_i)}{p_i} \delta_i =$$

→ Problem 2: Lack of equivariance!

Control Variates

- Idea: Inform estimate when expectation of correlated random variable is known.
 - Estimator:

$$\hat{R}(\pi) = \frac{1}{n} \sum_{i}^{n} \frac{\pi(y_i|x_i)}{p_i} \delta_i$$

- Correlated RV with known expectation:

$$\hat{S}(\pi) = \frac{1}{n} \sum_{i=1}^{n} \frac{\pi(y_i|x_i)}{p_i}$$

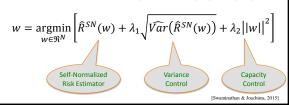
$$E[\hat{S}(\pi)] = \frac{1}{n} \sum_{i}^{n} \int \frac{\pi(y_{i}|x_{i})}{\pi_{0}(y_{i}|x_{i})} \pi_{0}(y_{i}|x_{i}) P(x_{i}) dy_{i} dx_{i} = 1$$

→ New Risk Estimator: Self-normalizing estimator

$$\hat{R}^{SN}(\pi) = \frac{\hat{R}(\pi)}{\hat{S}(\pi)}$$

Norm-POEM Learning Method

- · Method:
 - Data: $S = ((x_1, y_1, \delta_1, p_1), ..., (x_n, y_n, \delta_n, p_n))$
 - Hypothesis space: $\pi(y|x,w) = \exp(w \cdot \phi(x,y))/Z(x)$
 - Training objective: Let $z_i(w) = \pi(y_i|x_i, w)\delta_i/p_i$



How well does Norm-POEM generalize?

Hamming Loss	Scene	Yeast	TMC	LYRL
h_0	1.511	5.577	3.442	1.459
POEM	1.200	4.520	2.152	0.914
Norm-POEM	1.045	3.876	2.072	0.799
# examples	4*1211	4*1500	4*21519	4*23149
# features	294	103	30438	47236
# labels	6	14	22	4

Conclusions

• Batch Learning from Bandit Feedback (BLBF)

$$S = \left((x_1, y_1, \delta_1, p_1), \dots, (x_n, y_n, \delta_n, p_n) \right)$$
• Learning Principle for BLBF

$$\rightarrow \text{Counterfactual Risk Minimization}$$

- Learning Algorithm for BLBF
 - → POEM for Structured Output Prediction
 - → Efficient Training Method
- Open Questions
 - Counterfactual Risk Estimators
 - → Self-normalizing Estimator
 Exploiting Smoothness in Loss Space
 - Exploiting Smoothness in Predictor Space
 Propensity Estimation