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Batch Learning from Bandit Feedback

• Data

𝑆 = 𝑥1, 𝑦1, 𝛿1 , … , 𝑥𝑛, 𝑦𝑛, 𝛿𝑛

 Partial Information (aka “Bandit”) Feedback

• Properties
– Contexts 𝑥𝑖 drawn i.i.d. from unknown 𝑃(𝑋)

– Actions 𝑦𝑖 selected by existing system 𝜋0: 𝑋 → 𝑌

– Feedback 𝛿𝑖 drawn i.i.d. from unknown 𝛿: 𝑋 × 𝑌 → ℜ

• Goal of Learning
– Find new system 𝜋 that selects 𝑦 with better 𝛿

context
𝜋0 action

reward / loss

[Zadrozny et al., 2003] [Langford & Li], [Bottou, et al., 2014]



Historic Interaction Logs: 
News Recommender

• Context 𝑥: 

– User

• Action 𝑦: 

– Portfolio of newsarticles

• Feedback 𝛿 𝑥, 𝑦 :

– Reading time in minutes



Historic Interaction Logs: 
Ad Placement

• Context 𝑥: 

– User and page

• Action 𝑦: 

– Ad that is placed

• Feedback 𝛿 𝑥, 𝑦 :

– Click / no-click



Historic Interaction Logs: 
Search Engine

• Context 𝑥: 

– Query

• Action 𝑦: 

– Ranking

• Feedback 𝛿 𝑥, 𝑦 :

– win/loss against baseline 
in interleaving



Comparison with Supervised Learning

Batch Learning from 
Bandit Feedback

Full-Information 
Supervised Learning

Train example 𝑥, 𝑦, 𝛿 𝑥, 𝑦∗

Context 𝑥 drawn i.i.d. from 
unknown 𝑃(𝑋)

drawn i.i.d. from 
unknown 𝑃(𝑋)

Action 𝑦 selected by existing 
system 𝜋0: 𝑋 → 𝑌

N/A

Feedback 𝛿 Observe 𝛿 𝑥, 𝑦 only 
for 𝑦 chosen by 𝜋0

Assume known loss 
function Δ(𝑦, 𝑦∗)
 know feedback 
𝛿 𝑥, 𝑦 for every 
possible y



Learning Settings

Full-Information 
(Labeled) Feedback

Partial-Information
(Bandit) Feedback

Online Learning • Perceptron
• Winnow
• Etc.

• EXP3
• UCB1
• Etc.

Batch Learning • SVM
• Random Forests
• Etc.

• Offset Tree
• (Off-Policy RL)



Outline of Lecture

• Batch Learning from Bandit Feedback (BLBF)

𝑆 = 𝑥1, 𝑦1, 𝛿1 , … , 𝑥𝑛, 𝑦𝑛, 𝛿𝑛
 Find new system π that selects 𝑦 with better 𝛿

• Learning Principle for BLBF

– Hypothesis Space, Risk, Empirical Risk, and Overfitting

– Counterfactual Risk Minimization

• Learning Algorithm for BLBF

– POEM for Structured Output Prediction

• Improved Counterfactual Risk Estimators

– Self-Normalizing Estimator



Hypothesis Space

Definition [Stochastic Hypothesis / Policy]:

Given context 𝑥, hypothesis/policy 𝜋 selects action 
𝑦 with probability 𝜋 𝑦 𝑥

Note: stochastic prediction rules ⊃ deterministic 
prediction rules

𝜋1(𝑌|𝑥) 𝜋2(𝑌|𝑥)

𝑌|𝑥



Risk

Definition [Expected Loss (i.e. Risk)]: 

The expected loss / risk R(ℎ) of policy 𝜋 is

R 𝜋 =   𝛿 𝑥, 𝑦 𝜋 𝑦 𝑥 𝑃 𝑥 𝑑𝑥 𝑑𝑦

𝜋1(𝑌|𝑥) 𝜋2(𝑌|𝑥)

𝑌|𝑥



On-Policy Risk Estimation

Given 𝑆 = 𝑥1, 𝑦1, 𝛿1 , … , 𝑥𝑛, 𝑦𝑛, 𝛿𝑛 collected 
under ℎ0,

 A/B Testing
Field ℎ1: Draw 𝑥 ∼ 𝑃 𝑥 , predict 𝑦 ∼ 𝜋1 𝑌 𝑥 , get 𝛿(𝑥, 𝑦)
Field ℎ2: Draw 𝑥 ∼ 𝑃 𝑥 , predict 𝑦 ∼ 𝜋2 𝑌 𝑥 , get 𝛿(𝑥, 𝑦)

⋮

Field ℎ|𝐻|: Draw 𝑥 ∼ 𝑃 𝑥 , predict 𝑦 ∼ 𝜋 𝐻 𝑌 𝑥 , get 𝛿(𝑥, 𝑦)

 𝑅 𝜋0 =
1

𝑛
 

𝑖=1

𝑛

𝛿𝑖



Approach 1: 
Model the World

• Approach [Athey & Imbens, 2015] for 𝑌 = {𝑦0, 𝑦1}:

– Learning: estimate CATE 𝐸 𝛿 𝑥, 𝑦1 − 𝛿 𝑥, 𝑦0 |𝑥 via 
regression 

𝑓 𝑥 from 𝑥 to  
−𝛿(𝑥𝑖 , 𝑦𝑖)/𝑝𝑖 𝑖𝑓 𝑦𝑖 = 𝑦0
+𝛿(𝑥𝑖 , 𝑦𝑖)/𝑝𝑖 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

– New policy: Given x, select 𝑦 =  
𝑦0 𝑖𝑓 𝑓 𝑥 < 0
𝑦1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

More general: “reward simulator approach”, “model-based 
reinforcement learning”, …



Approach 2:
Model the Selection Bias

Given 𝑆 = 𝑥1, 𝑦1, 𝛿1 , … , 𝑥𝑛, 𝑦𝑛, 𝛿𝑛 collected 
under 𝜋0,

 Get unbiased estimate of risk, if propensity 
nonzero everywhere (where it matters).

 𝑅 𝜋 =
1

𝑛
 

𝑖=1

𝑛

𝛿𝑖
𝜋 𝑦𝑖 𝑥𝑖
𝜋0 𝑦𝑖 𝑥𝑖

[Horvitz & Thompson, 1952] [Rubin, 1983] [Zadrozny et al., 2003] [Langford, Li, 2009.]

Propensity 
𝑝𝑖

𝜋0(𝑌|𝑥) 𝜋(𝑌|𝑥)



Partial Information 
Empirical Risk Minimization

• Setup

– Stochastic logging using ℎ0 with 𝑝𝑖 = 𝜋0(𝑦𝑖|𝑥𝑖)

 Data S =

𝑥1, 𝑦1 , 𝛿1, 𝑝1 , … , 𝑥𝑛, 𝑦𝑛 , 𝛿𝑛, 𝑝𝑛

– Stochastic prediction rules 𝜋 ∈ 𝐻: 𝜋 𝑦𝑖 𝑥𝑖

• Training

[Zadrozny et al., 2003] [Langford & Li], [Bottou et al., 2014]

 ℎ ≔ argmin𝜋∈𝐻  

𝑖

𝑛
𝜋 𝑦𝑖 𝑥𝑖

𝑝𝑖
𝛿𝑖

𝜋0(𝑌|𝑥) 𝜋1(𝑌|𝑥)
𝜋0(𝑌|𝑥) 𝜋237(𝑌|𝑥)



Generalization Error Bound for BLBF

• Theorem [Generalization Error Bound]
– For any hypothesis space 𝐻 with capacity 𝐶, and for all 
𝜋 ∈ 𝐻 with probability 1 − 𝜂

 𝑅 ℎ =  𝑀𝑒𝑎𝑛
𝜋 𝑦𝑖 𝑥𝑖

𝑝𝑖
𝛿𝑖

 𝑉𝑎𝑟 ℎ =  𝑉𝑎𝑟
𝜋 𝑦𝑖 𝑥𝑖

𝑝𝑖
𝛿𝑖

 Bound accounts for the fact that variance of risk 
estimator can vary greatly between different  𝜋 ∈ H

R 𝜋 ≤  𝑅 𝜋 + 𝑂  𝑉𝑎𝑟 𝜋 /𝑛 + 𝑂(𝐶)

[Swaminathan & Joachims, 2015]

Unbiased 
Estimator

Variance 
Control

Capacity 
Control



Counterfactual Risk Minimization

• Theorem [Generalization Error Bound]

 Constructive principle for designing learning algorithms

[Swaminathan & Joachims, 2015]

R 𝜋 ≤  𝑅 𝜋 + 𝑂  𝑉𝑎𝑟 𝜋 /𝑛 + 𝑂(𝐶)

𝜋𝑐𝑟𝑚 = argmin
𝜋∈𝐻𝑖

 𝑅 𝜋 + 𝜆1  𝑉𝑎𝑟 𝜋 /𝑛 + 𝜆2𝐶(𝐻𝑖)

 𝑅 𝜋 =
1

𝑛
 

𝑖

𝑛
𝜋 𝑦𝑖 𝑥𝑖)

𝑝𝑖
𝛿𝑖  𝑉𝑎𝑟(𝜋) =

1

𝑛
 

𝑖

𝑛
𝜋 𝑦𝑖 𝑥𝑖

𝑝𝑖
𝛿𝑖

2

−  𝑅 𝜋 2



Outline of Lecture

• Batch Learning from Bandit Feedback (BLBF)

𝑆 = 𝑥1, 𝑦1, 𝛿1, 𝑝1 , … , 𝑥𝑛, 𝑦𝑛, 𝛿𝑛, 𝑝𝑛
 Find new system ℎ that selects 𝑦 with better 𝛿

• Learning Principle for BLBF

– Hypothesis Space, Risk, Empirical Risk, and Overfitting

– Counterfactual Risk Minimization

• Learning Algorithm for BLBF

– POEM for Structured Output Prediction

• Improved Counterfactual Risk Estimators

– Self-Normalizing Estimator



POEM Hypothesis Space

Hypothesis Space: Stochastic prediction rules

𝜋 𝑦 𝑥, 𝑤 =
1

𝑍(𝑥)
exp 𝑤 ⋅ Φ 𝑥, 𝑦

with
– 𝑤: parameter vector to be learned

– Φ 𝑥, 𝑦 : joint feature map between input and output

– Z(x): partition function

Note: same form as CRF or Structural SVM



POEM Learning Method

• Policy Optimizer for Exponential Models (POEM)

– Data: 𝑆 = 𝑥1, 𝑦1, 𝛿1, 𝑝1 , … , 𝑥𝑛, 𝑦𝑛, 𝛿𝑛, 𝑝𝑛

– Hypothesis space: 𝜋 𝑦 𝑥, 𝑤 = exp 𝑤 ⋅ 𝜙 𝑥, 𝑦 /𝑍(𝑥)

– Training objective: Let 𝑧𝑖(𝑤) = 𝜋 𝑦𝑖 𝑥𝑖 , 𝑤 𝛿𝑖/𝑝𝑖

[Swaminathan & Joachims, 2015]

Unbiased Risk 
Estimator

Variance 
Control

𝑤 = argmin
𝑤∈ℜ𝑁

1

𝑛
 

𝑖=1

𝑛

𝑧𝑖(𝑤) + 𝜆1
1

𝑛
 

𝑖=1

𝑛

𝑧𝑖 𝑤 2 −
1

𝑛
 

𝑖=1

𝑛

𝑧𝑖 𝑤

2

+ 𝜆2 𝑤
2

Capacity 
Control



POEM Experiment
Multi-Label Text Classification

• Data: 𝑆 = 𝑥1, 𝑦1, 𝛿1, 𝑝1 , … , 𝑥𝑛, 𝑦𝑛, 𝛿𝑛, 𝑝𝑛
– 𝑥: Text document
– 𝑦: Predicted label vector
– 𝛿: number of incorrect labels in y
– 𝑝𝑛: propensity under logging policy ℎ0

• Results: Reuters LYRL RCV1 (top 4 categories)
– POEM with H isomorphic to CRF with one weight vector per label

0.28

0.33

0.38

0.43

0.48

0.53

0.58

1 2 4 8 16 32 64 128

H
am

m
in

g 
Lo

ss

|S| = Quantity (in epochs) of Training Interactions from 𝜋0

f0 (log data)
CoStA
CRF(supervised)

POEM

[Swaminathan & Joachims, 2015]



Does Variance Regularization
Improve Generalization?

• IPS:

• POEM:   

𝑤 = argmin
𝑤∈ℜ𝑁

 𝑅 𝑤 + 𝜆2 𝑤
2

𝑤 = argmin
𝑤∈ℜ𝑁

 𝑅 𝑤 + 𝜆1  𝑉𝑎𝑟 𝑤 /𝑛 + 𝜆2 𝑤
2

Hamming Loss Scene Yeast TMC LYRL

ℎ0 1.543 5.547 3.445 1.463

IPS 1.519 4.614 3.023 1.118

POEM 1.143 4.517 2.522 0.996

# examples 4*1211 4*1500 4*21519 4*23149

# features 294 103 30438 47236

# labels 6 14 22 4



POEM Efficient Training Algorithm
• Training Objective:

• Idea: First-order Taylor Majorization
– Majorize at current value
– Majorize − 2 at current value

• Algorithm:
– Majorize objective at current 𝑤𝑡

– Solve majorizing objective via Adagrad to get 𝑤𝑡+1

𝑂𝑃𝑇 = min
𝑤∈ℜ𝑁

1

𝑛
 

𝑖=1

𝑛

𝑧𝑖(𝑤) + 𝜆1
1

𝑛
 

𝑖=1

𝑛

𝑧𝑖 𝑤 2 −
1

𝑛
 

𝑖=1

𝑛

𝑧𝑖 𝑤

2

𝑂𝑃𝑇 ≤ min
𝑤∈ℜ𝑁

1

𝑛
 

𝑖=1

𝑛

𝐴𝑖 𝑧𝑖 𝑤 + 𝐵𝑖 𝑧𝑖 𝑤 2

[De Leeuw, 1977+] [Groenen et al., 2008] [Swaminathan & Joachims, 2015]



How computationally efficient is 
POEM?

CPU Seconds Scene Yeast TMC LYRL

POEM 4.71 5.02 276.13 120.09

IPS 1.65 2.86 49.12 13.66

CRF (L-BFGS) 4.86 3.28 99.18 62.93

# examples 4*1211 4*1500 4*21519 4*23149

# features 294 103 30438 47236

# labels 6 14 22 4
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• Batch Learning from Bandit Feedback (BLBF)

𝑆 = 𝑥1, 𝑦1, 𝛿1, 𝑝1 , … , 𝑥𝑛, 𝑦𝑛, 𝛿𝑛, 𝑝𝑛
 Find new system ℎ that selects 𝑦 with better 𝛿

• Learning Principle for BLBF

– Hypothesis Space, Risk, Empirical Risk, and Overfitting

– Counterfactual Risk Minimization

• Learning Algorithm for BLBF

– POEM for Structured Output Prediction

• Improved Counterfactual Risk Estimators

– Self-Normalizing Estimator



Counterfactual Risk Minimization

• Theorem [Generalization Error Bound]

 Constructive principle for designing learning algorithms

[Swaminathan & Joachims, 2015]

R 𝜋 ≤  𝑅 𝜋 + 𝑂  𝑉𝑎𝑟 𝜋 /𝑛 + 𝑂(𝐶)

𝜋𝑐𝑟𝑚 = argmin
ℎ∈𝐻𝑖

 𝑅 𝜋 + 𝜆1  𝑉𝑎𝑟 𝜋 /𝑛 + 𝜆2𝐶(𝐻𝑖)

 𝑅 𝜋 =
1

𝑛
 

𝑖

𝑛
𝜋 𝑦𝑖 𝑥𝑖)

𝑝𝑖
𝛿𝑖  𝑉𝑎𝑟(𝜋) =

1

𝑛
 

𝑖

𝑛
𝜋 𝑦𝑖 𝑥𝑖

𝑝𝑖
𝛿𝑖

2

−  𝑅 𝜋 2



Propensity Overfitting Problem

• Example
– Instance Space 𝑋 = 1,… , 𝑘
– Label Space 𝑌 = 1,… , 𝑘

– Loss 𝛿 𝑥, 𝑦 =  
−2 𝑖𝑓 𝑦 == 𝑥

−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
– Training data: uniform x,y sample
– Hypothesis space: all deterministic functions

 𝜋𝑜𝑝𝑡 𝑥 = 𝑥 with risk 𝑅 𝜋𝑜𝑝𝑡 = −2

𝑅  𝜋 = min
𝜋∈𝐻

1

𝑛
 

𝑖

𝑛
𝜋 𝑦𝑖 𝑥𝑖)

𝑝𝑖
𝛿𝑖 =

1

𝑛
 

𝑖

𝑛
1

1/𝑘
𝛿𝑖 ≤ −𝑘

 Problem 1: Unbounded risk estimate!

S

S

S

S

S

𝑋

𝑌



Propensity Overfitting Problem

• Example
– Instance Space 𝑋 = 1,… , 𝑘
– Label Space 𝑌 = 1,… , 𝑘

– Loss 𝛿 𝑥, 𝑦 =  
−2 𝑖𝑓 𝑦 == 𝑥

−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
– Training data: uniform x,y sample
– Hypothesis space: all deterministic functions

 𝜋𝑜𝑝𝑡 𝑥 = 𝑥 with risk 𝑅 𝜋𝑜𝑝𝑡 = −2

𝑅  𝜋 = min
𝜋∈𝐻

1

𝑛
 

𝑖

𝑛
𝜋 𝑦𝑖 𝑥𝑖)

𝑝𝑖
𝛿𝑖 =

1

𝑛
 

𝑖

𝑛
0

1/𝑘
𝛿𝑖 = 0

 Problem 2: Lack of equivariance!

S

S

S

S

S

𝑋

𝑌

0
1

0



Control Variates

• Idea: Inform estimate when expectation of correlated 
random variable is known.
– Estimator:

– Correlated RV with known expectation: 

 𝑆 𝜋 =
1

𝑛
 

𝑖

𝑛
𝜋 𝑦𝑖 𝑥𝑖)

𝑝𝑖

𝐸  𝑆 𝜋 =
1

𝑛
 

𝑖

𝑛

 
𝜋 𝑦𝑖 𝑥𝑖)

𝜋0 𝑦𝑖 𝑥𝑖)
𝜋0 𝑦𝑖 𝑥𝑖)𝑃 𝑥𝑖 𝑑𝑦𝑖𝑑𝑥𝑖 = 1

New Risk Estimator: Self-normalizing estimator

 𝑅𝑆𝑁 𝜋 =
 𝑅 𝜋

 𝑆 𝜋

 𝑅 𝜋 =
1

𝑛
 

𝑖

𝑛
𝜋 𝑦𝑖 𝑥𝑖)

𝑝𝑖
𝛿𝑖



Norm-POEM Learning Method

• Method:

– Data: 𝑆 = 𝑥1, 𝑦1, 𝛿1, 𝑝1 , … , 𝑥𝑛, 𝑦𝑛, 𝛿𝑛, 𝑝𝑛

– Hypothesis space: 𝜋 𝑦 𝑥, 𝑤 = exp 𝑤 ⋅ 𝜙 𝑥, 𝑦 /𝑍(𝑥)

– Training objective: Let 𝑧𝑖(𝑤) = 𝜋 𝑦𝑖 𝑥𝑖 , 𝑤 𝛿𝑖/𝑝𝑖

[Swaminathan & Joachims, 2015]

Self-Normalized 
Risk Estimator

Variance 
Control

𝑤 = argmin
𝑤∈ℜ𝑁

 𝑅𝑆𝑁(𝑤) + 𝜆1  𝑉𝑎𝑟  𝑅𝑆𝑁(𝑤) + 𝜆2 𝑤
2

Capacity 
Control



How well does Norm-POEM 
generalize?

Hamming 
Loss

Scene Yeast TMC LYRL

ℎ0 1.511 5.577 3.442 1.459

POEM 1.200 4.520 2.152 0.914

Norm-POEM 1.045 3.876 2.072 0.799

# examples 4*1211 4*1500 4*21519 4*23149

# features 294 103 30438 47236

# labels 6 14 22 4



Conclusions
• Batch Learning from Bandit Feedback (BLBF)

𝑆 = 𝑥1, 𝑦1, 𝛿1, 𝑝1 , … , 𝑥𝑛, 𝑦𝑛, 𝛿𝑛, 𝑝𝑛
• Learning Principle for BLBF

 Counterfactual Risk Minimization

• Learning Algorithm for BLBF
 POEM for Structured Output Prediction
 Efficient Training Method

• Open Questions
– Counterfactual Risk Estimators

 Self-normalizing Estimator

– Exploiting Smoothness in Loss Space
– Exploiting Smoothness in Predictor Space
– Propensity Estimation


