Counterfactual Model for Online Systems

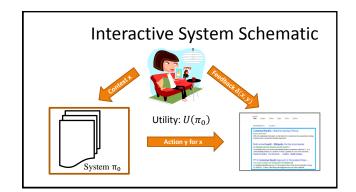
CS 7792 - Fall 2016

Thorsten Joachims

Department of Computer Science & Department of Information Science

Cornell University

Imbens, Rubin, Causal Inference for Statistical Social Science, 2015. Chapters 1,3,12



News Recommender

- Context x:
 - User
- Action *y*:
 - Portfolio of newsarticles
- Feedback $\delta(x,y)$:
 - Reading time in minutes

Ad Placement

- Context x:
 - User and page
- Action *y*:
 - Ad that is placed
- Feedback $\delta(x,y)$:
 - Click / no-click

Search Engine

- Context x:
 - Query
- Action *y*:
 - Ranking
- Feedback $\delta(x,y)$:
 - win/loss against baseline in interleaving

Log Data from Interactive Systems

• Data

- → Partial Information (aka "Contextual Bandit") Feedback
- Properties
 - Contexts x_i drawn i.i.d. from unknown P(X)
 - Actions y_i selected by existing system $\pi_0: X \to Y$
 - Feedback δ_i from unknown function $\delta: X \times Y \to \Re$

[Zadrozny et al., 2003] [Langford & Li], [Bottou, et al., 2014]

Goal

· Use interaction log data

$$S = \big((x_1,y_1,\delta_1),\dots,(x_n,y_n,\delta_n)\big)$$

for evaluation of system π :

- Estimate online measures of some system π offline.
- System π can be different from π_0 that generated log.

Evaluation: Outline

- Evaluating Online Metrics Offline
 - A/B Testing (on-policy)
 - → Counterfactual estimation from logs (off-policy)
- Approach 1: "Model the world"
 - Estimation via reward prediction
- · Approach 2: "Model the bias"
 - Counterfactual Model
 - Inverse propensity scoring (IPS) estimator

Online Performance Metrics

Example metrics

- CTR
- Revenue
- Time-to-success
- Interleaving
- Ftc
- → Correct choice depends on application and is not the focus of this lecture.

This lecture:

Metric encoded as $\delta(x,y)$ [click/payoff/time for (x,y) pair]

Definition [Deterministic Policy]:

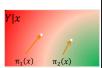
Function $y = \pi(x)$

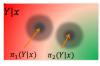
that picks action y for context x.

 Definition [Stochastic Policy]: Distribution

 $\pi(y|x)$ that samples action y given context x

System





System Performance

Definition [Utility of Policy]:

The expected reward / utility $\mathrm{U}(\pi)$ of policy π is

$$U(\pi) = \int \int \delta(x, y) \pi(y|x) P(x) dx dy$$

Online Evaluation: A/B Testing

Given $S = ((x_1, y_1, \delta_1), \dots, (x_n, y_n, \delta_n))$ collected under π_0 ,

$$\widehat{U}(\pi_0) = \frac{1}{n} \sum_{i=1}^n \delta_i$$

→ A/B Testing

Deploy π_1 : Draw $x \sim P(X)$, predict $y \sim \pi_1(Y|x)$, get $\delta(x,y)$ Deploy π_2 : Draw $x \sim P(X)$, predict $y \sim \pi_2(Y|x)$, get $\delta(x,y)$

Deploy $\pi_{|H|}$: Draw $x \sim P(X)$, predict $y \sim \pi_{|H|}(Y|x)$, get $\delta(x,y)$

Pros and Cons of A/B Testing

- Pro
 - User centric measure
 - No need for manual ratings
 - No user/expert mismatch
- Cons
 - Requires interactive experimental control
 - Risk of fielding a bad or buggy π_i
 - Number of A/B Tests limited
 - Long turnaround time

Evaluating Online Metrics Offline

• Online: On-policy A/B Test

Offline: Off-policy Counterfactual Estimates

Evaluation: Outline

- Evaluating Online Metrics Offline
 - A/B Testing (on-policy)
 - → Counterfactual estimation from logs (off-policy)
- Approach 1: "Model the world"
 - Estimation via reward prediction
 - Approach 2: "Model the bias"
 - Counterfactual Model
 - Inverse propensity scoring (IPS) estimator

Approach 1: Reward Predictor

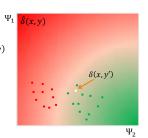
- Idea:
 - Use $S = ((x_1, y_1, \delta_1), \dots, (x_n, y_n, \delta_n))$ from π_0 to estimate reward predictor $\hat{\delta}(x, y)$

- Deterministic π : Simulated A/B Testing with predicted $\hat{\delta}(x,y)$
 - For actions $y_i' = \pi(x_i)$ from new policy π , generate predicted log $S' = \left(\left(x_1, y_1', \hat{\delta}(x_1, y_1'), \ldots, \left(x_n, y_n', \hat{\delta}(x_n, y_n') \right) \right)$
 - Estimate performace of π via $\widehat{U}_{rp}(\pi) = \frac{1}{n} \sum_{i=1}^n \widehat{\delta}(x_i, y_i')$
- Stochastic π : $\widehat{U}_{rp}(\pi) = \frac{1}{n} \sum_{i=1}^{n} \sum_{y} \widehat{\delta}(x_i, y) \pi(y|x_i)$

Regression for Reward Prediction

Learn $\hat{\delta}: x \times y \to \Re$

- 1. Represent via features $\Psi(x,y)$
- 2. Learn regression based on $\Psi(x,y)$ from S collected under π_0
- 3. Predict $\hat{\delta}(x, y')$ for $y' = \pi(x)$ of new policy π

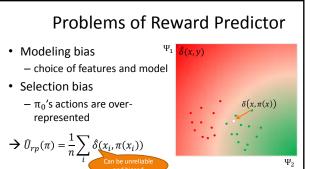


News Recommender: Exp Setup

- Context x: User profile
- Action y: Ranking
- Pick from 7 candidates to place into 3 slots
- Reward δ: "Revenue"

 Complicated hidden function
- Mon's No Bisse for Rading at Double Mon Town States to Regular Interest to Report Interest In
- Logging policy π_0 : Non-uniform randomized logging system
 - Placket-Luce "explore around current production ranker"

News Recommender: Results REVENUE 3 slots, 7 candidate RP is inaccurate even with more training and logged data



Evaluation: Outline

- · Evaluating Online Metrics Offline
 - A/B Testing (on-policy)
 - → Counterfactual estimation from logs (off-policy)
- Approach 1: "Model the world"
 - Estimation via reward prediction
- Approach 2: "Model the bias"
 - Counterfactual Model
 - Inverse propensity scoring (IPS) estimator

Approach "Model the Bias"

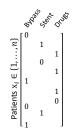
Idea:

Fix the mismatch between the distribution $\pi_0(Y|x)$ that generated the data and the distribution $\pi(Y|x)$ we aim to evaluate.

$$U(\pi_0) = \int \int \delta(x, y) \frac{\pi(y|x)}{\pi_0(y|x)} P(x) dx dy$$

Counterfactual Model

- · Example: Treating Heart Attacks
 - Treatments: Y
 - Bypass / Stent / Drugs
 - Chosen treatment for patient x_i: y_i
 - Outcomes: δ_i
 - 5-year survival: 0 / 1
 - Which treatment is best?

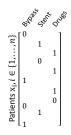


Counterfactual Model

- Placing Vertical Example: Treating Heart Attacks
 - Treatments: Y
 - Bypass / Stent / Drugs Pos 1 / Pos 2/ Pos 3
 - Chosen treatment for patient x_i: y_i
 - Outcomes: δ_i
 - 5-year survival: 0/1 Click / no Click on SERP
 - Which treatment is best?

Counterfactual Model

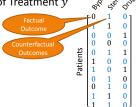
- · Example: Treating Heart Attacks
 - Treatments: Y
 - Bypass / Stent / Drugs
 - Chosen treatment for patient x_i : y_i
 - Outcomes: δ_i
 - 5-year survival: 0 / 1
 - Which treatment is best?
 - · Everybody Drugs
 - · Everybody Stent
 - · Everybody Bypass
 - → Drugs 3/4, Stent 2/3, Bypass 2/4 really?



Treatment Effects

- Average Treatment Effect of Treatment y
 - $U(y) = \frac{1}{n} \sum_{i} \delta(x_i, y)$

- $U(bypass) = \frac{4}{11}$
- $U(stent) = \frac{6}{11}$ $U(drugs) = \frac{3}{11}$



Assignment Mechanism

- Probabilistic Treatment Assignment
 - For patient i: $\pi_0(Y_i = y | x_i)$
- Selection Bias
- Inverse Propensity Score Estimator

-
$$\hat{U}_{ips}(y) = \frac{1}{n} \sum_{i} \frac{\mathbb{I}\{y_i = y\}}{p_i} \delta(x_i, y_i)$$

- Propensity: $\mathbf{p_i} = \pi_0(Y_i = y_i | x_i)$
- Unbiased: $E[\widehat{U}(y)]=U(y)$, if $\pi_0(Y_i=y|x_i)>0$ for all i

$$-\widehat{U}(drugs) = \frac{1}{11} \left(\frac{1}{0.8} + \frac{1}{0.7} + \frac{1}{0.8} + \frac{0}{0.1} \right)$$
$$= 0.36 < 0.75$$

π ₀ (0.3 0.5	$Y_i = y_i$ 0.6 0.4	$y x_i$ 0.1 0.1		& ¹	55 zeř 1 1	0 1 0 0	S0
0.1 0.6 0.2 0.7 0.1 0.1 0.3 0.3	0.1 0.3 0.5 0.2 0.1 0.8 0.3 0.6 0.4	0.8 0.1 0.7 0.1 0.8 0.1 0.4 0.1	Patients	1 0 0 1 1 0 0 1 1	0 0 1 0 0 1 1 1 1	1 0 1 0 1 0 0 0	

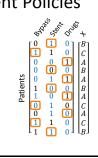
Experimental vs Observational

- · Controlled Experiment
 - Assignment Mechanism under our control
 - Propensities $p_i = \pi_0(Y_i = y_i | x_i)$ are known by design
 - Requirement: $\forall y : \pi_0(Y_i = y | x_i) > 0$ (probabilistic)
- · Observational Study
 - Assignment Mechanism not under our control
 - Propensities p_i need to be estimated
 - Estimate $\hat{\pi}_0(Y_i|z_i) = \pi_0(Y_i|x_i)$ based on features z_i
 - Requirement: $\hat{\pi}_0(Y_i|z_i) = \hat{\pi}_0(Y_i|\delta_i,z_i)$ (unconfounded)

Conditional Treatment Policies

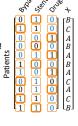
- Policy (deterministic)
 - Context x_i describing patient
 - Pick treatment y_i based on x_i : $y_i = \pi(x_i)$
 - Example policy:
 - $\pi(A) = drugs, \pi(B) = stent, \pi(C) = bypass$
- Average Treatment Effect
 - $U(\pi) = \frac{1}{n} \sum_{i} \delta(x_i, \pi(x_i))$
- IPS Estimator

$$- \ \widehat{U}_{ips}(\pi) = \frac{1}{n} \sum_{i} \frac{\mathbb{I}\{y_i = \pi(x_i)\}}{p_i} \delta(x_i, y_i)$$



Stochastic Treatment Policies

- Policy (stochastic)
 - Context x_i describing patient
 - Pick treatment y based on x_i : $\pi(Y|x_i)$
- Assignment Mechanism is a stochastic policy as well!
- Average Treatment Effect
- $-U(\pi) = \frac{1}{n} \sum_{i} \sum_{y} \delta(x_i, y) \pi(y|x_i)$
- · IPS Estimator
 - $\widehat{U}(\pi) = \frac{1}{n} \sum_{i} \frac{\pi(y_i|x_i)}{p_i} \delta(x_i, y_i)$



Evaluation: Outline

- Evaluating Online Metrics Offline
 - A/B Testing (on-policy)
 - → Counterfactual estimation from logs (off-policy)
- Approach 1: "Model the world"
 - Estimation via reward prediction
- Approach 2: "Model the bias"
 - Counterfactual Model
 - Inverse propensity scoring (IPS) estimator

System Evaluation via **Inverse Propensity Scoring**

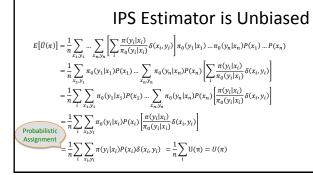
Definition [IPS Utility Estimator]:

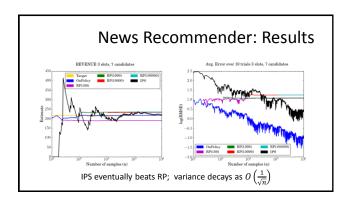
Given $S = ((x_1, y_1, \delta_1), ..., (x_n, y_n, \delta_n))$ collected under π_0 ,

Given
$$S = \{(x_1, y_1, \delta_1), \dots, (x_n, y_n, \delta_n)\}$$
 collected under π_0 ,
$$\widehat{U}_{ips}(\pi) = \frac{1}{n} \sum_{i=1}^n \delta_i \frac{\pi(y_i|x_i)}{\pi_0(y_i|x_i)}$$
 Propensity
$$\text{Propensity on the propensity of any } \pi, \text{ if propensity nonzero whenever } \pi(y_i|x_i) > 0.$$
 Note:

If $\pi=\pi_0$, then online A/B Test with $\widehat{U}_{ips}(\pi_0)=\frac{1}{n}\sum_i \delta_i$ \rightarrow Off-policy vs. On-policy estimation.

Illustration of IPS **IPS Estimator:** $\widehat{U}_{IPS}(\pi) = \frac{1}{n} \sum_{i} \frac{\pi(y_i|x_i)}{\pi_0(y_i|x_i)} \delta_i$ $\pi_0(Y|x)$





Evaluation: Outline

- Evaluating Online Metrics Offline

 - − A/B Testing (on-policy)
 → Counterfactual estimation from logs (off-policy)
- Approach 1: "Model the world"
 - Estimation via reward prediction
- Approach 2: "Model the bias"
 - Counterfactual Model
 - Inverse propensity scoring (IPS) estimator