Counterfactual Machine Learning CS 7792 - Fall 2016

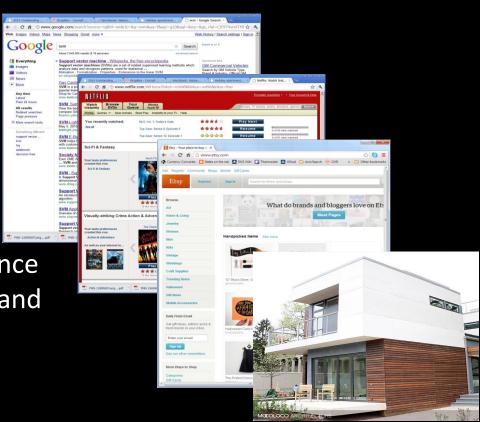
Thorsten Joachims

Department of Computer Science & Department of Information Science

Cornell University

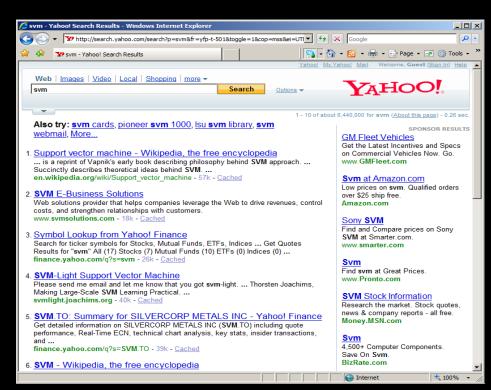
Outline of Today

- Introduction
 - Thorsten Joachims
- Overview of Class Topics
 - Machine Learning with Humans in the Loop
 - Counterfactual Model and Machine Learning
 - Challenges
- Administrivia
 - Goals for the Class
 - Pre-Requisites
 - Credit Options and Format
 - Course Material
 - Contact Info


User Interactive Systems

Examples

- Search engines
- Entertainment media
- E-commerce
- Smart homes, robots, etc.


User Behavior as Data for

- Evaluating system performance
- Learning improved systems and gathering knowledge
- Personalization

Implicit Feedback in Web Search

- Observable actions
 - Queries / reformulations
 - Clicks
 - Order, dwell time
 - Etc.
- Implicit feedback
 - Personalized
 - Democratic
 - Timely
 - Cheap
 - Abundant

Which Ranking Function is Better?

Distribution P(u,q) of users u, queries q

: (tj,"SVM") :

Retrieval Function 1 $f_1(u,q) \rightarrow r_1$

Which one is better?

Retrieval Function 2 $f_2(u,q) \rightarrow r_2$

- Kernel Machines http://svm.first.gmd.de/
- SVM-Light Support Vector Machine http://svmlight.joachims.org/
- School of Veterinary Medicine at UPenn http://www.vet.upenn.edu/
- 4. An Introduction to Support Vector Machines http://www.support-vector.net/
- Service Master Company http://www.servicemaster.com/

U(tj,"SVM",r₁)

- School of Veterinary Medicine at UPenn http://www.vet.upenn.edu/
- 2. Service Master Company http://www.servicemaster.com/
- 3. Support Vector Machine http://jbolivar.freeservers.com/
- Archives of SUPPORT-VECTOR-MACHINES http://www.jiscmail.ac.uk/lists/SUPPORT...
- 5. SVM-Light Support Vector Machine http://ais.gmd.de/~thorsten/svm light/

U(tj,"SVM",r₂)

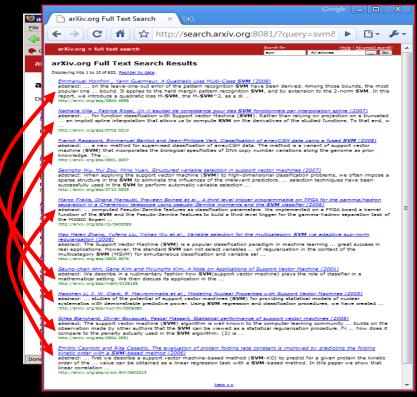
Measuring Utility

Name	Description	Aggre- gation	Hypothesized Change with Decreased Quality
Abandonment Rate	% of queries with no click	N/A	Increase
Reformulation Rate	% of queries that are followed by reformulation	N/A	Increase
Queries per Session	Session = no interruption of more than 30 minutes	Mean	Increase
Clicks per Query	Number of clicks	Mean	Decrease
Click@1	% of queries with clicks at position 1	N/A	Decrease
Max Reciprocal Rank*	1/rank for highest click	Mean	Decrease
Mean Reciprocal Rank*	Mean of 1/rank for all clicks	Mean	Decrease
Time to First Click*	Seconds before first click	Median	Increase
Time to Last Click*	Seconds before final click	Median	Decrease

(*) only queries with at least one click count

ArXiv.org: User Study

User Study in ArXiv.org

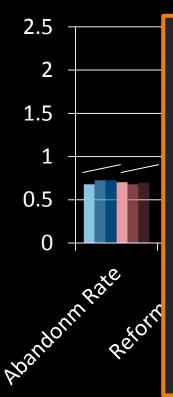

- Natural user and query population
- User in natural context, not lab
- Live and operational search engine
- Ground truth by construction

ORIG > SWAP2 > SWAP4

- ORIG: Hand-tuned fielded
- SWAP2: ORIG with 2 pairs swapped
- SWAP4: ORIG with 4 pairs swapped

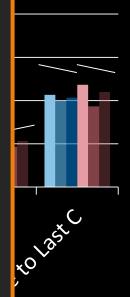
 $ORIG \succ FLAT \succ RAND$

- ORIG: Hand-tuned fielded
- FLAT: No field weights
- RAND: Top 10 of FLAT shuffled



[Radlinski et al., 2008]

ArXiv.org: Experiment Setup


- Experiment Setup
 - Phase I: 36 days
 - Users randomly receive ranking from Orig, Flat, Rand
 - Phase II: 30 days
 - Users randomly receive ranking from Orig, Swap2, Swap4
 - User are permanently assigned to one experimental condition based on IP address and browser.
- Basic Statistics
 - ~700 queries per day / ~300 distinct users per day
- Quality Control and Data Cleaning
 - Test run for 32 days
 - Heuristics to identify bots and spammers
 - All evaluation code was written twice and cross-validated

Arxiv.org: Results

Conclusions

- None of the absolute metrics reflects expected order.
- Most differences not significant after one month of data.
- Analogous results for Yahoo! Search with much more data
 [Chapelle et al., 2012].

Economic Models of Decision Making

- Rational Choice
 - Alternatives Y
 - Utility function U(y)
 - Decision $\bar{y} = \underset{y \in Y}{\operatorname{argmax}} \{U(y)\}$
- Bounded Rationality
 - Time constraints
 - Computation constraints
 - Approximate U(y)
- Behavioral Economics
 - Framing
 - Fairness
 - Loss aversion

A Model of how Users Click in Search

- Model of clicking:
 - Users explore ranking to position k
 - Users click on most relevant (looking) links in top k
 - Users stop clicking when time budget up or other action more promising (e.g. reformulation)
 - Empirically supported by [Granka et al., 2004]

Balanced Interleaving

 $f_1(u,q) \rightarrow r_1 \in$

- Kernel Machines http://svm.first.gmd.de/ Support Vector Machine
- http://jbolivar.freeservers.com/
- An Introduction to Support Vector Machines http://www.support-vector.net/
- Archives of SUPPORT-VECTOR-MACHINES ... http://www.iiscmail.ac.uk/lists/SUPPORT...
- **SVM-Light Support Vector Machine** http://ais.amd.de/~thorsten/sym light/

Model of User:

Boundedly rational choice among top k observed results.

Interleaving(r₁,r₂)

- **Kernel Machines** http://svm.first.gmd.de/ Support Vector Machine http://jbolivar.freeservers.com/ **SVM-Light Support Vector Machine** http://ais.gmd.de/~thorsten/svm light/ An Introduction to Support Vector Machines http://www.support-vector.net/ Support Vector Machine and Kernel ... References http://svm.research.bell-labs.com/SVMrefs.html Archives of SUPPORT-VECTOR-MACHINES ... http://www.jiscmail.ac.uk/lists/SUPPORT...
 - http://svm.research.bell-labs.com/SVT/SVMsvt.html

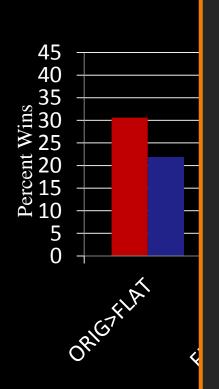
- $\rightarrow f_2(u,q) \rightarrow r_2$
- Kernel Machines http://svm.first.gmd.de/
- **SVM-Light Support Vector Machine** http://ais.gmd.de/~thorsten/svm_light/
 - Support Vector Machine and Kernel ... References
- http://svm.research.bell-labs.com/SVMrefs.html Lucent Technologies: SVM demo applet
- http://svm.research.bell-labs.com/SVT/SVMsvt.html
 - Royal Holloway Support Vector Machine http://svm.dcs.rhbnc.ac.uk

Invariant:

For all k, top k of balanced interleaving is union of top k_1 of r_1 and top k_2 of r_2 with $k_1=k_2 \pm 1$.

Interpretation: $(r_1 > r_2) \leftrightarrow \text{clicks}(\text{topk}(r_1)) > \text{clicks}(\text{topk}(r_2))$

Lucent Technologies: SVM demo applet


→ see also [Radlinski, Craswell, 2012] [Hofmann, 2012]

[Joachims, 2001] [Radlinski et al., 2008]

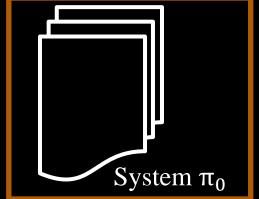
Arxiv.org: Interleaving Experiment

- Experiment Setup
 - Phase I: 36 days
 - Balanced Interleaving of (Orig, Flat) (Flat, Rand) (Orig, Rand)
 - Phase II: 30 days
 - Balanced Interleaving of (Orig, Swap2) (Swap2, Swap4)
 (Orig, Swap4)
- Quality Control and Data Cleaning
 - Same as for absolute metrics

Arxiv.org: Interleaving Results

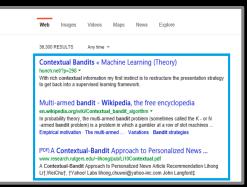
Conclusions

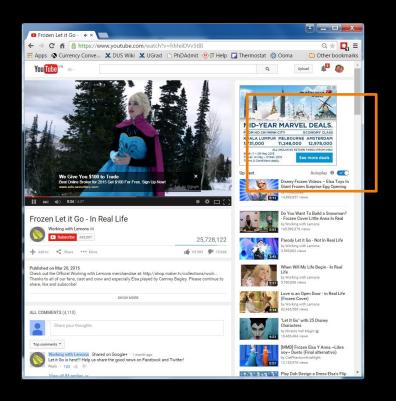
- All interleaving experiments reflect the expected order.
- All differences are significant after one month of data.
- Analogous findings for Bing [Radlinski & Craswell, 2010] and Yahoo! Search [Chapelle et al., 2012].


Using Behavior as Feedback

- Measuring User Satisfaction
 - Need behavioral model to get accurate training data out of biased feedback
 - Use experimental control to collect unbiased data

→ Data comes from experiment, not omniscient teacher

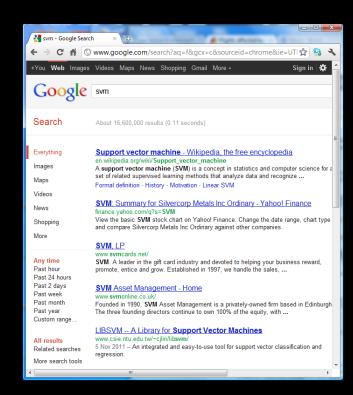

Interactive Learning System


Utility: $U(\pi_0)$

Action y for x

Ad Placement

- Context *x*:
 - User and page
- Action *y*:
 - Ad that is placed
- Feedback $\delta(x,y)$:
 - Click / no-click


News Recommender

- Context x:
 - User
- Action *y*:
 - Portfolio of newsarticles
- Feedback $\delta(x,y)$:
 - Reading time in minutes

Search Engine

- Context x:
 - Query
- Action *y*:
 - Ranking
- Feedback $\delta(x,y)$:
 - win/loss against baseline in interleaving

Log Data from Interactive Systems

Data

$$S = \left((x_1, y_1, \delta_1), \dots, (x_n, y_n, \delta_n)\right)$$

- → Partial Information (aka "Contextual Bandit") Feedback
- Properties
 - Contexts x_i drawn i.i.d. from unknown P(X)
 - Actions y_i selected by existing system $\pi_0: X \to Y$
 - Feedback δ_i from unknown function $\delta: X \times Y \to \Re$

Learning from User Behavior

- Data dependent on system actions
 - Not full information, but partial information feedback
 - Data comes from experiments, not teacher
- Ability to run interactive experiments with users
 - Adaptive vs. stationary experiment control
 - Exploration/exploitation trade-offs
- Reusing existing log data
 - Observational vs. experimental data
 - Stochastic vs. deterministic logging systems

Overall Goals for this Class

- Deeply explore one active research area in ML.
 - Batch Learning from Bandit Feedback
 - Learning under selection bias and MNAR data
 - ML algorithms based in counterfactual model
 - Behavioral feedback models
 - → Incredibly narrow focus.
- Practice being a successful academic
 - Class targeted towards current PhD students with research interests in this area!

Pre-Requisites

- This is not an introductory Machine Learning class!
- You need to satisfy one of the following ML pre-reqs:
 - Successfully taken CS4780 "Machine Learning"
 - Successfully taken CS6780 "Advanced Machine Learning"
 - Successfully taken a comparable "Intro to ML" class (*)
 - Acquired the equivalent ML knowledge in some other way (e.g. strong background in Statistics + ML textbook) (*)
- Currently doing or planning to do research in this area of ML
- Basic probability, basic statistics, general mathematical maturity

(*) means talk to me

Format of Class

- Lectures (by TJ)
 - Background material
- Research paper presentations (by students)
 - Explore current state of the art
- Peer reviewing

Research Paper Presentations

- Students present the paper in class
 - Slide presentation
 - Create critique, extended bibliography, examples, demo software, experiments etc. that help understand the paper
 - Prepare discussion topics / group activity
 - Prepare quiz
- Everybody reads the paper in preparation for class
 - Quiz about each paper
- All students give feedback afterwards.

Credit Options and Grades

- Pass/Fail: Need to get at least 50% of points on each of following to pass.
 - paper presentation
 - in-class quizzes (lowest grades replaced by second lowest grade)
 - peer reviewing (lowest grades replaced by second lowest grade)
 - in-class participation
- Letter grade:
 - not allowed
- Audit:
 - not allowed, unless you have very good arguments

Course Material

Reference Books

- Imbens, Rubin, "Causal Inference for Statistics, Social, and Biomedical Sciences", Cambridge University Press, 2015. (online via Cornell Library)
- Morgan, Winship "Counterfactuals and Causal Inference", Cambridge University Press, 2007.

Background Reading

- K. Murphy, "Machine Learning a Probabilistic Perspective", MIT Press, 2012. (online via Cornell Library)
- B. Schoelkopf, A. Smola, "Learning with Kernels", MIT Press, 2001. (online)
- C. Bishop, "Pattern Recognition and Machine Learning", Springer, 2006.
- R. Duda, P. Hart, D. Stork, "Pattern Classification", Wiley, 2001.
- T. Hastie, R. Tishirani, and J. Friedman, "The Elements of Statistical Learning", Springer, 2001.

Slides, Notes and Papers

- Slides available on course homepage
- Papers on course homepage

How to Get in Touch

- Course Web Page
 - http://www.cs.cornell.edu/Courses/cs7792/2016fa/
- Email
 - Thorsten Joachims: tj@cs.cornell.edu
- Office Hours
 - Fridays 11:10pm 12:10pm, 236 Gates Hall
- Piazza
 - https://piazza.com/cornell/fall2016/cs7792
- Peer reviewing platform
 - https://cmt.research.microsoft.com/CS2016