Computer Vision with Kinect

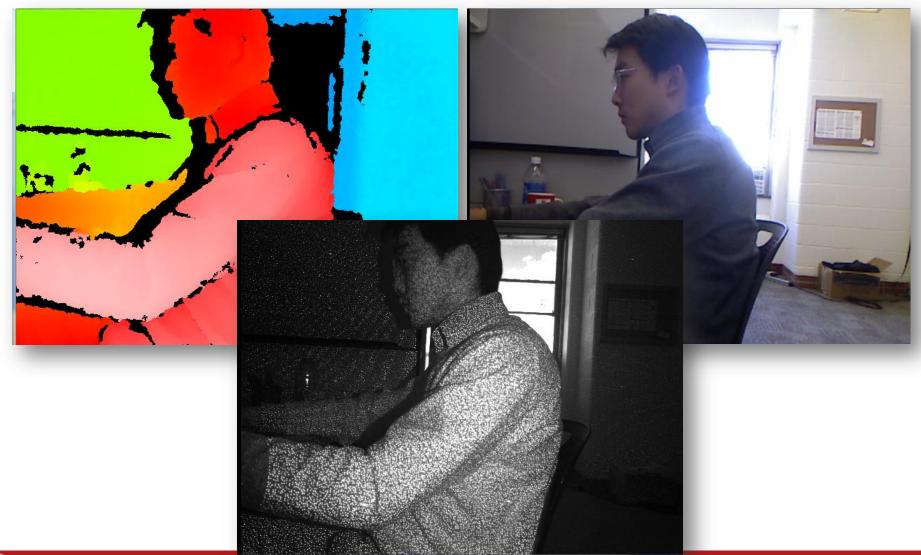
CS 7670 Zhaoyin Jia Fall, 2011

Kinect

• \$150 color image and 3D sensor

- An Infrared projector
- A color camera
- An Infrared sensor

Kinect



Kinect

Official SDK from Microsoft released on Jun 16th

- Better depth image and alignment, Skeleton tracking
 - Real-time Human Pose Recognition in Parts from Single Depth Images. Jamie Shotton, et.al, CVPR 2011, (Best paper award).

Online hacks: OpenNI, open-kinect

Resources

• Real time capturing depth and color image

• Microsoft SDK gives better alignment.

Online calibration toolbox available

 <u>http://www.ee.oulu.fi/~dherrera/kinect/</u>

Topics

RGB-D Mapping

Robotics grasping

Object recognition

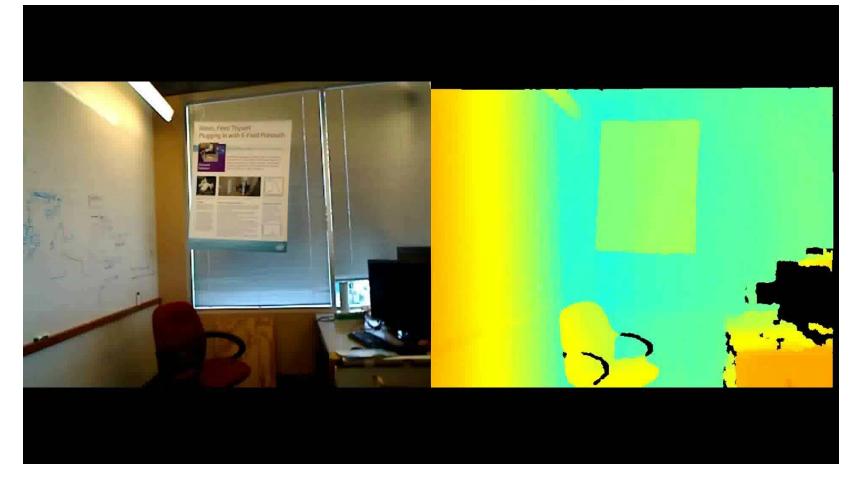
Human tracking

RGB-D Mapping

 Align the "frames" from a Kinect to create a single 3D map (or model) of the environment

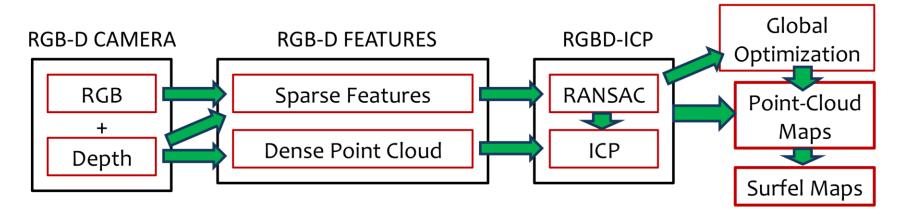
RGB-D Mapping: Using depth cameras for dense 3D modeling of indoor environments. Henry, Krainin, Herbst, Ren, Fox. ISER 2010.

RGB-D Mapping



640x480, 30Hz, color + dense depth

System Overview



- Frame-to-frame alignment
- Global Optimization (SBA for Loop Closure)
- Map representation

SIFT matching

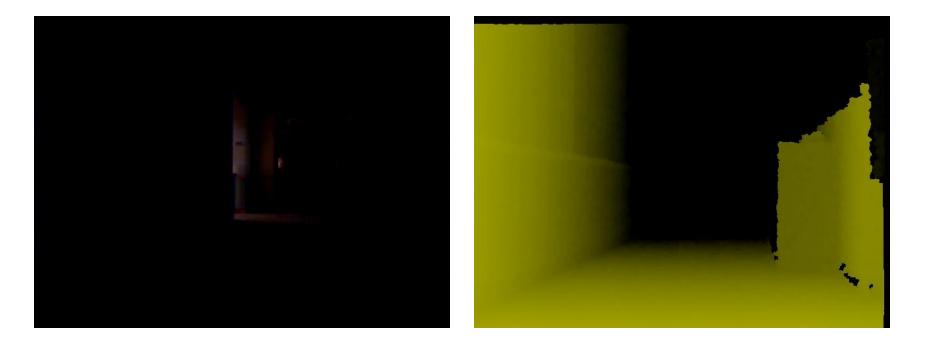
- Visual features (from image) in 3D (from depth)
- Figure out how the camera moved by matching these feature

RANSAC

- For each feature point, find the most similar descriptor in the other frame
- Find largest set of consistent matches
- Move the new frame to align these matches

Using ICP

- Low light / Lack of visual "texture" or features
- Kinect still provides depth or "shape" information



Joint Optimization (RGBD-ICP)

RGBD-ICP $(\mathbf{P}_s, \mathbf{P}_t)$:

- 1: $F = Extract_RGB_point_features(\mathbf{P}_s)$
- 2: $F_{target} = Extract_RGB_point_features(\mathbf{P}_t)$
- 3: $(\mathbf{t}^*, A_f) = Perform_RANSAC_Alignment(F, F_{target})$
- 4: repeat
- 5: $A_d = Compute_Closest_Points(\mathbf{t}^*, \mathbf{P}_s, \mathbf{P}_t)$
- 6: $\mathbf{t}^* = Optimize_Alignment(\mathbf{t}^*, A_f, A_d)$
- 7: **until** (Change(\mathbf{t}^*) $\leq \boldsymbol{\theta}$) or (maxIter reached)
- 8: return t*

Resulting Map

3D mapping

• Our implementation on SIFT only

<u>Kinect fusion</u>

Topics

RGB-D Mapping

Robotics grasping

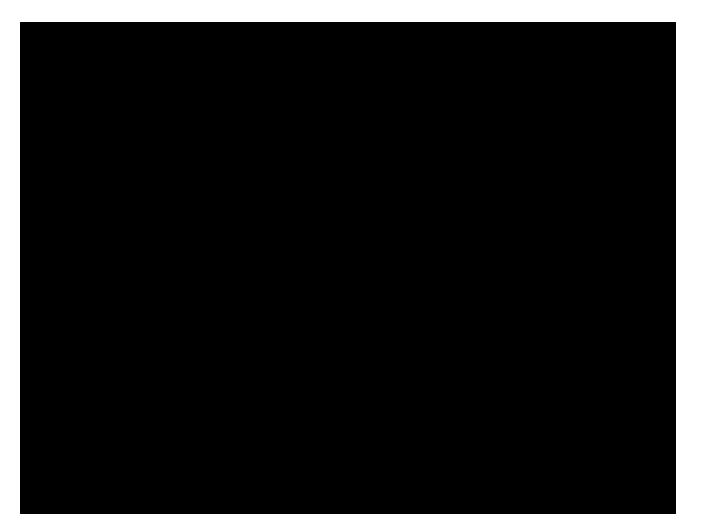
Object recognition

Human tracking

Robot manipulation: Big Picture

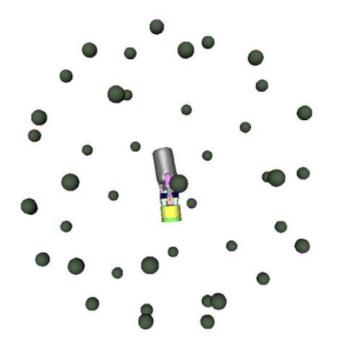
- Personal robots should learn incrementally from experience
- Robots can later perform useful actions with models:
 - Recognition
 - Pose estimation
 - Reliable grasping

Autonomous Generation of Complete 3D Object Models Using Next Best View Manipulation Planning. Krainin, Curless, Fox, ICRA 2011

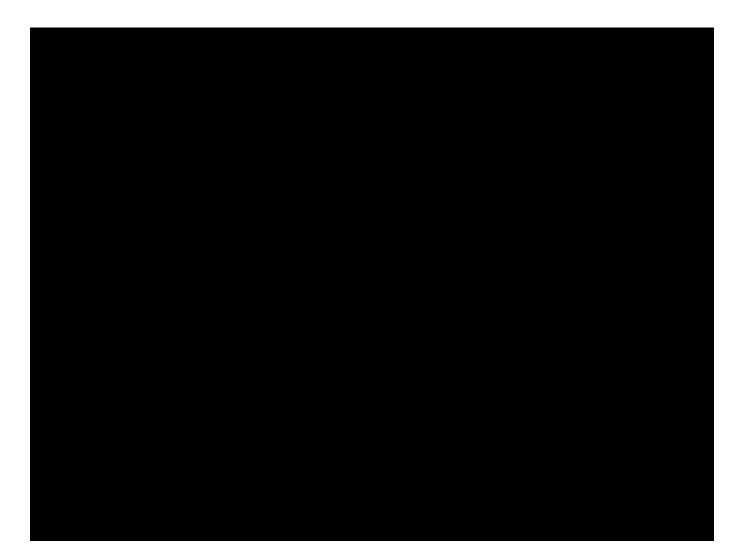


View Selection Algorithm

- Conceptually similar to Planetarium Algorithm [Connolly '85]
- Procedure:
 - Extract object isosurface with confidences
 - Generate kinematically achievable viewpoints
 - Compute information gain (quality) for each viewpoint
 - Select view as tradeoff between quality and cost

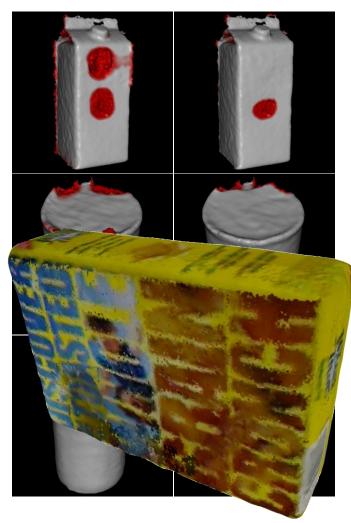


Manipulation Planning



Multiple Grasp Results

- Evaluated regrasping on four objects
- Includes box with three grasps



Topics

RGB-D Mapping

Robotics grasping

Object recognition

Human tracking

Object recognition

• List of papers:

"Object Recognition with Hierarchical Kernel Descriptors", Liefeng Bo, et al. CVPR 11

"A Large-Scale Hierarchical Multi-View RGB-D Object Dataset", Kevin Lai et al. ICRA 11

"Sparse Distance Learning for Object Recognition Combining RGB and Depth Information", Kevin Lai et al. ICRA 11

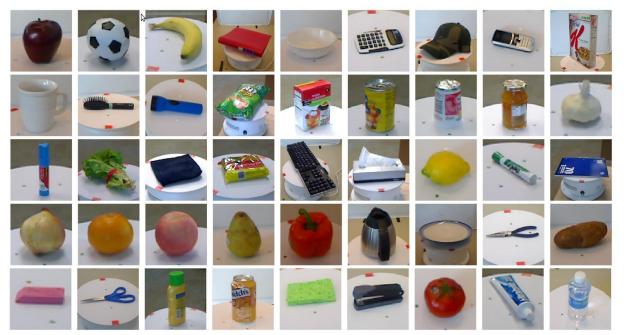
"Depth Kernel Descriptors for Object Recognition", Liefeng Bo et al. IROS 11

"RGB-D Object Discovery via Multi-Scene Analysis." Evan Herbst et al. IROS 11

"A Scalable Tree-based Approach for Joint Object and Pose Recognition", Kevin Lai et al. AAAI 11

"Kernel Descriptors for Visual Recognition", Liefeng Bo et al. NIPS 10

RGB-D Object Dataset

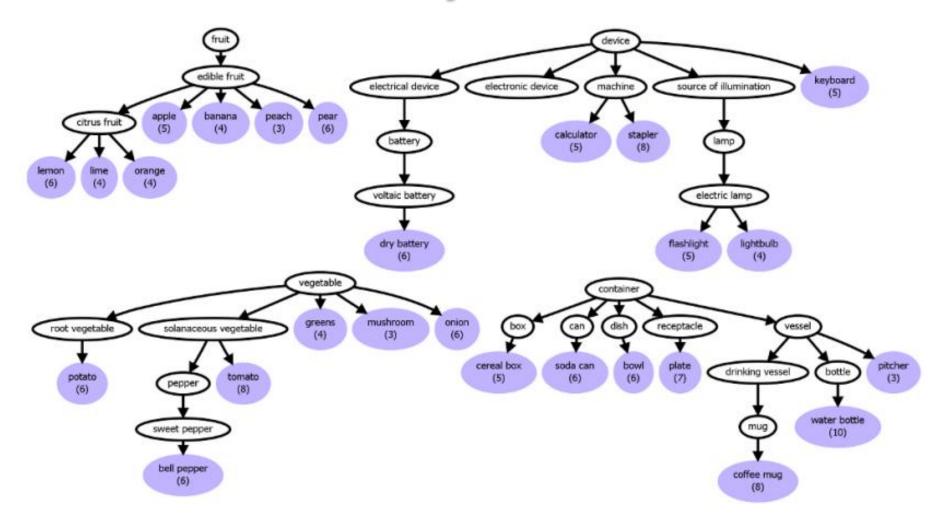


300 objects from 51 categories, 250,000 RGB-D views

Cluttered scenes

Advanced Multimedia Processing Laboratory Cornell University [Lai-Bo-Ren-Fox; ICRA 2011]

RGB-D Object Dataset



Benchmarking RGB-D Recognition

Category-Level Recognition (51 categories)

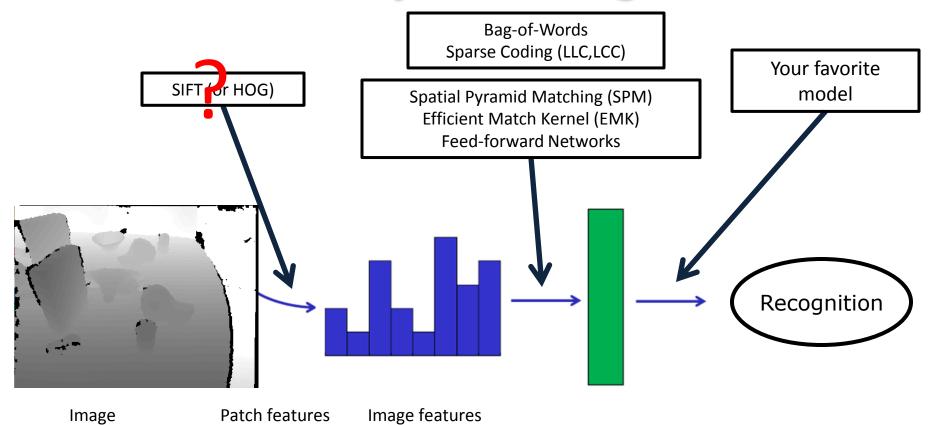
Classifier	Shape (Depth)	Vision (RGB)	RGB-D
Linear SVM	51.7±1.8	72.7±3.2	80.5±2.9
Kernel SVM	63.5±2.3	72.9±3.2	83.0±3.7
RandomForest	65.5 <mark>±</mark> 2.4	73.1±3.7	78.5 <mark>±</mark> 4.1

Instance-Level Recognition (303 instances)

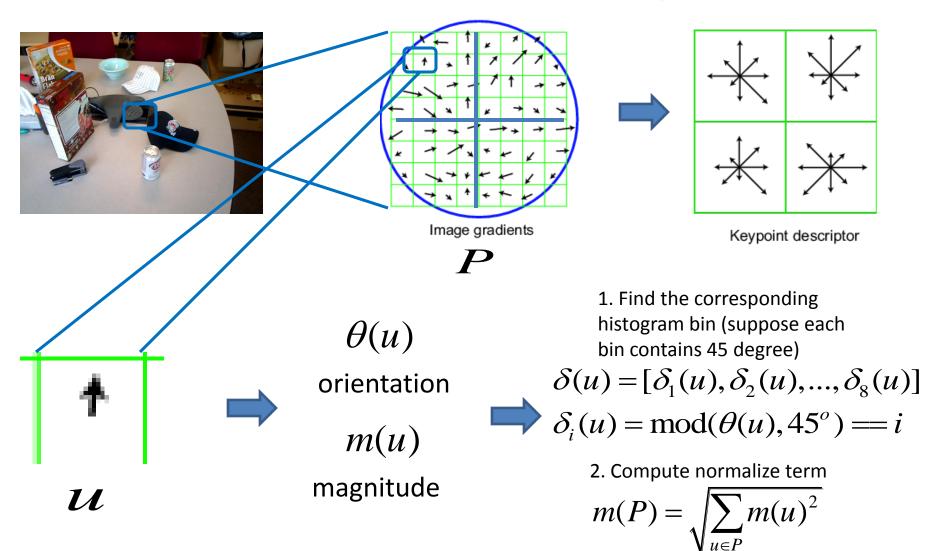
Classifier	Shape (Depth)	Vision (RGB)	RGB-D
Linear SVM	29.4±0.5	90.4±0.5	89.6±0.5
Kernel SVM	50.1±0.9	90.8±0.5	90.4±0.6
RandomForest	51.6 <mark>±1.1</mark>	89.6±0.7	90.2 <u>±</u> 0.3

Slides from Ren. 1% Lowered than number reported in the paper

RGB-D Object Recognition



A Kernel view of SIFT/HoG



Advanced Multimedia Processing Laboratory Cornell University [Bo-Ren-Fox; CVPR 10 ;NIPS 2010; IROS 11;] 2

A Kernel view of SIFT/HoG

$$F(P) = \frac{1}{m(P)} \sum_{u \in P} m(u) \delta(u) \qquad F(P) = \sum_{u \in P} \tilde{m}_u \times sv(\theta_u)$$
Some vector

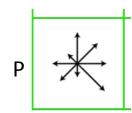
- Suppose we have trained linear SVM classifier
- Have support vectors $(F_i, y_i), i = 1, ..., N$
- With one testing F_t

• Decision
$$y = wF_t - b = \sum_i \alpha_i y_i F_i F_t - b$$

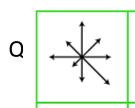
A Kernel view of SIFT/HoG

When two SIFT/HoG meet

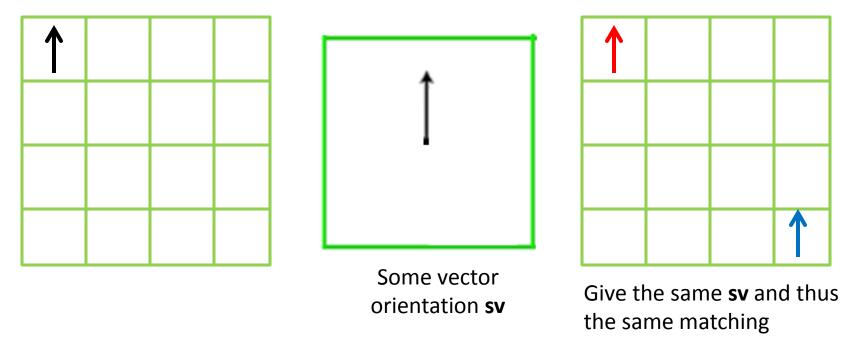
$$F(P) = \sum_{u \in P} \tilde{m}_u sv(\theta(u)) \qquad F(Q) = \sum_{v \in Q} \tilde{m}_v sv(\theta(v))$$
$$F(P) \bullet F(Q) = \sum_{u \in P} \sum_{v \in Q} \tilde{m}_u \tilde{m}_v sv(\theta_u) \bullet sv(\theta_v) \qquad = \sum_{u \in P} \sum_{v \in Q} \tilde{m}_u \tilde{m}_v K_o(\theta_u, \theta_v)$$



How well these orientations match each other



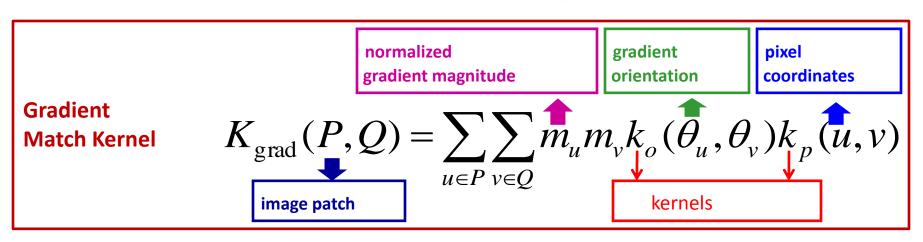
Soft Binning/Considering the position



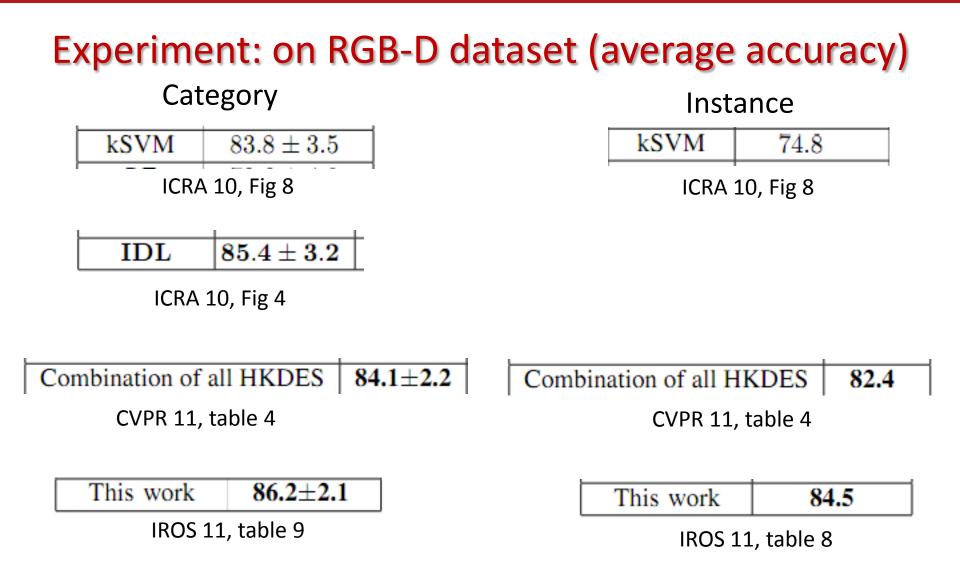
• Add another kernel considering the position of the pixel

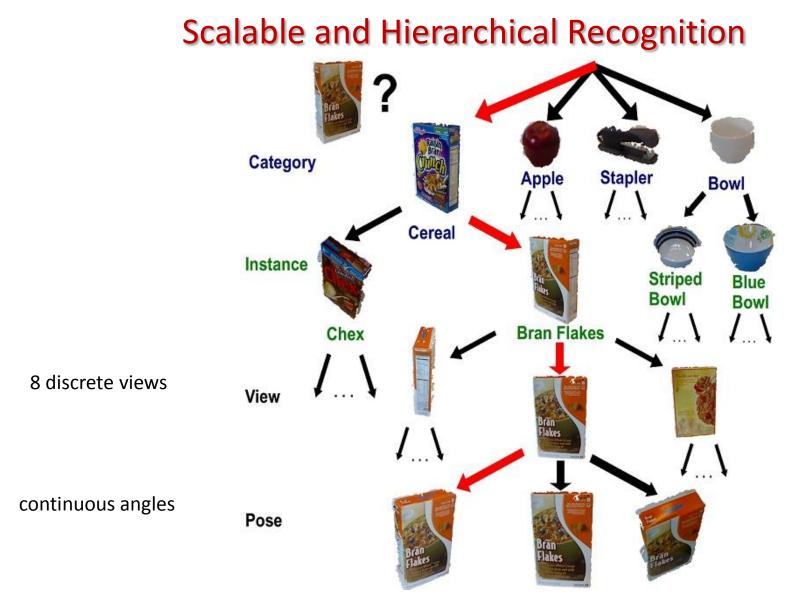
$$K_p(u,v) = e^{-\gamma(u-v)^2}$$

Kernel Descriptors



- Propose several other kernel feaetures (Color, Shape etc) in NIPS
- Propose hierarchy kernel (kernel of kernel) in CVPR (treat Depth as gray image)
- Propose depth kernel in IROS (PCA, shape, edge)





Lai-Bo-Ren-Fox; AAAI 2011

Application: Interactive LEGO

RGB-D used for object recognition and hand tracking

Application: Chess Playing Robot

Topics

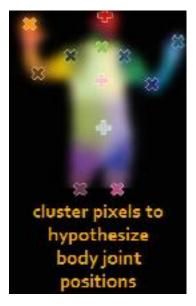
RGB-D Mapping

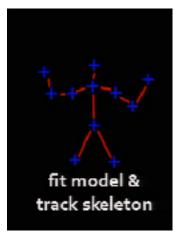
Robotics grasping

Object recognition

Human tracking

Kinect: Real time human tracking

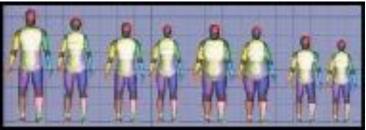




* Real-Time Human Pose Recognition in Parts from Single Depth Images. Shotton, et al, CVPR 2011.

Synthesizing Training data

- Motion capture to 100 k poses
- Retargeting to different models



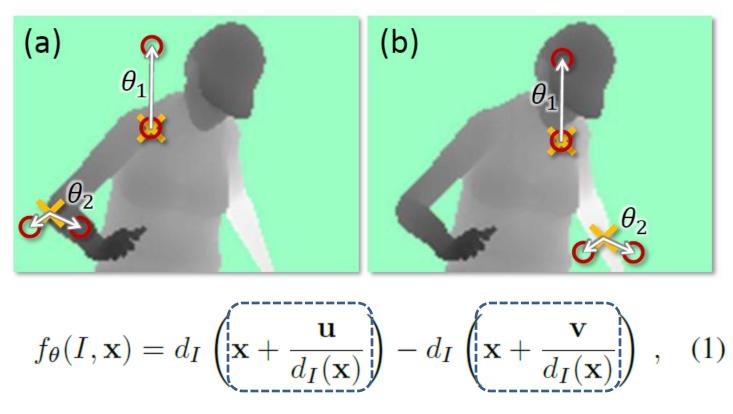
Render depth and body parts

Use the real and synthetic training data (1m)

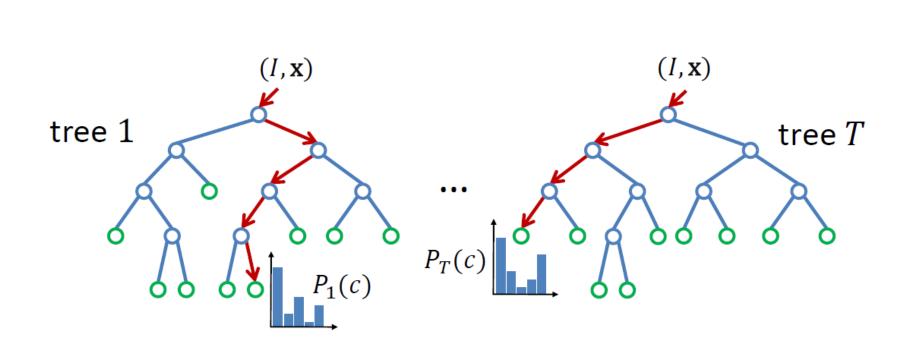
Training data

Features

d_i(x): depth at pixel x



Two offset from x



Decision Tree

• P(c|I,x): distribution of pixel x over labels c $P(c|I, \mathbf{x}) = \frac{1}{T} \sum_{t=1}^{T} P_t(c|I, \mathbf{x})$.

Training decision tree

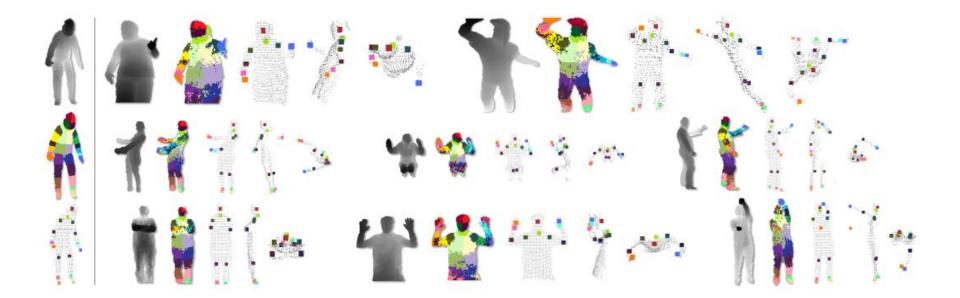
- Randomly select a set of $\, heta \,$ and $\, {\cal T} \,$ (a set of splits)
- Split training examples by each split
- Choose the split with maximum information gain
- Move into next layer
- 3 trees to depth 20 from 1 million images
 =1 day training on 1000 cores

Speed

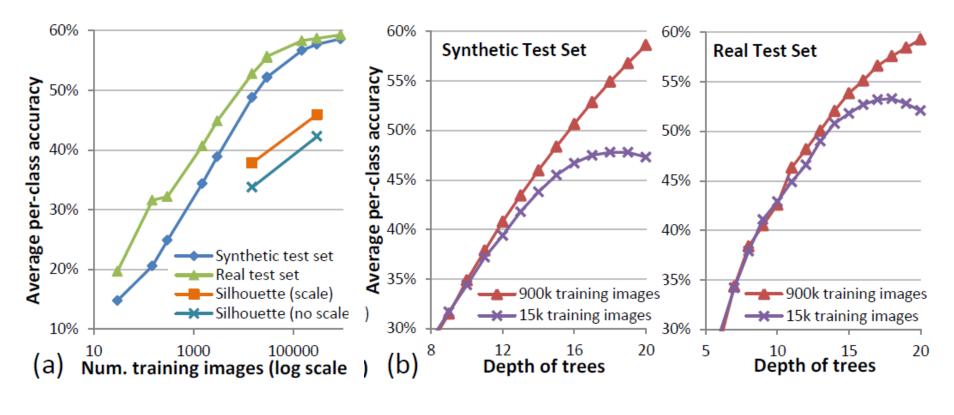
- Each feature computation:
 - read 3 image pixels
 - 5 arithmetic operations
 - Straight forward to implemented on GPU
- Decision trees:
 - Fast computing
 - Can be parallel between trees

Experiment

• Use mean-shift to find the joint.



Experiment



demo

Conclusion

- Kinect is helpful
 - 3D modeling
 - Robotics
- Kinect introduces new data and features

 Object recognition/scene understanding

Many interesting applications on-going

Future

Will RGB-D have a deep impact on vision applications?
 Yes. It's already happening, faster than we can track.

Will RGB-D start a revolution in vision applications?

No. We still need to solve recognition, segmentation, tracking, scene understanding, etc. etc.

Yes. RGB-D helps address two issues in computer vision: loss of 3D from projection; lighting conditions.

RGB-D helps "abstract away" many low-level problems.

Zhaoyin Jia

