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Kinect 

• $150 color image and 3D sensor  

 

 

 

 

• An Infrared projector 

• A color camera 

• An Infrared sensor 
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Kinect 
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Kinect 
• Official SDK from Microsoft released on Jun 16th 

 

• Better depth image and alignment, Skeleton 
tracking 

–  Real-time Human Pose Recognition in Parts 
from Single Depth Images. Jamie Shotton, 
et.al, CVPR 2011, (Best paper award). 

 

• Online hacks: OpenNI, open-kinect 
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Resources 

• Real time capturing depth and color image 

 

• Microsoft SDK gives better alignment. 

 

• Online calibration toolbox available 

– http://www.ee.oulu.fi/~dherrera/kinect/ 
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http://www.ee.oulu.fi/~dherrera/kinect/


Topics 

• RGB-D Mapping 

 

• Robotics grasping 

 

• Object recognition 

 

• Human tracking 
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RGB-D Mapping 

• Align the “frames” from a Kinect to create a 
single 3D map (or model) of the environment 
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RGB-D Mapping: Using depth cameras for dense 3D modeling of indoor environments. 
Henry, Krainin, Herbst, Ren, Fox. ISER 2010. 



RGB-D Mapping 
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640x480, 30Hz, color + dense depth 



System Overview 

• Frame-to-frame alignment 

• Global Optimization (SBA for Loop Closure) 

• Map representation 

 

9 *Slide from Peter Henry 



SIFT matching 
• Visual features (from image) in 3D (from depth) 

• Figure out how the camera moved by 
matching these feature 

 

10 *Slide from Peter Henry 



RANSAC 
• For each feature point, find the most similar 

descriptor in the other frame 

• Find largest set of consistent matches 

• Move the new frame to align these matches 

11 *Slide from Peter Henry 



Using ICP 
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• Low light / Lack of visual “texture” or features 

• Kinect still provides depth or “shape” 
information  



Joint Optimization (RGBD-ICP) 
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Resulting Map 
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15 [Henry-Krainin-Herbst-Ren-Fox] 



3D mapping 

• Our implementation on SIFT only 

 

• Kinect fusion 
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office.ply
kinectfusion.mp4


Topics 

• RGB-D Mapping 

 

• Robotics grasping 

 

• Object recognition 

 

• Human tracking 
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Robot manipulation: Big Picture 

• Personal robots should learn 
incrementally from experience 

 

• Robots can later perform 
useful actions with models: 

– Recognition 

– Pose estimation 

– Reliable grasping 
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Autonomous Generation of Complete 3D Object Models Using Next Best View Manipulation 
Planning. Krainin, Curless, Fox, ICRA 2011 



IJRR 11 
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View Selection Algorithm 

• Conceptually similar to 
Planetarium Algorithm  
[Connolly ’85] 

• Procedure: 
– Extract object isosurface with 

confidences 
– Generate kinematically 

achievable viewpoints 
– Compute information gain 

(quality) for each viewpoint 
– Select view as tradeoff 

between quality and cost 
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Manipulation Planning 
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Multiple Grasp Results 

• Evaluated regrasping on four 
objects 

• Includes box with three grasps  
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Topics 

• RGB-D Mapping 

 

• Robotics grasping 

 

• Object recognition 

 

• Human tracking 
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Object recognition 

• List of papers: 
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"Object Recognition with Hierarchical Kernel Descriptors" ,Liefeng Bo,et al . CVPR 11 
 
"A Large-Scale Hierarchical Multi-View RGB-D Object Dataset“, Kevin Lai et al. ICRA 11 
 
"Sparse Distance Learning for Object Recognition Combining RGB and Depth Information" , 
Kevin Lai et al. ICRA 11 
 
“Depth Kernel Descriptors for Object Recognition”, Liefeng Bo et al. IROS 11 
 
“RGB-D Object Discovery via Multi-Scene Analysis.” Evan Herbst  et al. IROS 11 
 
“A Scalable Tree-based Approach for Joint Object and Pose Recognition”, Kevin Lai et al. 
AAAI 11 
 
“Kernel Descriptors for Visual Recognition”, Liefeng Bo et al. NIPS 10 
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RGB-D Object Dataset 

300 objects from 51 categories, 
250,000 RGB-D views 

Cluttered scenes 

[Lai-Bo-Ren-Fox; ICRA 2011] 



RGB-D Object Dataset 
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Classifier Shape (Depth) Vision (RGB) RGB-D 

Linear SVM 51.71.8 72.73.2 80.52.9 

Kernel SVM 63.52.3 72.93.2 83.03.7 

RandomForest 65.52.4 73.13.7 78.54.1 

Kernel Desc. 
+Linear SVM 

75.72.2 76.12.6 84.12.2 
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Benchmarking RGB-D Recognition 

Classifier Shape (Depth) Vision (RGB) RGB-D 

Linear SVM 29.40.5 90.40.5 89.60.5 

Kernel SVM 50.10.9 90.80.5 90.40.6 

RandomForest 51.61.1 89.60.7 90.20.3 

Category-Level Recognition (51 categories) 

Instance-Level Recognition (303 instances) 

[Lai-Bo-Ren-Fox; ICRA 2011] 

Slides from Ren. 1% Lowered than number reported in the paper 
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RGB-D Object Recognition 

                    Image                         Patch features         Image features 

Recognition 

Your favorite 
model 

Bag-of-Words 
Sparse Coding (LLC,LCC) 

Spatial Pyramid Matching (SPM) 
Efficient Match Kernel (EMK) 

Feed-forward Networks 

SIFT (or HOG) ? 

*Slide from Ren Xiaofeng 



 A Kernel view of SIFT/HoG 

29 [Bo-Ren-Fox; CVPR 10 ;NIPS 2010; IROS 11;] 
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 A Kernel view of SIFT/HoG 
 

 

• Suppose we have trained linear SVM classifier  

 

• Have support vectors  

 

• With one testing 

 

• Decision  

 

 
30 [Bo-Ren-Fox; CVPR 10 ;NIPS 2010; IROS 11;] 
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 A Kernel view of SIFT/HoG 

• When two SIFT/HoG meet 
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Soft Binning/Considering the position 

• Add another kernel considering the position of the pixel 
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Some vector 
orientation sv 

Give the same sv and thus 
the same matching 
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Kernel Descriptors 

• Propose several other kernel feaetures (Color, Shape 
etc) in NIPS 

• Propose hierarchy kernel (kernel of kernel) in CVPR 

(treat Depth as gray image) 

• Propose depth kernel in IROS (PCA, shape, edge) 
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[Bo-Ren-Fox; CVPR 10 ;NIPS 2010; IROS 11;] 



Experiment: on RGB-D dataset (average accuracy) 
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IROS 11, table 8 IROS 11, table 9 

Category Instance 

ICRA 10, Fig 8 ICRA 10, Fig 8 

ICRA 10, Fig 4 

CVPR 11, table 4 CVPR 11, table 4 



Scalable and Hierarchical Recognition 
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[Lai-Bo-Ren-Fox; AAAI 2011] 

8 discrete views 

continuous angles 

*Slide from Ren Xiaofeng 
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Application: Interactive LEGO 

RGB-D used for object recognition and hand tracking 

[Ziola-Harrison-Powledge-Lai-Bo-Ren-Fox] 
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Application: Chess Playing Robot 



Topics 

• RGB-D Mapping 

 

• Robotics grasping 

 

• Object recognition 

 

• Human tracking 
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Kinect: Real time human tracking 
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* Real-Time Human Pose Recognition in Parts from Single Depth Images. Shotton, et 
al, CVPR 2011.  



Synthesizing Training data 
• Motion capture to 100 k poses 

• Retargeting to different models 

 

 

• Render depth and body parts 

 

 

• Use the real and synthetic training data (1m) 
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Training data 
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Features 
• dI(x): depth at pixel x  
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Two offset from x 



Decision Tree 

• P(c|I,x): distribution of pixel x over labels c 
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Training decision tree 
• Randomly select a set of         and 

    (a set of splits) 

• Split training examples by each split 

• Choose the split with maximum information 
gain 

• Move into next layer 

• 3 trees to depth 20 from 1 million images 

     =1 day training on 1000 cores 
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 



Speed 

• Each feature computation: 

–  read 3 image pixels 

– 5 arithmetic operations 

– Straight forward to implemented on GPU 

 

• Decision trees: 

– Fast computing 

– Can be parallel between trees 
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Experiment 

• Use mean-shift to find the joint. 

46 



Experiment 

• demo 
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Conclusion 

• Kinect is helpful 

– 3D modeling 

– Robotics 

 

• Kinect introduces new data and features 

– Object recognition/scene understanding 

 

• Many interesting applications on-going 
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Future 
Will RGB-D have a deep impact on vision applications? 

Yes.  It’s already happening, faster than we can track. 

 
Will RGB-D start a revolution in vision applications? 

No. We still need to solve recognition, segmentation, 
tracking, scene understanding, etc. etc. 

Yes.  RGB-D helps address two issues in computer 
vision: loss of 3D from projection; lighting 
conditions. 

          RGB-D helps “abstract away” many low-level 
problems. 

 

49 *Slide from Ren Xiaofeng 



THANKS 
Zhaoyin Jia 
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