Fast Light Transport Analysis Kevin Matzen 29 September 2011

Motivation

• How might you solve the following?

- Relight scene with novel illumination
- Render image from novel viewpoint
- Extract scene's illumination

Methods we've seen

- Recover geometry
- Infer materials
- Render the scene
- Question: What if we have direct access to the scene at one point?
 - Fewer heuristic methods
 - Actual, physical measurements
 - What would we measure?

Light Transport

- Relation between incident and exitant light of static scene
- Linear
 - Simple linear photon model
 - No interference or diffraction
- Simply, light sums
- All bounces effectively summed

Transport Tensor

Exitant light

Incident light

Why 4D?

- Why not 5D or 6D?
- x, y, z, normal 5 parameters
- Same anywhere along normal (up to a scale factor) eliminates 1 parameter
- Consider surface of convex hull only surface coordinates + normal - 4 parameters
- Consider both incident and exitant to get 4+4 = 8D total

Transport Matrix

For convenience, flatten out

Incident light

 $L_o(\mathbf{x},\omega,\lambda,t) = L_e(\mathbf{x},\omega,\lambda,t) + \int_{\Omega} f_r(\mathbf{x},\omega',\omega,\lambda,t) L_i(\mathbf{x},\omega',\lambda,t) (-\omega'\cdot\mathbf{n}) d\omega'$

$\begin{array}{l} L_{o}(\mathbf{x},\omega,\lambda,t) = L_{e}(\mathbf{x},\omega,\lambda,t) \\ \textbf{Light} = L_{e}(\mathbf{x},\omega,\lambda,t) \\ \textbf{Emitted} \\ \textbf{light} \end{array} + \int_{\Omega} f_{r}(\mathbf{x},\omega',\omega,\lambda,t) L_{i}(\mathbf{x},\omega',\lambda,t)(-\omega'\cdot\mathbf{n})d\omega' \\ \textbf{BRDF} \end{array}$

 $L_o(\mathbf{x},\omega,\lambda,t) = L_e(\mathbf{x},\omega,\lambda,t) + \int_O f_r(\mathbf{x},\omega',\omega,\lambda,t) L_i(\mathbf{x},\omega',\lambda,t) (-\omega'\cdot\mathbf{n}) d\omega'$

Multiple bounces means L_o becomes L_i

 $L_r(\mathbf{x},\omega,\lambda,t) = L_e(\mathbf{x},\omega,\lambda,t) + \int_{\Omega} f_r(\mathbf{x},\omega',\omega,\lambda,t) L_r(\mathbf{x},\omega',\lambda,t) (-\omega'\cdot\mathbf{n}) d\omega'$

Now we have a recurrence relation

Informal Explanation

 $L_r(\mathbf{x},\omega,\lambda,t) = L_e(\mathbf{x},\omega,\lambda,t) + \int_{\Omega} f_r(\mathbf{x},\omega',\omega,\lambda,t) L_r(\mathbf{x},\omega',\lambda,t) (-\omega'\cdot\mathbf{n}) d\omega'$

Turn the integral into infinite sum

 $L_r(\mathbf{x}, \omega, \lambda, t) = L_e(\mathbf{x}, \omega, \lambda, t) + \Sigma_{\omega' \in \Omega} f_r(\mathbf{x}, \omega', \omega, \lambda, t) L_r(\mathbf{x}, \omega', \lambda, t) (-\omega' \cdot \mathbf{n})$

Informal Explanation

 $L_r(\mathbf{x},\omega,\lambda,t) = L_e(\mathbf{x},\omega,\lambda,t) + \Sigma_{\omega'\in\Omega} f_r(\mathbf{x},\omega',\omega,\lambda,t) L_r(\mathbf{x},\omega',\lambda,t) (-\omega'\cdot\mathbf{n})$

Think of the function as vectors of infinite length

 $L_{\mathbf{x},\omega} = E_{\mathbf{x},\omega} + \Sigma_{\omega'\in\Omega} (-\omega'\cdot\mathbf{n})F_{\mathbf{x},\omega',\omega}L_{\mathbf{x},\omega'}$

Informal Explanation

 $L_{\mathbf{x},\omega} = E_{\mathbf{x},\omega} + \Sigma_{\omega'\in\Omega}(-\omega'\cdot\mathbf{n})F_{\mathbf{x},\omega',\omega}L_{\mathbf{x},\omega'}$ L = E + KLL - KL = E(I - K)L = E $L = (I - K)^{-1}E$

L = TE Our familiar form

Significance

 $T = (I - K)^{-1}$

BRDF + attenuation rolled $(I - K)^{-1} = I + K + K^2 \dots \text{ together}$

Emission Direct bounce $L = E + KE + K^2E...$

Concrete Example

Exitant light (camera)

A 4D slice (no variation in direction)

Incident light (projector)

Scene Relighting

We've already acquired T Plug in a novel illumination

C' = TL'

And we have the relit scene

Helmholtz Reciprocity

Swap camera and illumination

C'' = TTT''

Just transpose light transport

Note: $T^T \neq T^{-1}$ due to light absorption and scattering

When does it hold?

• When the BRDF is symmetric (swap incident and reflected directions)

• Enforced

Dual Photography

Pradeep Sen et al.

- Capture T
- Synthesize projector's view with Helmholtz reciprocity

Acquiring T

0.7

Т

0.7

C

L

]

- Example: 2D projector photosensor
- T is 1-by-mn where projector resolution is m-by-n
- Brute force approach

Acquiring T

=

0.5

0.70.5

Т

L

1

- C • Example: 2D projector - 1D photosensor Until you have T
- T is 1-by-mn where projector resolution is m-by-n
- Brute force approach

Relighting

L

• Specify novel I

Dual Photo

- Apply Helmholtz reciprocity
- Projector -> camera
- Photosensor -> point light source

Efficiency

- For m-by-n projector and p-by-q camera brute force approach
 - mn images
 - 15 megapixel camera, VGA projector, 24 bit color depth = ~12.5 TB per scene (no compression)

- Assuming 1 sec per image (exposure, storage, processing)~85 hours to acquire
- *Multiplexing approach is necessary*

Adaptive Multiplexed Illumination

- Subdivide illumination space
- Check for conflicts in camera space
- If no collision, measure with both illuminations and sort out the separation later
- Degrades to brute force in complex scenes

Level 2

_	_	_	_	_	_	_	_
14	15	14	15	14	15	14	15
17	16	17	16	17	16	17	16
14	15	14	15	14	15	14	15
17	16	17	16	17	16	17	16
14	15	14	15	18	19	14	15
17	16	17	16	21	20	17	16
		14	15	14	15	18	19
		17	16	17	16	21	20
Level 4							

Example

camera image

- Rendered 128x128 images with 128x128 projector
- Used brute force approach
- Performed relighting and dual photography
- Artifacts present in dual image (Renderer light sampling?)

- Rendered 128x128 images with 128x128 projector
- Used brute force approach
- Performed relighting and dual photography
- Artifacts present in dual image (Renderer light sampling?)

Projector must have been upside down...oops

Projector must have been upside down...oops

Sparsity Observation

T is data sparse

- For m-by-n projector and p-by-q camera, the 4D slice still takes O(mnpq) bytes to store (assuming no compression)
- Let's find ways to exploit data sparsity
 - Sparse entries
 - Low rank approximations
 - Compressible basis transformations

Next Question

- Is the light transport data-sparse even more so in another basis?
- Idea: Let's try a basis used for image compression wavelets
- Why wavelets? Why not just a Fourier basis?
- Localized in both frequency and space

Wavelet Environment Matting

Pieter Peers et al.

How it works

- Brute force: C = TI (columns of identity form single pixel patterns)
- Turn it into $C=T(BB^T)I$
- $C=(TB)(B^TI)$
- $C=(TB)B^{T}$

What does that mean? $C'=(TB)(1'TB)^T$ So if we want a novel illumination, project into same basis basis vectors C_1 × composited image $C_2 \times$ X C_2 = C_3 C_3 = × ... $C_n \times$ C_n X

Friday, September 30, 11

Why do we care?

- At first glance, same number of captures as brute force
- More than 1 pixel illuminated better SNR
- Under-sampling
 - Wavelets exploit spatial relationships
 - Might be better than discarding illumination pixels

Choosing wavelet basis vectors

Uses a feedback algorithm to choose next best vector

Results

Video Results

Video Results

Main take-away

- Haar wavelet basis is good for measuring T
 - Or at least they contrived their test scenes well enough to be convincing

Compressive Light Transport Sensing

Pieter Peers et al.

- Bypass this whole wavelet basis vector selection and use compressive sensing theory
- We had C=T(BB^T)I where B is the Haar wavelet basis
- In reality we didn't use all of I
- C=(TB)(B^TA) where A is subset of I's columns

How it works

- Measure rows of T one at a time
- $c_{i=}(t_iB)(B^TA)$ Row of T projected
- $c_i^{T=}(A^TB)(B^Tt_i^T)$ onto wavelet basis
- Last paper showed empirically is sparse
- CS theory applies

CS Theory - High level

- Ignoring important properties like how to select A...
- $c_i^T = (A^T B)(B^T t_i^T) \Rightarrow y = \phi^T x$
- But x is sparse
- Want to solve $\operatorname{argmin}_{x} ||x||_{0} \text{ s.t. } y = \phi^{T} x$
- NP-complete
- Settle for $\operatorname{argmin}_{x} ||x||_{1}$ s.t. $y = \phi^{T} x$
- Linear programs no strongly polynomial algorithm known
- Basis pursuit, orthogonal matching pursuit, ROMP, CoSaMP, etc.

Results

Friday, September 30, 11

Compressive Sensing Experiment

150 samples 20 wavelet coefficients

One last idea

- All these methods acquire T
- Can we compute without acquiring T directly?

Optical Computing for Fast Light Transport Analysis

O'Toole et al.

- Krylov subspace methods
 - Arnoldi
 - GMRES
- Wherever you see Tl or T^Tl, replace with black box physical process

Algorithm	Numerical objective	Step 1	Step 4	Step 5
Power iteration (Section 2.1)	estimate principal eigenvector of T	$l_1 = positive vector$	$\mathbf{l}_{k+1} = \mathbf{p}_k / \ \mathbf{p}_k\ _2$	return l _{k+1}
Amoldi (Section 3)	compute rank- K approximation of T	$l_1 = non-zero vector$	$\begin{array}{l} \mathbf{l}_{k+1} = \operatorname{ortho}(\mathbf{l}_1, \dots, \mathbf{l}_k, \mathbf{p}_k) \\ \mathbf{l}_{k+1} = \mathbf{l}_{k+1} / \ \mathbf{l}_{k+1}\ _2 \end{array}$	return $[\mathbf{p}_1 \cdots \mathbf{p}_K] [\mathbf{l}_1 \cdots \mathbf{l}_K]^t$
Generalized minimal residual (Section 4)	find vector l such that $\mathbf{p} = \mathbf{T} \mathbf{l}$	$l_1 = target photo p$	$\begin{split} \mathbf{l}_{k+1} &= \operatorname{ortho}(\mathbf{l}_1, \dots, \mathbf{l}_k, \mathbf{p}_k) \\ \mathbf{l}_{k+1} &= \mathbf{l}_{k+1} / \ \mathbf{l}_{k+1}\ _2 \end{split}$	return $[l_1 \cdots l_K][\mathbf{p}_1 \cdots \mathbf{p}_K]^+ \mathbf{p}$

Examples

Optical Arnoldi Results

Optical Arnoldi Results

Optical GMRES Results

Optical GMRES Results

Power Iteration Example

Questions?

Exploit Symmetry

• So far

- Considered a slice of 8D reflectance field
- Point camera, 2D projector - 2D slice
- 2D camera, 2D projector - 4D slice

- Full 8D reflectance field is symmetric
 - From Helmholtz reciprocity

Symmetric Photography

Gaurav Garg et al.

- Key idea: Represent T as hierarchical tensor
- i.e. Don't flatten into giant matrix...preserve locality
- Leaf nodes are rank-1
- Apply previous approaches to higher rank components

Idea - Measure flood light pattern, then subtract off-diag blocks

Illuminate all in parallel

Friday, September 30, 11

Then decide if the off-diag block is rank-l

Next Steps

- Choose p_c and p_r to be the 1-vector (to sum cols and rows of M)
- Tensor product of r and c form M
- Check RMS error of low rank approximation
- If below threshold, label as leaf
- Else recurse

Now we need the diagonal blocks

Friday, September 30, 11

We now can subtract off off-diag blocks ... and divide and conquer on U_1 and U_2

Experimental Apparatus

Relighting Example

Relighting Example

Comparison to Sen

- Garg captures full 8D reflectance field
- Sen captured up to 6D slices
- Sen degrades to single pixel illumination
- Garg does as well, but exploits data-sparsity to prevent it (better SNR)
- Garg quality degrades with projector-camera misalignment bit blurry
- Qualitatively, all looks the same to me