Fast Light Transport Analysis

Kevin Matzen 29 September 2011

Motivation

- How might you solve the following?
- Relight scene with novel illumination
- Render image from novel viewpoint
- Extract scene's illumination

Methods we've seen

- Recover geometry
- Infer materials
- Render the scene
- Question: What if we have direct access to the scene at one point?
- Fewer heuristic methods
- Actual, physical measurements
- What would we measure?

Light Transport

- Relation between incident and exitant light of static scene
- Linear
- Simple linear photon model
- No interference or diffraction
- Simply, light sums
- All bounces effectively summed

Transport Tensor

Incident light

Why 4D?

-Why not 5D or 6D?

- x, y, z, normal - 5 parameters
- Same anywhere along normal (up to a scale factor) - eliminates l parameter
- Consider surface of convex hull only surface coordinates + normal - 4 parameters
- Consider both incident and exitant to get $4+4=8 \mathrm{D}$ total

Transport Matrix

Exitant light

For
convenience, flatten out

Rendering Equation

$$
L_{o}(\mathbf{x}, \omega, \lambda, t)=L_{e}(\mathbf{x}, \omega, \lambda, t)+\int_{\Omega} f_{r}\left(\mathbf{x}, \omega^{\prime}, \omega, \lambda, t\right) L_{i}\left(\mathbf{x}, \omega^{\prime}, \lambda, t\right)\left(-\omega^{\prime} \cdot \mathbf{n}\right) d \omega^{\prime}
$$

Rendering Equation

$$
L_{o}(\mathbf{x}, \omega, \lambda, t)=L_{e}(\mathbf{x}, \omega, \lambda, t)+\int_{\Omega} f_{r}\left(\mathbf{x}, \omega^{\prime}, \omega, \lambda, t\right) L_{i}\left(\mathbf{x}, \omega^{\prime}, \lambda, t\right)\left(-\omega^{\prime} \cdot \mathbf{n}\right) d \omega^{\prime}
$$

Light out

Rendering Fquation

$$
L_{o}(\mathbf{x}, \omega, \lambda, t)=L_{e}(\mathbf{x}, \omega, \lambda, t)+\int_{\Omega} f_{r}\left(\mathbf{x}, \omega^{\prime}, \omega, \lambda, t\right) L_{i}\left(\mathbf{x}, \omega^{\prime}, \lambda, t\right)\left(-\omega^{\prime} \cdot \mathbf{n}\right) d \omega^{\prime}
$$

Light out

Bmitted light

Rendering Equation

$$
L_{o}(\mathbf{x}, \omega, \lambda, t)=L_{e}(\mathbf{x}, \omega, \lambda, t)+\int_{\Omega} f_{r}\left(\mathbf{x}, \omega^{\prime}, \omega, \lambda, t\right) L_{i}\left(\mathbf{x}, \omega^{\prime}, \lambda, t\right)\left(-\omega^{\prime} \cdot \mathbf{n}\right) d \omega^{\prime}
$$

Light out

Emitted light

BRDF

Rendering Fquation

$$
L_{o}(\mathbf{x}, \omega, \lambda, t)=L_{e}(\mathbf{x}, \omega, \lambda, t)+\int_{\Omega} f_{r}\left(\mathbf{x}, \omega^{\prime}, \omega, \lambda, t\right) L_{i}\left(\mathbf{x}, \omega^{\prime}, \lambda, t\right)\left(-\omega^{\prime} \cdot \mathbf{n}\right) d \omega^{\prime}
$$

Light out

Bmitted light

Light in

Rendering Equation

Rendering Equation

$$
L_{o}(\mathbf{x}, \omega, \lambda, t)=L_{e}(\mathbf{x}, \omega, \lambda, t)+\int_{\Omega} f_{r}\left(\mathbf{x}, \omega^{\prime}, \omega, \lambda, t\right) L_{i}\left(\mathbf{x}, \omega^{\prime}, \lambda, t\right)\left(-\omega^{\prime} \cdot \mathbf{n}\right) d \omega^{\prime}
$$

Multiple bounces means L_{0} becomes L_{i}

Rendering Equation

$$
L_{r}(\mathbf{x}, \omega, \lambda, t)=L_{e}(\mathbf{x}, \omega, \lambda, t)+\int_{\Omega} f_{r}\left(\mathbf{x}, \omega^{\prime}, \omega, \lambda, t\right) L_{r}\left(\mathbf{x}, \omega^{\prime}, \lambda, t\right)\left(-\omega^{\prime} \cdot \mathbf{n}\right) d \omega^{\prime}
$$

Now we have a recurrence relation

Informal Explanation

$$
L_{r}(\mathbf{x}, \omega, \lambda, t)=L_{e}(\mathbf{x}, \omega, \lambda, t)+\int_{\Omega} f_{r}\left(\mathbf{x}, \omega^{\prime}, \omega, \lambda, t\right) L_{r}\left(\mathbf{x}, \omega^{\prime}, \lambda, t\right)\left(-\omega^{\prime} \cdot \mathbf{n}\right) d \omega^{\prime}
$$

Turn the integral into infinite sum

$$
L_{r}(\mathbf{x}, \omega, \lambda, t)=L_{e}(\mathbf{x}, \omega, \lambda, t)+\Sigma_{\omega^{\prime} \in \Omega} f_{r}\left(\mathbf{x}, \omega^{\prime}, \omega, \lambda, t\right) L_{r}\left(\mathbf{x}, \omega^{\prime}, \lambda, t\right)\left(-\omega^{\prime} \cdot \mathbf{n}\right)
$$

Informal Đxplanation

$$
L_{r}(\mathbf{x}, \omega, \lambda, t)=L_{e}(\mathbf{x}, \omega, \lambda, t)+\Sigma_{\omega^{\prime} \in \Omega} f_{r}\left(\mathbf{x}, \omega^{\prime}, \omega, \lambda, t\right) L_{r}\left(\mathbf{x}, \omega^{\prime}, \lambda, t\right)\left(-\omega^{\prime} \cdot \mathbf{n}\right)
$$

Think of the function as vectors of infinite length

$$
L_{\mathbf{x}, \omega}=E_{\mathbf{x}, \omega}+\Sigma_{\omega^{\prime} \in \Omega}\left(-\omega^{\prime} \cdot \mathbf{n}\right) F_{\mathbf{x}, \omega^{\prime}, \omega} L_{\mathbf{x}, \omega^{\prime}}
$$

Informal Explanation

$$
\begin{gathered}
L_{\mathbf{x}, \omega}=E_{\mathbf{x}, \omega}+\Sigma_{\omega^{\prime} \in \Omega}\left(-\omega^{\prime} \cdot \mathbf{n}\right) F_{\mathbf{x}, \omega^{\prime}, \omega} L_{\mathbf{x}, \omega^{\prime}} \\
L=E+K L \\
L-K L=E \\
(I-K) L=E \\
L=(I-K)^{-1} E
\end{gathered}
$$

$$
L=T E \quad \text { Our familiar form }
$$

Significance

$$
(I-K)^{-1}=I+K+K^{2} \ldots \text { together }
$$

lst
Emission Direct bounce

$$
L=E+K E+K^{2} E \ldots
$$

Concrete Example

Exitant light (camera)

A 4D slice (no variation in direction)

Incident light (projector)

Scene Relighting

We've already acquired T Plug in a novel illumination

And we have the relit scene

Helmholtz Reciprocity

Swap camera and illumination

Just transpose light transport
Note: $T^{T} \neq T^{-1}$ due to light absorption and scattering

When does it hold?

- When the BRDF is symmetric (swap incident and reflected directions)
- Enforced

Dual Photography
 Pradeep Sen et al.

- Capture T
- Synthesize projector's view with Helmholtz reciprocity

Acquiring T

$$
0.7=0.7
$$

- Example: 2D

C
T projector photosensor

- T is l -by-mn where projector resolution is m-by-n
- Brute force approach

Acquiring T

$$
0.5=0.70 .5
$$

- Example: 2D C T projector - 1D photosensor

Until you have T

- T is l-by-mn where projector resolution is m-by-n
- Brute force approach

Relighting
 $1.3=0.70 .50 .3$
 1
 1 1

- Specify novel I

Dual Photo

- Apply Helmholtz reciprocity
- Projector -> camera
- Photosensor -> point light source

Đfficiency

- For m-by-n projector and p-by-q camera brute force approach
- mn images
- 15 megapixel camera, VGA projector, 24 bit color depth $=$ ~ 12.5 TB per scene (no compression)
- Assuming 1 sec per image (exposure, storage, processing) ~85 hours to acquire
- *Multiplexing approach is necessary*

Adaptive Multiplexed Illumination

- Subdivide illumination space
- Check for conflicts in camera space
- If no collision, measure with both illuminations and sort out the separation later
- Degrades to brute force in complex scenes

Level 1

Level 3

Level 2

14	15	14	15	14	15	14	15
17	16	17	16	17	16	17	16
14	15	14	15	14	15	14	15
17	16	17	16	17	16	17	16
14	15	14	15	18	19	14	15
17	16	17	16	21	20	17	16
		14	15	14	15	18	19

Level 4

Example

projector pattern

camera image

Đxample

Personal Experiment

- Rendered 128x128 images with 128x128 projector
- Used brute force approach
- Performed relighting and dual photography
- Artifacts present in dual image (Renderer light sampling?)

Personal Experiment

- Rendered 128x128 images with 128x128 projector
- Used brute force approach
- Performed relighting and dual photography
- Artifacts present in dual image (Renderer light sampling?)

Personal Experiment

Projector must have been upside down...oops

Personal Experiment

Projector must have been upside down...oops

Sparsity Observation

T is data sparse

- For m-by-n projector and p-by-q camera, the 4D slice still takes O(mnpq) bytes to store (assuming no compression)
- Let's find ways to exploit data sparsity
- Sparse entries
- Low rank approximations
- Compressible basis transformations

Next Question

- Is the light transport data-sparse even more so in another basis?
- Idea: Let's try a basis used for image compression - wavelets
- Why wavelets? Why not just a Fourier basis?
- Localized in both frequency and space

Wavelet Bnvironment Matting

Pieter Peers et al.

How it works

- Brute force: C = TI (columns of identity form single pixel patterns)
- Turn it into $\mathrm{C}=\mathrm{T}\left(\mathrm{BB}^{\mathrm{T}}\right) \mathrm{I}$
- $\mathrm{C}=(\mathrm{TB})\left(\mathrm{B}^{\mathrm{T}} \mathrm{I}\right)$
- $\mathrm{C}=(\mathrm{TB}) \mathrm{B}^{\mathrm{T}}$

What does that mean?

 $\mathrm{C}=(\mathrm{TB}) \mathrm{B}^{\mathrm{T}}$Use vectors of basis as
illumination
patterns
composited

basis vectors

$\times \square=C_{2}$
$\times \square=C_{3}$

$C_{n} \times$

What does that mean?

And measure T projected onto B instead

What does that mean?

 $C^{\prime}=(T B)\left(l^{T M}\right)^{T} \quad$ So if we want a

Why do we care?

- At first glance, same number of captures as brute force
- More than 1 pixel illuminated - better SNR
- Under-sampling
- Wavelets exploit spatial relationships
- Might be better than discarding illumination pixels

Choosing wavelet basis vectors

Uses a feedback algorithm to choose next best vector

Results

Reference image 1000 Haar patterns

1000 Daubechies
$(9,7)$ patterns

Video Results

Video Results

Main take-away

- Haar wavelet basis is good for measuring T
- Or at least they contrived their test scenes well enough to be convincing

Compressive Light Transport Sensing

Pieter Peers et al.

- Bypass this whole wavelet basis vector selection and use compressive sensing theory
- We had $\mathrm{C}=\mathrm{T}\left(\mathrm{BB}^{T}\right) \mathrm{I}$ where B is the Haar wavelet basis
- In reality we didn't use all of I
- $C=(T B)\left(B^{T} A\right)$ where A is subset of I's columns

How it works

- Measure rows of T one at a time
- $\mathrm{C}_{\mathrm{i}}=\left(\mathrm{t}_{\mathrm{i}} \mathrm{B}\right)\left(\mathrm{B}^{\mathrm{T}} \mathrm{A}\right)$

Row of T projected

- $\mathrm{c}_{\mathrm{i}}^{\mathrm{T}=}\left(\mathrm{A}^{\mathrm{T}} \mathrm{B}\right)\left(\mathrm{B}^{\mathrm{T}} \mathrm{t}_{\mathrm{i}}^{\mathrm{T}}\right)$ onto wavelet basis
- Last paper showed empirically is sparse
- CS theory applies

CS Theory - High level

- Ignoring important properties like how to select A...
- $C_{1}^{T}=\left(A^{T} B\right)\left(B^{T} t_{1}^{T}\right) \Rightarrow y=\phi^{T} X$
- But x is sparse
- Want to solve $\operatorname{argmin}_{\mathrm{X}}| | \mathrm{x}| |$ s.t. $\mathrm{y}=\phi^{\mathrm{T}} \mathrm{X}$
- NP-complete
- Settle for $\operatorname{argmin}_{\mathrm{x}}| | \mathrm{x}| |_{1}$ s.t. $\mathrm{y}=\phi^{\mathrm{T}} \mathrm{X}$
- Linear programs - no strongly polynomial algorithm known
- Basis pursuit, orthogonal matching pursuit, ROMP, CoSaMP, etc.

Results

Compressive Sensing Đxperiment

150 samples
20 wavelet coefficients

One last idea

- All these methods acquire T
- Can we compute without acquiring T directly?

Optical Computing for Fast Light Transport Analysis O'Toole et al.

- Krylov subspace methods
- Arnoldi
- GMRES
- Wherever you see Tl or T^{T}, replace with black box physical process

Algorithm	Numerical objective	Step 1	Step 4	Step 5		
Power iteration (Section 2.1)	estimate principal eigenvector of T	$\mathrm{l}_{1}=$ positive vector	$\mathrm{l}_{k+1}=\mathrm{p}_{k} /\left\\|\mathbf{p}_{k}\right\\|_{2}$	return l_{k+1}		
Amoldi (Section 3)	compute rank- K approximation of T	$\mathrm{l}_{1}=$ non-zero vector	$\begin{aligned} & l_{k+1}=\operatorname{ortho}\left(l_{1}, \ldots, l_{k}, \mathbf{p}_{k}\right) \\ & l_{k+1}=l_{k+1} /\left\\|l_{k+1}\right\\|_{2} \end{aligned}$	return $\left[\mathbf{p}_{1} \cdots \mathbf{p}_{K}\right]\left[\mathrm{l}_{1} \cdots 1_{K}\right]^{\text {t }}$		
Generalized minimal residual (Section 4)	find vector 1 such that $\mathrm{p}=\mathrm{T} 1$	$\mathrm{l}_{1}=$ target photo p	$\begin{aligned} & l_{k+1}=\text { ortho }\left(1_{1}, \ldots, 1_{k}, p_{k}\right) \\ & 1_{k+1}=1_{k+1} /\left\\|l_{k+1}\right\\|_{2} \end{aligned}$	return $\left[1_{1} \cdots 1_{K}\right]\left[\mathrm{p}_{1} \cdots \mathrm{p}_{K}\right]^{+} \mathrm{p}$		

Examples

Optical Arnoldi Results

Comparison of Optical Arnoldi and Nyström

Arnoldi (20 photos)
Arnoldi (I00 photos)

Arnoldi (200 photos)
Nyström (200 photos)

Optical Arnoldi Results

Optical GMR\#S Results

Optical GMR\#S Results

Questions?

Exploit Symmetry

- So far
- Considered a slice of 8D reflectance field
- Full 8D reflectance field is symmetric
- From Helmholtz reciprocity
- Point camera, 2D projector - 2D slice
- 2D camera, 2D projector - 4D slice

Symmetric Photography

Gaurav Garg et al.

- Key idea: Represent T as hierarchical tensor
- i.e. Don't flatten into giant matrix...preserve locality
- Leaf nodes are rank-1
- Apply previous approaches to higher rank components

Illustration - 2D version

U_{1}	M
M^{T}	U_{2}

Idea - Measure flood light pattern, then subtract off-diag blocks

Illustration - 2D version

 \square

Illuminate all in parallel

Illustration - 2D version

Then decide if the off-diag block is rank-l

Illustration - 2D version

$\mathrm{r}=\mathrm{M}^{\mathrm{T}} \mathrm{p}_{\mathrm{r}}$

Next Steps

- Choose p_{c} and p_{r} to be the l-vector (to sum cols and rows of M)
- Tensor product of r and c form M
- Check RMMS error of low rank approximation
- If below threshold, label as leaf
- Else recurse

Illustration - 2D version

Now we need the diagonal blocks

Illustration - 2D version

U_{1}	M
M^{T}	U_{2}

We now can subtract off off-diag blocks ... and divide and conquer on U_{1} and U_{2}

Experimental Apparatus

Relighting Example

Relighting Example

Comparison to Sen

- Garg captures full 8D reflectance field
- Sen captured up to 6D slices
- Sen degrades to single pixel illumination
- Garg does as well, but exploits data-sparsity to prevent it (better SNR)
- Garg quality degrades with projector-camera misalignment - bit blurry
- Qualitatively, all looks the same to me

