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Motivation

• How might you solve the following?

• Relight scene with novel 
illumination

• Render image from novel viewpoint

• Extract scene’s illumination
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Methods we’ve seen

• Recover geometry

• Infer materials

• Render the scene

• Question: What if we have direct access to the 
scene at one point?

• Fewer heuristic methods

• Actual, physical measurements

• What would we measure?
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Light Transport
• Relation between incident 

and exitant light of static 
scene

• Linear

• Simple linear photon 
model

• No interference or 
diffraction

• Simply, light sums

• All bounces effectively 
summed
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Transport Tensor

Incident light

Exitant light

E = TI
4D tensor

4D tensor

8D tensor
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Why 4D?

• Why not 5D or 6D?

• x, y, z, normal - 5 parameters

• Same anywhere along normal (up to a scale 
factor) - eliminates 1 parameter

• Consider surface of convex hull only - 
surface coordinates + normal - 4 parameters

• Consider both incident and exitant to get 
4+4 = 8D total
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Transport Matrix

Incident light

Exitant light

E = TI
vector

vector

matrix

For 
convenience, 

flatten out
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Rendering Equation
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Rendering Equation

L
o

(x,!,�, t) = L
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⌦
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Rendering Equation

Now we have a recurrence relation

Lr(x,!,�, t) = Le(x,!,�, t) +

Z

⌦
fr(x,!

0,!,�, t)Lr(x,!
0,�, t)(�!0 · n)d!0
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Informal Explanation

Lr(x,!,�, t) = Le(x,!,�, t) +

Z

⌦
fr(x,!

0,!,�, t)Lr(x,!
0,�, t)(�!0 · n)d!0

Lr(x,!,�, t) = Le(x,!,�, t) + ⌃!02⌦fr(x,!
0,!,�, t)Lr(x,!

0,�, t)(�!0 · n)

Turn the integral into infinite sum
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Informal Explanation
Lr(x,!,�, t) = Le(x,!,�, t) + ⌃!02⌦fr(x,!

0,!,�, t)Lr(x,!
0,�, t)(�!0 · n)

Think of the function as 
vectors of infinite length

L
x,! = E

x,! + ⌃!02⌦(�!0 · n)F
x,!0,!Lx,!0
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Informal Explanation

L
x,! = E

x,! + ⌃!02⌦(�!0 · n)F
x,!0,!Lx,!0

L = E +KL

L�KL = E

(I �K)L = E

L = (I �K)�1E

L = TE Our familiar form
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Significance
T = (I �K)�1

BRDF + 
attenuation rolled 

together(I �K)�1 = I +K +K2...

L = E +KE +K2E...

Direct
1st 

bounceEmission
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Concrete Example

Incident light (projector)

Exitant light (camera)

C = TL
A 4D slice 

(no variation 
in direction)
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Scene Relighting
We’ve already acquired T

Plug in a novel illumination

And we have the relit scene

C’ = TL’

Friday, September 30, 11



Helmholtz Reciprocity
Swap camera and illumination

Just transpose light transport

Note:TT 6= T�1 due to light absorption and scattering

C’’ = TTL’’
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When does it hold?

• When the BRDF is 
symmetric (swap 
incident and reflected 
directions)

• Enforced
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Dual Photography
Pradeep Sen et al.

• Capture T

• Synthesize 
projector’s view with 
Helmholtz reciprocity
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Acquiring T

• Example: 2D 
projector - 
photosensor

• T is 1-by-mn where 
projector resolution is 
m-by-n

• Brute force approach

T

L

=

C

10.7 0.7
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Acquiring T

• Example: 2D 
projector - 1D 
photosensor

• T is 1-by-mn where 
projector resolution is 
m-by-n

• Brute force approach

T

L

=

C
10.5 0.7 0.5

Until you have T
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Relighting

• Specify novel I

T

L

=

C

11.3 0.7 0.5 0.3
1
1
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Dual Photo

• Apply Helmholtz 
reciprocity

• Projector -> camera

• Photosensor -> point 
light source

TT

= 10.7
0.5
0.3

C’

0.7
0.5
0.3

L’
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• For m-by-n projector 
and p-by-q camera 
brute force approach

• mn images

• 15 megapixel 
camera, VGA 
projector, 24 bit 
color depth = ~12.5 
TB per scene (no 
compression)

• Assuming 1 sec 
per image 
(exposure, storage, 
processing) ~85 
hours to acquire

• *Multiplexing 
approach is 
necessary*

Efficiency
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Adaptive Multiplexed 
Illumination

• Subdivide illumination 
space

• Check for conflicts in 
camera space

• If no collision, measure 
with both illuminations 
and sort out the 
separation later

• Degrades to brute force 
in complex scenes
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Example
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Example
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Personal Experiment

• Rendered 128x128 
images with 128x128 
projector

• Used brute force 
approach

• Performed relighting 
and dual photography

• Artifacts present in 
dual image (Renderer 
light sampling?)
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Personal Experiment

Projector must have been upside down...oops
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Personal Experiment

Projector must have been upside down...oops
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Sparsity Observation
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T is data sparse

• For m-by-n projector and p-by-q camera, 
the 4D slice still takes O(mnpq) bytes to 
store (assuming no compression)

• Let’s find ways to exploit data sparsity

• Sparse entries

• Low rank approximations

• Compressible basis transformations
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Next Question

• Is the light transport data-sparse even 
more so in another basis?

• Idea: Let’s try a basis used for image 
compression - wavelets

• Why wavelets?  Why not just a Fourier 
basis?

• Localized in both frequency and space
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Wavelet Environment Matting
Pieter Peers et al.

The 
ima
ge 

× 
+ 

× 

× 

× 
… 

C1 

C2 

C3 

Cn 

The 
ima
ge 

The 
ima
ge 

The 
ima
ge 

= 

= 

= 

= 

… 

basis vectors 
The 
ima
ge 

× 

× 

× 

× 

C1 

C2 

C3 

Cn 

The 
ima
ge 

composited 
image 
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How it works

• Brute force: C = TI (columns of identity 
form single pixel patterns)

• Turn it into C=T(BBT)I

• C=(TB)(BTI)

• C=(TB)BT
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What does that mean?

The 
ima
ge 

× 
+ 

× 

× 

× 
… 

C1 

C2 

C3 

Cn 

The 
ima
ge 

The 
ima
ge 

The 
ima
ge 

= 

= 

= 

= 

… 

basis vectors 
The 
ima
ge 

× 

× 

× 

× 

C1 

C2 

C3 

Cn 

The 
ima
ge 

composited 
image 

C=(TB)BT
Use vectors of 

basis as 
illumination 

patterns
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What does that mean?

The 
ima
ge 

× 
+ 

× 

× 

× 
… 

C1 

C2 

C3 

Cn 

The 
ima
ge 

The 
ima
ge 

The 
ima
ge 

= 

= 

= 

= 

… 

basis vectors 
The 
ima
ge 

× 

× 

× 

× 

C1 

C2 

C3 

Cn 

The 
ima
ge 

composited 
image 

C=(TB)BT
And measure T 

projected onto B 
instead
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What does that mean?

The 
ima
ge 

× 
+ 

× 

× 

× 
… 

C1 

C2 

C3 

Cn 

The 
ima
ge 

The 
ima
ge 

The 
ima
ge 

= 

= 

= 

= 

… 

basis vectors 
The 
ima
ge 

× 

× 

× 

× 

C1 

C2 

C3 

Cn 

The 
ima
ge 

composited 
image 

C’=(TB)(l’TB)T So if we want a 
novel illumination, 
project into same 

basis
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Why do we care?

• At first glance, same number of captures 
as brute force

• More than 1 pixel illuminated - better SNR

• Under-sampling

• Wavelets exploit spatial relationships

• Might be better than discarding 
illumination pixels
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Choosing wavelet basis 
vectors

… 

important less important 

Uses a feedback algorithm to choose next 
best vector
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Results

Reference image 1000 Haar patterns 1000 Daubechies 
(9,7) patterns 
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Video Results
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Video Results
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Main take-away

• Haar wavelet basis is good for 
measuring T

• Or at least they contrived their test 
scenes well enough to be convincing
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Compressive Light Transport 
Sensing

Pieter Peers et al.

• Bypass this whole wavelet basis 
vector selection and use compressive 
sensing theory

• We had C=T(BBT)I where B is the Haar 
wavelet basis

• In reality we didn’t use all of I

• C=(TB)(BTA) where A is subset of I’s 
columns
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How it works

• Measure rows of T one at a time

• ci=(tiB)(BTA)

• ciT= (ATB)(BTtiT)

• Last paper showed empirically is sparse

• CS theory applies

Row of T projected 
onto wavelet basis
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CS Theory - High level

• Ignoring important properties like how to select A...

• ciT = (ATB)(BTtiT) => y = φTx

• But x is sparse

• Want to solve argminx ||x||0 s.t. y = φTx

• NP-complete

• Settle for argminx ||x||1 s.t. y = φTx

• Linear programs - no strongly polynomial algorithm known

• Basis pursuit, orthogonal matching pursuit, ROMP, 
CoSaMP, etc.
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Results
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Compressive Sensing 
Experiment

150 samples
20 wavelet coefficients
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One last idea

• All these methods acquire T

• Can we compute without acquiring T 
directly?

Friday, September 30, 11



Optical Computing for Fast 
Light Transport Analysis

O’Toole et al.

• Krylov subspace methods

• Arnoldi

• GMRES

• Wherever you see Tl or TTl, replace 
with black box physical process
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Examples
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Optical Arnoldi Results
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Optical Arnoldi Results
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Optical GMRES Results
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Optical GMRES Results
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Power Iteration Example
Friday, September 30, 11



Questions?
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Exploit Symmetry
• So far

• Considered a slice 
of 8D reflectance 
field

• Point camera, 2D 
projector - 2D slice

• 2D camera, 2D 
projector - 4D slice

• Full 8D reflectance 
field is symmetric

• From Helmholtz 
reciprocity
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Symmetric Photography
Gaurav Garg et al.

• Key idea: Represent T as hierarchical 
tensor

• i.e. Don’t flatten into giant 
matrix...preserve locality

• Leaf nodes are rank-1

• Apply previous approaches to higher 
rank components
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Illustration - 2D version

U1

U2

M

MT
=

U1

U2

+
M

MT

Idea - Measure flood light pattern, 
then subtract off-diag blocks
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Illustration - 2D version

U

Illuminate all in parallel
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Illustration - 2D version

M

pc

c=Mpc

Then decide if the off-diag block is rank-1
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Illustration - 2D version

M

r=MTpr

pr
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Next Steps

• Choose pc and pr to be the 1-vector (to 
sum cols and rows of M)

• Tensor product of r and c form M

• Check RMS error of low rank 
approximation

• If below threshold, label as leaf

• Else recurse
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Illustration - 2D version

M

MT

Now we need the diagonal blocks
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Illustration - 2D version

U1

U2

M

MT
=

U1

U2

+
M

MT

We now can subtract off off-diag 
blocks ... and divide and conquer 

on U1 and U2
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Experimental Apparatus
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Relighting Example
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Relighting Example
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Comparison to Sen

• Garg captures full 8D reflectance field

• Sen captured up to 6D slices

• Sen degrades to single pixel illumination

• Garg does as well, but exploits data-sparsity 
to prevent it (better SNR)

• Garg quality degrades with projector-camera 
misalignment - bit blurry

• Qualitatively, all looks the same to me
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