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Inferring 3D

With special hardware:

• Range sensor

• Stereo camera

Without special hardware:

• Local features/graphical models (Make3D, etc)

• Structure from motion



Structure from Motion

• Obtain 3D scene structure from multiple 
images from the same camera in different 
locations, poses

• Typically, camera location & pose treated as 
unknowns

• Track points across frames, infer camera pose 
& scene structure from correspondences



Intuition



Typical Approaches

• Fit model of 3D points + camera positions to 
2D points

• Use point matches (e.g. SIFT, etc.)

• Use RANSAC or similar to fit models

• Often complicated pipeline 

– “Building Rome in a Day”



Semantic SfM



Semantic SfM

• Use semantic object labels to inform SfM

• Use SfM to inform semantic object labels

• Hopefully, improve results by modeling both 
together



High-level Approach

• Maximum likelihood estimation

• Given: object detection probabilities at 
various poses, 2D point correspondences

• Model probability of observed images given 
inferred parameters

• Use Markov Chain Monte Carlo to maximize



Model Parameters

C: camera parameters

Ck : parameters for camera k

Ck = {Kk, Rk, Tk} 

K: internal camera parameters – known

R: camera rotation – unknown

T: camera translation - unknown



Model Parameters

q: 2D points

qk
i : ith point in camera k

qk = {x, y, a}k
i

x, y : point location

a : visual descriptor (SIFT, etc.)

Known



Model Parameters

Q: 3D points

Qs = (Xs, Ys, Zs)

World frame coordinates

Unknown

u: Point correspondences

uk
i = s if qk

i corresponds to Qs

Known

Ck

Qs

qk
i

uk
i = s 



Model Parameters

o: camera-space obstacle detections
ok

j : jth obstacle detection in camera k
ok

j = {x, y, w, h, θ, φ, c}k
j 

x, y: 2D location
w, h: bounding box size
θ, φ: 3D pose
c: class (car, person, keyboard, etc.)
Known



Model Parameters

O: 3D objects

Ot = (X, Y, Z, Θ, Φ, c)t

Similar to o except no bounding box, Z coord

Unknown



Likelihood Function

Assumption: Points independent from objects
Why?
• Splits likelihood, makes inference easier
• Would require complicated model of object 3D 
appearance otherwise
Camera parameters appear in both terms



Point Term

• Compute by measuring agreement between 
predicted, actual measurements

• Compute predictions by projecting 3D-> cam

• Assume predicted, actual locations vary by 
Gaussian noise



Point Term (Alternative)

• Take qk
i and ql

j as matching points from 
cameras Ck and Cl

• Determine epipolar line of qk
i w/r/t Cl sd

• Take        as the distance from ql
j to this line

• Consider appearance similarity: 



Object Term

• Also uses agreement

• Projection more difficult

• Recall: 3D object parameterized by XYZ 
coords, orientation, class

• 2D also has bounding box params



Projecting 3D->2D object

• Location, pose easy using camera params

• For BB width, height:

• fk : camera focal length  

• W, H: mapping from object bounding cube to 
bounding box

• “learned by using ground truth 3D object 
bounding cubes and corresponding observations 
using ML regressor” 



Object Probability

• Scale proportional to bounding box size

• Highly quantized pose, scale

• Stack maps as tensor, index based on pose, 
scale

• Tensor denoted as Ξ (Chi)

• Tensor index denoted as 



Object Term

• Probability of object observation proportional 
to the probability of not not seeing it in each 
image (yes a double negative)

Why do it this way?

• Occlusion -> probability of not seeing = 1 

• Doesn’t affect likelihood term



Estimation

• Have a model, now how do we maximize it?

• Answer: Markov Chain Monte Carlo

• Estimate new params from current ones

• Accept depending on ratio of new/old prob

Two questions remain:

• What are the initial parameters?

• How do we update?



Initialization

Camera location/pose – two approaches:

Point-based:

• Use five-points solver to compute camera 
parameters from five corresponding points

• Scale ambiguous, so randomly pick several

Object-based:

• Form possible object correspondences 
between frames, initialize cameras using these



Initialization

Object & point locations:

• Use estimated camera parameters (prev slide) 

• Project points, objects from 2D->3D

• Merge objects which get mapped to similar 
locations

• Determine 2D-3D correspondences (u)



Update

• Order: C, O, Q (updated versions: C’, O’, Q’)

• Pick C’ with Gaussian probability around C

• Pick O’ to maximize Pr(o|O’,C’) (within local 
area of O) 

• Pick Q’ to maximize Pr(q,u|Q’,C’)

– Unless alternative term was used



Algorithm



Obtaining Results

• Intuition: MCMC visit probability proportional 
to probability function (what we’re trying to 
maximize)

• Cluster MCMC points using MeanShift

• Cluster with most corresponding samples wins

• Read out Q, O, C as average from cluster



Results

• http://www.eecs.umich.edu/vision/projects/s
sfm/index.html



Results vs. Bundler

Cars Office



Object Detection Results



Runtime

• 20 minute runtime for 2 images

• Results not presented for more than 4

• Bad scaling?

• Code released, but 0.1 alpha vers…

• Ran Bundler on 4 images, took < 3 minutes



Questions?


