Illumination from Images Chun-Po Wang

Scene lllumination

- What is it?
- Environment map
- A sphere approximate incident light from long distance
- A 2D radiance function in sphere coordinates
- Assumptions
- Far-field lighting
- Independent to position

Applications

- Realistic 3D rendering/relighting

http://gl.ict.usc.edu/Research/RHL/

Applications (cont.)

- Insert 3D objects into photos
"Webcam Clipart", http://www.jflalonde.org/projects/webcamclipart/

Applications (cont.)

- Help scene understanding
- Illumination vastly changes scene appearance
- Solution 1: use illumination invariant features (e.g., SIFT)
- Solution 2: utilize information about scene illumination

Example: Blind Reflectometry

[Romeiro and Zickler, 2010]

- Ambiguity between illumination and reflectance
- Find material properties by
- Choosing an appropriate BRDF representation
- Find the statistics of outdoor environment maps
- Select most likely BRDF parameters under that distribution of environment maps

MIRROR BRDF

Example: Illumination-Aware

Pedestrian Detection [lalonde, phot thesis, 2011

Estimating

 Scene Illumination- Light Probe [Debevec et al., 1998]

light probe

Outdoor Illumination from Image Sequence

- Webcam time lapsed video
"What do color changes reveal about an outdoor scene?"
 [Sunkavalli et al., 2008]
"What Do the Sun and the Sky Tell Us About the Camera?" [Lalonde et al., 2008, 2010]
"Webcam Clip Art" [Lalonde et al., 2009]

Outdoor Illumination from

 Single Image- Estimating Natural Illumination from a Single Outdoor Image [Lalonde et al., 2009]
- Estimating sun position and sky color
- Using image cues:
- Sky color
- Shadow lines
- Shading of vertical surfaces

[Lalonde et al., ICCV 2009]

Geometric Context [Hoiem et al., 2005]
Pixel location
Color

[Lalonde et al., ICCV 2009]

Sun probability distribution map

Highly probable

Not probable

Forward
[Lalonde et al., ICCV 2009]

Sky Model

zenith angle angle with the sun

- [Perez et al., 1993] and [Preetham et al., 1999]
- a,b,c,d,e can be approximated with a linear function of a single parameter, \mathbf{t} (turbidity)
- In this work, sky is assumed to be clear ($\mathrm{t}=2.17$)
- Cloud is segmented by clustering based on color

Predicted sky at current sun position

Original sky

[Lalonde et al., ICCV 2009]

Sun behind camera

Sky not visible

[Lalonde et al., ICCV 2009]

Ground shadows

[Lalonde et al., ICCV 2009]

[Lalonde et al., ICCV 2009]

Shadow detection

Non-vertical objects

[Lalonde et al., ICCV 2009]

Surfaces shading

Vertical facing left

No flat surface

[Lalonde et al., ICCV 2009]

Cue Combination

Sun position

[Lalonde et al., ICCV 2009]

Quantitative evaluation

[Lalonde et al., ICCV 2009]

Quantitative evaluation

[Lalonde et al., ICCV 2009]

- Code and Dataset
- http://www.fflalonde.org/projects/outdoorlllumination/
- Currently only the code for the Sky model is available
- Extension in Lalonde's PhD thesis [2011]
- Find sun direction by person appearance

Shadow Detection

- Application
- Estimating outdoor illumination
- Shadow removal
- Detecting Ground Shadowsin Outdoor Consumer Photographs [Lalonde et al., ECCV 2010]
- Single-Image Shadow Detection and Removal using Paired Regions [Guo et al., CVPR 2011]

Detecting Ground Shadows in Outdoor Consumer Photographs

- [Lalonde et al., ECCV 2010]
- Observation: photometric methods do not work well on consumer images (not linear, lossy compression)
- Hypothesis: appearances of shadows on the ground are less varied than shadows in general, and can be learned from labeled images.

Learning shadow appearance

Oversegmentation
Input
 (watershed)

Strong boundaries
(Canny)

CRF

Local classifier (boosted decision trees)

Incorporating scene layout Input Shadows

P(ground)
[Hoiem et al., '07]

Ground shadows

Single-Image Shadow Detection and Removal using Paired Regions

- [Guo et al., CVPR 2011]

Practical Issues

- Applying to outdoor illumination estimation
- Segmentation (region based)
=> does not work well on thin shadows

Lalonde's method

Guo's method

Thank you

- Questions?

I: illumination (sun direction) S: sky pixels

Question

G: ground pixels

V : vertical surface pixels
$\mathrm{S}, \mathrm{G}, \mathrm{V}$: input image

$$
\begin{array}{rlrl}
& P(I \mid \mathcal{S}, \mathcal{G}, \mathcal{V})=\frac{P(\mathcal{S}, \mathcal{G}, \mathcal{V} \mid I) P(I)}{P(\mathcal{S}, \mathcal{G}, \mathcal{V})} \quad \text { Bayes rule } \\
\Longrightarrow & P(I \mid \mathcal{S}, \mathcal{G}, \mathcal{V}) \propto P(\mathcal{S}, \mathcal{G}, \mathcal{V} \mid I) P(I) & \\
\Longrightarrow & P(I \mid \mathcal{S}, \mathcal{G}, \mathcal{V}) \propto P(\mathcal{S} \mid I) P(\mathcal{G} \mid I) P(\mathcal{V} \mid I) P(I) \quad \begin{array}{l}
\text { Assuming conditional } \\
\text { independence }
\end{array} \\
& P(\mathcal{S} \mid I)=\frac{P(I \mid \mathcal{S}) P(\mathcal{S})}{P(I) \longrightarrow} \quad \begin{array}{l}
\text { Bayes rule }
\end{array} \\
\Longrightarrow & P(\mathcal{S} \mid I) \propto P(I \mid \mathcal{S}) P(\mathcal{S}) & \text { Can we ignore this? } \\
\Longrightarrow \quad & P(\mathcal{S} \mid I) \propto P(I \mid \mathcal{S}) \\
& P(I \mid \mathcal{S}, \mathcal{G}, \mathcal{V}) \propto P(I \mid \mathcal{S}) P(I \mid \mathcal{G}) P(I \mid \mathcal{V}) P(I)
\end{array}
$$

