### Illumination from Images Chun-Po Wang

CS7670: October 4, 2011

## Scene Illumination

- What is it?
  - Environment map
  - A sphere approximate incident light from long distance
  - A 2D radiance function in sphere coordinates
- Assumptions
  - Far-field lighting
  - Independent to position

Grace Cathedral, San Francisco Angular map format http://ict.debevec.org/~debevec/Probes/









## Applications

#### Realistic 3D rendering/relighting



#### http://gl.ict.usc.edu/Research/RHL/

# Applications (cont.)

#### Insert 3D objects into photos

"Webcam Clipart", http://www.jflalonde.org/projects/webcamclipart/



## Applications (cont.)

- Help scene understanding
  - Illumination vastly changes scene appearance
  - Solution 1: use illumination invariant features (e.g., SIFT)
  - Solution 2: utilize information about scene illumination



### **Example: Blind Reflectometry**

```
[Romeiro and Zickler, 2010]
```

- Ambiguity between illumination and reflectance
- Find material properties by
  - Choosing an appropriate BRDF representation
  - Find the statistics of outdoor environment maps
  - Select most likely BRDF parameters under that distribution of environment maps



## Example: Illumination-Aware Pedestrian Detection [Lalonde, PhD thesis, 2011]



(a) Back-left

(b) Back-right

(c) Front-left

(d) Front-right

## Estimating

## **Scene Illumination**

#### Light Probe [Debevec et al., 1998]

light probe











## Outdoor Illumination from Image Sequence

Webcam time lapsed video

"What do color changes reveal about an outdoor scene?" [Sunkavalli et al., 2008]

"What Do the Sun and the Sky Tell Us About the Camera?" [Lalonde et al., 2008, 2010]

"Webcam Clip Art" [Lalonde et al., 2009]







### **Outdoor Illumination from**

## Single Image

- Estimating Natural Illumination from a Single Outdoor Image [Lalonde et al., 2009]
  - Estimating sun position and sky color
  - Using image cues:
    - Sky color
    - Shadow lines
    - Shading of vertical surfaces







### Sun probability distribution map



Not probable

Forward



- [Perez et al., 1993] and [Preetham et al., 1999]
- a,b,c,d,e can be approximated with a linear function of a single parameter, t (turbidity)
- In this work, sky is assumed to be clear (t = 2.17)
- Cloud is segmented by clustering based on color



#### Predicted sky at current sun position













#### Sun behind camera











### **Ground shadows**













#### Shadow detection

Non-vertical objects



## Surfaces shading









#### No flat surface





## **Cue Combination**

#### Sun position











### Quantitative evaluation



















Quantitative evaluation





#### Code and Dataset

- http://www.jflalonde.org/projects/outdoorIllumination/
- Currently only the code for the Sky model is available
- Extension in Lalonde's PhD thesis [2011]
  - Find sun direction by person appearance







## **Shadow Detection**

- Application
  - Estimating outdoor illumination
  - Shadow removal
  - Detecting Ground Shadowsin Outdoor Consumer Photographs [Lalonde et al., ECCV 2010]
  - Single-Image Shadow Detection and Removal using Paired Regions [Guo et al., CVPR 2011]

### **Detecting Ground Shadows in**

## **Outdoor Consumer Photographs**

- [Lalonde et al., ECCV 2010]
- Observation: photometric methods do not work well on consumer images (not linear, lossy compression)
- **Hypothesis:** appearances of shadows *on the ground* are less varied than shadows in general, and *can be learned* from labeled images.

### Learning shadow appearance

Input

Oversegmentation (watershed)

Strong boundaries (Canny)



# Incorporating scene layout Input Shadows





P(ground) [Hoiem et al., '07]

### Ground shadows





## Single-Image Shadow Detection and Removal using Paired Regions

• [Guo et al., CVPR 2011]







Vii)

#### Guo's method





Lalonde's method

#### Guo's method



## **Practical Issues**

- Applying to outdoor illumination estimation
  - Segmentation (region based)
    => does not work well on thin shadows



Lalonde's method



Guo's method

# Thank you

• Questions?

