
the power of simplicity
SELF

Rolph Recto + Jonathan DiLorenzo

Great Works in PL

April 30, 2019

2

SELF: The Power of Simplicity
David Ungar, Stanford
Randall B. Smith, Xerox PARC

OOPSLA 87

3

Smalltalk-80

Simula67

Self

Javascript

Java

C++

Dahl and Nygaard

Kay, Ingalls, and Goldberg

Stroustrup

Ungar and Smith

Eich

Gosling, Sheridan, and Naughton

1995

1991

1987

1985

1980

1967

4

Is JavaScript popular? It’s hard to
say. Some Ajax developers
profess (and demonstrate) love for
it. Yet many curse it, including me.
I still think of it as a quickie
love-child of C and Self.

Brendan Eich
https://brendaneich.com/2008/04/popularity/

http://jquery.com/

5

everything is an
object

all interactions
are message

passing

prototypes, not
classes

principles of Self

6

Smalltalk

everything is
an object

methods and
closures

control
structures

primitive values

classes

((4 fac) between: 10 And: 100) ifTrue: “Hi!” False: ”Bye!”

7

call “ifTrue:False:” on true with args “Hi!” and “Bye!”, return “Hi!”

call “fac” method on 4, return 24

call “between:And:” on 24 with args 10 and 100, return true

8

Smalltalk Self

objects are instances
of classes

objects are clones
of prototypes

9

Smalltalk Self

objects are instances
of classes

objects are clones
of prototypes

C++

Java Javascript

10

classes prototypes

can modify methods only by
subclassing

objects can have unique
methods and fields

create objects by calling
class constructor

create objects by cloning
prototype

classes need metaclasses,
etc. (infinite regress!)

no classes,
no infinite regress

11

classes p := (Point new) x: 7 y: 9
p print

follow p’s class pointer, check if print is
defined there

not defined there, so follow superclass
pointer

found “print” in Object class! Invoke
with receiver “p”

12

classes p := (Point new) x: 1 y: 10
p print

follow p’s class pointer, check if print is
defined there

not defined there, so follow superclass
pointer

found “print” in Object class! Invoke
with receiver “p”

to have different print method, need to
create Point subclass

13

prototypes p:= (point clone) x: 7 y: 9
p print

does p have print method? no, so
follow parent pointer to delegate

does Point delegate have “print”? no,
so follow parent pointer to delegate

does Object delegate have print? yes,
invoke with “p” as receiver

14

prototypes p:= (point clone) x: 1 y: 10
p print

does p have print method? no, so
follow parent pointer to delegate

does Point delegate have “print”? no,
so follow parent pointer to delegate

does Object delegate have print? yes,
invoke with “p” as receiver

to have special print method for p,
define new slot in p -- no subclass
needed!

method invocation
clones prototype
activation record

15

activation as cloning

16

state as behavior

field access and
assignment are

messages to current
receiver (self)

17

state as behavior

p x // p.x

p x: 2 // p.x = 2

18

example: points

traits

prototypes

root

_AddSlotsIfAbsent: (|
 traits = ().
 prototypes = ().
|)

19

example: points

traits

prototypes

root

cloneable
copy _Clone

traits _AddSlotsIfAbsent:(|cloneable=()|)
traits cloneable _Define:(|
 copy = (_Clone).
|)

20

example: points

traits

prototypes

root

cloneable

point

copy _Clone

parent*

printString [method]

+ [method]

- [method]

traits _AddSlotsIfAbsent: (|point=()|)
traits point _Define:(|
 parent* = traits cloneable.
 printString = …
 + aPoint = …
 - aPoint = …
|)

21

example: points

traits

prototypes

root

cloneable

point
point

copy _Clone

parent*

printString [method]

+ [method]

- [method]

parent*

x 0

x: ⇐

y 0

y: ⇐

prototypes _AddSlotsIfAbsent (|point=()|)
prototypes point _Define:(|
 parent* = traits point.
 x <- 0.
 y <- 0.
|)

22

example: points

traits

prototypes

root

cloneable

point
point

copy _Clone

parent*

printString [method]

+ [method]

- [method]

((prototypes point) copy) x: 3 y: 4

parent*

x 3

x: ⇐

y 4

y: ⇐

parent*

x 0

x: ⇐

y 0

y: ⇐

23

discussion

is Self a good influence on
modern languages?

are there cases when
simplicity should be

abandoned?

what are the tradeoffs of
Self’s flexibility?

