+Hypes; Abstraction, and
= e Dol o

John C. Reynolds
Presented by Dietrich Geisler



Abstraction

Dietrich Geisler
(With apologies to John C. Reynolds)



What is Abstraction?

1. Define complex numbers
2. When are they equal?

1. Pairs of real numbers

2. Equality of components

1. Pairs of real numbers; first
component is nonnegative

2. Equality of first component
AND second component
differs by multiple of 21t

Professor Descartes Professor Bessel



Some Context

Published in 1983

Previous Papers: Intel 80286 Processor: Higher-level languages:
Recursive Functions (1960) 10 MHz clock rate Scheme 1973
Axiomatic Basis (1969) No memory cache ML 1975

CBN and CBV (1975) C++ 1980



Sets and Types

If e, € Eﬂ - and e, € E then

1 2 Tw

b
el(ez) € E“m. ’

If e, has type w—w’ and e, has type w
Then the result of applying e, to e, has type w’



Some Notation

Extension to constants, pairs, and functions
e.g. S* (w x w’) = S*w x S*w’

Set Assignment Extension to a context
(e.g. S(r) ={0, 1, 2}) (Works pointwise over the map)

S#*n = ‘ | S#('w) .

vedomm



Some Semantics

If k € K_ nEk:w
then u_f{k}] § n=a k nk ay, (k)
If v e dom m NEviw

then u_ vl Sn=nv nkEn(v)



Semantics of Pairs

If ec E and e' e E , then
W Tw
< s =
uﬂ,wa'[ e, e'>] §n
< ' >
uw[e] S n, um.[e] S n

nker:w nkes:w

nk<el, e > wxw



How to compare set assignments?

Sets are related using pairs of set elements under Rel(s,, s,)

Functions and pairs are related if each component is related

R is the pointwise relation between two set interpretations of types S, S,



What is an Abstraction? (Formally)

Abstraction Theorem Let R be a relation
assignment between set assignments S; and S».
For all m ¢ Q" » w e R, ee Ep,, and

<n1, N2” € R# My

i
<P“wle] S1N1, u“w[e] Sonz> e Rw .

Evaluating expressions maps related arguments to related results



Extending this to a Typing Theorem

Pure Type Definition Theorem Let S be a set
assignment, w;, wy € §, and r be a relation
between S¥w; and S*wy. For all re* 1eT,
w' e, e € Eg_g 'y and n € s>

’/‘t-*wl)[mt = W] mel S n,
,,.,wz)llsnm T =w; ipel 5 n>

e [IA | T r] w' ,

where IA is the relation assignment such that
IA T = I(S 1) for all 1t € T.

<uﬂ , (w

ﬂ (w'



What Happened to this work?

Some was folded into System F

Rust is starting to use some relational proofs

ldeas behind free theorems (e.g. properties Af : a—a?)



