
Types, Abstraction, and 
Parametric Polymorphism

John C. Reynolds
Presented by Dietrich Geisler



Abstraction
Dietrich Geisler

(With apologies to John C. Reynolds)



What is Abstraction?

Professor Descartes Professor Bessel

1. Pairs of real numbers

2. Equality of components

1. Define complex numbers
2. When are they equal?

1. Pairs of real numbers; first 
component is nonnegative

2. Equality of first component 
AND second component 
differs by multiple of 2π



Some Context

Published in 1983

Previous Papers:

Recursive Functions (1960)
Axiomatic Basis (1969)
CBN and CBV (1975)

Intel 80286 Processor:

10 MHz clock rate
No memory cache

Higher-level languages:

Scheme 1973
ML 1975
C++ 1980



Sets and Types

If e1 has type ω→ω’ and e2 has type ω
Then the result of applying e1 to e2 has type ω’



Some Notation

S # *
Set Assignment

(e.g. S(𝜏) = {0, 1, 2})

Extension to constants, pairs, and functions
e.g. S# (ω x ω’) = S#ω x S#ω’

Extension to a context
(Works pointwise over the map)



Some Semantics



Semantics of Pairs



Sets are related using pairs of set elements under Rel(s1, s2)

Functions and pairs are related if each component is related

R is the pointwise relation between two set interpretations of types S1, S2

How to compare set assignments?



What is an Abstraction? (Formally)

Evaluating expressions maps related arguments to related results



Extending this to a Typing Theorem



What Happened to this work?

Some was folded into System F

Rust is starting to use some relational proofs

Ideas behind free theorems (e.g. properties λf : α→α?)


