Types, Abstraction, and Parametric Polymorphism

John C. Reynolds Presented by Dietrich Geisler

Abstraction

Dietrich Geisler (With apologies to John C. Reynolds)

What is Abstraction?

Define complex numbers
 When are they equal?

- 1. Pairs of real numbers
- ¹ 2. Equality of components

1. Pairs of real numbers; first component is nonnegative

2. Equality of first component AND second component differs by multiple of 2π

Professor Bessel

Professor Descartes

Some Context

Published in 1983

Previous Papers:

Recursive Functions (1960) Axiomatic Basis (1969) CBN and CBV (1975) Intel 80286 Processor:

10 MHz clock rate No memory cache Higher-level languages:

Scheme	1973
ML	1975
C++	1980

Sets and Types

If $e_1 \in E_{\pi, \omega \to \omega}$, and $e_2 \in E_{\pi \omega}$ then $e_1(e_2) \in E_{\pi \omega}$,

If e_1 has type $\omega \rightarrow \omega'$ and e_2 has type ω Then the result of applying e_1 to e_2 has type ω'

Some Notation

Extension to constants, pairs, and functions e.g. S[#] ($\omega \times \omega$ ') = S[#] $\omega \times$ S[#] ω '

Set Assignment (e.g. $S(\tau) = \{0, 1, 2\}$)

Extension to a context (Works pointwise over the map)

$$S^{\#\star}\pi = \prod_{v \in \text{dom }\pi} S^{\#}(\pi v)$$
.

Some Semantics

If
$$k \in K_{\omega}$$

then $\mu_{\pi\omega}[k]$ S $\eta = \alpha_{\omega} k$ $\eta \vdash \alpha_{\omega}(k)$

If $\mathbf{v} \in \operatorname{dom} \pi$ then $\mu_{\pi,\pi \mathbf{v}}[\mathbf{v}] \leq \eta = \eta \mathbf{v}$ $\eta \vdash \eta$

$$\frac{\eta \vdash v : \omega}{\eta \vdash \eta(v)}$$

1

Semantics of Pairs

If
$$e \in E_{\pi\omega}$$
 and $e' \in E_{\pi\omega}$, then
 $\mu_{\pi,\omega\times\omega}$, [] S $\eta =$
 $<\mu_{\pi\omega}$ [e] S η , $\mu_{\pi\omega}$, [e'] S η >
 $\frac{\eta \vdash e_1 : \omega \qquad \eta \vdash e_2 : \omega'}{\eta \vdash < e_1, e_2 >: \omega \times \omega'}$

How to compare set assignments?

Sets are related using pairs of set elements under **Rel**(s_1 , s_2)

Functions and pairs are related if each component is related

R is the pointwise relation between two set interpretations of types S_1 , S_2

What is an Abstraction? (Formally)

Abstraction Theorem Let R be a relation assignment between set assignments S_1 and S_2 . For all $\pi \in \Omega^*$, $\omega \in \Omega$, $e \in E_{\pi\omega}$, and $\langle \eta_1, \eta_2 \rangle \in R^{\#*}\pi$, $\langle \mu_{\pi\omega}[e] S_1\eta_1, \mu_{\pi\omega}[e] S_2\eta_2 \rangle \in R^{\#}\omega$.

Evaluating expressions maps related arguments to related results

Extending this to a Typing Theorem

Pure Type Definition Theorem Let S be a set assignment, ω_1 , $\omega_2 \in \Omega$, and r be a relation between $S^{\#}\omega_1$ and $S^{\#}\omega_2$. For all $\pi \in \Omega^*$, $\tau \in T$, $\omega' \in \Omega$, $e \in E_{\pi-\tau,\omega'}$, and $\eta \in S^{\#*\pi}$,

$${}^{<\mu}_{\pi,(\omega'/\tau\to\omega_1)} \begin{bmatrix} \underline{\text{lettype}} \ \tau = \omega_1 \ \underline{\text{in e}} \end{bmatrix} S \eta, \\ {}^{\mu}_{\pi,(\omega'/\tau\to\omega_2)} \begin{bmatrix} \underline{\text{lettype}} \ \tau = \omega_2 \ \underline{\text{in e}} \end{bmatrix} S \eta > \\ \varepsilon \begin{bmatrix} IA \ | \ \tau : r \end{bmatrix}^{\#} \omega',$$

where IA is the relation assignment such that IA $\tau = I(S \tau)$ for all $\tau \in T$.

What Happened to this work?

Some was folded into System F

Rust is starting to use some relational proofs

Ideas behind free theorems (e.g. properties $\lambda f : \alpha \rightarrow \alpha$?)