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What is Abstraction?

1. Define complex numbers
2. When are they equal?

1. Pairs of real numbers

2. Equality of components

1. Pairs of real numbers; first
component is nonnegative

2. Equality of first component
AND second component
differs by multiple of 21t

Professor Descartes Professor Bessel



Some Context

Published in 1983

Previous Papers: Intel 80286 Processor: Higher-level languages:
Recursive Functions (1960) 10 MHz clock rate Scheme 1973
Axiomatic Basis (1969) No memory cache ML 1975

CBN and CBV (1975) C++ 1980



Sets and Types

If e, € Eﬂ - and e, € E then

1 2 Tw

b
el(ez) € E“m. ’

If e, has type w—w’ and e, has type w
Then the result of applying e, to e, has type w’



Some Notation

Extension to constants, pairs, and functions
e.g. S* (w x w’) = S*w x S*w’

Set Assignment Extension to a context
(e.g. S(r) ={0, 1, 2}) (Works pointwise over the map)

S#*n = ‘ | S#('w) .

vedomm



Some Semantics

If k € K_ nEk:w
then u_f{k}] § n=a k nk ay, (k)
If v e dom m NEviw

then u_ vl Sn=nv nkEn(v)



Semantics of Pairs

If ec E and e' e E , then
W Tw
< s =
uﬂ,wa'[ e, e'>] §n
< ' >
uw[e] S n, um.[e] S n

nker:w nkes:w

nk<el, e > wxw



How to compare set assignments?

Sets are related using pairs of set elements under Rel(s,, s,)

Functions and pairs are related if each component is related

R is the pointwise relation between two set interpretations of types S, S,



What is an Abstraction? (Formally)

Abstraction Theorem Let R be a relation
assignment between set assignments S; and S».
For all m ¢ Q" » w e R, ee Ep,, and

<n1, N2” € R# My

i
<P“wle] S1N1, u“w[e] Sonz> e Rw .

Evaluating expressions maps related arguments to related results



Extending this to a Typing Theorem

Pure Type Definition Theorem Let S be a set
assignment, w;, wy € §, and r be a relation
between S¥w; and S*wy. For all re* 1eT,
w' e, e € Eg_g 'y and n € s>

’/‘t-*wl)[mt = W] mel S n,
,,.,wz)llsnm T =w; ipel 5 n>

e [IA | T r] w' ,

where IA is the relation assignment such that
IA T = I(S 1) for all 1t € T.

<uﬂ , (w

ﬂ (w'



What Happened to this work?

Some was folded into System F

Rust is starting to use some relational proofs

ldeas behind free theorems (e.g. properties Af : a—a?)



