
Call-by-name, call-by-value, and the λ -calculus

G.D. Plotkin Presented by Dietrich Geisler

Call-by-name vs call-by-value

Define square = $\lambda xy.x^*x$ Evaluate square(2+2, 2+3)

Call-by-name (CBN) Call-by-value (CBV) square(2+2, 2+3) square(2+2, 2+3) $(2+2)^{*}(2+2)$ square(4, 2+3) $4^{*}(2+2)$ square(4, 5) $4^{*}4$ $4^{*}4$ 16 16

Objective

- Transformation between CBV and CBN semantics
- A CBV evaluation of a program *P* should terminate if and only if the CBN evaluation of the translated *P* also terminates

Theorem 2. (Simulation). $\Psi(\operatorname{Eval}_{\nu}(M)) = \operatorname{Eval}_{N}(\overline{M}(\lambda xx))$, for any program M.

Some Context

Published in 1975

Previous Papers:

Recursive Functions (1960) Axiomatic Basis (1969)

Abstraction (1983) Expressive Power of PLs (1990) Higher-level languages:

C 1972 Scheme 1973 ML 1975 **Practicalities**

<S, E, C, D> machine

Machine for evaluating lambda expressions

Constapply(a, b)

Mechanism for syntactic sugar

The λ_v Calculus

$$\frac{e_1 \to e_1'}{e_1 \ e_2 \to e_1' \ e_2} \qquad \frac{e \to e'}{v \ e \to v \ e'}$$

$$(\lambda x.e) v \to e [v/x]$$

- I1. $(\lambda x M) = (\lambda y [y/x] M) (y \notin FV(M)).$ (α -rule)
 - 2. $(\lambda x M) N = [N/x] M$ (if N is a value). (β -rule)
 - 3. (ab) = Constapply (a, b) (if this is defined). (δ -rule)

Equality of terms

III.
$$M = M$$

2. $\frac{M}{M} = \frac{N}{N} = L$
3. $\frac{M}{N} = \frac{N}{M}$
III. $\frac{M}{(MZ)} = \frac{N}{(NZ)}$, $\frac{M}{(ZM)} = \frac{M}{(ZN)}$
2. $\frac{M}{(\lambda x M)} = (\lambda x N)$

M=N iff M is equivalent to N

Reduction of terms

M≥N iff M reduces to something equal to N

Theorem 2. (Church-Rosser theorem). If $\lambda_v + M_1 \ge M_i$ (i = 2, 3) then for some M_4 , $\lambda_v + M_i \ge M_4$ (i = 2, 3).

Theorem 4. $Eval_V(M) = N$ iff $M \stackrel{*}{\to}_V N$, (for closed M and a value N).

The λ_n Calculus

$$\frac{e_1 \to e_1'}{e_1 \ e_2 \to e_1' \ e_2}$$

$$(\lambda x.e_1) \ e_2 \rightarrow e_1 \ [e_2/x]$$

II. $(\lambda x M) = (\lambda y [y/x] M) (y \notin FV(M)) (\alpha$ -reduction). 2. $(\lambda x M) N = [N/x] M (\beta$ -reduction).

No requirement that N is a value

Translating from CBN to CBV

$(\lambda xy.y) \Omega z$

$$\underline{x} = x$$

$$\underline{\lambda x.M} = \lambda \alpha.\alpha(\lambda x.\underline{M})$$

$$\underline{M N} = \lambda \alpha.\underline{M} (\lambda \beta.\beta \underline{N} \alpha)$$

Translating from CBN to CBV

$(\lambda xy.y \Omega) z$

$$\underline{x} = x$$

$$(\underline{\lambda x M}) = \lambda \varkappa \varkappa (\lambda x \underline{M})$$

$$(\underline{MN}) = \lambda \varkappa M (\lambda \alpha \alpha N \varkappa).$$