Proof-Carrying
Code

GEORGE C. NECULA, POPL '97
PRESENTED BY TOM MAGRINO AND MENTORED BY ETHAN

CECCHETTI IN GREAT WORKS IN PL, APRIL 16™ 2019

“On the Internet, nobody knows you're a dog.”

MSCHOLASTIC

How can you frust that
code you downloadedze

Context

» Similar motivation to TAL: Want user-supplied code
that can run in sensitive contexts (e.g. in the kernel, in

a host process, etc.) with assurance that some
properties hold.

» Packet filtering (Necula & Lee OSDI ‘96)
» Libraries implemented in another language

» Mobile code (e.g., JavaScript)
» Techniques prior:

» Specialized DSLs

» Limited expressions and yet-another-language
to learn

» Runtime monitors
» Runtime overhead
» Compile on demand
» Compile fime overhead

Core ldea

» Ship machine code with a . | Executable Checking
simple, verifiable proof of content support
desired properties. |

» Programmer or compiler
creates proof, which is | Verification
attached to the binary. condition —

generator
» Host validates the proof before

running it the first time.

» When sent already validated - | PCC Infrastructure
code, just verify it's the same |
pProof.

Host system

safe/not safe

Saftety Policies

» Safety Policy:

» Language of symbolic expressions and formulas for
verification conditions.

» Set of pre- and postconditions for all interface
functions between host and agent.

» Set of proof rules for verification conditions.

Case Study: Safe Extension to ML

%%rg is 1

“S f S ') 0! TP 2 FEeEm
O e Um sum: INV r, Frp Th;;,:.lisacc

MOV l‘1,0

%Initialize acc

L, 1INV rmbrg:Tlist Arp by int

datatype T = Int of int | Pair of int * int
BEQ 1o, L4

LD 1y, O(ro)
LD Io, 4(!’0)
LD rj, 0(!‘2)

fun sum (1 : T list) =
let
fun foldr f nil a = a
| foldr f (h::t) a = foldr f t (f(a, h))
in
foldr (fn (acc, Int i) => acc + i
| (acc, Pair (i, j)) => acc + i + j)
10

LD r2,4(r2)
BEQ rs3, Ly
LD r3,0(rp)
LD !‘2,4(1‘2)
ADD rp,r3,rs
ADD ry,ra, 1
BR L,
MOV rg,r;
RET

» Policy: program respects type-safety and calling convention:s.

» References are only to valid memory locations

%Loop invariant
%Is list empty?
%Load head
%Load tail

%Load constructor
%Load data

%Is an integer?
%Load i

%Load j

%Add i and j
%Do the addition
%Loop

%Copy result in rg
%Result is in rg

» Postcondition is satisfied (result is left in the appropriate register with correct type).

'mbFro:Tlist

'm F I'p @ int

Proving
Correctness:
Type Rules

. mkEe:n*n
PCIII’ mbte:addr A mbe+4:addr A mtsel(m,e):n, A mbEsellme+4): 7

Typing Ruless mFre:T

» m —memory State (types
for a subset of addresses)

mbEe:n+7n
SUMmFe:addr A mFe+4:addr A sel(m,e) =0D>mF sel(m,e +4): 7, A sel(m,e)#0>mtsellme+4):m

. mkbe:7list e#0
List mbe:addr A mbe+4:addr A mFsellme): 7 A mtsellm,e+4):7list

» e — expression in assembly
mkbke;:int m#b ey : int
Int mbF e +ez:int mkbFO0:int

» T-—type of expression
» e:=n|r|sellm,e) | e +e,

» m:i=r, | upd(m, e, &)

Verification
Conditions

» Approach: create
conditions for each
instruction.

» Top-level: “For all
reqister values, every
invariant implies the
condition of the next
instruction.”

[[rs + 0p/ra) VCis1, if II; = ADD r,, op,rq
I'm b rs +n:addr A [sel(rm, 1y + 1) /ra) VCiyy, if II; =LD rq,n(r,)
VCi=((ry =02 VCisn41) A(rs #0D VCiy), if II; = BEQ r,,n
Post, if II; = RET
7, if I;=INV I

VCO(I, Inv, Post) = Vri. [\ Inv; > VCin
i€ Inv

rm b ro:Foolist D (rmb rg:Foolist A

For Example: .
¥ 0 : int)

Constructing a
Saftety Prooft

» Use alogic framework
(LF) to encode the proof
of the desired property.

» Meta-language for
specifications of logics

» Proof becomes a
program in LF and
validation is type-
checking the proof has
type pf Post.

and.i : IIp:pred.llr:pred.

D, D,
e P1 > Pg
> Pl A pz

pfp—pfr— pf(andp r)

= and_i r"Pl‘W F'P21 !'Dl'! r'Dzﬁ

Constructing a
Saftety Prooft

» Use alogic framework
(LF) to encode the proof
of the desired property.

» Meta-language for
specifications of logics

» Proof becomes a
program in LF and
validation is type-
checking the proof has
type pf Post.

mke:Tlist e#0

mbe:addr A mbe+4:addr A mbsellm,e): 7 A mksellm,e+4):7list

tplist : [Im:exp.Ile:exp.Ilt: tp.
pf (hastype m e (1ist t)) = pf(neqe0) —
pf (and (and (hastype m e addr)
(hastype m (sel m e) t))
(and (hastype m (+ e 4) addr)
(hastype m (sel m (+ e 4)) (1ist t))))

Quick Aside:
Encoding Proofs

» Implicit LF: Avoid redundant terms in encoded
Proof.

» Extends LF with placeholders for redundant proof
terms.

» Reused proofs don't require redundant checks!

» Custom algorithm for reconstructing the terms for
placeholders during type-checking.

» Requires adding rules not directly useful for type checking or
type inference.

» See Ch. 5 of Advanced Topics in TaPL for more!

PCC Iin Practice

» Proof ships with the program, gets verified by the host, and we're
ready to go.

» Sum example code: 730 bytes
» Proof: 420 bytes
» Code: 60 bytes
» “Fixed-sized Overhead”: 250 bytes
» Validation (on 175 MHz machine) was 1.9ms
» On a modern processor this translates to microseconds.
» Packet Filters
» Showed 10x improvement over runtime checking.
» Allowed user defined code in the kernel with safety guarantees.

Takeaways of PCC

» PL technique to solve important engineering problem!

» Maybe obvious to us, was a big deal for systems and security.
» Generalizes beyond traditional types:

» Security policies.

» Concurrency rules.

» Domain-specific safety rules.

» Small trusted computing base (TCB) for important class of security
problems.

» TCB = checker + any tools that generate the proofs (for honest users).

» Kicked off a huge line of work!

Where do we see this in today’s systemse

How does this compare/contrast with TALe

:) |SC USSlO N Do modern technigues make annotations and
proofs easier to producee

Potential new application domainse

