
Proof-Carrying

Code
GEORGE C. NECULA, POPL ‘97

PRESENTED BY TOM MAGRINO AND MENTORED BY ETHAN
CECCHETTI IN GREAT WORKS IN PL, APRIL 16TH

, 2019

How can you trust that

code you downloaded?

Context

 Similar motivation to TAL: Want user-supplied code
that can run in sensitive contexts (e.g. in the kernel, in
a host process, etc.) with assurance that some
properties hold.

 Packet filtering (Necula & Lee OSDI ‘96)

 Libraries implemented in another language

 Mobile code (e.g., JavaScript)

 Techniques prior:

 Specialized DSLs

 Limited expressions and yet-another-language
to learn

 Runtime monitors

 Runtime overhead

 Compile on demand

 Compile time overhead

Core Idea

 Ship machine code with a

simple, verifiable proof of

desired properties.

 Programmer or compiler

creates proof, which is

attached to the binary.

 Host validates the proof before

running it the first time.

 When sent already validated

code, just verify it’s the same

proof.

Safety Policies

 Safety Policy:

 Language of symbolic expressions and formulas for

verification conditions.

 Set of pre- and postconditions for all interface

functions between host and agent.

 Set of proof rules for verification conditions.

Case Study: Safe Extension to ML

“Safe Sum”

 Policy: program respects type-safety and calling conventions.

 References are only to valid memory locations

 Postcondition is satisfied (result is left in the appropriate register with correct type).

Proving
Correctness:
Type Rules

 Typing Rules: m ⊦ e : τ

 m – memory State (types

for a subset of addresses)

 e – expression in assembly

 τ – type of expression

 e ::= n | ri |sel(m, e) | e1 + e2

 m ::= rm | upd(m, e1, e2)

Pair

List

Int

Sum

Verification
Conditions

 Approach: create

conditions for each
instruction.

 Top-level: “For all

register values, every

invariant implies the

condition of the next
instruction.”

For Example:

Constructing a

Safety Proof

 Use a logic framework

(LF) to encode the proof

of the desired property.

 Meta-language for

specifications of logics

 Proof becomes a

program in LF and

validation is type-

checking the proof has

type pf Post.

Constructing a

Safety Proof

 Use a logic framework

(LF) to encode the proof

of the desired property.

 Meta-language for

specifications of logics

 Proof becomes a

program in LF and

validation is type-

checking the proof has

type pf Post.

Quick Aside:

Encoding Proofs

 Implicit LF: Avoid redundant terms in encoded
proof.

 Extends LF with placeholders for redundant proof
terms.

 Reused proofs don’t require redundant checks!

 Custom algorithm for reconstructing the terms for
placeholders during type-checking.

 Requires adding rules not directly useful for type checking or
type inference.

 See Ch. 5 of Advanced Topics in TaPL for more!

PCC in Practice

 Proof ships with the program, gets verified by the host, and we’re
ready to go.

 Sum example code: 730 bytes

 Proof: 420 bytes

 Code: 60 bytes

 “Fixed-sized Overhead”: 250 bytes

 Validation (on 175 MHz machine) was 1.9ms

 On a modern processor this translates to microseconds.

 Packet Filters

 Showed 10x improvement over runtime checking.

 Allowed user defined code in the kernel with safety guarantees.

Takeaways of PCC

 PL technique to solve important engineering problem!

 Maybe obvious to us, was a big deal for systems and security.

 Generalizes beyond traditional types:

 Security policies.

 Concurrency rules.

 Domain-specific safety rules.

 Small trusted computing base (TCB) for important class of security

problems.

 TCB = checker + any tools that generate the proofs (for honest users).

 Kicked off a huge line of work!

Discussion

 Where do we see this in today’s systems?

 How does this compare/contrast with TAL?

 Do modern techniques make annotations and
proofs easier to produce?

 Potential new application domains?

