
FROM SYSTEM F TO
TYPED ASSEMBLY

LANGUAGE
Greg Morrisett, David Walker, Karl Crary & Neal Glew

TOPLAS 1999

Presentation by:  
Drew Zagieboylo/Matthew Milano

TYPED ASSEMBLY LANGUAGE

TYPED ASSEMBLY LANGUAGE

TYPED ASSEMBLY LANGUAGE

TYPED ASSEMBLY LANGUAGE

WHY DO WE WANT TAL?

TYPE SYSTEMS ALL THE
WAY!!

x86

NO TYPES :(

TYPED INTERMEDIATE LANGUAGES

➤ TIL

➤ Throughout the 90’s (and today!)

➤ Benefits of Types (efficiency + soundness)

➤ Target Language is Untyped

ML TIL…

TYPES!

HOW TO GUARANTEE
SAFETY W/ UNTYPED

AND UNTRUSTED CODE?

PROOF-CARRYING CODE

➤ George Necula (POPL ’97)

➤ Compiler Produces:

1. Program

2. Proof

➤ First-Order Predicate
Logic Based

➤ Difficult to Build
Compilers

TYPED ASSEMBLY LANGUAGE

➤ Extend benefits of types all the way to the target

➤ Types as implementation of Proof-Carrying Code

TYPED ASSEMBLY LANGUAGE - FEATURES
➤ RISC-style language

➤ Types:

➤ Code types

➤ Pointer Types

➤ Existential Type Constructor

➤ Security:

➤ No pointer forging!

➤ Control Flow Integrity

➤ Other:

➤ Memory Allocation

SYSTEM F TO TAL

➤ Show that TAL is expressive

SYSTEM F TO TAL

➤ CPS Conversion

CPS TRANSLATION

➤ Continuation Passing Style

➤ Translate to near-linear series of let bindings & calls

➤ Removes function call stack

Abstraction Translation

Application Translation

SYSTEM F TO

➤ Continuation Passing Style

λK

(fix f(n : int) : int . if0 (n,1,n × f(n − 1))) 6λF

(fix f(n : int, k : (int) → void) .λK
if0(n, k(1),

(6,λ(n : int) . halt[int]n)
f(x, λ(y : int) . let z = n × y in k(z))))
let x = n − 1in

SYSTEM F TO TAL

➤ Closure Conversion

POLYMORPHIC CLOSURE CONVERSION
➤ Generate Explicit Closures

➤ Implements Encapsulation

➤ New Syntax

➤ Existential Types 

➤ Packing/Unpacking 
 

➤ Uses Type Erasure*

➤ Function bodies type-check w/o environment type info

➤ Pack is a no-op at runtime

τ, σ ::= . . . |∃α . τ

u ::= . . . |v[τ] | pack[τ1, v] as τ2
d ::= . . . | [α, x] = unpack v

 TO

➤ Polymorphic Closure Conversion

λK λC

Function Type Translation

Application Translation

SYSTEM F TO TAL

➤ Hoisting

HOISTING
➤ Separating Code Definition & Program

➤ Much like real memory layout

➤ Closures make this easy!

➤ Bind fix statements to variables, pointing to code

 TO

➤ Polymorphic Closure Conversion

➤ Factorial(6)

λK λC

SYSTEM F TO TAL

➤ Memory Allocation

ALLOCATION

➤ Assembly language doesn’t have Tuples!

➤ Need to allocate memory for tuples (and initialize!) 
 

➤ x = (v1, v2)

A[[⟨τ1, . . . , τn⟩]] ≜ ⟨A[[τ1]]1, . . . , A[[τn]]1⟩

ALLOCATION

λH

λA

SYSTEM F TO TAL

➤ Code Generation

SYSTEM F TO TAL

➤ Code Generation

➤ Mostly direct translation to assembly

➤ Function types annotate registers 
 

➤ unpack is just a mov instruction w/ type erasure

➤ malloc is abstract

TAL IMPLEMENTATION

➤ TALx86 : IA32 ISA

➤ Variation from Paper:

➤ Other data types (arrays, floats, etc.)

➤ Not CPS -> Uses Explicit Stack

➤ Implements malloc and unpack instructions

➤ Modules with Type Interfaces

➤ Some optimizations

➤ Register-sized objects vs. “large objects”

➤ Cross-module optimization

CONCLUSIONS

➤ System F -> TAL

➤ We can have security and expressivity

➤ Utilizes many PL techniques

➤ Type-directed Compilation

➤ Formalism omits many optimizations (other work)

➤ Future Work & Impact

➤ Cyclone (low level, typed language)

➤ (and then Rust)

THANK YOU!

POLYMORPHIC CC - TWICE EXAMPLE

POLYMORPHIC CC - TWICE EXAMPLE

