FROM SYSTEM F TO TYPED ASSEMBLY LANGUAGE

Greg Morrisett, David Walker, Karl Crary & Neal Glew TOPLAS 1999

Presentation by: Drew Zagieboylo/Matthew Milano

types initialization flags heap types register file types type contexts

$$\begin{split} \tau, \sigma &::= \alpha \mid int \mid \forall [\vec{\alpha}] . \Gamma \mid \langle \tau_1^{\varphi_1}, \dots, \tau_n^{\varphi_n} \rangle \mid \exists \alpha. \tau \\ \varphi &::= 0 \mid 1 \\ \Psi &::= \{\ell_1 : \tau_1, \dots, \ell_n : \tau_n\} \\ \Gamma &::= \{r_1 : \tau_1, \dots, r_n : \tau_n\} \\ \Delta &::= \alpha_1, \dots, \alpha_n \end{split}$$

types initialization flags heap types register file types type contexts

$$\begin{array}{lll} \tau, \sigma & ::= & \alpha \mid int \mid \forall [\vec{\alpha}] . \Gamma \mid \langle \tau_1^{\varphi_1}, \dots, \tau_n^{\varphi_n} \rangle \mid \exists \alpha. \tau \\ \varphi & ::= & 0 \mid 1 \\ \Psi & ::= & \{\ell_1 : \tau_1, \dots, \ell_n : \tau_n\} \\ \Gamma & ::= & \{r_1 : \tau_1, \dots, r_n : \tau_n\} \\ \Delta & ::= & \alpha_1, \dots, \alpha_n \end{array}$$

registers word values small values heap values heaps register files	r w v h H R	::= ::= ::= ::=	$ \begin{array}{l} \texttt{r1} \mid \texttt{r2} \mid \texttt{r3} \mid \cdots \\ \ell \mid i \mid ?\tau \mid w[\tau] \mid \texttt{pack} \left[\tau, w\right] \texttt{as} \ \tau' \\ r \mid w \mid v[\tau] \mid \texttt{pack} \left[\tau, v\right] \texttt{as} \ \tau' \\ \langle w_1, \dots, w_n \rangle \mid \texttt{code}[\vec{\alpha}] \Gamma.I \\ \{\ell_1 \mapsto h_1, \dots, \ell_n \mapsto h_n\} \\ \{r_1 \mapsto w_1, \dots, r_n \mapsto w_n\} \end{array} $
instructions	ι	::=	add $r_d, r_s, v \mid \operatorname{bnz} r, v \mid \operatorname{ld} r_d, r_s[i] \mid \operatorname{malloc} r_d[\vec{\tau}] \mid \operatorname{mov} r_d, v \mid$ $\operatorname{mul} r_d, r_s, v \mid \operatorname{st} r_d[i], r_s \mid \operatorname{sub} r_d, r_s, v \mid \operatorname{unpack}[\alpha, r_d], v$
instruction sequences programs	I P	::= ::=	$\begin{split} \iota; I \mid \texttt{jmp} v \mid \texttt{halt}[\tau] \\ (H, R, I) \end{split}$

types initialization flags heap types register file types type contexts

registers word values small values heap values heaps register files

instructions

instruction sequences programs

$$\begin{array}{lll} \tau, \sigma & ::= & \alpha \mid int \mid \forall [\vec{\alpha}] . \Gamma \mid \langle \tau_1^{\varphi_1}, \dots, \tau_n^{\varphi_n} \rangle \mid \exists \alpha. \tau \\ \varphi & ::= & 0 \mid 1 \\ \Psi & ::= & \{\ell_1 : \tau_1, \dots, \ell_n : \tau_n\} \\ \Gamma & ::= & \{r_1 : \tau_1, \dots, r_n : \tau_n\} \\ \Delta & ::= & \alpha_1, \dots, \alpha_n \end{array}$$

 $\begin{array}{lll} \iota & ::= \; \operatorname{add} r_d, r_s, v \mid \operatorname{bnz} r, v \mid \operatorname{ld} r_d, r_s[i] \mid \operatorname{malloc} r_d[\vec{\tau}] \mid \operatorname{mov} r_d, v \mid \\ & \; \operatorname{mul} r_d, r_s, v \mid \operatorname{st} r_d[i], r_s \mid \operatorname{sub} r_d, r_s, v \mid \operatorname{unpack}[\alpha, r_d], v \\ & I \; ::= \; \iota; I \mid \operatorname{jmp} v \mid \operatorname{halt}[\tau] \\ & P \; ::= \; (H, R, I) \end{array}$

```
l_main:
  code[]{}.
    mov r1,6
    jmp l_fact
l_fact:
  code[]{r1:int}.
    mov r2,r1
    mov r1,1
    jmp lloop
l_loop:
  code[]{r1:int,r2:int}.
    bnz r2,1_nonzero
    halt[int]
l_nonzero:
  code[]{r1:int,r2:int}.
    mul r1,r1,r2
    sub r2,r2,1
    jmp l_loop
```

% entry point % compute factorial of r1 % set up for loop

% r1: the product so far,

% r2: the next number to be multiplied

% branch if not zero

% halt with result in r1

% multiply next number % decrement the counter

WHY DO WE WANT TAL?

TYPE SYSTEMS ALL THE WAY!!

TYPED INTERMEDIATE LANGUAGES

≻ TIL

- ➤ Throughout the 90's (and today!)
- Benefits of Types (efficiency + soundness)
- ► Target Language is Untyped

HOW TO GUARANTEE SAFETY W/ UNTYPED AND UNTRUSTED CODE?

PROOF-CARRYING CODE

- ► George Necula (POPL '97)
- ► Compiler Produces:
 - 1. Program
 - 2. Proof
- First-Order Predicate
 Logic Based
- Difficult to Build Compilers

► Extend benefits of *types* all the way to the target

Types as implementation of Proof-Carrying Code

l_main:	
code[]{}.	% entry point
mov r1,6	
jmp l_fact	
l_fact:	
$code[]{r1:int}.$	% compute factorial of r1
mov r2,r1	% set up for loop
mov r1,1	
jmp l_loop	
l_loop:	
$code[]{r1:int,r2:int}.$	% r1: the product so far,
	% r2: the next number to be multiplied
bnz r2,1_nonzero	% branch if not zero
$\mathtt{halt}[int]$	% halt with result in r1
l_nonzero:	
$code[]{r1:int,r2:int}.$	
mul r1,r1,r2	% multiply next number
sub r2,r2,1	% decrement the counter
jmp l_loop	

TYPED ASSEMBLY LANGUAGE – FEATURES

- ► **RISC-**style language
- ► Types:
 - ► Code types
 - ► Pointer Types
 - Existential Type Constructor
- ► Security:
 - ► No pointer forging!
 - Control Flow Integrity
- ► Other:
 - Memory Allocation

l_fact: code[]{r1:*int*}.

Application Memory

► Show that TAL is *expressive*

CPS Conversion

CPS TRANSLATION

Continuation Passing Style

► Translate to near-linear series of let bindings & calls

Removes function call stack

Abstraction Translation

 $\mathcal{K}_{\exp}\llbracket(\operatorname{fix} x(x_1:\tau_1):\tau_2.e)^{\tau}\rrbracket k \stackrel{\text{def}}{=} k((\operatorname{fix} x(x_1:\mathcal{K}\llbracket\tau_1\rrbracket,c:\mathcal{K}_{\operatorname{cont}}\llbracket\tau_2\rrbracket).\mathcal{K}_{\exp}\llbracket e\rrbracket c^{\mathcal{K}_{\operatorname{cont}}}\llbracket\tau_2\rrbracket)^{\mathcal{K}}\llbracket\tau\rrbracket)$

Application Translation

 $\mathcal{K}_{\exp}[(u_1^{\tau_1} u_2^{\tau_2})^{\tau}]k$

$$\stackrel{\text{def}}{=} \mathcal{K}_{\exp} \llbracket u_1^{\tau_1} \rrbracket (\lambda x_1 : \mathcal{K} \llbracket \tau_1 \rrbracket. \\ \mathcal{K}_{\exp} \llbracket u_2^{\tau_2} \rrbracket (\lambda x_2 : \mathcal{K} \llbracket \tau_2 \rrbracket. \\ x_1^{\mathcal{K} \llbracket \tau_1 \rrbracket} (x_2^{\mathcal{K} \llbracket \tau_2 \rrbracket}, k))^{\mathcal{K}_{\text{cont}} \llbracket \tau_2 \rrbracket})^{\mathcal{K}_{\text{cont}} \llbracket \tau_1 \rrbracket}$$

SYSTEM F TO λ_K

Continuation Passing Style

$$\lambda_{F} \quad (fix f(n : int) : int . if 0 (n, 1, n \times f(n - 1))) 6$$

$$\lambda_{K} \quad (fix f(n : int, k : (int) \rightarrow void) .$$

$$if 0(n, k(1),$$

$$let x = n - 1in$$

$$f(x, \lambda(y : int) . let z = n \times y in k(z))))$$

$$(6, \lambda(n : int) . halt[int]n)$$

Closure Conversion

POLYMORPHIC CLOSURE CONVERSION

- Generate Explicit Closures
- Implements Encapsulation
- ► New Syntax
 - ► Existential Types

$$\tau, \sigma ::= \dots | \exists \alpha . \tau$$

► Packing/Unpacking $u ::= ... |v[\tau]| pack[\tau_1, v] as \tau_2$ $d ::= ... |[\alpha, x] = unpack v$

► Uses Type Erasure*

- Function bodies type-check w/o environment type info
- ► **Pack** is a no-op at runtime

$$\lambda_K \quad \mathbf{TO} \quad \lambda_C$$

Polymorphic Closure Conversion

Function Type Translation

 $\mathcal{C}\llbracket\forall[\vec{\alpha}].(\tau_1,\ldots,\tau_n)\to void\rrbracket=\exists\beta.\langle\forall[\vec{\alpha}].(\beta,\mathcal{C}\llbracket\tau_1\rrbracket,\ldots,\mathcal{C}\llbracket\tau_n\rrbracket)\to void,\beta\rangle$

Application Translation

$$\begin{split} \mathcal{C}_{\exp}\llbracket u^{\tau}[\sigma_{1},\ldots,\sigma_{m}](v_{1},\ldots,v_{n})\rrbracket & \stackrel{\text{def}}{=} & \operatorname{let}\left[\gamma,z\right] = \operatorname{unpack}\mathcal{C}_{\operatorname{val}}\llbracket u^{\tau}\rrbracket \text{ in} \\ & \operatorname{let} z_{code} = \pi_{1}(z^{\langle\tau_{code},\gamma\rangle}) \text{ in} \\ & \operatorname{let} z_{env} = \pi_{2}(z^{\langle\tau_{code},\gamma\rangle}) \text{ in} \\ & (z_{code}^{\tau_{code}}\left[\mathcal{C}\llbracket\sigma_{1}\rrbracket,\ldots,\mathcal{C}\llbracket\sigma_{m}\rrbracket\right]) \\ & (z_{env}^{\gamma},\mathcal{C}_{\operatorname{val}}\llbracket v_{1}\rrbracket,\ldots,\mathcal{C}_{\operatorname{val}}\llbracket v_{n}\rrbracket)) \\ & \operatorname{where} \\ & \mathcal{C}\llbracket\tau\rrbracket = \exists \gamma.\langle\tau_{code},\gamma\rangle \end{split}$$

► Hoisting

HOISTING

Separating Code Definition & Program

- ► Much like real memory layout
 - ► Closures make this easy!
 - ► Bind fix statements to variables, pointing to code

Syntax changes:

values	u	::=	delete fix $x(x_1:\tau_1,\ldots,x_n:\tau_n).e$
heap values	h	::=	$code[\vec{lpha}](x_1{:} au_1,\ldots,x_n{:} au_n).e$
programs	P	::=	letrec $x_1 \mapsto h_1, \ldots, x_n \mapsto h_n$ in e

The typing rule for fix is replaced by a heap value rule for code:

$$\frac{\vec{\alpha} \vdash_{\mathrm{H}} \tau_{i} \quad \vec{\alpha}; (\Gamma, x_{1}:\tau_{1}, \dots, x_{n}:\tau_{n}) \vdash_{\mathrm{H}} e}{\Gamma \vdash_{\mathrm{H}} \mathsf{code}[\vec{\alpha}](x_{1}:\tau_{1}, \dots, x_{n}:\tau_{n}).e : \forall [\vec{\alpha}](\tau_{1}, \dots, \tau_{n}) \to \textit{void hval}} \quad (x_{1}, \dots, x_{n} \not\in \Gamma)$$

New typing rule:

$$\begin{array}{ccc} \emptyset \vdash_{\mathrm{H}} \tau_i & x_1 : \tau_1, \dots, x_n : \tau_n \vdash_{\mathrm{H}} h_i : \tau_i \ \text{hval} & \emptyset; x_1 : \tau_1, \dots, x_n : \tau_n \vdash_{\mathrm{H}} e \\ & \vdash_{\mathrm{H}} \mathsf{letrec} \ x_1 \mapsto h_1, \dots, x_n \mapsto h_n \ \mathsf{in} \ e \end{array} (x_i \neq x_j \ \mathsf{for} \ i \neq j)$$

letrec f_{code} \mapsto (* main factorial code block *) λ_K $code[](env:\langle\rangle, n:int, k:\tau_k).$ if 0(n, (* true branch: continue with 1 *). let $[\beta, k_{unpack}] = unpack k in$ let $k_{code} = \pi_1(k_{unpack})$ in ► P let $k_{env} = \pi_2(k_{unpack})$ in $k_{code}(k_{env}, 1),$ ► F (* false branch: recurse with n-1 *) let x = n - 1 in $f_{code}(env, x, pack[\langle int, \tau_k \rangle, \langle cont_{code}, \langle n, k \rangle \rangle] as \tau_k))$ $cont_{code} \mapsto (* \text{ code block for continuation after factorial computation })$ $code[](env:\langle int, \tau_k \rangle, y:int).$ (* open the environment *) let $n = \pi_1(env)$ in let $k = \pi_2(env)$ in (* compute n! into z *) let $z = n \times y$ in (* continue with z *) $let [\beta, k_{unpack}] = unpack k in$ let $k_{code} = \pi_1(k_{unpack})$ in let $k_{env} = \pi_2(k_{unpack})$ in $k_{code}(k_{env}, z)$ $halt_{code} \mapsto (* \text{ code block for top-level continuation })$ $code[](env:\langle\rangle, n:int). halt[int]n$ in $f_{code}(\langle \rangle, 6, \mathsf{pack}[\langle \rangle, \langle halt_{code}, \langle \rangle \rangle] \text{ as } \tau_k)$ where τ_k is $\exists \alpha. \langle (\alpha, int) \rightarrow void, \alpha \rangle$

► Memory Allocation

ALLOCATION

Assembly language doesn't have Tuples!

► Need to allocate memory for tuples (and initialize!) $A[[\langle \tau_1, \dots, \tau_n \rangle]] \triangleq \langle A[[\tau_1]]^1, \dots, A[[\tau_n]]^1 \rangle$

>
$$x = (v_1, v_2)$$

let
$$x_1:\langle int^0, int^0 \rangle = \text{malloc}[int, int]$$

 $x_2:\langle int^1, int^0 \rangle = x_1[1] \leftarrow v_1$
 $x:\langle int^1, int^1 \rangle = x_2[2] \leftarrow v_2$
 \vdots

ALLOCATION

► Code Generation

Code Generation

- Mostly direct translation to assembly
- Function types annotate registers

 $\mathcal{T}\llbracket\forall[\vec{\alpha}](\tau_1,\cdots,\tau_n)\to void\rrbracket \stackrel{\text{def}}{=} \forall[\vec{\alpha}]\{\texttt{r1}:\mathcal{T}\llbracket\tau_1\rrbracket,\ldots,\texttt{rn}:\mathcal{T}\llbracket\tau_n\rrbracket\}$

- unpack is just a mov instruction w/ type erasure
- ► malloc is abstract

TAL IMPLEMENTATION

- ► TALx86 : IA32 ISA
- ► Variation from Paper:
 - ► Other data types (arrays, floats, etc.)
 - ► Not CPS -> Uses Explicit Stack
 - ► Implements malloc and unpack instructions
 - Modules with Type Interfaces
- Some optimizations
 - Register-sized objects vs. "large objects"
 - Cross-module optimization

CONCLUSIONS

- ► System F -> TAL
 - ► We *can* have security and expressivity
 - Utilizes many PL techniques
 - Type-directed Compilation
 - Formalism omits many optimizations (other work)
- ► Future Work & Impact
 - Cyclone (low level, typed language)
 - ► (and then Rust)

THANK YOU!

POLYMORPHIC CC – TWICE EXAMPLE

 $\lambda^{\rm F}$ source: twice = $\Lambda \alpha$. $\lambda f: \alpha \to \alpha$. $\lambda x: \alpha$. f(fx) λ^{K} source: twice = $\lambda[\alpha](f:\tau_f, c:(\tau_f) \to void).$ let twicef = $\lambda(x:\alpha, c':(\alpha) \rightarrow void).$ let once $f = \lambda(z;\alpha) \cdot f(z,c')$ in f(x, oncef)in c[](twicef)

where $\tau_f = (\alpha, (\alpha) \rightarrow void) \rightarrow void$

POLYMORPHIC CC λ^{H} translation let rec tu

$$\begin{split} \lambda^{\mathrm{F}} \mbox{ source:} \\ twice &= \Lambda \alpha. \, \lambda f{:}\alpha \to \alpha. \, \lambda x{:}\alpha. \, f(fx) \end{split}$$

 λ^{K} source:

$$\begin{split} twice &= \\ \lambda[\alpha](f{:}\tau_f, c{:}(\tau_f) \rightarrow void). \\ & \text{let } twicef = \\ \lambda(x{:}\alpha, c'{:}(\alpha) \rightarrow void). \\ & \text{let } oncef = \lambda(z{:}\alpha).f(z,c') \text{ in} \\ f(x, oncef) \\ & \text{in} \end{split}$$

' .

c[](twicef)

where $\tau_f = (\alpha, (\alpha) \rightarrow void) \rightarrow void$

translation:
letrec twice_{code}[\alpha](env: \langle\rangle, f:\tau_f, c: \exists \rho_3. \langle(\rho_3, \tau_f) \rightarrow void, \rho_3 \rangle).
let twicef = pack [\langle \tau_f \rangle, \langle twicef_{code}[\alpha], \langle f \rangle \rangle] as
$$\tau_f$$
 in
let $[\rho_3, c_{unpack}] =$ unpack c in
let $c_{code} = \pi_1(c_{unpack})$ in
let $c_{env} = \pi_2(c_{unpack})$ in
 $c_{code}(cenv, twicef)$
twicef_{code}[\alpha](env: $\langle \tau_f \rangle, x:\alpha, c':\tau_{\alpha c}$).
let $f = \pi_1(env)$ in
let oncef = pack [$\langle \tau_f, \tau_{\alpha c} \rangle, \langle oncef_{code}[\alpha], \langle f, c' \rangle \rangle$] as $\tau_{\alpha c}$
let $[\rho_1, f_{unpack}] =$ unpack f in
let $f_{env} = \pi_2(f_{unpack})$ in
let $f_{env} = \pi_2(f_{unpack})$ in
let $f_{env} = \pi_2(f_{unpack})$ in
let $f = \pi_1(env)$ in
let $f_{code} = \pi_1(f_{unpack})$ in
let $f_{code} = \pi_1(f_{unpack})$ in
let $f_{env} = \pi_2(f_{unpack})$ in

where
$$\tau_f = \exists \rho_1. \langle (\rho_1, \alpha, \tau_{\alpha c}) \to void, \rho_1 \rangle$$

 $\tau_{\alpha c} = \exists \rho_2. \langle (\rho_2, \alpha) \to void, \rho_2 \rangle$