
presented by Ryan Doenges

January 29th, 2019

of 1

presented by Ryan Doenges

January 29th, 2019

of 1

Plan

• Historical context

• S-expressions, S-functions, M-expressions

• eval

• Legacy of the paper

• Discussion!

Computing in 1960

• Computers like the IBM 704 use vacuum tubes, reels of
magnetic tape, punch cards, and cost a lot of money

• "the field variously called artificial intelligence, heuristic
programming, automata theory, etc."

• Algorithms defined in flowcharts (Section 6)

The IBM 704

The IBM 704

PL in 1960

• FORTRAN turns 7

• ALGOL 60 standardized by Backus, Naur, Perlis,
McCarthy, et al.

• Lambda calculus approaching 30 years of age,
considered a subject of purely mathematical interest

S-expressions
Abstract syntax:

Let's use modern syntactic sugar instead of the paper's
notation. Some examples:

atom ::= A | B | C | ... | AA | AB | ... 
s-exp ::= Atom atom 
 | Cons s-exp s-exp

() = NIL  
(A) = (Cons (Atom A) NIL) 
(A B) = (Cons (Atom A) (Cons (Atom B) NIL))

M-expressions

Meta-expressions are the host language or metalanguage
and are already equipped with an evaluator, unlike S-
expressions.

McCarthy writes f[x; y] for M-expression function calls;
let's just write (f x y) and distinguish S-expressions by
quoting them '(like this). More on this in a minute.

Primitive S-functions

• Predicates: atom, eq

• Constructor: cons

• Projections: car, cdr, caar, cadr, ...

• car is the first thing in the cons cell

• cdr is da rest

Conditional expressions

There are distinguished atoms T and F which serve as truth
values.

McCarthy writes 
 [p1 → e1; p2 → e2; ...] 
for conditionals, but let's write 
 (cond (p1 e1) (p2 e2) ...).

The predicates pi are evaluated in order, and if pi evaluates
to T then the conditional short-circuits to ei.

Lambdas and recursion
Our friend the anonymous function: 
 (lambda (x1 x2 ...) e)

There's also a special form for defining recursive functions: 
 (label fn (lambda (x1 x2 ...) e))

Is label necessary? Why or why not?

occurs in

Quotation

The quotation operator (page 189, left) takes an M-
expression and produces an S-expression which represents
it.

'x := X 
'(f x y ...) := ('f 'x 'y ...) 
'(cond (p1 e1) ...) := (COND ('p1 'e1) 
'(lambda (x...) e) := (LAMBDA ('x...) 'e)

occurs in

apply and eval

apply

The function apply takes an S-expression representing a
function and then a list of arguments. 
 (apply f args) := (eval (f (appq args))) 
where appq quotes each element of the list args.

eval
The function eval takes a quoted s-expression along with
an environment (an association list) and evaluates it. Full
definitions are on page 189.

There's some fishy stuff going on here. For example, what
will this evaluate to?

((lambda (x)
 ((lambda (g x) (g nil))
 (lambda (y) x)
 2)
1)

(page 190, left column)

Legacy
The first functional programming language, even if it got
scope wrong

S-expressions were necessary for the development of rich
macro systems and fancy metaprogramming features
present in modern Lisps (Racket/Scheme, Clojure, ...)

Automatic memory management

Computer algebra and other forms of "symbolic computing"

Domain-specific langauges (page 191)

Some discussion questions

Were there any concepts or techniques in the paper that felt
modern? Any that felt strange or dated?

Was LISP a scripting language?

How would you describe McCarthy's approach to
semantics?

What became of M-expressions?

(page 189, left column)

