Formal verification of
a realistic compiler

Xavier Leroy
CACM 2009

CS 7194: Great Works in Programming Languages

Presenter : Irene Yoon | Mentor : Ryan Doenges

Building robust
compilers Is Hard.

e will now judge the bugs you've
caught.

Bugs

e Random testing finds bugs in 11 C compilers [Yang et al 2011]

Bugs

e Random testing finds bugs in 11 C compilers [Yang et al 2011]

* Hundreds of previously unknown bugs

Bugs

[Yang et al 2011]

e Random testing finds bugs in 11 C compilers

* Hundreds of previously unknown bugs

%2000'0 —=={ 82
paxysbnq || —=
%E0°0 /2
paxysbng / — =
%L6V2°0 92
paxysbnq9 — =
%LY8L0 G2
poxiyysbnq || — =
%eYS'L | V2
poxiy sbnq 9| —=
%Y Ly6°0 & [
paxy sbnq y ——=
%L991°0 ¥ 22
%LG2H0 12
%L991°0 § 072
%8G02°0 6|
—- 1 1 _- 1 1 _- 1 1 _- 1 — 1
o ~— ~— ~— ~— ~—
o () o
o o
o

(o) e1ey 10413 9po) BuoIp\

LLVM version

Bugs

[Yang et al 2011]

e Random testing finds bugs in 11 C compilers

* Hundreds of previously unknown bugs

* LLVM has a large test suite

%2000'0 —=={ 82
paxysbnq || —=
%E0°0 /2
poxy sbnq / ——=
%L6¥2°0 92
paxy sbnq 9 — =
%.Y81°0 & G2
poxiyysbnq || — =
%ePS L | V2
poxiy sbnq 9| —=
%160 i [
paxy sbnq y ——=
%L991°0 22
%LS2L'0 & 1°2
%L991°0 § 072
%8G02°0 6|
—- 1 1 —- 1 1 _- 1 1 _- 1 — 1
o ~— ~— ~— ~— ~—
o () o
o Q
o

(o) e1ey 10413 9po) BuoIp\

LLVM version

Building compilers 1is hard

Building compilers 1is hard

Testing sucks

Building compilers 1is hard
Testing sucks

Formalisms are good

10

Building compilers 1is hard
Testing sucks

Formalisms are good

Formal verification of a compiler

11

First Published Proof of
Compiler Correctness

[1967]

CORRECTNESS OF A COMPILER FOR
ARITHMETIC EXPRESSIONS*

JOHN McCARTHY and JAMES PAINTER
1967

e arithmetic expressions — stack machine code

e prototype for proving usable compilers

12

First Proof of
Compiler Correctness

[1972]

3

Proving Compiler Correctness
In a Mechanized Logic

R. Milner and R. Weyhrauch

Computer Science Department
Stanford University

e ALGOL-like language — elementary assembly language

e Stanford LCF

13

Compiler Verification

e 100+ papers on compiler verification since 1967

Compiler Verification

e 100+ papers on compiler verification since 1967

Compiler verification: a bibliography

Full Text: TlpDE

Author: Maulik A. Dave

Ditklicehad in:

15

© 2003 Article

Tools and Resour:

¢+ Buy this Article
(PRINT)

& Recommend the A
to your organizatiol

Compiler Verification

e 100+ papers on compiler verification since 1967

Compiler verification: a bibliography

Full Text: TlpDF

Tools and Resour(

Author: Maulik A. Dave

Dithlichad in:

7+ Buy this Article
(PRINT)

Q? Recommend the A

‘A 2 £ 2" F 2> Arnnnnﬁn‘nl\.

16

Compiler Verification

e 1 The Verifying Compiler: A Grand Challenge for

Computing Research
- pTTE 2003]
Compil
Full Tex
auror: JONY HOARE "1%
ouktick Microsoft Research Ltd., Cambridge, UK -
v Buy this Article
(PRINT)

Q? Recommend the A

‘A 2 £ 2" F 2> Arnnnnﬁn‘nl\.

17

CompCert

CompCert

[2009]

“Develop and prove correct a realistic compiler, usable for
critical embedded software.”

CompCert

[2009]

“Develop and prove correct a realistic compiler, usable for
critical embedded software.”

source

Clight

CompCert

target

PowerPC

ARM

X86

Vi

CompCert

[2009]

“Develop and prove correct a realistic compiler, usable for
critical embedded software.”

e 42k Coq, 3 person years

source

Clight

CompCert

target

PowerPC

ARM

X86

Vi

Verified, Validated,
Certifying

Verified, Validated,
Certifying

1. Verified transformation [Compiler Correctness]

target
— —>

23

source

Verified, Validated,
Certifying

2 . Translation validation [Translation Verification]

24

source

Verified, Validated,
Certifying

3. Certifying compiler [Proof-carrying Code]

source . .
target code +

certificate

25

1.

\Verified transformation [Compiler Correctness]

source

target

*total and correct

2 . Translation validation [Translation Verification]

source

target

3. Certifying compiler [Proof-carrying Code]

source

.

proof

CERTIFYING
PROVER —

20

transformation [Compiler Correctness] 2 . Translation [Translation Verification]

source target

source Larget

COMPILER ——

——> COMPILER

N

VALIDATOR
*total and correct

3. Certifying compiler [Proof-carrying Code]

source

[Leroy 00]

27

=> External solver with verified validation

1. Verified transformation [Compiler Correctness] 2 . Translation validation [Translation Verification]
source target
source target
—
*total and correct
3. compiler [Proof-carrying Code]

PROOF
CHECKER

k‘ CERTIFYING
PROVER —*

>

28

=> External solver with verified validation

1. Verified transformation [Compiler Correctness] 2 . Translation validation [Translation Verification]
source target
source target
—
*total and correct
[Tristan and Leroy 10]
3. compiler [Proof-carrying Code]

> PROOF
CHECKER

k‘ CERTIFYING
PROVER —*

29

parsing, elaboration

(not verified)

(o

Y

spilling, reloading

[Linear

\

CompCert

{ Clight

\ simplifications { C #minorw

) type elimination

branch tunneling

f)

-

code

linearization N

LTL

calling conventions

instr. scheduling

J

layout of [
stack frames Mach

register

J

LCM CSE

fara

allocation

U

stack pre- ,
: Cminor
-allocation

instruction
selection

Y

construction N

(
RTL } CrG CminorSeg

constant propagation

J

generation

\ PowerPC code{ PPC]

assembling, linking

(not verified)

Figure 1: Compilation passes and intermediate languages.

30

parsing, elaboration

(not verified)

!

Y

spilling, reloading

[Linear

\

CompCert

_formal specification

{ Clight J

&
S

-
o
-

simplifications { C #minor\

type elimination

branch tunneling

f |

-

code

linearization \

LTL

calling conventions

)

layout of [
stack frames Mach

register

J

LCM CSE

fara

allocation

instr. scheduling

U

stack pre- _
: Cminor
-allocation

instruction
selection

Y

construction N

/
RTL } CrG CminorSeg
(&

constant propagation

J

generation

\ PowerPC code { PPC]

assembling, linking

(not verified)

Figure 1: Compilation passes and intermediate languages.

31

parsing, elaboration

(not verified)

!

Y

spilling, reloading

[Linear

N

CompCert

_formal specification
.’ — semantic analysis tools [Appel "11]

{ Clight

&
S

y

simplifications [it w

type elimination

branch tunneling

f |

(

code

linearization S

LTL

calling conventions

J

layout of [
stack frames Mach

register

Verified
Software
Toolchain

r
y
LCM CSE

f 1y

allocation

instr. scheduling

U

stack pre- ‘
: Cminor
-allocation

instruction
selection

Y

construction \

' 4
RTL } CFG : CminorSeg
N\

constant propagation

J

generation

\ PowerPC.code{ PPC]

assembling, linking

(not verified)

Figure 1: Compilation passes and intermediate languages.

32

CompCert

_» semantic preservation®

’
»
o _p_am.rsi_n.g? g!arb-qr_afcipp_ - Clight w simpliﬁcationsz C #minor\ stack pre- Crinor
(not verified) j type elimination) -allocation
branch tunneling LCM CSE instruction

m i m m selection '

4 ist 4
LTLin __code_ LTL —b RTL CrG_ CminorSel
linearization N allocation _ construction N

spilling, reloading U

instr. scheduling constant propagation

calling conventions

Y

[Linear \ layout of { Mach \ PowerPC code { PPC] ~_ assembling, linking -

J stack frames J generation (not verified)

Figure 1: Compilation passes and intermediate languages.

33

CompCert

_ parsing, elaboration .[.)_simplifications) stack pre- |
(not verified) Clight J type elimination Ce#minor) -allocation Cminor
branch tunneling LCM CSE instruction

m i m m selection '

g ist 4
LTLin __code_ LTL —E RTL CrG_ CminorSel
linearization \ allocation _ construction N

spilling, reloading U

instr. schedulin :
calling conventions . constant propagation

Y

[Linear \ layout of { Mach \ PowerPC code { PPC] ~_ assembling, linking -

J stack frames J generation (not verified)

Figure 1: Compilation passes and intermediate languages.

34

Semantic Preservation

» Spec(B) : functional specification of observable behavior

Semantic Preservation

» Spec(B) : functional specification of observable behavior
e B: observable behavior (trace properties of 1/0)

e “going wrong” (run-time error), termination, divergence

Semantic Preservation

» Spec(B) : functional specification of observable behavior
e B: observable behavior (trace properties of 1/0)
e “going wrong” (run-time error), termination, divergence

e (' = Spec if

A. C cannot go wrong

B. All behaviors B satisfy Spec

37

Correctness Property

S = Spec — C = Spec

Compiled code C preserves the fact that the source code S
satisfies the specification.

38

Proving Semantic
Preservation

Proving Semantic
Preservation

Safety Precondition

e Compilation result will match the semantics of the input if
if program is “safe” (no runtime errors)

Safety Precondition

e Compilation result will match the semantics of the input if
if program is “safe” (no runtime errors)

* Need to prove that input program is safe

42

Correctness Weakness

TURING AWARD LECTURE

Reflections on Trusting Trust

To what extent should one trust a statement that a program is free of Trojan

horses? Perhaps it is more important to trust the people who wrote the
software.

KEN THOMPSON

43

Correctness Weakness

TURING AWARD LECTURE

Reflections on Trusting Trust

To what extent should one trust a statement that a program is free of Trojan
horses? Perhaps it is more important to trust the people who wrote the
software.

You can'’t trust code that you did
not totally create yourself.

KEN THOMPSON

44

CompCert

_ parsing, elaboration .[.)_simplifications) stack pre- |
(not verified) Clight J type elimination Ce#minor) -allocation Cminor
branch tunneling LCM CSE instruction

m i m m selection '

g ist 4
LTLin __code_ LTL —E RTL CrG_ CminorSel
linearization \ allocation _ construction N

spilling, reloading U

instr. schedulin :
calling conventions . constant propagation

Y

[Linear \ layout of { Mach \ PowerPC code { PPC] ~_ assembling, linking -

J stack frames J generation (not verified)

Figure 1: Compilation passes and intermediate languages.

45

CompCert

.. passing, claboration_ [|_simplifications) stack pre- _
(not verified) CLEd J type elimination S) _allocation Cminor
branch tunneling LCM CSE instruction

m i m m selection '

g ist 4
LTLin __code_ LTL —b RTL CrG_ CminorSel
linearization \ allocation _ construction N

spilling, reloading U

instr. schedulin :
calling conventions s constant propagation

Y

[Linear \ layout of { Mach \ PowerPC code { PPC] ~_ assembling, linking -

J stack frames J generation (not verified)

Figure 1: Compilation passes and intermediate languages.

46

Correctness Weakness

e Only runs after the preprocessing step

Correctness Weakness

e Only runs after the preprocessing step

e Astree [Cousot et al ‘'05], Verasco [Jourdan et al *15]

Correctness Weakness

e Only runs after the preprocessing step
e Astree [Cousot et al '05], Verasco [Jourdan et al ’15])

e Reliant on less verifiable assumptions

Correctness Weakness

e Only runs after the preprocessing step

e Astree [Cousot et al '05], Verasco [Jourdan et al ’15])

Reliant on less verifiable assumptions

e CoQg’s correctness (CertiCoqg [Anand et al ’17])

Correctness Weakness

e Only runs after the preprocessing step

e Astree [Cousot et al '05], Verasco [Jourdan et al ’15])

e Reliant on less verifiable assumptions

e CoQg’s correctness (CertiCoqg [Anand et al ’17])

 Formal specification of C & PowerPC assembly

51

Pe
rforman
ce

—
gcce
-00
—
Co
m
pCert
—
gcce
-01
——
gcce
-02

‘b 0
a9 ¢ g o3 2<%
e\’
\,(l)\))
‘0
¢ oY «oe‘ Q Q&ﬂ)
6
w{\

\&0"”
PJ\ &,\ ‘b'
*ea“
,0
\)6
v
%\’\P‘
%?e&
\I ‘i

52

Performance

—agcc -00 mmmm CompCert —— gcc -01 mmm gcc -02

\Q\(‘e%oleﬂ\

P,?) ?,\1"\@ e \0& ?'aﬂ ,0
A \)

NP

<
\,(b\ N\@;O ‘Oe Q})\ Q&S v %Q,?* %Qedd

competitive with gcc -01

53

ited.

. revisi

Bugs

[Me will now judge the Pokémon you've

[Yang et al 2011]

54

Bugs, revisited.

[Yang et al 2011]

e CompCert: errors only found in (parser
and model of machine)

55

Bugs, revisited.

[Yang et al 2011]

e CompCert: errors only found in (parser
and model of machine)

e Other compilers: errors everywhere

56

Bugs, revisited.

[Yang et al 2011]

e CompCert: errors only found in unverified parts (parser
and model of machine)

e Other compilers: errors everywhere

“The striking thing about our CompCert results is that the
middle-end bugs we found in all other compilers are
absent”

o7

Critical Use Cases

e AirBus

Critical Use Cases

e AirBus

e MTU Friedrichshafen (nuclear energy)

Critical Use Cases

e AirBus
e MTU Friedrichshafen (nuclear energy)

 High-Assurance Cyber Military Systems (HACMS) [Fisher
et al, ’17]

60

Critical Use Cases

AirBus
MTU Friedrichshafen (nuclear energy)

High-Assurance Cyber Military Systems (HACMS) [Fisher
et al, ’17]

PhD Theses

61

Critical Use Cases

AirBus

MTU Friedrichshafen (nuclear energy)

“a realistic compiler”

High-Assurance Cyber Military Systems (HACMS) [Fisher

et al, ’17]

PhD Theses

62

Concluding Remarks

o Still some correctness and safety weaknesses

o Useful for safety critical code (that doesn’t have to run fast)

63

Concluding Remarks

o Still some correctness and safety weaknesses

o Useful for safety critical code (that doesn’t have to run fast)

") Verified

-\

|
* Future work - (2) Software Vellvm
(2) Toolchain b

Certi

Coq

64

Concluding Remarks

o Still some correctness and safety weaknesses

o Useful for safety critical code (that doesn’t have to run fast)

,’ Verified |
e Future work - ST Vc”vm :

VCI"IF!CCI l

Toolchain LLVM :

. Certi “d 1}

65

Concluding Remarks

o Still some correctness and safety weaknesses

o Useful for safety critical code (that doesn’t have to run fast)

Verified

e Future work - Software Ve”vm

. fied
Toolchain LM

Certi oq

66

Concluding Remarks

o Still some correctness and safety weaknesses

o Useful for safety critical code (that doesn’t have to run fast)

Verified

Software
Toolchain

* Future work - Vellvm

verified
LLVM

Certi oq

Principle 1: Erase the types! Compiler correctness is a stronger =——"
property than type preservation, anyway.

Thanks!

