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Building robust 
compilers is Hard.
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• Random testing finds bugs in 11 C compilers


• Hundreds of previously unknown bugs


• LLVM has a large test suite, real compilers have bugs


[Yang et al 2011]
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Formal verification of a compiler



First Published Proof of 
Compiler Correctness
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• arithmetic expressions → stack machine code


• prototype for proving usable compilers

[1967]



First Mechanized Proof of 
Compiler Correctness
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[1972]

• ALGOL-like language → elementary assembly language


• Stanford LCF
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• 100+ papers on Compiler Verification since 1967


[2003]
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CompCert

“Develop and prove correct a realistic compiler, usable for 
critical embedded software.”


• 42k Coq, 3 person years


Clight

PowerPC

ARM

x86

source
target

CompCert
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Verified, Validated, 
Certifying

1. Verified transformation [Compiler Correctness]
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COMPILER

source target



Verified, Validated, 
Certifying

2 .  Translation validation [Translation Verification] 
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COMPILER

source

VALIDATOR

target



Verified, Validated, 
Certifying

3.  Certifying compiler [Proof-carrying Code] 
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PROOF 
CHECKER

CERTIFYING 
COMPILER

source

target code + 
certificate
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[Leroy `06]
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=> External solver with verified validation
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[Tristan and Leroy `10]

=> External solver with verified validation



CompCert
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CompCert
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formal specification 
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→ semantic analysis tools [Appel ’11]
formal specification 



CompCert
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semantic preservation*



CompCert
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Semantic Preservation
• Spec(B) : functional specification of observable behavior


• B: observable behavior (trace properties of I/O)


• “going wrong” (run-time error), termination, divergence


• C ㅑ Spec if


A. C cannot go wrong


B. All behaviors B satisfy Spec
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Correctness Property

Compiled code C  preserves the fact that the source code S 
satisfies the specification.
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Proving Semantic 
Preservation
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Proving Semantic 
Preservation
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*



Safety Precondition

• Compilation result will match the semantics of the input if 
if program is “safe” (no runtime errors) 


• Need to prove that input program is safe
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Correctness Weakness

• Only runs after the preprocessing step 


• Astrèe [Cousot et al ’05], Verasco [Jourdan et al ’15])


• Reliant on less verifiable assumptions


• Coq’s correctness [Anand et al ’17] 

• Formal specification of C & PowerPC assembly
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Performance

competitive with gcc -01
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Bugs, revisited.
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[Yang et al 2011]

• CompCert: errors only found in unverified parts (parser 
and model of machine) 

• Other compilers: errors everywhere


“The striking thing about our CompCert results is that the 
middle-end bugs we found in all other compilers are 

absent”



Bugs, revisited.

!55

[Yang et al 2011]

• CompCert: errors only found in unverified parts (parser 
and model of machine) 

• Other compilers: errors everywhere


“The striking thing about our CompCert results is that the 
middle-end bugs we found in all other compilers are 

absent”



Bugs, revisited.

!56

[Yang et al 2011]

• CompCert: errors only found in unverified parts (parser 
and model of machine) 

• Other compilers: errors everywhere


“The striking thing about our CompCert results is that the 
middle-end bugs we found in all other compilers are 

absent”



Bugs, revisited.

!57

[Yang et al 2011]

• CompCert: errors only found in unverified parts (parser 
and model of machine) 

• Other compilers: errors everywhere


“The striking thing about our CompCert results is that the 
middle-end bugs we found in all other compilers are 

absent”



Critical Use Cases

• AirBus


• MTU Friedrichshafen (nuclear energy)


• High-Assurance Cyber Military Systems (HACMS) [Fisher 
et al, ’17] 

• PhD Theses 
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“a realistic compiler”
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. . .

• Still some correctness and safety weaknesses


• Useful for safety critical code (that doesn’t have to run fast)


• Future work - 
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Type Preserving 
Compilation



Thanks!
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