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Building robust
compilers Is Hard.



e will now judge the bugs you've
caught.
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Bugs

[Yang et al 2011]

e Random testing finds bugs in 11 C compilers

* Hundreds of previously unknown bugs

* LLVM has a large test suite

%2000'0 —=={ 82
paxysbnq || —=
%E0°0 /2
poxy sbnq / ——=
%L6¥2°0 92
paxy sbnq 9 — =
%.Y81°0 & G2
poxiyysbnq || — =
%ePS L | V2
poxiy sbnq 9| —=
%160 i [
paxy sbnq y ——=
%L991°0 22
%LS2L'0 & 1°2
%L991°0 § 072
%8G02°0 6|
—- 1 1 —- 1 1 _- 1 1 _- 1 — 1
o ~— ~— ~— ~— ~—
o () o
o Q
o

(o) e1ey 10413 9po) BuoIp\

LLVM version



Building compilers 1is hard



Building compilers 1is hard

Testing sucks



Building compilers 1is hard
Testing sucks

Formalisms are good

10



Building compilers 1is hard
Testing sucks

Formalisms are good

Formal verification of a compiler
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First Published Proof of
Compiler Correctness

[1967]

CORRECTNESS OF A COMPILER FOR
ARITHMETIC EXPRESSIONS*

JOHN McCARTHY and JAMES PAINTER
1967

e arithmetic expressions — stack machine code

e prototype for proving usable compilers
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First Proof of
Compiler Correctness

[1972]

3

Proving Compiler Correctness
In a Mechanized Logic

R. Milner and R. Weyhrauch

Computer Science Department
Stanford University

e ALGOL-like language — elementary assembly language

e Stanford LCF
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Compiler Verification

e 1 The Verifying Compiler: A Grand Challenge for
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CompCert

[2009]

“Develop and prove correct a realistic compiler, usable for
critical embedded software.”

e 42k Coq, 3 person years

source

Clight

CompCert

target

PowerPC

ARM

X86

Vi
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Certifying

1. Verified transformation [Compiler Correctness]

target
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Verified, Validated,
Certifying
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Verified, Validated,
Certifying

3. Certifying compiler [Proof-carrying Code]

source . .
target code +

certificate
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1.

\Verified transformation [Compiler Correctness]

source

target

*total and correct

2 . Translation validation [Translation Verification]

source

target

3. Certifying compiler [Proof-carrying Code]

source

.

proof
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transformation [Compiler Correctness] 2 . Translation [Translation Verification]

source target

source Larget

COMPILER ——

——> COMPILER

N

VALIDATOR
*total and correct

3. Certifying compiler [Proof-carrying Code]

source

[Leroy 00]
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=> External solver with verified validation

1. Verified transformation [Compiler Correctness] 2 . Translation validation [Translation Verification]
source target
source target
—
*total and correct
3. compiler [Proof-carrying Code]

PROOF
CHECKER

k‘ CERTIFYING
PROVER —*

>
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=> External solver with verified validation

1. Verified transformation [Compiler Correctness] 2 . Translation validation [Translation Verification]
source target
source target
—
*total and correct
[Tristan and Leroy 10]
3. compiler [Proof-carrying Code]

> PROOF
CHECKER

k‘ CERTIFYING
PROVER —*
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parsing, elaboration

(not verified)
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Figure 1: Compilation passes and intermediate languages.
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Semantic Preservation

» Spec(B) : functional specification of observable behavior
e B: observable behavior (trace properties of 1/0)
e “going wrong” (run-time error), termination, divergence

e (' = Spec if

A. C cannot go wrong

B. All behaviors B satisfy Spec
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Correctness Property

S = Spec — C = Spec

Compiled code C preserves the fact that the source code S
satisfies the specification.
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Proving Semantic
Preservation




Proving Semantic
Preservation




Safety Precondition

e Compilation result will match the semantics of the input if
if program is “safe” (no runtime errors)



Safety Precondition

e Compilation result will match the semantics of the input if
if program is “safe” (no runtime errors)

* Need to prove that input program is safe
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Correctness Weakness

TURING AWARD LECTURE

Reflections on Trusting Trust

To what extent should one trust a statement that a program is free of Trojan

horses? Perhaps it is more important to trust the people who wrote the
software.

KEN THOMPSON
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Correctness Weakness

TURING AWARD LECTURE

Reflections on Trusting Trust

To what extent should one trust a statement that a program is free of Trojan
horses? Perhaps it is more important to trust the people who wrote the
software.

You can'’t trust code that you did
not totally create yourself.

KEN THOMPSON
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CompCert
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Correctness Weakness

e Only runs after the preprocessing step

e Astree [Cousot et al '05], Verasco [Jourdan et al ’15])

e Reliant on less verifiable assumptions

e CoQg’s correctness (CertiCoqg [Anand et al ’17])

 Formal specification of C & PowerPC assembly
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[Yang et al 2011]

e CompCert: errors only found in (parser
and model of machine)

e Other compilers: errors everywhere
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Bugs, revisited.

[Yang et al 2011]

e CompCert: errors only found in unverified parts (parser
and model of machine)

e Other compilers: errors everywhere

“The striking thing about our CompCert results is that the
middle-end bugs we found in all other compilers are
absent”

o7
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Critical Use Cases

e AirBus
e MTU Friedrichshafen (nuclear energy)

 High-Assurance Cyber Military Systems (HACMS) [Fisher
et al, ’17]
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High-Assurance Cyber Military Systems (HACMS) [Fisher
et al, ’17]

PhD Theses
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Critical Use Cases

AirBus

MTU Friedrichshafen (nuclear energy)

“a realistic compiler”

High-Assurance Cyber Military Systems (HACMS) [Fisher

et al, ’17]

PhD Theses
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o Still some correctness and safety weaknesses

o Useful for safety critical code (that doesn’t have to run fast)
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Concluding Remarks

o Still some correctness and safety weaknesses

o Useful for safety critical code (that doesn’t have to run fast)

,’ Verified |
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. Certi “d 1}

65



Concluding Remarks

o Still some correctness and safety weaknesses

o Useful for safety critical code (that doesn’t have to run fast)

Verified

e Future work - Software Ve”vm

. fied
Toolchain LM

Certi oq

66



Concluding Remarks

o Still some correctness and safety weaknesses

o Useful for safety critical code (that doesn’t have to run fast)

Verified

Software
Toolchain

* Future work - Vellvm

verified
LLVM

Certi oq

Principle 1: Erase the types! Compiler correctness is a stronger =——"
property than type preservation, anyway.



Thanks!



