
Formal verification of
a realistic compiler

Xavier Leroy
CACM 2009

CS 7194: Great Works in Programming Languages

Presenter : Irene Yoon | Mentor : Ryan Doenges

�1

Building robust
compilers is Hard.

!2

Bugs

!3

bugs

Bugs

!4

• Random testing finds bugs in 11 C compilers

• Hundreds of previously unknown bugs

• LLVM has a large test suite, real compilers have bugs

[Yang et al 2011]

Bugs

!5

• Random testing finds bugs in 11 C compilers

• Hundreds of previously unknown bugs

• LLVM has a large test suite

[Yang et al 2011]

Bugs

!6

• Random testing finds bugs in 11 C compilers

• Hundreds of previously unknown bugs

• LLVM has a large test suite, real compilers have bugs

[Yang et al 2011]

Bugs

!7

• Random testing finds bugs in 11 C compilers

• Hundreds of previously unknown bugs

• LLVM has a large test suite

[Yang et al 2011]

✅ Building compilers is hard

 Testing sucks

 Formalisms are good

!8

✅ Building compilers is hard

✅ Testing sucks

 Formalisms are good

!9

✅ Building compilers is hard

✅ Testing sucks

✅ Formalisms are good

!10

✅ Building compilers is hard

✅ Testing sucks

✅ Formalisms are good

!11

Formal verification of a compiler

First Published Proof of
Compiler Correctness

!12

• arithmetic expressions → stack machine code

• prototype for proving usable compilers

[1967]

First Mechanized Proof of
Compiler Correctness

!13

[1972]

• ALGOL-like language → elementary assembly language

• Stanford LCF

Compiler Verification

!14

• 100+ papers on compiler verification since 1967

Compiler Verification

!15

• 100+ papers on compiler verification since 1967

Compiler Verification

!16

• 100+ papers on compiler verification since 1967

Compiler Verification

!17

• 100+ papers on Compiler Verification since 1967

[2003]

CompCert

!18

CompCert

“Develop and prove correct a realistic compiler, usable for
critical embedded software.”

• 42k Coq, 3 person years

Clight

PowerPC

ARM

x86

source
target

CompCert

[2009]

CompCert

“Develop and prove correct a realistic compiler, usable for
critical embedded software.”

• 42k Coq, 3 person years

Clight

PowerPC

ARM

x86

source
target

CompCert

[2009]

CompCert

“Develop and prove correct a realistic compiler, usable for
critical embedded software.”

• 42k Coq, 3 person years

Clight

PowerPC

ARM

x86

source
target

CompCert

[2009]

Verified, Validated,
Certifying

!22

Verified, Validated,
Certifying

1. Verified transformation [Compiler Correctness]

!23

COMPILER

source target

Verified, Validated,
Certifying

2 . Translation validation [Translation Verification]

!24

COMPILER

source

VALIDATOR

target

Verified, Validated,
Certifying

3. Certifying compiler [Proof-carrying Code]

!25

PROOF
CHECKER

CERTIFYING
COMPILER

source

target code +
certificate

!26

!27

[Leroy `06]

!28

=> External solver with verified validation

!29

[Tristan and Leroy `10]

=> External solver with verified validation

CompCert

!30

CompCert

!31

formal specification

CompCert

!32

→ semantic analysis tools [Appel ’11]
formal specification

CompCert

!33

semantic preservation*

CompCert

!34

Semantic Preservation
• Spec(B) : functional specification of observable behavior

• B: observable behavior (trace properties of I/O)

• “going wrong” (run-time error), termination, divergence

• C ㅑ Spec if

A. C cannot go wrong

B. All behaviors B satisfy Spec

!35

Semantic Preservation
• Spec(B) : functional specification of observable behavior

• B: observable behavior (trace properties of I/O)

• “going wrong” (run-time error), termination, divergence

• C ㅑ Spec if

A. C cannot go wrong

B. All behaviors B satisfy Spec

!36

Semantic Preservation
• Spec(B) : functional specification of observable behavior

• B: observable behavior (trace properties of I/O)

• “going wrong” (run-time error), termination, divergence

• C ㅑ Spec if

A. C cannot go wrong

B. All behaviors B satisfy Spec

!37

Correctness Property

Compiled code C preserves the fact that the source code S
satisfies the specification.

!38

Proving Semantic
Preservation

!39

Proving Semantic
Preservation

!40

*

Safety Precondition

• Compilation result will match the semantics of the input if
if program is “safe” (no runtime errors)

• Need to prove that input program is safe

!41

Safety Precondition

• Compilation result will match the semantics of the input if
if program is “safe” (no runtime errors)

• Need to prove that input program is safe

!42

Correctness Weakness

!43

Correctness Weakness

!44

CompCert

!45

CompCert

!46

Correctness Weakness

• Only runs after the preprocessing step

• Astrèe [Cousot et al ’05], Verasco [Jourdan et al ’15])

• Reliant on less verifiable assumptions

• Coq’s correctness [Anand et al ’17]

• Formal specification of C & PowerPC assembly

!47

Correctness Weakness

• Only runs after the preprocessing step

• Astrèe [Cousot et al ’05], Verasco [Jourdan et al ’15]

• Reliant on less verifiable assumptions

• Coq’s correctness [Anand et al ’17]

• Formal specification of C & PowerPC assembly

!48

Correctness Weakness

• Only runs after the preprocessing step

• Astrèe [Cousot et al ’05], Verasco [Jourdan et al ’15])

• Reliant on less verifiable assumptions

• Coq’s correctness [Anand et al ’17]

• Formal specification of C & PowerPC assembly

!49

Correctness Weakness

• Only runs after the preprocessing step

• Astrèe [Cousot et al ’05], Verasco [Jourdan et al ’15])

• Reliant on less verifiable assumptions

• Coq’s correctness (CertiCoq [Anand et al ’17])

• Formal specification of C & PowerPC assembly

!50

Correctness Weakness

• Only runs after the preprocessing step

• Astrèe [Cousot et al ’05], Verasco [Jourdan et al ’15])

• Reliant on less verifiable assumptions

• Coq’s correctness (CertiCoq [Anand et al ’17])

• Formal specification of C & PowerPC assembly

!51

Performance

!52

Performance

competitive with gcc -01

!53

Bugs, revisited.

!54

[Yang et al 2011]

• CompCert: errors only found in unverified parts (parser
and model of machine)

• Other compilers: errors everywhere

“The striking thing about our CompCert results is that the
middle-end bugs we found in all other compilers are

absent”

Bugs, revisited.

!55

[Yang et al 2011]

• CompCert: errors only found in unverified parts (parser
and model of machine)

• Other compilers: errors everywhere

“The striking thing about our CompCert results is that the
middle-end bugs we found in all other compilers are

absent”

Bugs, revisited.

!56

[Yang et al 2011]

• CompCert: errors only found in unverified parts (parser
and model of machine)

• Other compilers: errors everywhere

“The striking thing about our CompCert results is that the
middle-end bugs we found in all other compilers are

absent”

Bugs, revisited.

!57

[Yang et al 2011]

• CompCert: errors only found in unverified parts (parser
and model of machine)

• Other compilers: errors everywhere

“The striking thing about our CompCert results is that the
middle-end bugs we found in all other compilers are

absent”

Critical Use Cases

• AirBus

• MTU Friedrichshafen (nuclear energy)

• High-Assurance Cyber Military Systems (HACMS) [Fisher
et al, ’17]

• PhD Theses

!58

Critical Use Cases

• AirBus

• MTU Friedrichshafen (nuclear energy)

• High-Assurance Cyber Military Systems (HACMS) [Fisher
et al, ’17]

• PhD Theses

!59

Critical Use Cases

• AirBus

• MTU Friedrichshafen (nuclear energy)

• High-Assurance Cyber Military Systems (HACMS) [Fisher
et al, ’17]

• PhD Theses

!60

Critical Use Cases

• AirBus

• MTU Friedrichshafen (nuclear energy)

• High-Assurance Cyber Military Systems (HACMS) [Fisher
et al, ’17]

• PhD Theses

!61

Critical Use Cases

• AirBus

• MTU Friedrichshafen (nuclear energy)

• High-Assurance Cyber Military Systems (HACMS) [Fisher
et al, ’17]

• PhD Theses

!62

“a realistic compiler”

Concluding Remarks

!63

. . .

• Still some correctness and safety weaknesses

• Useful for safety critical code (that doesn’t have to run fast)

• Future work -

Concluding Remarks

!64

. . .

• Still some correctness and safety weaknesses

• Useful for safety critical code (that doesn’t have to run fast)

• Future work -

. . .

Concluding Remarks

• Still some correctness and safety weaknesses

• Useful for safety critical code (that doesn’t have to run fast)

• Future work -

!65

. . .

Concluding Remarks

• Still some correctness and safety weaknesses

• Useful for safety critical code (that doesn’t have to run fast)

• Future work -

!66

. . .

Type Preserving
Compilation

. . .

. . .

Concluding Remarks

• Still some correctness and safety weaknesses

• Useful for safety critical code (that doesn’t have to run fast)

• Future work -

!67

Type Preserving
Compilation

Thanks!

!68

