
An Axiomatic Basis for
Computer Programming

Tony Hoare, 1969

Presented by Alexa VanHattum, Great Works in PL Spring 2019
Mentor Jonathan DiLorenzo

software bugs are bad

manual testing is not enough

formal reasoning is better

Motivation

“Computer programming is an exact science in that all
the properties of a program and all the consequences of
executing it in any given environment can, in principle,
be found out from the text of the program itself by
means of purely deductive reasoning.”

Historical Context

“Assigning Meaning to Programs”
Robert Floyd, 1967

Historical Context

“Assigning Meaning to Programs”
Robert Floyd, 1967

“If the initial values of the
program variables satisfy
the relation R1, the final
values on completion will
satisfy the relation R2”

Axioms Deductive Rules Theorems

bricks? cement?

bra.org economictimes.indiatimes.com rebelwalls.com

The Strategy

Hoare’s contribution

Precondition Program Postcondition

If P holds and Q executes and
terminates, then R holds

true {x := 1} x = 1

x = 0 {x := x + 1} x = 1

✅

✅

Valid Hoare Triples?

false {x := 1} x = 0

x > 0 {while x > 1 do x := x + 1} x < 1

✅

❌

x = n {x := x * 2} x = 2n ✅

x > 0 {while x > 1 do x := x + 1} x = 1 ✅

Hoare’s Axioms
Integer arithmetic Overflow?

That depends!

1. Strict interpretation

2. Firm boundary

3. Modulo arithmetic

Assume 1 or 2 for now

how do we apply this
reasoning to programs?

axiom schemas!

Assignment

Assignment

x = 0 {x := 1} (x = 0)[1/x]

x = 0 {x := 1} 1 = 0

❌

x = 0 {x := 1} ?

❌

Assignment

(x = 1)[1/x] {x := 1} x = 1

1 = 1 {x := 1} x = 1

? {x := 1} x = 1

✅

✅true {x := 1} x = 1

Assignment

Consequence

Composition

Iteration

Iteration

x > 0 {while x > 1 do x := x + 1} x = 1

Iteration

x > 0 {while x > 1 do x := x + 1} ¬(x > 1) ∧ x > 0
x > 0 {while x > 1 do x := x + 1} x = 1

consequence rule
¬(x > 1) ∧ x > 0 ⇒ x = 1

Iteration

x > 0 {while x > 1 do x := x + 1} ¬(x > 1) ∧ x > 0
x > 0 ∧ x > 1 {x := x + 1} x > 0

x > 0 {while x > 1 do x := x + 1} x = 1

iteration rule

x + 1 > 0 {x := x + 1} x > 0

Iteration

x > 0 {while x > 1 do x := x + 1} ¬(x > 1) ∧ x > 0
x > 0 ∧ x > 1 {x := x + 1} x > 0

x > 0 {while x > 1 do x := x + 1} x = 1

consequence rule
x > 0 ∧ x > 1 ⇒ x + 1 > 0

Iteration

x > 0 {while x > 1 do x := x + 1} ¬(x > 1) ∧ x > 0
x > 0 ∧ x > 1 {x := x + 1} x > 0

x > 0 {while x > 1 do x := x + 1} x = 1

assignment rule

x + 1 > 0 {x := x + 1} x > 0

Iteration

How do we find P?

Can we automate it?

Extension to Hoare Logic:
Separation Logic

• Extends Hoare logic to
include reasoning over
shared data

• Separation conjunction *:
P * Q asserts P and Q hold
for separate regions of
memory

The frame rule (when c does not
modify the free variables of r)

Application of Hoare Logic

www.microsoft.com

Conclusion
• Relate deductive reasoning to

programs via Hoare triples

• Formalize/automate axiomatic
reasoning via rules

• Enable pen-and-paper proofs
and automated reasoning tools

• Axioms can leave aspects of the
language undefined

“The practice of supplying proofs for nontrivial programs will
not become widespread until considerably more powerful
proof techniques become available, and even then will not be
easy. But the practical advantages of program proving will
eventually outweigh the difficulties, in view of the increasing
costs of programming errors.”

Conclusion

30 years later…

“Researchers into formal methods […] predicted that
the programming world would embrace with gratitude
every assistance promised by formalization to solve the
problems of reliability that arise when programs get
large and more safety-critical […]

It has turned out that the world just does not suffer
significantly from the kind of problem that our research

was originally intended to solve.”

- Tony Hoare, 1996

