On the Expressive
Power

of Programming Languages



Historical Context

Parametricity (1983)

R3R Scheme
(1986)

Control

imi Reduction
I
aeglgrg)lters Semantics (1992)
This Progress and
paper Preservation (1994)

(1991)

DrScheme (1997)

Revenge of the Son of
the LISP Machine (1999)



Historical Context

1991: Writes this 1994: Shriram pivots
paper from CompBio after
reading it



Historical Context

1991: Writes this 1994: Shriram pivots 2010: Essence of 2019: nothing of note.
paper from CompBio after JavaScript
reading it



EXpressivity




EXpressivity

Language L



EXpressivity

Language L Language L'




EXpressivity

Language L'



EXpressivity

Let x = init in body Let x = ref 0 in x++

(fun x -> body) init Let x = makeBox () in
X.setRef (x.getRef + 1)



Eliminable Constructs



E1 ¢(e) is an L'-program for all £L-programs e;

11




E3 cvalz(e) holds if and only if evalz/(¢(e)) holds for all L-programs e.

12




E2 p(F(e1,...,e4)) = F(p(e1),...,¢(eq)) for all facilities F of L' | i.e., ¢ is homo-
morphic in all constructs of £'; and




Let x = init in body

¢ (Let x = init in body) => (fun x -> ¢ (body)) ¢ (init)

(fun x -> body) init

Eliminable: Example



Contextual Equivalence

Or Observational Equivalence

15



Definition 3.5. (Operational Fquivalence) Let £ be a programming language and
let eval; be its operational semantics. The L-phrases e; and ey are operationally
equivalent, ey = ey, 1f there are contexts that are program contexts for both e; and
ey, and if for all such contexts, C'(«), eval:(C(ey)) holds if and only if eval:(C(e3))
holds.

16



Definition 3.5. (Operational Fquivalence) Let £ be a programming language and
let eval; be its operational semantics. The L-phrases e; and ey are operationally
equivalent, ey = ey, 1f there are contexts that are program contexts for both e; and

ey, and if for all such contexts, C'(«), eval:(C(ey)) holds if and only if eval:(C(e3))

holds.
v

v

17



Definition 3.5. (Operational Fquivalence) Let £ be a programming language and
let eval; be its operational semantics. The L-phrases e; and ey are operationally
equivalent, ey = ey, 1f there are contexts that are program contexts for both e; and

ey, and if for all such contexts, C'(«), eval:(C(ey)) holds if and only if eval:(C(e3))

e - .

i B
e

X

J Distinguishing

Context

18



Contextual Equivalence: Example

(throw 1)

19



(fun x, v -> %) (fun x -> x) (throw 1)

Contextual Equivalence: Example

(fun x,

Y

->

)

(fun x -> xX)

(throw 1)

20



EXpressivity



- is expressible in h if
L
.

v v

¢ satisfies E1, E2, E3

There is no distinguishing
F is eliminable context for F and ¢(F).

22



Macro-expressivity

E4 For each a-ary construct F € {F,,...,F,,...} there exists an a-ary syntactic
abstraction, A, over £ such that

p(Flers ... eq)) = Alp(er), .. ., pled)).

23



E4 For each a-ary construct F € {F,,...,F,,...} there exists an a-ary syntactic
abstraction, A, over £’ such that

o(Flers- . vea) = Alg(er)s. . .. plea)).

For (init, test, update, body)

While (test, body)

Macro expressivity: Example

24



E4 For each a-ary construct F € {F,,...,F,,...} there exists an a-ary syntactic
abstraction, A, over £’ such that

o(Flers- . vea) = Alg(er)s. . .. plea)).

For (init, test, update, body)

For (init, test, upd, body) => init in While (¢ (test), ¢ (body) ++ ¢ (update))

While (test, body)

Macro expressivity: Example

25



AFe:T;AFblx/e|: 7’

Polymorphic let

AFlet z=€ein b: 7/

Call-by-value STLC

Expressive but Macro-inexpressive

26



AFe:T;AFblx/e|: 7’

Polymorphic let

AFlet z=€ein b: 7/

Let (x, e, b) => (fun x -> subst(x, ¢ (e),

Call-by-value STLC

Expressive but Macro-inexpressive

Expressivel!

27



AST function, not a syntactic abstraction!

Let (x, e, b) => (fun x -> (substix, ¢d(e), Pp(b)))

Recursive macros are not a problem! Macro-based subst
implementation will generate scoped macros. subst is
truly performing a compile-time computation.

Expressive but Macro-inexpressive

28



What do we get?




What do we get?

Eliminability

(Macro) expressivity

»

»

Inexpressible

State

Continuations

Lambda Calculus

30



What do we get?

Eliminability /\
(Macro) expressivity / b

Bad?

State

Continuations

Lambda Calculus

i1



(ase Study



Fssence of JavaScript

let x = { with (x) {
a: 10, a + b + 10
b: 20, }
}
> 30

* The Essence of JavaScript (2010); Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi



Fssence of JavaScript

let x = { with (x) {
a: 10, a + b + 10
b: 20, }
)
> 30

Lambda Calculus + objects

* The Essence of JavaScript (2010); Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi

34



Fssence of JavaScript

let x = { with (x) {
a: 10, a + b + 10
b: 20, }
}
> 40

Not macro expressible

Lambda Calculus + objects

* The Essence of JavaScript (2010); Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi

35



Thanks!

(call/cc
(Lambda (return)
(while (true)
(return

36



Discussion points

e Expressivity as a language design e Programming languages: isolated
principle vs type directed language mathematical formalisms or
design. complete ecosystems?

e Why is this not the prevailing way of
designing languages?

Put differently, interactive programming systems actually
add expressive power to the programming language. Peter Lee [personal communication] pointed out
another example of this phenomenon: The addition of a read-eval-print loop also introduces true,
non-eliminable polymorphism into a language like A' + let by providing top-level let declarations
with an open-ended body expression. The fact that such interactive programming environments add
power to their underlying languages suggests that they should be specified as a part of the language
standards!

37



