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Preface

This volume contains the proceedings of the 11th International Conference on
Relational Methods in Computer Science (RelMiCS 11) and the 6th International
Conference on Applications of Kleene Algebra (AKA 6). The joint conference
took place in Doha, Quatar, November 1–5, 2009. Its purpose was to bring to-
gether researchers from various subdisciplines of computer science, mathematics
and related fields who use the calculus of relations and/or Kleene algebra as
methodological and conceptual tools in their work.

This conference is the joint continuation of two different strands of meetings.
The seminars of the RelMiCS series were held in Schloss Dagstuhl (Germany)
in January 1994, Parati (Brazil) in July 1995, Hammamet (Tunisia) in January
1997, Warsaw (Poland) in September 1998, Québec (Canada) in January 2000,
and Oisterwijk (The Netherlands) in October 2001. The conference on Applica-
tions of Kleene Algebra started as a workshop, also held in Schloss Dagstuhl, in
February 2001. To join these two themes in one conference was mainly motivated
by the substantial common interests and overlap of the two communities. Over
the years this has led to fruitful interactions and openened new and interest-
ing research directions. Joint meetings have been held in Malente (Germany) in
May 2003, in St Catherines (Canada) in February 2005, in Manchester (UK) in
August/September 2006 and in Frauenwörth (Germany) in April 2008.

This volume contains 24 contributions by researchers from all over the world.
In addition to the 22 regular papers there were the invited talks Computational
Social Choice Using Relation Algebra and RelView by Harrie de Swart (Tilburg
University, Netherlands) and Knowledge and Structure in Social Algorithms by
Rohit Parikh (Brooklyn College and CUNY Grad Center, USA). The papers
show that relational and Kleene algebra methods have wide-ranging diversity
and applicability in theory and practice.

In addition, for the third time, a PhD programme was offered. It included
three invited tutorials by Marcelo Fŕıas (University of Buenos Aires, Argentina),
Ali Jaoua (University of Qatar at Doha) and Gunther Schmidt (University of
the Armed Forces at Munich, Germany).

We are very grateful to the members of the Programme Committee and
the external referees for their care and diligence in reviewing the submitted
papers. We also want to thank Qatar University for having accepted to host the
conference and Aws Al-Taie, Fatma Al-Baker, Zeina Hazem Al-Azmeh, Fatma
Al-Bloushi and Mohamad Hussein for their assistance; they made organizing
this meeting a pleasant experience. We also gratefully appreciate the excellent
facilities offered by the EasyChair conference administration system. Finally, we
cordially thank our sponsors Supreme Education Council (SEC), Qatar National
Research Fund (QNRF) and Qatar University (QU) for their generous support.

November 2009 Rudolf Berghammer
Ali Jaoua

Bernhard Möller
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P. Höfner Augsburg, Germany
A. Jaoua Doha, Qatar
P. Jipsen Chapman, USA
W. Kahl McMaster, Canada
Y. Kawahara Kyushu, Japan
L. Meinicke Sydney, Australia
A. Mili Tunis, Tunisia; New York, USA
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Knowledge and Structure in Social Algorithms

Rohit Parikh

Brooklyn College and CUNY Graduate Center
City University of New York

365 Fifth Avenue
New York, NY 10016

http://sci.brooklyn.cuny.edu/cis/parikh/

Abstract. While contemporary Game Theory has concentrated much
on strategy, there is somewhat less attention paid to the role of knowl-
edge and information transfer. There are exceptions to this rule of course,
especially starting with the work of Aumann [2], and with contribu-
tions made by ourselves with coauthors Cogan, Krasucki and Pacuit
[17,13]. But we have still only scratched the surface and there is still
a lot more that can be done. In this paper we point to the important
role which knowledge plays in social procedures (colorfully called Social
Software [15]).

Keywords: Knowledge, Society, Algorithms.

The peculiar character of the problem of a rational economic order is
determined precisely by the fact that the knowledge of the circumstances
of which we must make use never exists in concentrated or integrated
form, but solely as the dispersed bits of incomplete and frequently con-
tradictory knowledge which all the separate individuals possess. The eco-
nomic problem of society is thus not merely a problem of how to allocate
“given” resources – if “given” is taken to mean given to a single mind
which deliberately solves the problem set by these “data.” It is rather
a problem of how to secure the best use of resources known to any of
the members of society, for ends whose relative importance only these
individuals know.

F. Hayek
Individualism and Economic Order

1 Introduction

The first third of the XXth century saw two important developments. One of
these was Ramsey’s tracing of personal probabilities to an agent’s choices [22].
This was a precursor to the work of de Finetti, von Neumann and Morgenstern,

R. Berghammer et al. (Eds.): RelMiCS/AKA 2009, LNCS 5827, pp. 1–12, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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2 R. Parikh

and Savage [6,10,23]. The other one was Turing’s invention of the Turing machine
[26] and the formulation of the Church-Turing thesis according to which all
computable functions on natural numbers were recursive or Turing computable.1

Game theory has depended heavily on the first of these developments, since of
course von Neumann and Morgenstern can be regarded as the fathers of Game
theory. But the other development has received less attention. That development
led to the development and design of computers and also to fields like Logic of
Programs, Complexity Theory and Analysis of Algorithms. It also resulted in
much deeper understanding of algorithms, but only of computer algorithms.
Social algorithms have remained largely unanalyzed mathematically except in
special subfields like Social Choice Theory [1] or Fair Division [3]. These fields,
however, do not tend to analyze complex social algorithms (even algorithms of
modest complexity like the two thousand year old Euclid’s algorithm) as is done
in computer science.2 The typical game theoretic example tends to be either a
one shot game, or else such a game repeated.

A later development, going back to the work of Hintikka, Lewis and a little
later Aumann [8,9,2], brought in the issue of knowledge. The notion of common
knowledge is of course very important for Aumann as common knowledge of
rationality can be seen as a justification for backward induction arguments.

But knowledge too has received less attention than it might. We all know
that the Valerie Plame affair [21] had something to do with someone knowing
something which they should not have, and someone revealing something which
they should not have. But why should they not? Clearly because of certain
possible consequences. Knowledge and knowledge transfer are ubiquitous in how
social algorithms work. Note that the fact that the FBI bugged Burris’s phone
conversations with Blagojevich’s brother played an important role, and the fact
that we do not want the FBI to have unlimited right to listen in on conversations
are extremely important knowledge considerations.

We will try in this paper to bring attention to the importance of the two
issues of knowledge and logical structure of algorithms, and show the way to a
broader arena in which game theorists might want to play. Hopefully, in fact
almost certainly, there is a rich general theory to be developed.

1 The research reported here was supported in part by a research grant from the PSC-
CUNY program. Previous versions of this paper were presented at a workshop on
knowledge at the University of Quebec in Montreal (2007), and at the World Game
Theory meeting at Northwestern University (2008).

2 But society itself is replete with extremely complex algorithms. Just consider the
complexity involved in Obama’s election to the presidency, the consequent vacating
of his senate seat, Blagojevich’s acquiring the right to name Obama’s successor,
Blagojevich naming Burris to Obama’s vacant seat, Blagojevich’s impeachment and
removal from office, demands, so far unsuccessful, for Burris to step down, and, no
doubt, quiet satisfaction on the part of the Republicans. And even Obama’s election
to the presidency is hardly a simple event since it involved factors like Hillary’s
association with her husband, a former president, an initital feeling on the part of
African-Americans that Obama, having no ancestry in the institution of slavery was
not “one of us,” etc. etc.
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The notion of algorithm is implicit in so many things which happen in every-
day life. We humans are tool-making creatures (as are chimps to a somewhat
smaller extent) and both individual and social life is over-run with routines, from
cooking recipes (Savage’s celebrated eggs to omelette example [23] for instance)
to elections – a subject of much discussion going back to Condorcet.

Over the last ten years or so, a field called Social Software [15] has come into
existence which carries out a systematic study of such questions, and the purpose
of this paper is to give an introduction to the knowledge-theoretic issues. We will
proceed by means of examples.

2 Structure

Normally, a piece of social software or social algorithm has a logical structure.
As was argued in [15], this structure must address three important aspects,
namely incentives, knowledge, and logical structure. For normally, an algorithm
has logical structure, “A happens before B, which is succeeded by action C if
condition X holds and by action D if X does not hold.”

But quite often, the logical structure of the algorithm is parasitic on logical
(or algorithmic) properties of existing physical or social structures. Clearly a
prison needs a certain physical structure in order to be able to confine people,
and a classroom needs a blackboard or a lectern in order for it to be usable as
the venue of a lecture. Thus the teacher can now perform actions like write “No
class tomorrow” on the blackboard and the students can read what she wrote
or copy it in their notebooks. The physical properties of the blackboard enable
certain actions with their own algorithmic properties. The fact that there is no
class the next day now becomes common knowledge and the students can make
plans to use the time that has been freed up.

2.1 Queues

A social structure with certain logical properties is a queue.
The queue is a very popular institution which occurs both in daily life and

in computer programs. In a computer program, a queue is a FIFO structure,
where FIFO means, “First in, first out.” There are two operations, one by which
an element is deleted from the front of the queue, and a second one where an
element is added to the back of the queue. In real life, the queue could consist
of people waiting at a bank to be served. The person deleted is the one who was
at the front of the queue but is no longer in the queue, and who receives service
from a teller. An element which is added is a new customer who has just arrived
and who goes to the back of the queue.

Clearly the queue implements our notions of fairness, (which can be proved
rigorously as a theorem) that someone who came earlier gets service earlier, and
in a bank this typically does happen. If someone in a bank tries to rush to the
head of the line, people will stop him. Thus ‘violations easily detectable’ is a
crucial knowledge property.
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We also have queues at bus stops and quite often the queue breaks down;
there is a rush for seats at the last moment. Presumably the difference arises
because things happen much faster in a bus queue than they do in a bank. At
a bus stop, when the bus arrives, everything happens very fast and people are
more interested in getting on the bus than in enforcing the rules.

Consider now, by comparison, the problem of parking, which is a similar prob-
lem. A scarce resource needs to be allocated on the basis of some sort of priority,
which, now, is more difficult to determine. When people are looking for parking
in a busy area, they tend to cruise around until they find a space. There is no
queue as such, but in general we still want that someone who arrives first should
find a parking space and someone who arrives later may not. This is much more
likely in a university or company parking lot, which is compact, and may even
have a guard, rather than on the street, where parking is distributed, and priority
does play some role but it is only probabilistic. Clearly the lack of information
about where the parking space is, and who came first, plays an important role.

This fact has unfortunate consequences as Shoup [24] points out.

When my students and I studied cruising for parking in a 15-block
business district in Los Angeles, we found the average cruising time was
3.3 minutes, and the average cruising distance half a mile (about 2.5
times around the block). This may not sound like much, but with 470
parking meters in the district, and a turnover rate for curb parking of 17
cars per space per day, 8,000 cars park at the curb each weekday. Even
a small amount of cruising time for each car adds up to a lot of traffic.

Over the course of a year, the search for curb parking in this 15-block
district created about 950,000 excess vehicle miles of travel – equivalent
to 38 trips around the earth, or four trips to the moon. And here’s an-
other inconvenient truth about underpriced curb parking: cruising those
950,000 miles wastes 47,000 gallons of gas and produces 730 tons of the
greenhouse gas carbon dioxide. If all this happens in one small business
district, imagine the cumulative effect of all cruising in the United States.

Shoup regards this problem as one of incentive and suggests that parking fees
be raised so that occupancy of street parking spaces is only 85%. But clearly
this will penalize the less affluent drivers. The new fees will likely be still less
than the cost of garage parking, affluent drivers will abandon garage parking for
street parking, and the less affluent drivers will be priced out. Note by contrast
that we do not usually charge people for standing in a queue. We could, and
surely queues would also be shorter if people had to pay to stand in them. But
this has not occurred to anyone as a solution to the ‘standing in line problem.’

An algorithmic solution to the problem of parking might well be possible using
something like a GPS system. If information about empty parking spaces was
available to a central computer which could also accept requests from cars for
parking spaces, and allocate spaces to arriving cars, then a solution could in
fact be implemented. The information transfer and the allocation system would
in effect convert the physically distributed parking spaces into the algorithmic
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equivalent of a queue. There would be little wasteful consumption of gasoline,
and the drivers would save a great deal of time and frustration.

And here indeed is an implementation of the alternate solution

Find a Place to Park on Your GPS – Spark Parking Makes it Possible

Navigation Developers Can Access Spark Parking Points of Interest
Through New Tele Atlas ContentLink Program

San Francisco, CA, March 21, 2007
Running late for a meeting and worried about finding a place to

park? Unhappy about paying outrageous valet parking fees at your fa-
vorite restaurant? These headaches will soon be a thing of the past.
Spark Parking’s detailed parking location information data is now avail-
able through the newly released Tele Atlas ContentLinkSM portal for
application developers to incorporate into a range of GPS devices and
location-based services and applications.

Spark Parking’s detailed parking information provides the locations
of every paid parking facility in each covered city – from the enormous
multi-level garages to the tiny surface lots hidden in alleys. In addition,
Spark Parking includes facility size, operating hours, parking rates, avail-
able validations, and many more details not previously available from any
source. As a result, drivers will easily be able to find parking that meets
their needs and budgets.

http://www.pr.com/press-release/33381

SAN FRANCISCO
Where’s the bus? NextMuni can tell you.

System uses GPS to let riders know when streetcar will arrive
Rachel Gordon, Chronicle Staff Writer

Thursday, March 29, 2007
San Francisco’s Municipal Railway may have a hard time running on

time, but at least the transit agency is doing more to let riders know
when their next bus or streetcar is due to arrive.

The ”NextMuni” system, which tracks the location of vehicles via
satellite, is now up and running on all the city’s electrified trolley bus
lines. It had been available only on the Metro streetcar lines and the
22-Fillmore, a trolley bus line that served as an early test.

The whereabouts of the Global Positioning System-equipped vehicles
are fed into a centralized computer system that translates the data into
user-friendly updates available on the Internet and on cell phones and
personal digital assistants.

http://www.sfgate.com/

Ultimately, the difference between queues and searching for parking is structural.
In one case there is an easy algorithmic solution which respects priority (more
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or less) and in the other case such solutions are harder to find – except when we
are dealing with parking lots or use sophisticated new technology.

2.2 Keys

Here is another example. When you rent an apartment, you receive a key from
the landlord. The key serves two purposes. Its possession is proof of a right, the
right to enter the apartment. But its possession is also a physical enabler. The
two are not the same of course, since if you lose your key, you still have the right,
for it is still your apartment. But you are not enabled, as you cannot get in. If
some stranger finds the key, then he is enabled, but does not have the right.
Thus the two properties of a key do not coincide perfectly. But normally the two
do coincide.

There are other analogs of a key which perform similar functions to a key. A
password to a computer account is like a key, but does not need to be carried in
your pocket. An ID card establishes your right to enter, but you typically need
a guard to be present, to see your card and to let you into the building. If the
building is locked and the guard is not present, you are out of luck.

In any case, these various generalized keys differ algorithmically in some cru-
cial ways. Stealing someone’s identity was at one time very difficult. You had to
look like that person, know some personal facts, and you had to stay away from
that person’s dog who knew perfectly well that you had the wrong smell. You
needed a different ‘ID’ for the dog than you needed for people.

But nowadays identity theft is extremely easy. Lots of Social Security numbers,
and mothers’ maiden names are out there for the taking, and people who do
not look like you at all can make use of them. Personal appearance or brass
keys which originally provided proof of “right to entry,” have been replaced by
electronic items which are very easy to steal.3

Let x be an individual, and let R(x) mean that x has the right to use the
resources controlled by the key, and E(x) mean that x is enabled by the key.
Then we have two important conditions.

– Safety: E(x) → R(x). Whoever is enabled has the right
– Liveness: R(x) → E(x). Whoever has the right is enabled.

Of course safety could be thought of in terms of the contrapositive,
∼ R(x) → ∼ E(X)

namely, whoever does not have the right is not enabled. Usually, safety is more
important than liveness. If you lose your key and someone finds it, you are in
trouble. But liveness also matters. A good notion of key must provide for both
properties.

At one time, university libraries tended to be open. People not connected
to the university, even if they did not have the right, were still able to enter
the library. There was open access corresponding to the fact that liveness was
3 According to the Javelin Research and Strategy Center, identity theft affected some

10 million victims in 2008, a 22% increase from 2007.



Knowledge and Structure in Social Algorithms 7

thought of as more important than safety. But the trend in the last few decades
has been in the opposite direction and entry to libraries is strictly controlled, at
least in the US.

In any case the structural problem (of safety) can be addressed at the incentive
level, for instance by instituting heavy penalties for stealing identities. But we
could also look for a structural solution without seeking to penalize anyone.

Toddlers are apt to run away and get into trouble, but we do not solve the
problem by punishing them – we solve it by creating barriers to such escape,
e.g., safety gates. A magnetic card which you can swipe also serves as a purely
structural solution to the safety problem.

Another interesting example is a fence. A farmer may have a fence to keep
his sheep in, and the fence prevents certain kinds of movement – namely sheep
running away. Here the fence is a physical barrier and implements the safety
condition in a purely physical way. But sometimes, on a university campus, we
will see a very low fence around a grassy area. Almost anyone can walk over the
fence, so the fence is no longer a physical obstacle. Rather the value of the fence
is now informational. It says, Thou shalt not cross! With the yellow tape which
the police sometimes put up, perhaps around a crime scene, or perhaps simply
to block off some intersection, the Thou shalt not cross acquires quite a bit of
punch.

3 Crime and Punishment

We offer a simple model to explain certain common situations where knowledge
plays a role and can be used for reward or punishment.

3.1 Prisoner’s Dilemma

In this game, two men are arrested and invited to testify against each other. If
neither testifies, then there is a small penalty since there is no real evidence. But
if one defects (testifies) and the other does not, then the defecter goes free and
the other gets a large sentence. If both defect they both get medium sentences.
Jointly they are better off (The payoffs are 3 each) if neither defects, but for both
of them, defecting is the dominant strategy. It yields better payoffs regardless of
how the other acts. But if they both defect, then they end up with (1,1) which
is worse. If one defects and the other remains honest then the honest one suffers
for his honesty. In the table below, the highest payoff of 4 corresponds to going
free and the lowest payoff of 0 corresponds to the longest sentence.

Coop Def
Coop 3, 3 0, 4

Def 4, 0 1, 1

There is a unique, rather bad Nash equilibrium at SE with (1,1), while the
(3,3) solution on NW, though better for both, is not a Nash equilibrium.
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Let us change this now into a three person game, where the third agent S
(Society) has a payoff equal to the sum of the payoffs of the two original agents.

Consider now the expanded game G. In G, after the first two players make
their moves, the third player moves and can choose among pr (punish Row), pc

(punish Column), pb (punish both), and n (no action). pr, as we might expect,
results in a negative payoff for Row of say 5. If Row has defected, S can play pr

which results in a negative payoff of 5 for the Row player. Similarly for Column
and pc. G is a full information game in that after Row and Column have made
their moves, S knows what moves they made. Since S also suffers when Row or
Column betrays his partner, S has an incentive to punish the erring player and
the threat of S’s punishment will keep the two players honest. We now get (from
the point of view of Row and Column)

Coop Def
Coop 3, 3 0, −1

Def −1, 0 −4, −4

and the NE solution with payoffs of (3,3) becomes the unique Nash equilibrium.
We now introduce a slightly different game G’. G’ is just like the game G,

except that S lacks information as to who made which move. If the societal
payoff is only 4 or less, S knows that one of Row and Column cheated but it
does not know which one. Thus it has no way to punish, and cheating can take
place with impunity.

Clearly socially responsible behavior is more likely in G than in G’ and the
difference arises from the fact that in G, S has some information which it does
not have in G’.

This, of course is why the FBI taps the phones of suspected criminals. A
social agency has the incentive to punish anti-social behavior, and in order to
do this, it needs to get information and change a G’-like situation into a G-like
situation.4

Naturally, the agency S might not be benign. S could easily be a Mafia boss
who needs to know when some member of the mob “sings”, i.e., betrays the oath
of silence. The singer could then be punished if and when he comes out of prison.

The FBI could itself have non-benign reasons for tapping phones. For instance
we know that Martin Luther King’s phone was tapped in order for the FBI to
have power over him. This situation can be represented game theoretically, by
turning G into a four payer game where the FBI-like agent (call is S1) which
has the power to punish, is not society at large but an agent of society. And
then society, while wishing to control anti-social behavior on the part of Row
and Column, also needs to control its own agent (say the FBI) whose job it is
to keep Row and Column in check, but who may have its own payoff function
distinct from social welfare.

We shall not go more into this in this paper.
4 Of course all this is rather obvious, but it is important to point to the game theo-

retic reason not only behind punishment, but behind the acquisition of information
relevant to it.



Knowledge and Structure in Social Algorithms 9

4 Cooperative Knowledge

Distributed Algorithms are much studied by computer scientists. A lot of com-
mercial activity which goes on on the web has the property of being a distributed
algorithm with many players. And of course the market is itself a very old dis-
tributed algorithm.

In such algorithms, it is crucial to make sure that when agents have to act,
they have the requisite knowledge. And models for calculating such knowledge
have existed for some time; we ourselves have participated in constructing such
models [20,19]. See also [4].

The notion of common knowledge as the route to consensus was introduced by
Aumann in [2]. There is subsequent work by various people, including Geanako-
plos and Polemarchakis [7] and ourselves [17]. Aumann simply assumed common
knowledge, and showed that two agents would agree on the value of a random
variable if they had common knowledge of their beliefs about it. [7] showed that
even if the agents did not have common knowledge to start with, if they ex-
changed values, they would arrive at consensus, and common knowledge of that
fact. Parikh and Krasucki [17] carried this one step further and considered many
agents exchanging values in pairwise interactions. No common knowledge could
now arise, as most agents would remain unaware of individual transactions they
were not a party to. Nonetheless there would be consensus. Thus this exchange
of values could be seen as a distributed algorithm which achieved a result.

Issues about how knowledge enters into social algorithms are discussed in
[11,13,20].

[20] actually discusses how a framework for defining knowledge can be devel-
oped. A finite number of agents have some private information to start with, and
they exchange messages. Each exchange of messages reveals something about the
situation, or, in technical terms, it reduces the size of the relevant Kripke struc-
ture or Aumann structure. An agent who has seen some events but not others
can make guesses as to what other events could have taken place and it knows
some fact φ iff φ would be true regardless of how the unseen events went. This
framework is used in both [13,11].

[11] discusses agents who are connected along some graph, and knowledge can
move only along the edges of a graph. Thus if agent i is not connected to agent j,
then i cannot directly obtain information from j, but might get such information
via a third agent k, as in fact Novak got some information from Judith Miller.
Such edges may be approved or disapproved, and if information transfer took
place along a disapproved edge, then that could be cause for legal sanctions, not
because harm had occurred, but because harm could occur and the algorithm
was no longer secure.

It is shown in [11] that the graph completely determines the logical properties
of possible states of knowledge, and vice versa. Indeed, an early version of that
paper already discussed the Plame case before it hit the headlines.

In [13] we consider how obligations arise from knowledge. We consider the
following examples:
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Example 1: Uma is a physician whose neighbour is ill. Uma does not know and
has not been informed. Uma has no obligation (as yet) to treat the neighbour.

Example 2: Uma is a physician whose neighbour Sam is ill. The neighbour’s
daughter Ann comes to Uma’s house and tells her. Now Uma does have an
obligation to treat Sam, or perhaps call in an ambulance or a specialist.

Example 3: Mary is a patient in St. Gibson’s hospital. Mary is having a heart
attack. The caveat which applied in case a) does not apply here. The hospital
has an obligation to be aware of Mary’s condition at all times and to provide
emergency treatment as appropriate.

In such cases, when an agent cannot herself take a requisite action, it is in-
cumbent upon her to provide such information to the agent who can take such
action. Or, as in the case of the hospital, the agent has an obligation not only
to act, but also to gather knowledge so as to be able to act when the occasion
arises. A milder example of such situations consists of requiring homeowners to
install fire alarms. Homeowners are not only required (advised) to take action
when there is a fire, they are also required to set up a system such that if there
is a fire, they will know about it.

Again the semantics from [20] is used. Various possible sequences of events are
possible, depending on the actions taken by the agents. Some of these sequences
are better than others, and some, indeed, are disastrous, as when a patient is
not treated for lack of information. It is shown in [13] how having information
creates obligations on the agents, and also how the need to convey information
arises, when one knows that an agent who could carry out some required action
lacks the requisite information.

5 Summary

We have given examples of situations where knowledge transfer and algorithmic
structure can affect or even determine the sorts of social algorithms which are
possible. As we have said earlier, understanding the role of knowledge in the
working of society is a big project. The importance of knowledge has always
been recognized, even in the Indian school of Navya-Nyaya, by Plato’s Socrates
(especially the dialogues Meno, and Theaetetus ), and by Confucius. But its
importance in the actual running of society has been only recently begun to be
appreciated by those who do formal work. The work we described above indicates
how rich the domain of interest is here.

6 Further Research

A topic we have not addressed is that of cheap talk [5,25] where an agent says
something which might not be true, or might be deceptive. The listener then
has to take the agent’s motives (her payoff function) into account in order to
properly interpret her words. In [25], Stalnaker analyzes the statement of the
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secretary of treasury, John Snow, to the effect that a cheap dollar helps exports.
This possibly innocent remark by Snow led to a fall in the value of the dollar.
Did Snow intend this fall because such a fall would help exports, or did he make
a mistake? Experts differed in their interpretations, just as experts differ in their
evaluation of Obama’s recent remarks in the Gates-Crowley affair.

This is a fascinating topic but clearly for another paper.
Another example which would also fit, but must be postponed to a future

paper is the knowledge property of wills (last will and testament). For a will to
be legal, it must be witnessed by two people, which is rather like being a member
of a recursively enumerable (r.e.) set. Indeed we often talk about witnesses in
that context too. However, for a will to be valid, there must not be a subsequent
will, which is like not having a counter witness and being a member of a co-r.e.
set. These differences, which are knowledge-theoretic, have practical effects and
hence also legal ones.
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Abstract. We present an overview of the potential of relation alge-
bra and the software tool RelView, based on it, to compute solutions
for problems from social choice. Using one leading example through-
out the text, we subsequently show how the RelView tool may be
used to compute and visualize minimal winning coalitions, swingers of a
given coalition, vulnerable winning coalitions, central players, dominant
players, Banzhaf power indices of the different players, Hoede Bakker
indices of the different players in a network, and finally stable coali-
tions/governments. Although problems from social choice and games are
mostly exponential, due to the BDD implementation of RelView, com-
putations are feasible for the examples which appear in practice.

1 Introduction

While both Computer Science and Social Choice Theory are senior scientific
disciplines, only recently links between them have been observed, which resulted
in developing Computational Social Choice. The aim of this paper is to present
applications of Relation Algebra and RelView to Social Choice Theory, that
consist of computing solutions for problems from social choice.

After elections in list systems of proportional representation a coalition has
to be formed which is preferably stable, meaning that none of the coalition
partners has an incentive to leave that coalition. In Section 5 we will give precise
definitions of a feasible coalition and of a feasible stable government, the central
notions in [16]. We will show how the BDD based RelView tool uses relation
algebra to compute and visualize all feasible stable coalitions, which is, in general,
a complex task.
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Related to stability of a government is the existence of some specific players
in a political game. Given a parliament or a city council we are interested in
computing which players are the central players, and which are the dominant
players, if any. In Section 3 we will relation-algebraically specify these key players
and apply the RelView program to determine them. In order to measure the
power of a player, the so called power indices have been defined. We will present
relation-algebraic specifications of the Banzhaf indices, the well-known power
indices related to the concept of a swinger, and will execute these specifications
with the help of the RelView tool.

The decision-making process in most (if not all) decision bodies, in particular
in politics, can be represented by a social network with mutual influences among
the players. When a collective decision is made, each player appears to be suc-
cessful or not, respectively powerful or not, depending on whether the collective
decision coincides with the player’s wishes, and depending on the player’s ability
to affect the collective outcome, respectively. In Section 4 we will apply relation
algebra and RelView to compute the success of a player.

Before we present the applications of Relation Algebra to Social Choice The-
ory, first in Section 2 we recapitulate basic relation-algebraic notions that will
be used in the paper.

2 Relation-Algebraic Preliminaries

We denote the set (in this context also called type) of all relations with domain
M and range N by [M ↔N ] and write R : M ↔N instead of R ∈ [M ↔N ]. As
basic operations of relation algebra we use RT (transposition), R (complement),
R ∪ S (union), R ∩ S (intersection) and RS (composition), as special relati-
ons we use O (empty relation), L (universal relation), and I (identity relation),
and as predicates we use R ⊆ S (inclusion) and R = S (equality). A Boolean
matrix interpretation of relations is well suited for many purposes and also used
as one of the graphical representations of relations within RelView. Also we
use Boolean matrix terminology and notation, i.e., speak of rows, columns and
1- and 0-entries of relations and write Rj,k instead of 〈j, k〉 ∈ R.

The symmetric quotient syq(R, S) = RT S ∩ R TS : N1 ↔N2 is used to
compare the columns of two relations R and S with the same domain M and
possible different ranges N1 and N2, since syq(R, S)j,k holds iff for all x ∈ M we
have Rx,j iff Sx,k, i.e., the j-column of R equals the k-column of S.

A vector is a relation v with v = vL. As for a vector the range is irrelevant,
we consider only vectors v : N ↔1 with a specific singleton set 1 as range and
omit the second subscript, i.e., write vk. Such a vector can be interpreted as a
Boolean column vector and describes the subset {k ∈ N | vk} of N . As another
way to deal with sets we apply membership relations E : N ↔ 2N between N and
its powerset 2N . These specific relations are defined by Ek,S iff k ∈ S. Finally,
we use injective mappings generated by vectors for modeling sets. If v : N ↔1
describes the subset S of N in the sense above, then the injective mapping
inj(v) : S ↔N is obtained from the identity relation I : N ↔N by removing



Computational Social Choice Using Relation Algebra and RelView 15

all rows which correspond to a 0-entry in v. Hence, we have inj(v)j,k iff j = k.
A combination of injective mappings generated by vectors with membership
relations allows a column-wise enumeration of sets of subsets. More specifically,
if v : 2N ↔1 describes a subset N of 2N in the sense above, i.e., N equals the set
{S ∈ 2N | vS}, then for all k ∈ N and S ∈ N we have (E inj(v)T)k,S iff k ∈ S. In
Boolean matrix terminology this means, that the elements of N are described
precisely by the columns/vectors of E inj(v)T : N ↔N .

Given a Cartesian product M × N of two sets M and N , there are the two
canonical projection functions which decompose a pair u = 〈u1, u2〉 into its first
component u1 and its second component u2. For a relation-algebraic approach
it is useful to consider instead of these functions the corresponding projection
relations π : M×N ↔M and ρ : M×N ↔N such that πu,j iff u1 = j and ρu,k iff
u2 = k. Projection relations enable us to specify the well-known fork operation
relation-algebraically. For R : X ↔M and S : X ↔N their fork is [R, S] =
RπT ∩ SρT : X ↔M×N . Then we have [R, S]x,u iff Rx,u1 and Sx,u2 . The above
projection relations π and ρ also allow to define a Boolean lattice isomorphism
between [M×N ↔1] and [M ↔N ] via v �→ rel(v), where rel(v) = πT(ρ ∩ vLT)
with L : N ↔1. We call rel(v) : M ↔N the (proper) relation corresponding to
the vector v : M×N ↔1 since vu iff rel(v)u1,u2 .

3 Simple Games

Simple games are mainly used for modelling decision-making processes, for in-
stance, in the field of political science. Some recent textbooks on game theory
are [11] and [12]. In the following, we show how relation algebra and RelView

can be used for solving problems on simple games. For it, we use a definition via
the set of winning coalitions.

Definition 3.1. A simple game is a pair (N, W), where N = {1, 2, . . . , n} is a
set of players (agents, parties) and W is a set of winning coalitions, i.e., subsets
of N . The game (N, W) is monotone if for all S, T ∈ 2N , if S ∈ W and S ⊆ T ,
then T ∈ W.

In the following, we consider a small example for a simple game that stems from
real political live.

Example 3.1. In the period 2006 - 2010 the city council of the municipality of
Tilburg (NL) consists of the 10 parties

PvdA, CDA, SP, LST, VVD, GL, D66, TVP, AB, VSP

with respectively 11, 7, 5, 5, 4, 3, 1, 1, 1, 1 seats. The total number of seats
is 39. Decisions are taken by simple majority, i.e., in order that a proposal is
accepted, 20 persons have to vote in favor. Parties typically vote en bloc. So,
in this example N is the set of the 10 parties just mentioned and a coalition is
winning if the total number of seats of the parties in the coalition is at least 20.
A simple game like this is called a weighted majority game and usually denoted
by [20; 11, 7, 5, 5, 4, 3, 1, 1, 1, 1].
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There are two obvious ways to model simple games (N, W) relation-algebraically:

1. By a vector v : 2N ↔1 that describes the set W as subset of 2N , so that vS

iff S ∈ W . We call v the vector model of the game.
2. By a relation M : N ↔ W , with Mk,S iff k ∈ S and S ∈ W . We call M the

membership model of the game.

Given a simple game, in [5] it is shown that if v : 2N ↔1 is the vector model,
then E inj(v)T : N ↔W is the membership model, and conversely, if M : N ↔W
is the membership model, then syq(E, M)L : 2N ↔1 (with L : W ↔1) is the
vector model. In view of RelView, the membership model is more suited for
input and output, whereas the vector model is more suited for the development
of relation-algebraic specifications that can be used for problem solving.

Definition 3.2. Let (N, W) be a monotone simple game.

– Coalition S is minimal winning if S ∈ W, but T 	∈ W for all T ⊂ S.
– Player k is a swinger of coalition S if S ∈ W, k ∈ S, but S \ {k} 	∈ W.
– Coalition S is vulnerable winning if S ∈ W and it contains a swinger.

To explain these notions, we consider again the example of the city council of
the municipality of Tilburg.

Example 3.2. The 3-parties coalition

S = {PvdA, CDA, GL}
with 21 seats is a minimal winning coalition: every proper subset of it has less
than 20 seats. In addition, every player in this coalition S is a swinger of S. As
another example, the winning 4-parties coalition

S′ = {PvdA, SP, VVD, GL}
with 23 seats is not minimal, because without GL (3 seats) it is still winning, but
it is vulnerable because it contains the swingers PvdA (11 seats), SP (5 seats)
and VVD (4 seats).

It is well-known that for the membership relation E : N ↔ 2N by the relation
S := ET E : 2N ↔ 2N set inclusion is specified, i.e., it holds that SS,T iff S ⊆ T .
In [5] it is shown that R := syq([ I , E], E) : N×2N ↔ 2N specifies the removal of
an element from a set. The latter means that for all 〈k, S〉 ∈ N×2N and T ∈ 2N

it holds R〈k,S〉,T iff S \ {k} = T . Based on these facts, again in [5] the following
result is proved.

Theorem 3.1. Let v : 2N ↔1 be the vector model of the simple game (N, W).
Then the vector

minwin(v) := v ∩ (S ∩ I )
T
v : 2N ↔1

describes the set Wmin of all minimal winning coalitions. Assuming additionally
that the simple game (N, W) is monotone and L : N ↔ 1, for the relation

Swingers(v) := E ∩ LvT ∩ rel(R v ) : N ↔ 2N
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it holds Swingers(v)k,S iff k is a swinger of S and the vector

vulwin(v) := Swingers(v)T
L : 2N ↔1

describes the set of all vulnerable winning coalitions.

To give an impression how easy it is to transform the above relation-algebraic
specifications into RelView code, we present the RelView program for the
column-wise enumeration of all minimal winning coalitions:

Minwin(E,v)
DECL S, I,
BEG S = -(E^ * -E);

I = I(S);
m = v & -((S & -I)^ * v)
RETURN E * inj(m)^

END.

This program expects the membership relation E : N ↔ 2N and the membership
model v : 2N ↔1 as input. Then its first statement computes the set inclusion
relation S : 2N ↔ 2N , its second one the identity relation I : 2N ↔ 2N and its
third one the vector minwin(v) : 2N ↔1. Following the technique of Section 2,
finally, by the expression of the RETURN-clause the set described by minwin(v)
is column-wisely enumerated and this relation is delivered as result.

Example 3.3. In case of our running example of the city council of Tilburg,
the above program yields as output the following picture with all 49 minimal
winning coalitions described by the 49 columns of the 10 × 49 matrix.

In such a matrix a black square means a 1-entry and a white square means a
0-entry. So, e.g., the first column describes the coalition consisting of the parties
SP, LST, VVD, GL, TVP, AB and VSP. The following 10× 7 RelView matrix
shows that the minimum number of parties needed to form a winning coalition is
3 and there are exactly 7 possibilities to form such 3-parties winning coalitions.
From this result we also know that there exist winning coalitions with 20 seats,
i.e., the minimum number of seats necessary to become winning.



18 H. de Swart, R. Berghammer, and A. Rusinowska

RelView also computes 417 vulnerable winning coalitions, where the largest
number of critical players in such a coalition is 7 (and 6 such cases exist).

An important player, which can be seen as ‘policy oriented’ or ‘policy seeking’, is
considered next. In order to define it, all players must be ordered on a relevant
policy dimension, normally from left to right. The particular position of the
player we introduce now makes him very powerful.

Definition 3.3. Given a simple game (N, W) and a policy order of the players
in the form of a linear strict order relation P : N ↔ N , a player k ∈ N is
central if the connected coalition {j ∈ N | Pj,k} “to the left of k” as well as the
connected coalition {j ∈ N | Pk,j} “to the right of k” are not winning, but both
can be turned into winning coalitions when k joins them.

The following relation-algebraic expression enables RelView immediately to
compute the vector describing the set of central players (which contains at most
one element); see again [5] for its formal development.

Theorem 3.2. Let a simple game (N, W) with a policy order P : N ↔N be
given and assume that v : 2N ↔1 is the game’s vector model. Using Q := P ∪ I
as reflexive closure of P , the vector

central(v, P ) := syq(P, E)v ∩ syq(PT, E)v ∩ syq(Q, E)v ∩ syq(QT, E)v

of type [N ↔ 1] describes the set of all central players.

To demonstrate the use of RelView for computing a central player, we consider
again our running example of the city council of Tilburg.

Example 3.4. Assume that the left-to-right strict order relation < of the par-
ties of the city council of Tilburg is as follows:

GL < SP < PvdA < D66 < CDA < AB < VSP < VVD < LST < TVP

Then D66 with 1 seat is the central player, because the parties to the left of
it have only 19 seats and also the parties to the right of it have only 19 seats.
The left one of the two following pictures shows the strict order relation P ,
given by the placements of the parties in the above list, as depicted by Rel-

View. When applying the RelView program resulting from the above relation-
algebraic specification to the membership model of our running example and P ,
the tool yields the right one of the pictures below as result.

Hence, also RelView computes that D66 is the central player of our game.
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The next definition introduces the last important class of players we consider in
this paper. Such players may be seen as ‘policy blind’ or ‘office seeking’.

Definition 3.4. Let (N, W) be a simple game.

– The player k ∈ N dominates the coalition S ∈ 2N , written as k � S, if
k ∈ S and for all U ∈ 2N with U ∩ S = ∅, if U ∪ (S \ {k}) ∈ W, then
U ∪ {k} ∈ W, while there exists U ∈ 2N such that U ∩ S = ∅, U ∪ {k} ∈ W,
but U ∪ (S \ {k}) 	∈ W.

– The player k ∈ N is dominant if there exists a coalition S ∈ W such that
k � S.

If k dominates S, then k can form a winning coalition with players outside
of S while S \ {k} is not able to do this. The dominant players are the most
powerful players of the game. Such players neither must exist nor must be unique.
However, Peleg proved in [10] that in weak simple games and weighted majority
games at most one dominant player may occur.

Example 3.5. In case of our running example of the city council of Tilburg,
the party PvdA with 11 seats dominates the coalition

{PvdA, CDA, GL}
and hence is a dominant player: for any coalition U not containing PvdA, CDA,
GL, if U ∪ {CDA, GL} is winning, then also U ∪ {PvdA} is winning, since
PvdA has one more seat than CDA (7 seats) and GL (3 seats) together. But
conversely, there is a coalition, viz.

U = {LST, VVD},

having 9 seats which together with PvdA is winning, but not together with
CDA and GL. In [5] a relation-algebraic specification of type [N ↔ 2N ] for the
dominance relation � is developed. Again, the usefulness of the RelView tool
becomes clear: for our running example, e.g., it computes that

– PvdA dominates 140 coalitions, 50 of them winning;
– CDA dominates 48 coalitions, none of them winning;
– SP and LST each dominate 22 coalitions, none of them winning;
– VVD dominates 16 coalitions, none of them winning;
– GL dominates 11 coalitions, none of them is winning;
– D66, TVP, AB and VSP each dominate 1 coalition, none of them winning.

Hence, PvdA, the party with the maximum number of seats, is the (only) dom-
inant player. The RelView-picture for the vector of dominant players is below:
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One of the most important elements of simple games is to measure the power
of players. To this end, during the last decades some so-called power indices
have been proposed. We present here the normalized Banzhaf index B(k) of
player k, introduced in [1]. The absolute (non-normalized) Banzhaf index B(k)
of player k is the probability that player k is decisive for the outcome, that
is the number of times that k is a swinger in a winning coalition, divided by
the number (2n−1 if there are n players) of winning coalitions he belongs to,
assuming that all coalitions are equally likely and that each player votes yes or
no with probability 1

2 .

Definition 3.5. Let (N, W) be a monotone simple game and k ∈ N . Then the
absolute Banzhaf index B(k) and the normalized Banzhaf index B(k) of k are
defined as follows, where n is the number of players:

B(k) :=
|{S ∈ W | k swinger of S}|

2n−1 B(k) :=
B(k)∑

j∈N B(j)

In [5] the following descriptions are derived for the absolute and normalized
Banzhaf indices. In it we denote for X and Y being finite, for R : X ↔Y and
x ∈ X , the number of 1-entries of R with |R| and the number of 1-entries of the
x-row of R with |R|x. Hence, |R| equals the cardinality of R (as set of pairs)
and |R|x equals the cardinality of the subset Y ′ of Y that is described by the
transpose of the x-row.

Theorem 3.3. Assume a monotone simple game (N, W) with n players and its
vector model v : 2N ↔1. Then we have for all players k ∈ N :

B(k) =
|Swingers(v)|k

2n−1 B(k) =
|Swingers(v)|k
|Swingers(v)|

If RelView depicts a relation R as a Boolean matrix in its relation-window,
then additionally in the window’s status bar the number |R| is shown. Further-
more, it is possible to mark rows and columns. So far, we only have shown the
possibility to use strings or consecutive numbers as labels. But also the numbers
|R|x automatically can be attached as labels. In combination with the above
theorem this immediately allows to compute Banzhaf indices via the tool.

Example 3.6. Using the features just described, RelView computes in case
of our running example the following normalized Banzhaf indices:

PvdA: 332
988 CDA: 160

988 SP: 116
988 LST: 116

988 VVD: 96
988

GL: 88
988 D66: 20

988 TVP: 20
988 AB: 20

988 VSP: 20
988

For obtaining the absolute Banzhaf indices we only have to replace the denom-
inator 988 (which equals the number of all swingers) by the number 512 (i.e.,
by 210−1). Notice that although the number of seats of PvdA is about 1.5 times
that of CDA, the power of PvdA expressed by the Banzhaf index is more than
twice the power of CDA.
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4 Social Networks

Players (agents, decision makers, parties) are frequently operating in a social
network, where there are mutual influences, such that the final decision of a
player may be different from his original inclination. The generalized Hoede-
Bakker (GHB) power index [9, 15] takes these aspects into account.

Consider a social network with a set N of n players (agents). Given a proposal,
each player is supposed to have an inclination ‘yes’ (expressed by the truth value
1) or ‘no’ (expressed by the truth value 0). An inclination vector is a list of 0’s
or 1’s of length n and I = {0, 1}n is the set of all inclination vectors. We assume
that, due to influences among the players, the final decision of a player may differ
from his original inclination. Let Bi ∈ {0, 1}n denote the decision vector that
results from the inclination vector i. Then B is called the influence function.
For instance, B may be defined by following only unanimous trend-setters or by
following a majority of trend-setters. We also assume a group decision function
gd, that assigns to each decision vector Bi the decision ‘yes’ (1) or ‘no’ (0) of
the group. For instance, gd may be defined by gd(Bi) = 1 iff the majority of the
players decides to vote ‘yes’.

In order to define the generalized Hoede Bakker index of player k in the given
social network, we first need the following sets.

Definition 4.1. Based on the influence function B and the group decision func-
tion gd, we define for each k ∈ N the following four sets:

I++
k (B, gd) := {i ∈ I | ik = 1 ∧ gd(Bi) = 1}

I+−
k (B, gd) := {i ∈ I | ik = 1 ∧ gd(Bi) = 0}

I−+
k (B, gd) := {i ∈ I | ik = 0 ∧ gd(Bi) = 1}

I−−
k (B, gd) := {i ∈ I | ik = 0 ∧ gd(Bi) = 0}

So, for instance, the set I++
k (B, gd) is the set of all inclination vectors i, where

the player k has inclination ‘yes’ and the group decision, given the decision vector
Bi, is also ‘yes’.

Definition 4.2. Given B and gd as above, the generalized Hoede-Bakker index
GHBk(B, gd) of player k ∈ N is defined as follows:

GHBk(B, gd) :=
|I++

k | − |I+−
k | + |I−−

k | − |I−+
k |

2n

The value of GHBk(B, gd) measures a kind of ‘net’ Success, i.e., Success −
Failure, where by a successful player, given i, B and gd, we mean a player k
whose inclination ik coincides with the group decision gd(Bi).

With 10 players or parties, as in the case of our running Tilburg city council
example from the last section, the set I of all inclination vectors contains 210

= 1024 elements. In RelView this set can be represented by a 10 × 210 ma-
trix, where the 10 rows are labeled with the 10 parties and the 1024 columns,
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considered as single vectors, represent the possible 1024 inclination vectors. Gen-
eralizing this idea to arbitrary social networks, the set I of all inclination vectors
of the network with set N of players column-wisely is enumerated by the mem-
bership relation E : N ↔ 2N .

In most cases appearing in practice, the mutual influences among the players
can be represented by a dependency relation D : N ↔N on the players; for an
example see below. Given D and assuming the influence function B to be fixed
via D, e.g., by ‘following only unanimous trend-setters’ as rule1, in [4] a relation-
algebraic specification Dvec(D) : N ↔ 2N that column-wisely enumerates all
decision vectors is developed. The latter means that, if the X-column (with
X ∈ 2N) of the membership relation E : N ↔ 2N represents the inclination
vector i (that is, ik = 1 iff k ∈ X), then the X-column of the relation Dvec(D)
represents the decision vector Bi. RelView can easily deal with matrices of the
size appearing in our running example of the city council of Tilburg.

Since group decisions are truth values, all group decisions can be modeled by
a group decision vector gdv(D) : 2N ↔1 such that, e.g., in the case of simple
majority as group decision rule, the X-component of the vector gdv(D) is 1 iff the
X-column of Dvec(D) contains strictly more 1-entries than 0-entries. But also
other group decision rules are possible. We will consider such another rule below,
viz. weighted simple majority. Here to each player k ∈ N a natural number wk

is assigned as its weight and a further natural number q is given as quota. Then
the X-component of gdv(D) is 1 iff

∑
k∈X wk ≥ q.

Example 4.1. We assume in case of our running example of the city council
of Tilburg a dependency relation D on the 10 parties that, drawn as directed
graph, looks as follows:

As this picture shows, we assume, for instance, DLST,CDA and DVVD,CDA mean-
ing that CDA is dependent on the two trend-setters LST and VVD. If, again for
instance, the inclination vector i is given by

iPvdA = 1 iCDA = 0 iSP = 0 iLST = 1 iVVD = 0
iGL = 0 iD66 = 1 iTVP = 0 iAB = 0 iVSP = 1

1 Under this rule, the vote of player k is equal to the inclination of his trend-setters
(predecessors in the graph given by D) if they all have the same inclination. Other-
wise, player k votes according to his own inclination.
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then under ‘following only unanimous trend-setters’ as influence rule it is trans-
formed into the decision vector

BiPvdA = 0 BiCDA = 0 BiSP = 0 BiLST = 1 BiVVD = 0
BiGL = 0 BiD66 = 1 BiTVP = 0 BiAB = 0 BiVSP = 0

since PvdA follows its predecessors SP and GL (with iSP = iGL = 0) and VSP
votes as its predecessor CDA (with iCDA = 0). Hence, since for the weights
(numbers of seats) of the approving parties LST and D66 and the quota we have
wLST +wD66 = 5+1 < 20 = q, the decision of the city council of Tilburg is ‘no’.
Note that also the original inclination would lead to a negative decision due to
wPvdA + wVSP + wLST + wD66 = 18.

In [4] one finds also a solution for computing the group decision vector as re-
lational vector gdv(D) : 2N ↔1 from the relation Dvec(D) : N ↔ 2N and also
relation-algebraic specifications ipp(p, g), ipm(p, g), imp(p, g), imm(p, g), each
of type [2N ↔1], for describing the sets I++

k (B, gd), I+−
k (B, gd), I−+

k (B, gd)
and I−−

k (B, gd) respectively, where the player k is described by a column point
p : N ↔1 (i.e., a vector with exactly one 1-entry) and g = gdv(D) is the group
decision vector. Finally, from the numbers of 1-entries of these vectors (i.e., the
sizes of the sets of inclination vectors they represent) automatically provided by
RelView when computing them, the generalized Hoede-Bakker (GHB) indices
easily can be obtained for each player k ∈ N via the tool.

Below we present the relation algebraic expressions just mentioned, for the
influence rule ‘following only unanimous trend-setters’ and weighted group deci-
sion. In case of our running example this means that the city council votes ‘yes’
iff the parties that vote in favor have at least q = 20 seats. Relation-algebraically
the quota q is given by the length of a vector w, i.e., the size of its domain. The
weight of a party corresponds to the number of its seats. Relation-algebraically,
the latter can be modeled as follows. We assume S to be the set of all seats and
the distribution of the seats over the parties to be given by a relation W : S ↔N
such that Ws,k iff seat s ∈ S is owned by party k ∈ N . The relation W is a map-
ping in the relational sense and for each k ∈ N the k-column of W consists of
exactly wk 1-entries, with wk being the weight (number of seats) of party k.

Theorem 4.1. Let D : N ↔N be the dependency relation and d = DTL : N ↔1
describe the set of dependent players, i.e., players which have predecessors with
respect to D. Then, we obtain Dvec(D) : N ↔ 2N as

Dvec(D) = (E ∩ ( dL ∪ (dL ∩ DTE ∩ DT E ))) ∪ (dL ∩ DT E ).

Furthermore, the group decision vector gdv(D) : 2N ↔1 is given by

gdv(D) = syq(W Dvec(D), E)m,

where E : S ↔ 2S is the membership relation on the seats and m is defined by
m = cardfilter(L, w) . Finally, with g as abbreviation for gdv(D) and E : N ↔ 2N

as the membership relation on the parties, we have:
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ipp(p, g) = (pTE ∩ g)T ipm(p, g) = (pTE ∩ g )T

imp(p, g) = (pT E ∩ g)
T

imm(p, g) = (pT E ∩ g )
T

The vector m : 2S ↔1 used in this theorem fulfills for all X ∈ 2S that mX iff
|X | ≥ q. Such a vector can be easily obtained with the help of the operation
cardfilter. If v : 2S ↔1 describes the subset S of 2S and the size of the domain
of w : W ↔1 is at most |M | + 1, then for all X ∈ 2S we have cardfilter(v, w)X

iff X ∈ S and |X | < |W |. Hence, since L : 2S ↔1 describes entire powerset 2S ,
in our theorem, the complement of cardfilter(L, w) describes the subset of 2S

whose elements have at least size q.

Example 4.2. Given the influence rule and group decision function mentioned
in the last example, we obtain for our running example the following sizes
of the sets underlying the definition of the generalized Hoede-Bakker index.
Here are the values for I++(B, gd), I+−(B, gd), I−+(B, gd), I−−(B, gd) and
GHBk(B, gd) for the ten parties.

party I++(B, gd) I+−(B, gd) I−+(B, gd) I−−(B, gd) GHB
PvdA 328 184 184 328 288/1024
CDA 280 232 232 280 96/1204

SP 392 120 120 392 544/1024
LST 328 184 184 328 288/1024

VVD 312 200 200 312 224/1024
GL 360 152 152 360 416/1024

D66 256 256 256 256 0/1024
TVP 280 232 232 280 96/1024

AB 256 256 256 256 0/1024
VSP 256 256 256 256 0/1024

Notice the high values of the generalized Hoede-Bakker indices for SP and GL.
This may be explained by the assumption made that these parties are influencing
PvdA and this latter party has most (viz. 11) seats.

5 Stable Coalitions

After elections with list systems of proportional representation a coalition has
to be formed, which usually needs to have at least half of the seats. In general,
there are many of such coalitions – in our example 3.3 there are already 49
minimal winning coalitions and 417 vulnerable winning coalitions. In practice,
however, many parties do not see the possibility to cooperate with each other,
and consequently many winning coalitions are not feasible. We call a coalition
feasible if it is accepted by every party in the coalition. A feasible coalition S
alone is not enough: it has to come with a policy p, where the latter may consist
of several sub-policies. We call a pair g = (S, p) with S ∈ 2N and a policy p a
government. Of course, the policy p of a government (S, p) should be feasible for
S, i.e., at least acceptable to all members of the coalition. So, the set G of all
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feasible governments is the set of all pairs (S, p) with a feasible coalition S and a
policy p that is feasible for S. It seems reasonable to assume that every party i
that belongs to at least one feasible government has a weak preference ordering
Ri over the feasible governments.

To determine in practice which coalitions are feasible and which policies are
feasible for these coalitions, one may apply another software tool, called Mac-
Beth. How this tool may be used for this purpose is explained in [14].

Definition 5.1. Let h = (S, p) and g be feasible governments. h dominates g,
denoted by h � g, iff for every party i ∈ S, hRig (or Ri

h,g) and for at least one
party i ∈ S, not gRih (i.e., not Ri

g,h). A feasible government g is called stable
if there is no feasible government h that dominates g.

Also in this section we consider the city council of Tilburg as example.

Example 5.1. Let us assume that for the city council of Tilburg there are 3
feasible coalitions: S1 = {PvdA, SP, VVD, GL}, S2 = {PvdA, CDA, GL} and
S3 = {PvdA, CDA, LST, VVD}. Further there are 3 policy sub-issues on which
the coalition partners have to agree: building a city-ring, buying a theater and
building a shopping mall. Suppose for coalition S1 only policy p1 = (no, yes,
yes) is feasible, for coalition S2 only policy p2 = (yes, no, no) is acceptable,
and for coalition S3 only policy p3 = (no, no, no) is feasible. So, there are
three potential feasible governments (S1, p1), (S2, p2), (S3, p3), and the parties
involved in at least one such government are PvdA, CDA, SP, LST, VVD and
GL. Assume now the following preference relations of these parties over the three
feasible governments.

PvdA: g2 > g1 > g3; CDA: g3 > g2 > g1; SP: g1 > g2 > g3;
LST: g3 > g2 > g1; VVD: g3 > g1 > g2; GL: g2 > g1 > g3.

One can easily check that g2 dominates g1: every party in S2 strongly prefers g2
to g1. Further, g2 does not dominate g3: party CDA in S2 strongly prefers g3 to
g2. Conversely, g3 does not dominate g2: party PvdA in S3 strongly prefers g2
to g3. Some further thinking shows that g2 and g3 are the stable governments:
they are not dominated by any other feasible government.

In the example above it was easy to compute the stable governments by hand.
But if there are, for instance, 17 feasible governments, as in [2], each party
involved in one of these 17 governments is supposed to have a weak preference
ordering over these 17 governments. In such a case, in order to compute all
stable governments, it is hardly - or not at all - feasible to do all computations
by hand. For that reason we have delivered in [2] relation algebraic expressions
for the notion of feasible government, for the dominance relation and for the
stability predicate.

In order to develop a relation-algebraic specification of feasible governments,
we need two ‘acceptability’ relations A and B to be given. Let P be the set of
policies. We assume A : N ↔P such that

Ai,p ⇐⇒ party i accepts policy p
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for all i ∈ N and p ∈ P , and B : N ↔ 2N such that

Bi,S ⇐⇒ party i accepts coalition S

for all i ∈ N and S ∈ 2N .

Theorem 5.1. Assume E : N ↔ 2N to be the membership-relation on the set N
of parties. Then for

FeaC(B) = (E ∩ B )
T
L : 2N ↔1

we have that feaC(B)S iff for all i ∈ S it holds Bi,S , for

IsFea(A) = ET A : 2N ↔ P

we have that isFea(A)S,p iff for all i ∈ S it holds Ai,p, and for

FeaG(A, B) = ET A ∩ (E ∩ B )
T
L L : 2N ↔ P

we have that feaG(A, B)S,p iff feaC(B)S and isFea(A)S,p.

For the proof we refer to [2]. The next thing to do is to give a relation algebraic
formulation of the dominance relation. To this end we should specify which
parties are a member of which government. So, we suppose a membership relation
M : N ↔ G to be given, such that Mi,g iff party i is a member of government
g. We also suppose for each party i a weak preference ordering Ri over the
governments to be given. It turns out to be convenient to work with a global
utility relation C : N ↔ G×G such that Ci,<h,g> iff Ri

h,g. This can be achieved

by defining C = vec(Ri1)T + . . . + vec(Rik)T, where i1, . . . , ik are the parties
involved in at least one feasible government, vec is the inverse of the function
rel, and + forms the sum of two relations. In our case the latter means that all
row vectors vec(Rij )T are joined together to form the rows of C. Finally, in [2]
the following results are shown.

Theorem 5.2. Let π : G×G↔G and ρ : G×G↔G be the projection relations
and E : G×G↔G×G the exchange relation. If we define

Dominance(M, C) = (πMT ∩ C
T
)L ∩ (πMT ∩ E C

T
)L ,

then we have for all u = 〈h, g〉 ∈ G × G that Dominance(M, C)u if and only if
h � g. And if we define stable(M, C) : G↔1 by

Stable(M, C) = ρTDominance(M, C) ,

then we have stable(M, C)g iff there is no h ∈ G such that h � g (i.e., iff g is
stable).
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Example 5.2. We will apply the RelView software to the city council of
Tilburg, as described above in example 5.1. As input for the program we have
to specify the membership relation M with Mi,g iff party i is a member of gov-
ernment g and the global comparison relation C with Ci,<h,g> iff party i weakly
prefers h to g. Below we specify M and C by the following RelView matrices.

Applying the RelView programs for the dominance and the stability relations,
we get the following outputs in the form of a graph and a matrix respectively,
as one wishes. Notice that from the dominance graph it already becomes clear
that g2 and g3 are the stable, i.e., not dominated, governments.

6 Conclusions

We have shown that many problems from social choice and game theory can
be formulated in relation algebraic terms, which subsequently can be used in
extremely short programs for the RelView tool. Due to its very efficient im-
plementation of relations based on Binary Decision Diagrams (BDDs), this tool
can deal with numbers of players that appear in practical applications (e.g., in
real political life), although many of the problems are of exponential size.

In this overview paper, we have focused on several applications of Relation
Algebra and RelView to game theoretical concepts, but we did not present all of
our results on this issue. In [5], for instance, we have delivered relation-algebraic
specifications of key players in a simple game, i.e., of dummies, dictators, vetoers,
and null players, and we have also calculated power indices different from the
Banzhaf indices. In [4], based e.g. on the sets I++

k (B, gd), I+−
k (B, gd), I−+

k (B, gd)
and I−−

k (B, gd) introduced in Section 4, we have calculated modifications of the
generalized Hoede-Bakker index GHBk that coincide with some standard power
indices, e.g., the Coleman indices [6, 7] and the Rae index [13]. In [4] we have
also applied the relation-algebraic approach to compute some concepts defined
in [8], like influence indices, sets of followers of a coalition, and the kernel of
an influence function. In [3] we have used techniques from graph theory to let
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RelView compute coalitions / governments ‘as stable as possible’, in case there
turn out to be no stable ones.

There are still many topics from Game Theory and Social Choice Theory to
which an application of the relation algebraic approach can be very useful. For
the near future we plan to apply relation algebra and RelView for computing
all kinds of solution concepts of games, such as the core, the uncovered set, etc.
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Abstract. Current Internet routing protocols exhibit several types of anomalies
that can reduce network reliability. In order to design more robust protocols we
need better formal models to capture the complexities of Internet routing. In this
paper we develop an algebraic model that clarifies the distinction between routing
tables and forwarding tables. We hope that this suggests new approaches to the
design of routing protocols.

1 Introduction

Internet data traffic traverses a sequence of links and routers as it travels from source to
destination. Routers employ forwarding tables to control traffic at each step. Typically,
forwarding tables are constructed automatically from routing tables, which in turn are
generated by routing protocols that dynamically discover network paths.

We attempt to clarify the distinction between forwarding and routing from a high-
level perspective, ignoring implementation details. To model routing, we use an alge-
braic approach based on idempotent semirings (see for example [1]). For this paper, a
(network-wide) routing table is simply a matrix R that satisfies an equation

R = (A ⊗ R) ⊕ I,

where A is an adjacency matrix associated with a graph weighted over a (well-behaved)
semiring S. Various algorithms, distributed or not, can be used to compute a routing
table R = A∗ from the adjacency matrix. Each entry R(i, j) is (implicitly) associated
with a set of optimal paths from node i to node j.

In Section 2 we model a forwarding table as a matrix F where each entry F(i, d) is
(implicitly) associated with a set of paths from node i to destination d. Here destinations
are assumed to be in a namespace disjoint from nodes. We then treat the construction
of a forwarding table F as the process of solving an equation

F = (A � F) � M,

where F and M contain entries in a semi-module (�, �) over the semiring S. Entries
in the mapping table M(i, d) contain metrics associated with the attachment of external
destination d to infrastructure node i.

The solution F = R � M tells us how to combine routing and mapping to produce
forwarding. We present several semi-module constructions that model common Inter-
net forwarding idioms such as hot- and cold-potato forwarding. Section 3 shows how
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mapping tables can themselves be generated from forwarding tables. This provides a
model of one simple type of route redistribution between distinct routing protocols.

In Section 4 we discuss how this model is related to current rethinking of the In-
ternet’s addressing architecture (see for example John Day’s book [2]), and to existing
problems with route redistribution [3,4,5]. For completeness, Appendix A supplies def-
initions of semirings and semi-modules.

2 Routing versus Forwarding

With Internet technologies we can make a distiction between routing and forwarding.
We will consider routing to be a function that establishes and maintains available paths
within a specified routing domain. How such paths are actually used to carry traffic is
for us a question of forwarding.

Of course, routing and forwarding are intimately related, and in practice the two
terms are often used as if they were synonyms. Indeed, in the simplest case the distinc-
tion may seem pointless: when the forwarding function causes traffic to flow on exactly
the paths provided by the routing function. However, even in this simple case the dis-
tinction must be made because of the possibility of multiple equal cost paths within a
network. There are many possible choices for forwarding with equal cost paths, such as
randomly choosing a path or dynamically balancing load between paths.

In this section we model a network’s infrastructure as a directed graph G = (V, E).
Given a pair of nodes i, j ∈ V , routing computes a set of paths in G that can be used
to transit data from i to j. We model routing with a V × V routing matrix R. Entry
R(i, j) in fact corresponds to the minimal-cost path weight from i to j, although under
certain assumptions (see later) it is straightforward to recover the associated paths.

In addition, we suppose that there is a set of external destinations D that are inde-
pendent of the network. Destinations can be directly attached to any number of nodes
in the network. We model the attachment information using a V × D mapping matrix
M. Forwarding then consists of finding minimal-cost paths from nodes i ∈ V to des-
tinations d ∈ D. We model forwarding using a V × D forwarding matrix F. We shall
see that there are several different ways to combine routing and mapping matrices to
produce a forwarding matrix, with each such method potentially leading to a different
set of forwarding paths; the examples in this section all share the same routing matrix,
yet have distinct forwarding paths.

2.1 Algebraic Routing

In this section we provide a basic overview of algebraic routing with semirings. Let S =
(S, ⊕, ⊗) be an idempotent semiring (Appendix A.1). Associate arcs with elements of
the semiring using a weight function w ∈ E → S. Let A be the V ×V adjacency matrix
induced by w. Denote the set of all paths in G from node i to node j by P (G, i, j).
Given a path µ = 〈u0, u1, · · · , un〉 ∈ P (G, i, j) with u0 = i and un = j, define the
weight of µ as w(µ) = w(u0, u1) ⊗ w(u1, u2) ⊗ · · ·w(un−1, un). For paths µ, ν ∈
P (G, i, j), summarise their weights as w(µ) ⊕ w(ν). Define the shortest-path weight
from i to j as
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δ(i, j) =
⊕∑

p∈P (G, i, j)

w(p).

We seek to find a V × V -matrix R satisfying R(i, j) = δ(i, j). We term this matrix a
routing solution because it models the shortest-path weights across a network’s infras-
tructure. How might we compute the value of this matrix? It is straightforward to show
that such a matrix R also satisfies the routing equation

R = (A ⊗ R) ⊕ I. (1)

Now, define the closure of A as A∗ = I ⊕ A ⊕ A2 ⊕ · · · . It is well-known that if
this closure exits, then it satisfies equation 1 (see the classic reference [6], or the recent
survey of the area [1]). Various sufficient conditions can be assumed to hold on the
semiring S which imply that A∗ will always exist (and so the set of adjacency matrices
becomes a Kleene algebra), but we will not explore these conditions here.

Note that we use the standard notation of identifying the operators from the semir-
ing S with those from the same semiring lifted to operate over (square) matrices with
elements from S. The additive operator for the lifted semiring is defined as

(X ⊕ Y)(i, j) = X(i, j) ⊕ Y(i, j),

whilst the multiplicative operator is defined as

(X ⊗ Y)(i, j) =
⊕∑

k∈V

X(i, k) ⊗ Y(k, j).

Hence we see that the latter operator in fact uses both the underlying ⊕ and ⊗ operators
from S. This distinction will become more significant when we consider lifting certain
semi-modules to operate over matrices.

The example in Figure 1 illustrates the algebraic approach. Figure 1(a) presents a
simple five node graph with integer labels and Figure 1(b) shows the associated adja-
cency matrix. We assume that arc weights are symmetric. We wish to compute shortest-
distances between each pair of nodes and therefore we compute the closure using the
semiring MinPlus = (N∞, min, +), where N∞ = N ∪ {∞}. The resulting matrix is
given in Figure 1(c). It is straight-forward to recover the corresponding paths because
MinPlus is selective. That is, for all x, y ∈ S we have x⊕ y ∈ {x, y}. Hence the com-
puted weights actually correspond to the weights of individual paths. The bold arrows
in Figure 1(a) denote the shortest-paths tree rooted at node 1; the corresponding path
weights are given in the first row of the matrix in Figure 1(c).

2.2 Importing External Destinations

As before, suppose that our network is represented by the graph G = (V, E), labelled
with elements from the semiring S. Let the external nodes be chosen from some set
D, satisfying V ∩ D = ∅. Attach external nodes to G using the attachment edges
E′ ⊆ V × D. In the simplest case, the edges in E′ have weights from S, although in
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A =

⎡⎢⎢⎢⎢⎣

1 2 3 4 5

1 ∞ 2 1 6 ∞
2 2 ∞ 5 ∞ 4
3 1 5 ∞ 4 3
4 6 ∞ 4 ∞ ∞
5 ∞ 4 3 ∞ ∞

⎤⎥⎥⎥⎥⎦
(b) Adjacency matrix

R = A∗ =

⎡⎢⎢⎢⎢⎣

1 2 3 4 5

1 0 2 1 5 4
2 2 0 3 7 4
3 1 3 0 4 3
4 5 7 4 0 7
5 4 4 3 7 0

⎤⎥⎥⎥⎥⎦
(a) Labelled graph (c) Routing matrix

Fig. 1. Algebraic routing example using the MinPlus semiring

the next section we show how to relax this assumption. Let the V × D mapping matrix
M represent the attachment edges.

We now wish to compute the V ×D matrix F of shortest-path weights from nodes in
V to nodes in D. We term F a forwarding solution because it comprises the information
required to reach destinations, instead of other infrastructure nodes. We compute F by
post-multiplying the routing solution R by the mapping matrix M. That is, for i ∈ V
and d ∈ D, we have

F(i, d) = (R ⊗ M)(i, d) =
⊕∑

k∈V

R(i, k) ⊗ M(k, d) =
⊕∑

k∈V

δ(i, k) ⊗ M(k, d).

Hence we see that F(i, d) corresponds to the shortest total path length from i to d. In
other words, F solves the forwarding equation

F = (A ⊗ F) ⊕ M. (2)

Note that we are able to change the value of M and recompute F without recomputing
R. From an Internet routing perspective this is an important property; if the external
information is dynamically computed (by another routing protocol, for example) then
it may frequently change, and in such instances it is desirable to avoid recomputing
routing solutions.

We illustrate this model of forwarding in Figure 2. The labelled graph of Figure 2(a)
is based upon that in Figure 1(a), with the addition of two external nodes: d1 and d2.
The adjacency matrix A remains as before, whilst the mapping matrix M, given in
Figure 2(b), contains the attachment information for d1 and d2. The forwarding solution
F that results from multiplying R by M is given in Figure 2(c). Again, it is easy to
verify that the elements of F do indeed correspond to the weights of the shortest paths
from nodes in V to nodes in D.



A Model of Internet Routing Using Semi-modules 33

1

2

3

4

5

d1

d2

6

5 42

1

4

3

2

3

3

1

M =

⎡⎢⎢⎢⎢⎣

d1 d2

1 ∞ ∞
2 3 ∞
3 ∞ ∞
4 ∞ 1
5 2 3

⎤⎥⎥⎥⎥⎦
(b) Mapping matrix

R ⊗ M =

⎡⎢⎢⎢⎢⎣

d1 d2

1 5 6
2 3 7
3 5 5
4 9 1
5 2 3

⎤⎥⎥⎥⎥⎦
(a) Graph with external information (c) Forwarding matrix

Fig. 2. Example of combining routing and mapping to create forwarding

2.3 A General Import Model Using Semi-modules

Within Internet routing, it is common for the entries in routing and forwarding tables to
have distinct types, and for these types to be associated with distinct order relations. We
therefore generalise the import model of the previous section to allow this possibility.
In particular, we show how to solve this problem using algebraic structures known as
semi-modules (Appendix A.2).

Assume that we are using the semiring S = (S, ⊕, ⊗) and suppose that we wish to
construct forwarding matrices with elements from the idempotent, commutative semi-
group N = (N, �). Furthermore, suppose that the mapping matrix M contains entries
over N . In order to compute forwarding entries, it is necessary to combine routing en-
tries with mapping entries, as before. However, we can no longer use the multiplicative
operator from S because the mapping entries are of a different type. Therefore we intro-
duce an operator � ∈ (S×N) → N for this purpose. We can now construct forwarding
entries as

F(i, d) = (R � M)(i, d) =
�∑

k∈V

R(i, k) � M(k, d). (3)

It is also possible to equationally characterize the resulting forwarding entries, as before.
Assume that R is a routing solution i.e. it satisfies Equation 1. Then, providing that the
algebraic structure N = (N, �, �) is a semi-module, F = R � M is a solution to the
forwarding equation

F = (A � F) � M.

In other words, we can solve for F with F = A∗ �M. Significantly, we are able to use
semi-modules to model the mapping information whilst still retaining a semiring model
of routing.

We now develop two important semi-module constructions that model the most com-
mon manner in which routing and mapping are combined: the hot-potato and cold-
potato semi-modules. First define an egress node for a destination d as a node k within
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the routing domain that is directly attached to d. Hot-potato forwarding to d first selects
paths to the closest egress nodes for d and then breaks ties using the mapping informa-
tion. In contrast, cold-potato forwarding first selects paths to the egress nodes for d with
the most preferred mapping values, and then breaks ties using the routing distances.

We now formally define the hot-potato semi-module. Let S = (S, ⊕S , ⊗S) be an
idempotent semiring with (S, ⊕S) selective and let T = (T, ⊕T ) be a monoid. The
hot-potato semi-module over S is defined as

Hot(S, T ) = ((S × T ) ∪ {∞}, �⊕, �fst),

where s1 �fst (s, t) = (s1 ⊗S s, t) and s1 �fst ∞ = ∞. The left lexicographic prod-
uct semigroup ((S × T ) ∪ {∞}, �⊕) is defined in Appendix A.3. In common with
semirings, we can lift semi-modules to operate over (non-square) matrices. When lift-
ing the hot-potato semi-module, we rename the multiplicative operator from �fst to
�hp. This is because the lifted multiplicative operator no longer simply applies its left
argument to the first component of its right argument. In fact, we shall shortly see that
the cold-potato semi-module uses the same underlying multiplicative operator but with
a different additive operator, and therefore has a different lifted multiplicative operator.

The behaviour of the hot-potato semi-module can be algebraically characterised as
follows. Suppose that for all j ∈ V and d ∈ D, M(j, d) ∈ {(1S, t), ∞T } where 1S

is the multiplicative identity for S and t is some element of T . Then from Equation 3 it
is easy to check that

(R �hp M)(i, d) =
�⊕∑

j∈V
M(j, d)=(1S, t)

(R(i, j), t).

That is, as desired, the mapping metric is simply used to tie-break over otherwise
minimal-weight paths to the edge of the routing domain.

We illustrate the hot-potato model of forwarding in Figure 3. This example uses the
semi-module Hot(MinPlus, Min), where Min = (N∞, min). The graph of Figure 3(a)
is identical to that of Figure 2(a), but now the attachment arcs of d1 and d2 are weighted
with elements of the hot-potato semi-module. The associated mapping matrix is given
in Figure 3(b), whilst the resulting forwarding table is shown in Figure 3(c). Note that
0 is the multiplicative identity of the (min, +) semiring. Comparing this example to
Figure 2, we see that node 1 reaches d2 via egress node 5 instead of node 4. This is
because the mapping information is only used for tie-breaking, instead of being directly
combined with the routing distance. Also, in this particular example, it is never the case
that there are multiple paths of minimum cost to egress nodes, and therefore no tie-
breaking is performed by the mapping information.

Turning to cold-potato forwarding, the associated semi-module again combines rout-
ing and attachment information using the lexicographic product, but with priority now
given to the attachment component. As before, let S = (S, ⊕S , ⊗S) be a semiring and
T = (T, ⊕T ) be a monoid, but now with T idempotent and selective. The cold-potato
semi-module over S is defined as

Cold(S, T ) = ((S × T ) ∪ {∞}, �⊕, �fst).
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Note that the right lexicographic product semigroup (S × T, �⊕) is defined in Ap-
pendix A.3. Again, when lifting the cold-potato semi-module to operate over matrices
we rename the multiplicative operator from �fst to �cp.

Figure 4 illustrates the cold-potato model of forwarding. This example uses the cold-
potato semi-module Cold(MinPlus, Min), but is otherwise identical to Figure 3. It is
easy to verify that priority is now given to the mapping information when selecting
egress nodes.

Within Internet routing, hot-potato forwarding corresponds to choosing the closest
egress point from a given routing domain. This is the default behaviour for the Border
Gateway Protocol (BGP) routing protocol [7] because it tends to minimise resource us-
age for outbound traffic within the domain. In contrast, cold-potato forwarding allows
the mapping facility to select egress nodes, and hence can lead to longer paths being cho-
sen within the domain. As a result, cold-potato forwarding is less commonly observed
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(0, 1)

(0, 3)

(0, 3)

M =

⎡⎢⎢⎢⎢⎣

d1 d2

1 ∞ ∞
2 (0, 3) ∞
3 ∞ ∞
4 ∞ (0, 1)
5 (0, 2) (0, 3)

⎤⎥⎥⎥⎥⎦
(b) Mapping matrix

R �hp M =

⎡⎢⎢⎢⎢⎣

d1 d2

1 (2, 3) (4, 3)
2 (0, 3) (4, 3)
3 (3, 2) (3, 3)
4 (7, 2) (0, 1)
5 (0, 2) (0, 3)

⎤⎥⎥⎥⎥⎦
(a) Graph with external information (c) Forwarding matrix

Fig. 3. Example of hot-potato forwarding
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M =

⎡⎢⎢⎢⎢⎣

d1 d2

1 ∞ ∞
2 (0, 3) ∞
3 ∞ ∞
4 ∞ (0, 1)
5 (0, 2) (0, 3)

⎤⎥⎥⎥⎥⎦
(b) Mapping matrix

R �cp M =

⎡⎢⎢⎢⎢⎣

d1 d2

1 (4, 2) (5, 1)
2 (4, 2) (9, 1)
3 (3, 2) (4, 1)
4 (7, 2) (0, 1)
5 (0, 2) (7, 1)

⎤⎥⎥⎥⎥⎦
(a) Graph with external information (c) Forwarding matrix

Fig. 4. Example of cold-potato forwarding
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in general on the Internet. However, one specific use is within client-provider peering
relations in order to minimise the use of the client’s network resources for inbound traffic
(at the possible expense of increased resource usage on the provider’s network).

2.4 Idealized OSPF: An Example of Combined Mappings

We now present a highly-idealized account that attempts to tease out an algebraic de-
scription of the construction of forwarding tables in the OSPF routing protocol [8].
The specification of this protocol [9] runs for 244 pages and is primarily focused on
implementation details. For simplicity we ignore OSPF areas.

Destinations are attached in three different ways in OSPF. Type 0 (our terminology)
destinations are directly attached to a node, while Type 1 and Type 2 destinations (ter-
minology of [9]) represent two ways of attaching external destinations. These may be
statically-configured or learned via other routing protocols. The OSPF specification de-
fines the relative preference for destination types to be used in constructing a forwarding
table: Type 0 are preferred to Type 1, and Type 1 are preferred to Type 2.

In addition, Type 2 destinations are associated with a metric that is to be inspected
before the internal routing metric In other words, cold-potato forwarding is used for
Type 2 destinations. We generalize OSPF and assume that Type 2 metrics come from
a commutative, idempotent monoid. U = (U, ⊕U ). We use the network in Figure 5(a)
as an ongoing example; here we have U = (N∞, max), and we think of this as a
bandwidth metric (note that here ∞U = 0).
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((1, ∞), 3)

((2, 10), 0)

((0, ∞), 2)

((2, 20), 0)

(a) Graph with external information

M =

⎡⎢⎢⎢⎢⎣

d1 d2

1 ∞ ∞
2 ((1, ∞), 3) ∞
3 ∞ ∞
4 ∞ ((2, 10), 0)
5 ((0, ∞), 2) ((2, 20), 0)

⎤⎥⎥⎥⎥⎦ R �cp M =

⎡⎢⎢⎢⎢⎣

d1 d2

1 ((0, ∞), 6) ((2, 20), 4)
2 ((0, ∞), 6) ((2, 20), 8)
3 ((0, ∞), 5) ((2, 20), 3)
4 ((0, ∞), 9) ((2, 20), 7)
5 ((0, ∞), 2) ((2, 20), 0)

⎤⎥⎥⎥⎥⎦
(b) Mapping matrix (c) Forwarding matrix

Fig. 5. Example of idealized-OSPF forwarding
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We use the following set into which we embed each destination type,

W = (({0, 1, 2} × U) × N∞) ∪ {∞}.

Each destination type is embedded into W as follows:

Type Metric Embedding
0 m 	= ∞ ((0, ∞U ), m)
1 m 	= ∞ ((1, ∞U ), m)
2 u 	= ∞U ((2, u), 0)

The elements of W are then ordered using the (right) lexicographic product (see Ap-
pendix A.3),

�⊕ = ({1, 2, 3}, min) �× (U, ⊕U ) �× (N∞, min).

Hence the order amongst metrics of the same destination type remains unchanged,
whilst the order between different destination types respects the ordering defined within
the OSPF specification.

Assume we start with one mapping matrix for each type of destination (how these
matrices might actually be produced is ignored),

M0 M1 M2⎡⎢⎢⎢⎢⎣

d1 d2

1 ∞ ∞
2 ∞ ∞
3 ∞ ∞
4 ∞ ∞
5 ((0, ∞), 2) ∞

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

d1 d2

1 ∞ ∞
2 ((1, ∞), 3) ∞
3 ∞ ∞
4 ∞ ∞
5 ((1, ∞), 17) ∞

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

d1 d2

1 ∞ ∞
2 ((2, 40), 0) ∞
3 ∞ ∞
4 ∞ ((2, 10), 0)
5 ((2, 10), 0) ((2, 20), 0)

⎤⎥⎥⎥⎥⎦
We then construct a combined mapping matrix M by summing the individual matrices
as M = M0 �⊕ M1 �⊕ M2. The resulting mapping matrix is shown in Figure 5(b).

We define the OSPF semi-module as

OSPF(U) = (W, �⊕, �snd)

where
m �snd ((l, u), m′) = ((l, u), m + m′)

m �snd ∞ = ∞.

The OSPF semi-module is a variant of the cold-potato semi-module; here, instead of
combining routing data with the first component of the mapping information and using
the right lexicographic order, we instead combine it with the second component and use
the left lexicographic order. Hence we refer to the lifted multiplicative operator as �cp.

Figure 5(c) illustrates the resulting forwarding matrix, F = R �cp M. For d1, we
see that the Type 0 route is given priority over the Type 1 route. In contrast, there are
two Type 2 routes for d2, and hence the bandwidth component is used as a tie-breaker.
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3 Simple Route Redistribution

In this section we show how to allow forwarding between multiple domains by gen-
eralizing the import model from Section 2 (here, we limit ourselves to modelling the
case where there are two routing domains, although it is possible to generalize to a
greater number). In particular, we show how the forwarding matrix from one domain
can be used within the mapping matrix of another. This models redistribution, where
a routing solution from one routing protocol is used within another. Additionally, we
demonstrate that it is possible for each routing/forwarding domain to use a different
semiring/semi-module pair.

Begin by assuming that there are two routing domains, G1 = (V1, E1) and G2 =
(V2, E2). Also, assume that there is a set of destinations, D, with V1, V2 and D pair-
wise disjoint. Let G1 be connected to G2 with the attachment arcs E1,2 ⊆ V1 × V2,
represented as the V1 × V2 bridging matrix B1,2. Similarly, let G2 be connected to
D with the attachment arcs E2,d ⊆ V2 × D, represented as the V2 × D attachment
matrix M2. Let F2 be the forwarding matrix for G2. We demonstrate how to construct
a forwarding matrix from V1 to D.

We shall use Figure 6 as a running example. Figure 6(a) illustrates two graphs,
G1 and G2. The second graph, G2, is directly connected to destinations d1 and d2
and therefore we are able to compute the forwarding matrix for G2 using the method
from Section 2. We model the routing in G2 using the bandwidth semiring MaxMin =
(N∞, max, min) and the forwarding using the cold-potato semi-module
Cold(MaxMin, Min), where Min = (N∞, min). The mapping matrix is given in
Figure 6(b), whilst the routing and forwarding matrices are given in Figure 6(c) and
Figure 6(d) respectively.

In order to compute a forwarding matrix from V1 to D, we must first construct
a mapping matrix M1 from V1 to D by combining the forwarding matrix F2 from
G2 with the bridging matrix B1,2. Let the forwarding in G2 be modelled using the
semi-module N2 = (N2, �2, �2), and that the bridging matrix is modelled using the
semigroup (N1, �1). We construct a right semi-module (N1, �1, �1) over N2 i.e.
with �1 ∈ (N2 × N1) → N1. Then we compute the mapping matrix from G1 as
M1 = B1,2 �1 F2.

Returning to Figure 6, the bridging matrix B1,2 is illustrated in Figure 6(e). We
combine the forwarding matrix F2 with B1,2 using the right version of the semi-module

Hot(MinPlus, Cold(MaxMin, Min)).

The resulting mapping matrix M1 is illustrated in Figure 6(f).
Finally, we must combine the mapping matrix M1 with the routing solution R1.

Suppose that R1 has been computed using the semiring S. Then we construct a left
semi-module (N1, �1, �1) over S. Compute the forwarding matrix for G1 as

F1 = R1 �1 M1 = R1 �1 (B1,2 �1 F2)

Hence we see that we have in fact used a pair of semi-modules with identical addi-
tive components: a left semi-module (N1, �1, �1) over N2 and a right semi-module
(N1, �1, �1) over S.
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(a) Multiple graphs with external information

M2 =

⎡⎢⎢⎣
d1 d2

6 (∞, 3) ∞
7 ∞ ∞
8 (∞, 2) (∞, 1)
9 ∞ (∞, 1)

⎤⎥⎥⎦ R2 =

⎡⎢⎢⎣
6 7 8 9

6 ∞ 20 30 20
7 20 ∞ 20 40
8 30 20 ∞ 20
9 20 40 20 ∞

⎤⎥⎥⎦
F2 = R2 �cp M2

=

⎡⎢⎢⎣
d1 d2

6 (30, 2) (30, 1)
7 (20, 2) (40, 1)
8 (∞, 2) (∞, 1)
9 (20, 2) (∞, 1)

⎤⎥⎥⎦
(b) G2 mapping matrix (c) G2 routing matrix (d) G2 forwarding matrix

B1,2 =

⎡⎢⎢⎢⎢⎣

6 7 8 9

1 ∞ ∞ ∞ ∞
2 ∞ ∞ ∞ ∞
3 ∞ ∞ ∞ ∞
4 (0, (∞, 0)) ∞ ∞ ∞
5 ∞ (0, (∞, 0)) ∞ ∞

⎤⎥⎥⎥⎥⎦

M1 = B1,2 �hp F2

=

⎡⎢⎢⎢⎢⎣

d1 d2

1 ∞ ∞
2 ∞ ∞
3 ∞ ∞
4 (0, (30, 2)) (0, (30, 1))
5 (0, (20, 2)) (0, (40, 1))

⎤⎥⎥⎥⎥⎦
(e) G1 to G2 bridging matrix (f) G1 mapping matrix

R1 =

⎡⎢⎢⎢⎢⎣

1 2 3 4 5

1 0 3 1 5 5
2 3 0 2 2 3
3 1 2 0 4 4
4 5 2 4 0 3
5 5 3 4 3 0

⎤⎥⎥⎥⎥⎦

F1 = R1 �hp M1

=

⎡⎢⎢⎢⎢⎣

d1 d2

1 (5, (30, 2)) (5, (40, 1)
2 (2, (30, 2)) (2, (30, 1)
3 (4, (30, 2)) (4, (40, 1)
4 (0, (30, 2)) (0, (30, 1)
5 (0, (20, 2)) (0, (40, 1)

⎤⎥⎥⎥⎥⎦
(g) G1 routing matrix (h) G1 forwarding matrix

Fig. 6. Example of simple route redistribution

Completing the example of Figure 6, the routing matrix for G1 is computed using
the semiring MinPlus. The resulting matrix R1 is shown in Figure 6(g). We combine
R1 with the mapping matrix M1 using the left version of the semi-module

Hot(MinPlus, Cold(MaxMin, Min)).
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The resulting forwarding table F1 is given in Figure 6(h). The bold arrows in Figure 6(a)
denote the forwarding paths from node 1 to destinations d1 and d2. Note that the two
egress nodes (4 and 5) from G1 are at identical distances from 1, and therefore the
bandwidth components from G2 are used as tie-breakers. This results in a different
egress point for each destination.

This model is significant because it is the first algebraic account of route redistribu-
tion – an area that is currently treated as a ‘black art’ even within the Internet routing
community (for example, there are only informal guidelines on how to avoid redistri-
bution anomalies such as loops and oscillations). We hope that our approach can be
generalized to provide a basis for understanding existing redistribution techniques, and
also for developing new approaches to protocol inter-operations.

4 Related Work and Open Problems

4.1 Locators and Identifiers

Our term mapping table has been borrowed (slightly loosely) from recent work at-
tempting to differentiate between infrastructure addresses (called locators) and end-user
addresses (called identifiers), as with the Locator/ID Separation Protocol (LISP) [10].
This effort has been motivated by a perceived need to reduce the size of routing and
forwarding tables in the Internet’s backbone (the world of inter-domain routing [11]).

Restated in our abstract setting, the essential problem that LISP is attempting to solve
is that a mapping table M may be many orders of magnitude larger than the routing ta-
ble R, leading to a very large forwarding table F = R�M. Since there is no separation
between mapping and routing today, such table growth is in fact becoming a real opera-
tional problem. (Note that we are using the terms routing table and forwarding table in a
rather unconventional, network-wide, sense. In a distributed setting, the entries F(i, _)
make up the forwarding table at node i.)

LISP proposes that forwarding tables F be only partially constructed using an on-
demand approach – an entry F(i, d) is not constructed until router i receives traffic
destined for d. This in turn requires some type of distributed mapping service, for which
there are several proposals currently under consideration.

In this paper we have used the separation of locators and identifiers to provide an
algebraic view of the distinction between routing and forwarding tables. This model
suggests that the Locator/ID split might be usefully applied to intra-domain routing.

4.2 Route Redistribution

Examples of somewhat ad hoc mechanisms and techniques added to routing are route
redistribution for distributing routes between distinct routing protocols (as already dis-
cussed), and administrative distance (discussed below). Recent research has documented
their widespread use and illustrated routing anomalies that can arise as a result [3,4,5].
From our point of view, that work represents a bottom-up approach that starts with the
complex implementation details of current legacy software. We hope that we have ini-
tiated a complementary, top-down, approach. The algebraic model has the advantage of
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making clear what problem is being solved, as distinct from what algorithm is being im-
plemented to solve a problem. We assert that the Internet routing literature is severely
hobbled by the way that these distinct issues are often hopelessly tangled together.

Our model suggests that new protocols should be designed with a clear distinction
between routing, mapping, and forwarding. Furthermore, mechanisms for constructing
mapping tables and forwarding tables should be elevated from proprietary implementa-
tions to first-class status and standardized.

4.3 Loss of Distributivity

We may attempt to solve the equation F = (A � F) � M using an iterative method,

F[0] = M,
F[k+1] = (A � F[k]) � M.

When A∗ exists, and (N, �, �) is a semi-module over S, then it is not too hard to see
that lim

k→∞
F[k] = A∗ �M. However, when modeling current Internet routing protocols

several problems may be encountered.
The first is that S may not in fact be a semiring due to violations of the distributivity

laws. The situation may not be as hopeless at it might seem. Recent research [12] has
pointed out that distributivity that is so essential to semiring theory may have to be aban-
doned to model some types of Internet routing. Even without distributivity, it may be
possible to use an iterative method to arrive at a (locally optimal) routing solution [13] .

On the other hand, it may be that S is a well-behaved semiring, but that the structure
(N, �, �) is not a semi-module over S. Again, this seems to arise with violations of
semi-module distributivity. We conjecture that it would be straightforward to extend the
results of [13] to iterations of F[k]. That is, that if (1) the natural order is a total order, (2)
m < ∞N =⇒ m < a�m and (3) only simple paths are considered, then the iterative
method will converge to a (locally optimal) solution to the equation F = (A�F)�M.

The lack of a global notion of optimality may in fact be perfectly reasonable in the
wide Internet where competing Internet Service Providers need to share routes but their
local commercial relationships prevent agreement as to what represents a best route.
However, we suspect that a less obvious source of this type of routing may have evolved
with administrative distance.

4.4 Administrative Distance

Administrative distance [3,4,5] is used for determining which entries are placed in a
forwarding table when distinct protocols running on the same router have routes to
common destinations. Algebraic modeling of administrative distance remains open for
a careful formal treatment.

One fundamental problem seems to be that capturing the way routers currently im-
plement administrative distance leads to algebraic structures that are not distributive. In
fact, we conjecture that the technique is inherently non-distributive in some sense.

If this is the case, then we can model current routing as implementing an iterative
method attempting to find a fixed-point over a non-distributive structure. Perhaps the
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way forward is again to elevate this procedure from proprietary code to the level of a
first class protocol and design constraints sufficient to guarantee convergence.
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A Basic Definitions

Our definitions of semirings and semi-modules are fairly standard, taken from [1]. The
definitions of lexicographic operations are from [14].

A.1 Semirings

A semiring is a structure S = (S, ⊕, ⊗) where (S, ⊕) is a commutative semigroup,
(S, ⊗) is semigroup, and the following conditions hold: (1) ⊗ distributes over ⊕,

x ⊗ (y ⊕ z) = (x ⊗ y) ⊕ (x ⊗ z), (y ⊕ z) ⊗ x = (y ⊗ x) ⊕ (z ⊗ x),

(2) there exists an identity for ⊕, 0S ∈ S, and an identity for ⊗, 1S ∈ S, and (3) it is
assumed that 0S is an annihilator for ⊗ i.e. 0S ⊗ x = x ⊗ 0S = 0S .

For routing, we are normally working with idempotent semirings where x ⊕ x = x.
In this case (S, ⊕) is a semi-lattice, and we use one of the natural orders – x ≤L

⊕ y ≡
x = x ⊕ y and x ≤R⊕ y ≡ y = x ⊕ y. For routing, we will stick with the order ≤L⊕
since it corresponds well with the notion of least cost paths. For this reason we use ∞S

rather than 0S , since x ≤L
⊕ ∞S for all x ∈ S.

A.2 Semi-modules

Let S = (S, ⊕, ⊗) be a semiring. A (left) semi-module over S is a structure N =
(N, �, �), where (N, �) is a commutative semigroup and � is a function � ∈ (S ×
N) → N that satisfies the following distributivity laws,

x � (m � n) = (x � m) � (x � n), (x ⊕ y) � m = (x � m) � (y � m).

In addition, we assume that the identity for � exists, 0N , and that 0S � m = 0N ,
x � 0N = 0N , and 1S � m = m. Again, in our applications � is often idempotent, and
we use the notation ∞N rather than 0N .

A.3 Lexicographic Product

Suppose that we have two semigroups S = (S, ⊕S) and T = (T, ⊕T ), with S selective
(i.e. for all s1, s2 ∈ S we have s1 ⊕s2 ∈ {s1, s2}). Then the left lexicographic product
of S and T is defined to be the semigroup S �× T = ((S × T ) ∪ {∞}, �⊕), where for
(s1, t1), (s2, t2) ∈ S × T we have

(s1, t1) �⊕ (s2, t2) =

⎧⎨⎩
(s1, t1 ⊕T t2) s1 = s1 ⊕S s2 = s2
(s1, t1) s1 = s1 ⊕S s2 	= s2
(s2, t2) s1 	= s1 ⊕S s2 = s2.

The right lexicographic product �×is similar, except that the semigroup T is assumed to
be selective and the order of comparison is reversed.
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Abstract. Kleene algebra is a great formalism for doing intraprocedural
analysis and verification of programs, but it seems difficult to deal with
interprocedural analysis where the power of context-free languages is of-
ten needed to represent both the program and the property. In the model
checking framework, Alur and Madhusudan defined visibly pushdown au-
tomata, which accept a subclass of context-free languages called visibly
pushdown languages, to do some interprocedural analyses of programs
while remaining decidable. We present visibly pushdown Kleene algebra,
an extension of Kleene algebra that axiomatises exactly the equational
theory of visibly pushdown languages. The algebra is simply Kleene al-
gebra along with a family of implicit least fixed point operators. Some
interprocedural analyses of (mutually) recursive programs are possible
in this formalism and it can deal with some non-regular properties.

1 Introduction

Kleene algebra is the algebraic theory of finite automata and regular expressions.
It has been used successfully to do intraprocedural analysis of programs [3,9].
However, how do we deal with interprocedural analysis when we have procedures
and local scopes? In these analyses, the representation of the control flow may be
a context-free language if there are (mutually) recursive procedures. So, Kleene
algebra alone is not well suited to do it.

Some work has been done to extend Kleene algebra to handle subclasses of
context-free languages [2,10,11,13]. However, these extensions do not seem to be
satisfactory for interprocedural analysis: the complexity of the equational theory
of these extensions is unknown or undecidable and frameworks for interproce-
dural analysis and verification, based on these extensions, are only able to deal
with regular properties. This second argument is disturbing: non-regular proper-
ties are interesting for interprocedural analysis. In particular, the ability to use
the nesting structure of procedure calls and returns (procedural context) when
defining properties is useful. For example, here are some non-regular properties1:
� This research is supported by NSERC and FQRNT.
1 This list is mostly inspired by [6].
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Secure file manipulation policies like “whenever a secret file is opened in a
secure procedural context, it must be closed before control exits the current
context”;

Stack-sensitive security properties like “a program must not execute a sen-
sitive operation at any point when an untrusted procedure is currently on
the stack or has ever been on the stack”;

Logging policies like “whenever a procedure returns an error value, the er-
ror must be logged via a log procedure before control leaves the current
procedural context”.

In the model checking framework, Alur and Madhusudan defined visibly push-
down automata that accept a subclass of context-free languages they called vis-
ibly pushdown languages [1]. The idea behind visibly pushdown automata is to
drive the stack manipulations of the automaton according to the current “type”
of input symbol it reads. The class of visibly pushdown languages is surprisingly
robust and the language equivalence problem is EXPTIME-complete [1]. So, it is
possible to use visibly pushdown automata in model checking to represent both
the (mutually) recursive program and the property to be checked. In fact, some
non-regular properties like those above can be expressed with visibly pushdown
automata.

This paper presents visibly pushdown Kleene algebra, which is an extension
of Kleene algebra that axiomatises exactly the equational theory of visibly push-
down languages. So, the complexity of the equational theory of visibly pushdown
Kleene algebra is EXPTIME-complete. A family of implicit least fixed point
operators is simply added to the standard operators of Kleene algebra. Some
interprocedural analyses of (mutually) recursive programs are possible in this
formalism and it can deal with some non-regular properties.

2 Visibly Pushdown Automata

Visibly pushdown automata were introduced by Alur and Madhusudan [1]. Vis-
ibly pushdown automata are a particular case of pushdown automata in which
the stack manipulations are driven (made “visible”) by the input word (which is
thought of as a string representing an execution of an interprocedural program).
To allow this, the input alphabet Σ of a visibly pushdown automaton is divided
in three disjoint sets Σi, Σc and Σr which represent, respectively, the set of
internal actions, the set of calls and the set of returns of a program. The idea
behind this is: when a visibly pushdown automaton reads (i) an internal action,
it cannot modify the stack; (ii) a call action, it must push a symbol on the stack;
(iii) a return action, it must read the symbol on the top of the stack and pop it
(unless it is the bottom-of-stack symbol). This idea is quite simple but useful in
program analysis: since a word is an execution of a program and the program’s
source code is usually available, it is easy to infer the type of an action in a word.

Visibly pushdown automata define a class of languages, called visibly push-
down languages, which is a strict subclass of deterministic context-free languages
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and a strict superclass of regular languages and balanced languages. For exam-
ple, if a ∈ Σi, c ∈ Σc and r ∈ Σr, then {cnrn | n ∈ IN} is a visibly pushdown
language, but not {anrn | n ∈ IN}. Visibly pushdown languages are closed un-
der union, concatenation, Kleene star, intersection, complementation and prefix-
closure. Also, nondeterministic visibly pushdown languages are as expressive as
deterministic ones. Moreover, the language equivalence problem is EXPTIME-
complete [1]. Recall that the language equivalence problem is undecidable for
context-free grammars.

3 Visibly Pushdown Regular Expressions

To our knowledge, no one seems to have defined a concept of “visibly pushdown
regular expression” to denote exactly the visibly pushdown languages. This is
a problem for the definition of an algebra, so we fill the gap here. Some set
operations on visibly pushdown languages are first introduced.

Let Σi, Σc and Σr be three disjoint finite sets. The set of finite words on the
alphabet Σi ∪Σc ∪Σr is denoted by (Σi ∪Σc ∪Σr)∗. Let S, T ⊆ (Σi ∪Σc ∪Σr)∗.
The concatenation operation on sets of words is defined as usual: S • T

def=
{st | s ∈ S ∧ t ∈ T }. The power Sn with respect to • is defined inductively by
S0 def= {ε} (where ε is the empty word) and Sn+1 def= S •Sn. This allows to define
the Kleene star operator by S∗ def= (∪ n | n ∈ IN : Sn).

The above standard operators of Kleene algebra are not sufficient to generate
any visibly pushdown language from ∅, {ε}, and the singletons {a} for a ∈ Σi ∪
Σc ∪ Σr. So, other operators have to be defined in order to generate any visibly
pushdown language. To do this, first note that a finite word w

def= σ1σ2σ3 . . . σn

in (Σi ∪Σc ∪Σr)∗, where each σi is a letter from Σi ∪Σc ∪Σr, may have pending
calls and pending returns. Intuitively, a pending call is a call action σi ∈ Σc that
is not matched with a return action σj ∈ Σr where i < j and a pending return
is a return action σi ∈ Σr that is not matched with a call action σj ∈ Σc where

j < i. For example, in the word arbbcdaaasb for which Σi
def= {a, b}, Σc

def= {c, d}
and Σr

def= {r, s}, the first action r is a pending return and the first action c is a
pending call. Obviously, d and s are well matched since d occurs before s in the
word and there is no other pending call or pending return between d and s.

A visibly pushdown language can contain words that have pending calls and
pending returns. Pending calls and pending returns are necessary to have a class
of languages closed under the prefix-closure operator. It is also an interesting
tool to model non-halting programs. The number of pending calls and pending
returns in a word can be calculated [4]. A word w ∈ (Σi ∪ Σc ∪ Σr)∗ is said to
be well matched if and only if it does not have pending calls or pending returns.

It is not difficult to see that visibly pushdown languages differ from regular
languages mostly for their well-matched words. More precisely, if we are able to
generate any visibly pushdown language that contains only well-matched words,
we can use the standard operators of Kleene algebra on these languages and the
singletons {a} for a ∈ Σc ∪ Σr to generate any visibly pushdown language. So,
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a way is needed to generate any visibly pushdown language that contains only
well-matched words. An infinite family of operators for doing that is defined.

The family works on finite lists of “blocks”. There are two kinds of blocks:

Unary blocks of the form [x M ]y, where M ∈ {{a} | a ∈ Σi} ∪ {{ε}, ∅}. The
labels x and y are respectively called the starting label and the ending label.
The set M is called the operand of the unary block;

Binary blocks of the form [x{c} ↓z ↑w{r} ]y, where c ∈ Σc and r ∈ Σr. The
labels x, y, z and w are respectively called the starting label, the ending label,
the call label and the return label. The sets {c} and {r} are respectively called
the left operand and the right operand of the binary block.

Let B be a finite list of unary and binary blocks that use a finite set of labels
E, and let x, x′ ∈ E. An operator of the family has the form (|x B |)x′

. The
operator’s arity is the number of unary blocks in B plus twice the number of
binary blocks in B. Also, note that the labels in an operator are not variables
but just a way to identify which operator of the family is used. To see this more
clearly, let Σi

def= {a, b}, Σc
def= {c, d}, Σr

def= {r, s} and E
def= {v, w, x, y, z}, and

rewrite the expression (|x [y{c} ↓w ↑v{r} ]z, [y{b} ]z, [w{d} ↓x ↑z{s} ]v, [x{a} ]y |)z by
the expression f(x,(y,w,v,z),(y,z),(w,x,z,v),(x,y),z)({c}, {r}, {b}, {d}, {s}, {a}) in which
f(x,(y,w,v,z),(y,z),(w,x,z,v),(x,y),z) is a 6-ary operator. Moreover, understand that each
operator of the family is partial. An operand cannot be any set of words; just
those allowed by the definition of blocks.

The idea behind an expression (|x B |)x′
is to generate any well-matched word

that can be produced by a correct “travelling” of the list of blocks, starting the
travel in any block that has x as starting label and ending it in any block that
has x′ as ending label. A correct travelling starting with y, ending with y′ and
producing a set of well-matched words S is a finite sequence b1b2 . . . bn of blocks
of B (where n > 0), such that n = 1 and bn is a unary block of the form [y M ]y

′

and S = M , or n > 1 and (there are three possible cases):

– b1 is a unary block of the form [y M ]v
′
for v′ ∈ E (including y′) and b2 . . . bn

is a correct travelling starting with v′, ending with y′ and producing T , and
S = M • T ;

– b1 is a binary block of the form [y{c} ↓z ↑w{r} ]y
′

and b2 . . . bn is a correct
travelling starting with z, ending with w and producing T , and S = {c} •
T • {r};

– b1 is a binary block of the form [y{c} ↓z ↑w{r} ]v
′

for v′ ∈ E (including y′)
and there exists an i ∈ IN such that 1 < i < n and b2 . . . bi is a correct
travelling starting with z, ending with w and producing T and bi+1 . . . bn is
a correct travelling starting with v′, ending with y′ and producing U , and
S = {c} • T • {r} • U .

Here are some examples. Let Σi
def= {a, b}, Σc

def= {c, d}, Σr
def= {r, s} and E

def=
{v, w, x, y, z}. The expression
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– (|x [x{a} ]x |)x denotes the visibly pushdown language {an | n > 0};
– (|x [x{a} ]y, [x{a} ]y |)x denotes the visibly pushdown language ∅;
– (|x [x{c} ↓x ↑y{r} ]y, [x{ε} ]y |)y denotes the visibly pushdown language {cnrn |

n ∈ IN};
– (|x [y{c} ↓w ↑v{r} ]z, [y{b} ]z, [w{d} ↓x ↑z{s} ]v, [x{a} ]y |)z denotes the visibly

pushdown language {a(cda)nb(sr)n | n ∈ IN}.

Note from the examples that the position of a block in the list is not important,
neither if it appears more than once in the list. This states that the list of blocks
works in fact like a set.

Let B be a finite list of unary and binary blocks using a finite set of labels E.
Define B1 as the set of unary blocks of B and B2 as the set of binary blocks of
B. For n ∈ IN, define the power-recursion operator (|x B |)y

n, where x, y ∈ E, by

induction on n: (|x B |)y
0

def= (∪ M | [x M ]y ∈ B1 : M), and

(|x B |)y
n+1

def= (∪ M, v | [x M ]v ∈ B1 : M • (|v B |)y
n)

∪ (∪ c, z, r, w | [x{c} ↓z ↑w{r} ]y ∈ B2 : {c} • (|z B |)w
n • {r})

∪ (∪ c, z, r, w, v, n1, n2 | [x{c} ↓z ↑w{r} ]v ∈ B2 ∧ n1, n2 ∈ IN

∧ n1 + n2 = n − 1 : {c} • (|z B |)w
n1

• {r} • (|v B |)y
n2

) .

Intuitively, (|x B |)y
n denotes the set of all well-matched words that can be gen-

erated by any correct travelling of B of length n + 1 starting with x and end-
ing with y. With this definition, it is easy to define an operator (|x B |)y by

(|x B |)y def= (∪ n | n ∈ IN : (|x B |)y
n).

What is the relationship of the family of operators with fixed points? Let
Bex

def= [y{c} ↓w ↑v{r} ]z, [y{b} ]z, [w{d} ↓x ↑z{s} ]v, [x{a} ]y. Take the expression
(|x Bex |)z. One can view (although it is not entirely true) the list of blocks like
a way to encode a special case of context-free grammars in a linear way. The
preceding blocks encode the grammar:

X(y,z) → cX(w,v)r, X(y,t) → cX(w,v)rX(z,t) for t ∈ {v, w, x, y, z},
X(y,z) → b, X(y,t) → bX(z,t) for t ∈ {v, w, x, y, z},
X(w,v) → dX(x,z)s, X(w,t) → dX(x,z)sX(v,t) for t ∈ {v, w, x, y, z},
X(x,y) → a, X(x,t) → aX(y,t) for t ∈ {v, w, x, y, z}.

Nonterminals of the form X(t,t′) are used because it is important to remember not
only the current label t that is expanded but also the label t′ that must be reached
in the end. With this grammar-based view, the value of (|x Bex |)z is simply the
language generated by the grammar when starting with the nonterminal X(x,z)
(a least fixed point). Clearly, it is the visibly pushdown language {a(cda)nb(sr)n |
n ∈ IN}. Note that these special cases of context-free grammars are not strong
enough to be the basis of our algebra as we will discuss in Sect. 6.

We are now ready to define visibly pushdown regular expressions. A visibly
pushdown regular expression is defined over three disjoint sets Σi, Σc and Σr by
the following propositions:
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– 0 and 1 are visibly pushdown regular expressions;
– if a ∈ Σi ∪ Σc ∪ Σr, then a is a visibly pushdown regular expression;
– if B is a finite list of unary blocks each containing one element of Σi ∪{0, 1},

and binary blocks each containing one element of Σc as left operand and one
element of Σr as right operand, where all blocks use a finite set of labels E,
and x, y ∈ E, then (|x B |)y is a visibly pushdown regular expression;

– if p and q are visibly pushdown regular expressions, then p · q, p + q and p∗

are visibly pushdown regular expressions.

The family of operators (|x E |)y, where E denotes a finite list of unary blocks
without operand and binary blocks without left and right operands using any
finite set of labels E, and where x, y ∈ E, is denoted by F(| |). The language
denoted by a visibly pushdown regular expression p is noted by L(p) and is
defined by

L(0) def= ∅, L(1) def= {ε}, L(a) def= {a} for any a ∈ Σi ∪ Σc ∪ Σr,

and extends over the structure of visibly pushdown regular expressions where ·
becomes •, + becomes ∪, and ∗ and (|x E |)y ∈ F(| |) become the set operators ∗

and (|x E |)y.
The class of visibly pushdown regular expressions is rich enough to denote

exactly the visibly pushdown languages as shown by the following theorem.

Theorem 1 (Theorem à la Kleene for visibly pushdown regular ex-
pressions [4]). Let Σi, Σc and Σr be three disjoint finite sets. Let L ⊆ (Σi ∪
Σc ∪ Σr)∗ be a language. The following propositions are equivalent:

(i) L is accepted by a visibly pushdown automaton;
(ii) L is denoted by a visibly pushdown regular expression.

4 Visibly Pushdown Kleene Algebra (VPKA)

We now want to define an algebra that characterizes exactly the equality of the
languages denoted by two visibly pushdown regular expressions. Before showing
the axioms, we recall Kozen’s definition of Kleene algebra [7] and give some
intuition about the axioms.

Definition 1 (Kleene algebra). A Kleene algebra is an algebraic structure
(K, +, ·, ∗, 0, 1) satisfying the following axioms2.

p + (q + r) = (p + q) + r p(qr) = (pq)r p + 0 = p
p(q + r) = pq + pr p + q = q + p p0 = 0 = 0p
(p + q)r = pr + qr p + p = p p1 = p = 1p
qp + r � p → q∗r � p 1 + p∗p � p∗ p � q ↔ p + q = q
pq + r � p → rq∗ � p 1 + pp∗ � p∗

2 In the sequel, we write pq instead of p ·q. The increasing precedence of the operators
is +, · and ∗.
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The axiomatisation of VPKA proposed below adds seven axioms to Kleene al-
gebra. The first two axioms are unfolding axioms for unary and binary blocks.
The third axiom is also an unfolding axiom but it is called the maximality of
(| |)-travel axiom, since it represents the fact that if a (| |)-expression is forced to
travel through an intermediate label y′ for any correct travelling, then it is more
restricted than if this (| |)-expression is not forced to travel through it.

Let B be a finite list of unary and binary blocks using labels from a finite
set E and let x, y ∈ E. Axioms (4) and (5) are induction axioms (equational
implication axioms) that define an expression (|x B |)y as the least solution for
a component X(x,y) of an inequational system like the one generated by the
grammar on page 48. These axioms are similar to the two Kleene star induction
axioms, but (4) and (5) have to deal with an inequational system instead of a
simple formula. So, axioms (4) and (5) use a set of solutions of the form s(u,u′),
for u, u′ ∈ E, for the equational system instead of a single solution. This raises
an interesting point. Remember from the example on page 48 that not every
nonterminal X(t,t′) is needed for the calculation of the result. For example, the
nonterminal X(x,w) is never used in the calculation when starting with X(x,z). To
approximate the needed nonterminals, two functions are defined. First, it is easy
to calculate such an approximation by travelling “forward” in the list of blocks.
A function F1

B : 2E×E → 2E×E is defined for any V ⊆ E × E by:

F1
B(V ) def= V ∪ {(y, y′) | (∃ z, m | (z, y′) ∈ V : [z m ]y ∈ B1)}

∪ {(y, y′), (w, w′) | (∃ z, c, r | (z, y′) ∈ V : [z c ↓w ↑w′
r ]y ∈ B2)} .

Of course, the list of blocks can also be travelled “backward”. So, a function
B1
B : 2E×E → 2E×E is also defined for any V ⊆ E × E by:

B1
B(V ) def= V ∪ {(y, y′) | (∃ z, m | (y, z) ∈ V : [y′ m ]z ∈ B1)}

∪ {(y, y′), (w, w′) | (∃ z, c, r | (y, z) ∈ V : [y′ c ↓w ↑w′
r ]z ∈ B2)} .

It is easy to see that these two functions are monotone. So, their least fixed
point exist and we respectively call them F∗

B and B∗
B. Note that F∗

B and B∗
B do

not coincide. For example, (y, z) ∈ F∗
Bex

({(x, z)}) and (x, y) /∈ F∗
Bex

({(x, z)}), but
(y, z) /∈ B∗

Bex
({(x, z)}) and (x, y) ∈ B∗

Bex
({(x, z)}). The functions F∗

B and B∗
B are

used in axioms (4) and (5) to restrict the inequational system to solve.
Axioms (6) and (7) are equational implications called (| |)-simulation axioms.

They are inspired both by the definition of a simulation relation between au-
tomata and by the bisimulation rule of Kleene algebra: pq = rp → pq∗ = r∗p.
The goal of (6) is to verify if a finite list B of unary and binary blocks using
only labels from a finite set E can be simulated (when travelling “forward”) by
another finite list C of unary and binary blocks using only labels from a finite set
E′. The simulation relation is encoded by a set of expressions like b

(z′,z)
z2 , where

z, z′ ∈ E and z2 ∈ E′, which are usually (but not necessarily) the constant 0
or 1, stating if the label z is simulated by z2 when the first label processed just
after the last unmatched call is z′ (such a z′ is useful to show some results like
the determinization of visibly pushdown automata). The simulation relation is
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correct if it commutes with internal actions, calls and returns for any block of
the list. However, note that any label simulated just before and after a call must
be remembered until its matching return is reached. Also, axiom (7) is similar
to (6), but the simulation is done by travelling “backward”.

Definition 2 (Visibly pushdown Kleene algebra). Let Σi, Σc and Σr be
three disjoint finite sets of “atomic elements” such that at least one of the sets
contains at least one element. A visibly pushdown Kleene algebra is a structure
(P, +, ·,∗ , F(| |), 0, 1) generated by Σi, Σc and Σr under the axioms of Kleene
algebra (in other words, the structure (P, +, ·,∗ , 0, 1) is a Kleene algebra) and
the following additional laws are satisfied by all expressions (|x B |)y and (|x2

C |)y2

where B and C are finite lists of unary blocks each containing one element of
Σi ∪ {0, 1} as operand and binary blocks each containing one element of Σc as
left operand and one element of Σr as right operand, where all blocks of B use a
finite set of labels E and all blocks of C use a finite set of labels E′, x, y, y′ ∈ E,
x2, y2 ∈ E′, s(u,u′), b

(u,u′)
x′
2

∈ P for all u, u′ ∈ E, x′
2 ∈ E′:

m � (|
x

B
y

|), for [
x

m
y

] ∈ B1 , (1)

c · (|
z

B
w

|) · r � (|
x

B
y

|), for [
x

c ↓
z

w

↑ r
y

] ∈ B2 , (2)

(|
x

B
y′

|) · (|
y′
B

y

|) � (|
x

B
y

|) , (3)(
∧ u, u′ | (u, u′) ∈ F∗

B({(x, y)}) :

(∧ m | [
u

m
u′

] ∈ B1 : m � s(u,u′))

∧ (∧ m, v | [
u

m
v

] ∈ B1 : m · s(v,u′) � s(u,u′))

∧ (∧ c, z, r, w | [
u

c ↓
z

w

↑ r
u′

] ∈ B2 : c · s(z,w) · r � s(u,u′))

∧ (∧ c, z, r, w, v | [
u

c ↓
z

w

↑ r
v

] ∈ B2 : c · s(z,w) · r · s(v,u′) � s(u,u′))
)

→ (|
x

B
y

|) � s(x,y) ,

(4)

(
∧ u, u′ | (u, u′) ∈ B∗

B({(x, y)}) :

(∧ m | [
u

m
u′

] ∈ B1 : m � s(u,u′))

∧ (∧ m, v | [
v

m
u′

] ∈ B1 : s(u,v) · m � s(u,u′))

∧ (∧ c, z, r, w | [
u

c ↓
z

w

↑ r
u′

] ∈ B2 : c · s(z,w) · r � s(u,u′))

∧ (∧ c, z, r, w, v | [
v

c ↓
z

w

↑ r
u′

] ∈ B2 : s(u,v) · c · s(z,w) · r � s(u,u′))
)

→ (|
x

B
y

|) � s(x,y) ,

(5)
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(
∧ u, u′, u′′, x′

2, m | u′′ ∈ E ∧ x′
2 ∈ E′ ∧ [

u

m
u′

] ∈ B1 :

b
(u′′,u)

x′
2

· m � (
∑

y′′
2 | [

x′
2

m
y′′
2

] ∈ C1 : m · b(u′′,u′)
y′′
2

)
)

∧
(
∧ u, u′, u′′, x′

2, c, z, r, w | u′′ ∈ E ∧ x′
2 ∈ E′ ∧ [

u

c ↓
z

w

↑ r
u′

] ∈ B2 :

b
(u′′,u)

x′
2

· c � (
∑

z′, w′, y′′
2 | [

x′
2

c ↓
z′

w′
↑ r

y′′
2

] ∈ C2 : b
(u′′,u)

x′
2

· c · b(z,z)
z′ · b(z,z)

z′ )
)

∧
(
∧ u, u′, u′′, x′

2, c, z, r, w, z′, w′′ | u′′ ∈ E ∧ x′
2, z

′, w′′ ∈ E′ ∧ [
u

c ↓
z

w

↑ r
u′

] ∈ B2 :

(
∑

w′, y′′
2 | [

x′
2

c ↓
z′

w′
↑ r

y′′
2

] ∈ C2 : b
(u′′,u)

x′
2

· c · b(z,z)

z′ · (|
z′
C

w′′

|) · b
(z,w)

w′′ · r)

� (
∑

y′′
2 | [

x′
2

c ↓
z′

w′′
↑ r

y′′
2

] ∈ C2 : c · (|
z′
C

w′′

|) · r · b(u′′,u′)
y′′
2

)
)

→ b(y′,x)
x2 · (|

x

B
y

|) � (
∑

y′
2 | y′

2 ∈ E′ : (|
x2

C
y′
2|) · b

(y′,y)

y′
2

) ,

(6)

(
∧ u, u′, x′

2, y
′
2, m | u, u′ ∈ E ∧ [

x′
2

m
y′
2

] ∈ C1 :

m · b(u,u′)
y′
2

� (
∑

u′′ | [
u′′

m
u′

] ∈ B1 : b
(u,u′′)
x′
2

· m)
)

∧
(
∧ u, u′, x′

2, y
′
2, c, z, r, w | u, u′ ∈ E ∧ [

x′
2

c ↓
z

w

↑ r
y′
2

] ∈ C2 :

r · b(u,u′)
y′
2

� (
∑

u′′, z′, w′ | [
u′′

c ↓
z′

w′
↑ r

u′

] ∈ B2 : b(z′,w′)
w · b(u,u′′)

x′
2

· r)
)

∧
(
∧ u, u′, x′

2, y
′
2, c, z, r, w, u′′, z′, w′ | u ∈ E ∧ [

x′
2

c ↓
z

w

↑ r
y′
2

] ∈ C2

∧ [
u′′

c ↓
z′

w′
↑ r

u′

] ∈ B2 : (
∑

z′′ | z′′ ∈ E : c · b(z′,z′′)
z · (|

z′′
B

w′

|) · b
(u,u′′)
x′
2

· r)

� b
(u,u′′)
x′
2

· c · (|
z′
B

w′

|) · r
)

→ (|
x2

C
y2|) · b(y′,y)

y2 � (
∑

x′ | x′ ∈ E : b(y′,x′)
x2 · (|

x′
B

y

|)) .

(7)

To get a better grip on the axioms, we prove that (|x [x c ↓x ↑y r ]y, [x a ]y |)y �
(|x [x c ↓x ↑y r ]y, [x a ]x, [x a ]y |)y for Σi

def= {a}, Σc
def= {c}, Σr

def= {r} and E
def= {x, y}.

Let Cex
def= [x c ↓x ↑y r ]y, [x a ]x, [x a ]y. By F∗

[x c ↓x ↑y r ]y,[x a ]y({(x, y)}) = {(x, y), (y, y)}

and axiom (4), it suffices to prove, for s(x,y)
def= (|x Cex |)y and s(y,y)

def= 0, that
a + a · 0 + c · (|x Cex |)y · r + c · (|x Cex |)y · r · 0 � (|x Cex |)y and 0 + 0 + 0 + 0 � 0.
The second inequality is trivial by Kleene algebra. For the first inequality, using
simple Kleene algebraic reasoning and axioms (1) and (2):

a + a · 0 + c · (|
x
Cex

y

|) · r + c · (|
x
Cex

y

|) · r · 0 = a + c · (|
x
Cex

y

|) · r � (|
x
Cex

y

|) .
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Let B be a finite list of unary and binary blocks, where all blocks of B use a finite
set of labels E, and let x, y ∈ E. A theorem of VPKA, inspired by the definition
of (|x B |)y for visibly pushdown languages, can be proved using Kleene algebra
and axioms (1) to (4) (see [4] for the proof):

(|x B |)y = (
∑

m | [x m ]y ∈ B1 : m)
+ (

∑
m, v | [x m ]v ∈ B1 : m · (|v B |)y)

+ (
∑

c, z, r, w | [x c ↓z ↑w r ]y ∈ B2 : c · (|z B |)w · r)
+ (

∑
c, z, r, w, v | [x c ↓z ↑w r ]v ∈ B2 : c · (|z B |)w · r · (|v B |)y) .

(8)

Note that any VPKA is a partial algebra because each operator of F(| |) is defined
only on atomic elements. However, the axiomatic system is still powerful. In
fact, the axiomatic system is sound and complete for valid equations between
languages denoted by visibly pushdown regular expressions and the equational
theory of VPKA is EXPTIME-complete [4]. Note also that axioms (6) and (7)
are not used often in proofs. In fact, most of the proofs of [4] do not use them.

4.1 Visibly Pushdown Kleene Algebra with Tests

Tests are an essential ingredient to analyze imperative programs. We add them in
a way similar to Kleene algebra with tests [8]: a Boolean algebra (B, +, ·, , 0, 1)
generated by atomic tests B is added to VPKA, where B ⊆ P . However, we would
like to use tests in operators of F(| |). How can we interpret a test? It seems natural
to think of tests as a subset of internal actions. So, we extend the definition of
unary blocks to allow tests. As any Boolean expression can be put in negation
normal form, it is sufficient (see Sect. 4.2) to allow additional unary blocks where
their operand is an element of {b, b | b ∈ B}. Also, axioms (1) to (7) are adapted
in a natural way: consider each element of {b, b | b ∈ B} like an internal action.

4.2 Metablocks

The definition of a list of blocks for F(| |) is simple, but it can be tedious to write
such a list for a large expression. To simplify this process, we define metablocks
which are abbreviations (similar to regular expressions) of a list of blocks.

Let Σi, Σc, Σr and B be finite sets. Let E be a finite set of labels. A metablock
is an expression [xe]y where x, y ∈ E and e is an expression of the set MBexp that
is defined as the smallest set containing 0, 1, a for each a ∈ Σi ∪ {b, b | b ∈ B},
(c↓z↑wr) for each c ∈ Σc, r ∈ Σr and z, w ∈ E, and closed under “operators” ·,
+ and ∗. We allow to write pq instead of p · q. A metablock is reduced to a list
of unary and binary blocks by the function mb defined inductively by:

– mb([xa]y) def= [x a ]y for a ∈ {0, 1} ∪ Σi ∪ {b, b | b ∈ B} and x, y ∈ E;
– mb([x(c↓z↑wr)]y) def= [x c ↓z ↑w r ]y for c ∈ Σc, r ∈ Σr and x, y, z, w ∈ E;
– mb([xp · q]y) def= mb([xp]z), mb([zq]y) for x, y ∈ E and a fresh label z;
– mb([xp + q]y) def= mb([xp]y), mb([xq]y) for x, y ∈ E;
– mb([xp∗]y) def= [x 1 ]y, mb([xp]y), mb([xp]z), mb([zp]z), mb([zp]y) for x, y ∈

E and a fresh label z.
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5 Interprocedural Analysis of (Mutually) Recursive
Programs

We are building a framework for static analysis like the framework defined in [3]
or in [9]. Currently, the framework is not fixed, but this is a work in progress.

A (mutually) recursive program allows the program constructs:

p; q, if b then p else q, while b do p,

and the procedure program construct:

procedure f ( var l1, var l2, . . . , var ln ) begin p end

for programs p, q, test b, function name f and local variables l1, l2, . . . , ln. Intu-
itively, the procedure program construct defines a procedure named f that has
body p defined using local variables l1, l2, . . . , ln. A procedure that will act as
the first procedure called by the program when it starts must be defined. Note
that a program construct can contain call of procedures.

Static analysis of (mutually) recursive programs follows the process in Fig. 1.
First, encode the program in VPKA. This is done in three steps:

1. Define the desired abstraction for atomic program instructions and variables
through the sets Σi, Σc, Σr and B;

2. Encode the program’s control flow by an expression p;
3. Encode the desired semantics of atomic program instructions, variables and

variable passing mechanism by a set of equational hypotheses H.

These steps are semiautomatic. In particular, the encoding in step 2 of the
program constructs gives an expression of MBexp:

p; q def= pq, if b then p else q
def= bp + b̄q, while b do p

def= (bp)∗b̄,

and the body of the procedure program construct gives a metablock:

procedure f ( var h1, var h2, . . . , var hn ) begin p end
def= [fp]τ ,

where τ is the end of any procedure. For more flexibility, the encoding of atomic
instructions, call instructions and variables is left at the user’s discretion.

Currently, the framework deals only with halting programs, since non-halting
programs need specific mechanisms (see for example [9]). Halting programs are
obtained by restricting recursive procedures and loops to simple cases.

Step 3 is a powerful step, but it is also the most tedious one. The hypotheses
usually represent an abstraction of the data flow of the program. Some classes of
hypotheses are already studied in Kleene algebra with tests (see for example [8]).
However, it is also useful to have some hypotheses that represent the variable
passing mechanism of the procedure. We present some of these in page 55.

Currently, the exact encoding of the property in VPKA is not fixed. Since the
framework is restricted to halting programs, the full power of visibly pushdown
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Program P �� Encoding of
P in algebra

�� Hypotheses H
and expression p

�� Deductive system:
� H ∧R → p � q ?

��
Property S �� Encoding of

S in algebra
�� Hypotheses R
and expression q

��������������

Result: Yes/No

Fig. 1. Framework of static analysis in visibly pushdown Kleene algebra

automata can be used to define the property (this is not the case with non-halting
programs). However, defining a property by such automata does not seem always
easy. In our experiments, we found it clearer to define the property directly in
VPKA. This has the drawback of not having a clear encoding like in [3] or [9].
We used an encoding of the visibly pushdown language, representing the set of
executions of any program on Σi, Σc, Σr and B that satisfies the property, that
is composed of an expression q of VPKA and a set R of “refinement hypotheses”
that help to sharpen the program’s abstraction according to the desired property.
Some refinement hypotheses are presented in page 56.

The static analysis ends by verifying if H ∧R → p � q is a theorem of VPKA.
The program is said to satisfy the property if and only if the formula is a theorem
of VPKA.

Example. Take the abstract program of Fig. 2(a). In it, the action o(i) represents
the opening of the file named i with a writing to i and c(i) represents the writing
to the file named i with the closing of i. For the example, suppose that o(i) and
c(i) are internal actions. We want to show the non-regular property φ: any file
opened in a procedure must be closed exactly in this procedure. We prove it for
the cases where i ∈ {0, 1} (it is a drastic abstraction of the possible values of i).

For the encoding of the program, use an atomic test b to represent i = 0 and
b̄ to represent i = 1. So, B def= {b}. Also, use Σi

def= {o, c}, Σc
def= {〈f}, Σr

def= {f〉}
and E

def= {f, f′, τ} where f′ is used as the main procedure. Note that actions o(i)
and c(i) are abstracted by actions o and c. The information that they depend
on the value of i is lost. This will be taken care of in the refinement hypotheses.
The encoding of the program’s control flow p is given in Fig. 2(b).

The encoding of the desired semantics is given only for hypotheses used in
the proof. So, H is bo = ob ∧ b̄ · 〈f � 〈f · b ∧ b̄ · 〈f · (|f B |)τ · f〉 = 〈f · (|f B |)τ · f〉 · b̄
where B def= [f′

〈f ↓f ↑τ f〉 ]τ , [fboc + b̄o(〈f↓f↑τ f〉)c]τ . The first hypothesis states
that action o does not modify the test b. The second and the third hypotheses
abstractly encode the passing of the variable i by value: the second is a Hoare
triple that states that if i = 1 just before calling f , then the value of i at the
beginning of the newly called f is now 0, and the third states that the value of
i just before calling f is remembered just after returning from f .

As we saw earlier, the property is relative to the exact file used. But the
encoding of the program’s control flow does not give enough information about
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procedure f ( int i ) begin
if (i � 0) then

o(i);
c(i)

else
o(i);
call f(i − 1);
c(i)

end if
end procedure

(a) Abstract program

(|f′ [f′
〈f ↓f ↑τ f〉 ]τ , [fboc + b̄o(〈f↓f↑τ f〉)c]τ |)τ

(b) Program’s control flow in algebra

(|x [x

(
C(x) + o1

(
C(y1) + o2(C(y1,2))∗c2

)∗
c1

+ o2

(
C(y2) + o1(C(y1,2))∗c1

)∗
c2

)∗
]τ ,

[y1
(
C(y1) + o2(C(y1,2))∗c2

)∗
]τ ,

[y2
(
C(y2) + o1(C(y1,2))∗c1

)∗
]τ ,

[y1,2
(C(y1,2))∗]τ |)τ

where C(z) def= (〈f↓z↑τ f〉) for z ∈ {x, y1, y2, y1,2}
(c) The property in algebra

Fig. 2. Elements for the example of interprocedural analysis

which file is really used. To allow this, add four internal actions, namely o1, o2,
c1 and c2, to Σi and define R to be bo � o1 ∧ b̄o � o2 ∧bc � c1 ∧ b̄c � c2. These
hypotheses state that actions o and c depend on b and b̄.

The encoding of the property φ by an expression q is given in Fig. 2(c). Intui-
tively, this expression states that, at the beginning of the context x, no file is
opened; at the beginning of a context yj for j ∈ {1, 2}, only the file j − 1 is
opened; at the beginning of the context y1,2, the two files are opened.

The program satisfies φ if H ∧ R → p � q is a theorem of VPKA. We prove
it. Let B def= [f′

〈f ↓f ↑τ f〉 ]τ , [fboc + b̄o(〈f↓f↑τ f〉)c]τ . By (8), (|τ B |)τ = 0. Now,

(|f′ B |)τ

= {{ Equation (8) & Result: (|τ B |)τ = 0 & Zero of · & Identity of + }}
〈f · (|f B |)τ · f〉

= {{ Metablocks & Equation (8) & Result: (|τ B |)τ = 0 & Zero of · &
Identity of + }}

〈f · (boc + b̄o · 〈f · (|f B |)τ · f〉 · c) · f〉
� {{ Idempotency of tests & Hypotheses in H & Kleene algebra with

tests: bo = ob ↔ b̄o = ob̄ & Monotonicity of · and + }}
〈f · (bobc + b̄o · 〈f · b · (|f B |)τ · f〉 · b̄c) · f〉

= {{ Metablocks & Equation (8) & Result: (|τ B |)τ = 0 & Zero of · &
Identity of + }}

〈f · (bobc + b̄o · 〈f · b · (boc + b̄o · 〈f · (|f B |)τ · f〉 · c) · f〉 · b̄c) · f〉
= {{ Distributivity of · over + & Contradiction of tests & Zero of · &

Identity of + & Hypothesis: bo = ob }}
〈f · (bobc + b̄o · 〈f · bobc · f〉 · b̄c) · f〉

� {{ Hypotheses in R & Monotonicity of · and + }}
〈f · (o1c1 + o2 · 〈f · o1c1 · f〉 · c2) · f〉

� {{ Kleene algebra: s1 � s1 + s2 & Equation (8) & Metablocks }}
q .
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6 Related Work and Discussion

The axiomatisation of subclasses of context-free languages is not new (see for
example [2,10,11]). Leiß proposed Kleene algebra with recursion which is essen-
tially an idempotent semiring with an explicit general least fixed point operator
µ. Bloom and Ésik did something similar to Leiß when they defined iteration
algebras, but they also developed a robust theory for fixed point operators. In
contrast, we define a family F(| |) of partial operators that are implicit least fixed
points and deal only with a restricted set of fixed point formulae.

There are some reasons why we use the family of operators instead of context-
free grammars. Any expression (|x B |)y is a compact way to express a starting (x)
and ending goal (y), and the definition of the operator allows to reach them by
mixing forward and backward travelling. It is like defining several grammars at
the same time and using the one needed on-the-fly with the ability to switch be-
tween these grammars at will. This ability is important when analysing programs
and in the algebra itself. Note that (4) to (7) are committed to the direction of the
travelling. Also, an expression (|x B |)y allows to make sure that the inequational
system represented by B is “confined” to the expression, since (|x B |)y is the least
solution for a single component of this system and not the entire system itself!

There already exist variants of Kleene algebra for statically analysing pro-
grams with or without procedures [3,9,13]. However, all these frameworks allow
only to verify regular properties whereas we are able to deal with some non-
regular properties. Of these frameworks, the only one that can deal with (mu-
tually) recursive programs is the work of Mathieu and Desharnais [13]. It uses
pushdown systems as programs and uses an extension of omega algebra with
domain (that adds laws to represent explicit stack manipulations) along with
matrices on this algebra to represent programs.

The model checking community works on the verification of (mutually) recur-
sive programs [1,5,14]. However, most of the tools developed so far can just deal
with regular properties. Of course, tools using visibly pushdown automata are
able to deal with some non-regular properties. Note that our work is different
because (i) the verification process looks for the existence of a proof in the alge-
braic system, (ii) we can encode proofs à la Proof-Carrying Code, and (iii) we
are not limited to decidable problems when using the proof method.

7 Conclusion

We presented visibly pushdown Kleene algebra, an extension of Kleene algebra
that axiomatises exactly the equational theory of visibly pushdown languages.
The algebra adds a family of operators to Kleene algebra. These operators are
implicit least fixed points that generate exactly any set of well-matched words.
The algebraic system is sound and complete for the equational theory of visibly
pushdown languages and its complexity is EXPTIME-complete.

We showed that VPKA extended with tests is suitable to do interprocedural
analysis of (mutually) recursive programs. We sketched a framework to do these
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analyses. The framework is similar to [3] or [9], but procedures are added to the
definition of programs and the verification of non-regular properties is possible.

For future work, one idea is to add to VPKA the omega operator along with
an “infinite” version (infinite expansion, but a finite number of possibly pending
calls at any time) of the family of operators to represent visibly pushdown ω-
languages as defined in [1]. Also, it seems interesting to add a domain operator
since it can give an algebra related to the extension of PDL defined in [12]. More-
over, other applications for VPKA need to be investigated, like the verification
of the correct transformation of a recursive algorithm in an iterative algorithm.

Acknowledgements. We are grateful to Jules Desharnais and the anonymous
referees for detailed comments.
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Abstract. We present an algebraic approach to separation logic. In par-
ticular, we give algebraic characterisations for all constructs of separation
logic. The algebraic view does not only yield new insights on separation
logic but also shortens proofs and enables the use of automated theorem
provers for verifying properties at a more abstract level.

1 Introduction

Two prominent formal methods for reasoning about the correctness of programs
are Hoare logic [9] and the wp-calculus of Dijkstra [7]. These approaches, al-
though foundational, lack expressiveness for shared mutable data structures,
i.e., structures where updatable fields can be referenced from more than one
point (e.g. [19]). To overcome this deficiency Reynolds, O’Hearn and others have
developed separation logic for reasoning about such data structures [17]. Their
approach extends Hoare logic by assertions to express separation within memory,
both in the store and the heap. Furthermore the command language is enriched
by some constructs that allow altering these separate ranges. The introduced
mechanisms have been extended to concurrent programs that work on shared
mutable data structures [16].

This paper presents an algebraic approach to separation logic. As a result
many proofs become simpler while still being fully precise. Moreover, this places
the topic into a more general context and therefore allows re-use of a large body
of existing theory.

In Section 2 we recapitulate syntax and semantics of expressions in separation
logic and give a formal definition of an update-operator for relations. Section 3
gives the semantics of assertions. After providing the algebraic background in
Section 4, we shift from the validity semantics of separation logic to one based on
the set of states satisfying an assertion. Abstracting from the set view yields an
algebraic interpretation of assertions in the setting of semirings and quantales. In
Section 6 we discuss special classes of assertions: pure assertions do not depend
on the heap at all; intuitionistic assertions do not specify the heap exactly. We
conclude with a short outlook.

2 Basic Definitions

Separation logic, as an extension of Hoare logic, does not only allow reasoning
about explicitly named program variables, but also about anonymous variables

R. Berghammer et al. (Eds.): RelMiCS/AKA 2009, LNCS 5827, pp. 59–72, 2009.
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in dynamically allocated storage. Therefore a program state in separation logic
consists of a store and a heap. In the remainder we consistently write s for stores
and h for heaps.

To simplify the formal treatment, one defines values and addresses as integers,
stores and heaps as partial functions from variables or addresses to values and
states as pairs of stores and heaps:

Values = ZZ ,

{nil} ·∪Addresses ⊆ Values ,

Stores = V � Values ,

Heaps = Addresses � Values ,

States = Stores × Heaps ,

where V is the set of all variables, ·∪ denotes the disjoint union on sets and
M � N denotes the set of partial functions between M and N . With this
definition, we slightly deviate from [19] where stores are defined as functions
from variables to values of ZZ and heaps as functions from addresses into values
of ZZ , while addresses are also values of ZZ .

The constant nil is a value for pointers that denotes an improper reference
like null in programming languages like Java; by the above definitions, nil is not
an address and hence heaps do not assign values to nil.

As usual we denote the domain of a relation (partial function) R by dom(R):

dom(R) =df {x : ∃ y.(x, y) ∈ R} .

In particular, the domain of a store denotes all currently used program variables
and dom(h) is the set of all currently allocated addresses on a heap h.

As in [14] and for later definitions we also need an update operator. It is used
to model changes in stores and heaps. We will first give a definition and then
explain its meaning.

Let R and S be partial functions. Then we define

R | S =df R ∪ {(x, y) | (x, y) ∈ S ∧ x 	∈ dom(R)} . (1)

The relation R updates the relation S with all possible pairs of R in such a
way that R | S is again a partial function. The domain of the right hand side
of ∪ above is disjoint from that of R. In particular, R | S can be seen as an
extension of R to dom(R)∪dom(S). In later definitions we abbreviate an update
{(x, v)} | S on a single variable or address by omitting the set-braces and simply
writing (x, v) | S instead.

Expressions are used to denote values or Boolean conditions on stores and are
independent of the heap, i.e., they only need the store component of a given state
for their evaluation. Informally, exp-expressions are simple arithmetical expres-
sions over variables and values, while bexp-expressions are Boolean expressions
over simple comparisons and true, false. Their syntax is given by
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var ::= x | y | z | ...

exp ::= 0 | 1 | 2 | ... | var | exp ± exp | ...

bexp ::= true | false | exp = exp | exp < exp | ...

The semantics es of an expression e w.r.t. a store s is straightforward (assuming
that all variables occurring in e are contained in dom(s)). For example,

cs = c ∀ c ∈ ZZ , trues = true and falses = false .

3 Assertions

Assertions play an important rôle in separation logic. They are used as predicates
to describe the contents of heaps and stores and as pre- or postconditions in
programs, like in Hoare logic:

assert ::= bexp | ¬ assert | assert ∨ assert | ∀ var . assert |
emp | exp �→ exp | assert ∗ assert | assert −∗ assert .

In the remainder we consistently write p, q and r for assertions. Assertions are
split into two parts: the “classical” ones from predicate logic and four new ones
that express properties of the heap. The former are supplemented by the logical
connectives ∧ , → and ∃ that are defined, as usual, by p ∧ q =df ¬ (¬ p ∨ ¬ q),
p → q =df ¬ p ∨ q and ∃ v. p =df ¬∀ v. ¬ p .

The semantics of assertions is given by the relation s, h |= p of satisfaction.
Informally, s, h |= p holds if the state (s, h) satisfies the assertion p ; an assertion
p is called valid iff p holds in every state and, finally, p is satisfiable if there exists
a state (s, h) which satisfies p. The semantics is defined inductively as follows
(e.g. [19]).

s, h |= b ⇔df bs = true
s, h |= ¬p ⇔df s, h 	|= p
s, h |= p ∨ q ⇔df s, h |= p or s, h |= q
s, h |= ∀ v. p ⇔df ∀ x ∈ ZZ : (v, x) | s, h |= p
s, h |= emp ⇔df h = ∅
s, h |= e1 �→ e2 ⇔df h = {( es1 , es2 )}
s, h |= p ∗ q ⇔df ∃ h1, h2 ∈ Heaps : dom(h1) ∩ dom(h2) = ∅ and

h = h1 ∪ h2 and s, h1 |= p and s, h2 |= q
s, h |= p −∗ q ⇔df ∀ h′ ∈ Heaps : (dom(h′) ∩ dom(h) = ∅ and s, h′ |= p)

implies s, h′ ∪ h |= q .

Here, b is a bexp-expression, p, q are assertions and e1, e2 are exp-expressions.
The first four clauses do not make any assumptions about the heap and only
carry it along without making any changes to it; they are well known from
predicate logic or Hoare logic [9].

The remaining lines describe the new parts in separation logic: For an ar-
bitrary state (s, h), emp ensures that the heap h is empty and contains no
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p−∗ q

h

p

h′

q

h ∪ h′

Fig. 1. Separating implication1

addressable cells. An assertion e1 �→ e2 characterises states with the singleton
heap that has exactly one cell at the address es1 with the value es2 . To reason
about more complex heaps, the separating conjunction ∗ is used. It allows ex-
pressing properties of heaps that result from merging smaller disjoint heaps, i.e.,
heaps with disjoint domains.

The separating implication p −∗ q guarantees, that if the current heap h is
extended with a heap h′ satisfying p , the merged heap h ∪ h′ satisfies q (cf.
Figure 1). If the heaps are not disjoint, the situation is interpreted as an error
case and the assertion is not satisfied.

4 Quantales and Residuals

To present our algebraic semantics of separation logic in the next section we now
prepare the algebraic background.

A quantale [20] is a structure (S, ≤, 0, ·, 1) where (S, ≤) is a complete lattice
and · is completely disjunctive, i.e., · distributes over arbitrary suprema. More-
over 0 is the least element and 1 is the identity of the · operation. The infimum
and supremum of two elements a, b ∈ S are denoted by a � b and a + b, resp.
The greatest element of S is denoted by �. The definition implies that · is strict,
i.e., that 0 · a = 0 = a · 0 for all a ∈ S. The notion of a quantale is equivalent
to that of a standard Kleene algebra [3] and a special case of the notion of an
idempotent semiring.

A quantale is called Boolean if its underlying lattice is distributive and com-
plemented, whence a Boolean algebra. Equivalently, a quantale S is Boolean if
it satisfies the Huntington axiom a = a + b + a + b for all a, b ∈ S [12,11]. The
infimum is then defined by the de Morgan duality a�b =df a + b. An important
Boolean quantale is REL, the algebra of binary relations over a set under set
inclusion, relation composition and set complement.

A quantale is called commutative if · commutes, i.e., a · b = b · a for all a, b.
In any quantale, the right residual a\b [1] exists and is characterised by the

Galois connection
x ≤ a\b ⇔df a · x ≤ b .

Symmetrically, the left residual b/a can be defined. However, if the underlying
quantale is commutative then both residuals coincide, i.e., a\b = b/a. In REL,
1 The right picture might suggest that the heaps are adjacent after the join. But the

intention is only to bring out abstractly that the united heap satisfies q.
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one has R\S = R̆ ; S and R/S = R ; S ,̆ where˘denotes relational converse and
; is relational composition.

In a Boolean quantale, the right detachment a�b can be defined based on the
left residual as

a�b =df a/b .

In REL, R�S = R ; S .̆ By de Morgan’s laws, the Galois connection for / trans-
forms into the exchange law

a�b ≤ x ⇔ x · b ≤ a (exc)

for � that generalises the Schröder rule of relational calculus. An important
consequence is the Dedekind rule [13]

a � (b · c) ≤ (a�c � b) · c . (Ded)

5 An Algebraic Model of Assertions

We now give an algebraic interpretation for the semantics of separation logic.
The main idea is to switch from the satisfaction-based semantics for single states
to an equivalent set-based one where every assertion is associated with the set
of all states satisfying it. This simplifies proofs considerably.

For an arbitrary assertion p we therefore define its set-based semantics as

[[ p ]] =df {(s, h) : s, h |= p} .

The sets [[ p ]] of states will be the elements of our algebra. By this we then have
immediately the connection s, h |= p ⇔ (s, h) ∈ [[ p ]]. This validity assertion
can be lifted to set of states by setting, for A ⊆ States, A |= p ⇔ A ⊆ [[p]].
The embedding of the standard Boolean connectives is given by

[[ ¬ p ]] = {(s, h) : s, h 	|= p} = [[ p ]] ,

[[ p ∨ q ]] = [[ p ]] ∪ [[ q ]] ,

[[ ∀ v. p ]] = {(s, h) : ∀ x ∈ ZZ . (v, x) | s, h |= p } .

Using these definitions, it is straightforward to show that

[[ p ∧ q ]] = [[p]] ∩ [[q]] , [[ p → q ]] = [[p]] ∪ [[q]] , and
[[ ∃ v. p ]] = [[ ∀ v. ¬ p ]] = {(s, h) : ∃ x ∈ ZZ . (v, x) | s, h |= p } ,

where | is the update operation defined in (1).
The emptiness assertion emp and the assertion operator �→ are given by

[[ emp ]] =df {(s, h) : h = ∅}
[[e1 �→ e2]] =df

{
(s, h) : h =

{(
es1 , es2

)}}
.
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Next, we model the separating conjunction ∗ algebraically by

[[ p ∗ q ]] =df [[ p ]] ·∪ [[ q ]], where
P ·∪Q =df {(s, h ∪ h′) : (s, h) ∈ P ∧ (s, h′) ∈ Q ∧ dom(h) ∩ dom(h′) = ∅} .

In this way inconsistent states as well as “erroneous” merges of non-disjoint
heaps are excluded.

These definitions yield an algebraic embedding of separation logic.

Theorem 5.1. The structure AS =df (P(States), ⊆ , ∅, ·∪ , [[ emp ]]) is a com-
mutative and Boolean quantale with P + Q = P ∪ Q.

The proof is by straightforward calculations; it can be found in [4]. It is easy to
show that [[true]] is the greatest element in the above quantale, i.e., [[true]] = �,
since every state satisfies the assertion true. This implies immediately that [[true]]
is the neutral element for �. However, in contrast to addition ∪, multiplication
·∪ is in general not idempotent.

Example 5.2. In AS,

[[ (x �→ 1) ∗ (x �→ 1) ]] = [[ x �→ 1 ]] ·∪ [[ x �→ 1 ]] = ∅ .

This can be shown by straightforward calculations using the above definitions.

[[ (x �→ 1) ∗ (x �→ 1) ]]
= [[ (x �→ 1) ]] ·∪ [[ (x �→ 1) ]]
= {(s, h ∪ h′) : (s, h), (s, h′) ∈ [[ x �→ 1 ]] ∧ dom(h) ∩ dom(h′) = ∅}
= ∅ .

[[ x �→ 1 ]] is the set of all states that have the single-cell heap {(s(x), 1)}. The
states (s, h) and (s, h′) have to share this particular heap. Hence the domains of
the merged heaps would not be disjoint. Therefore the last step yields the empty
result. ��

As a check of the adequacy of our definitions we list a couple of properties.

Lemma 5.3. In separation logic, for assertions p, q, r, we have

(p ∧ q) ∗ r ⇒ (p ∗ r) ∧ (q ∗ r) and
p ⇒ r q ⇒ s

p ∗ q ⇒ r ∗ s
.

The second property denotes isotony of separating conjunction. Both properties
together are, by standard quantale theory, equivalent to isotony of separating
conjunction.

More laws and examples can be found in [4].
For the separating implication the set-based semantics extracted from the

definition in Section 3 is

[[ p −∗ q ]] =df {(s, h) : ∀ h′ ∈ Heaps : ( dom(h) ∩ dom(h′) = ∅ ∧ (s, h′) ∈ [[ p ]])
⇒ (s, h ∪ h′) ∈ [[ q ]]} .

This implies that separating implication corresponds to a residual.
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Lemma 5.4. In AS, [[ p −∗ q ]] = [[ p ]]\[[ q ]] = [[ q ]]/[[ p ]].

Proof. We first show the claim for a single state. By definition above, set theory
and definition of ·∪ , we have

(s, h) ∈ [[p −∗ q]]
⇔ ∀ h′ : ((s, h′) ∈ [[p]] ∧ dom(h) ∩ dom(h′) = ∅ ⇒ (s, h ∪ h′) ∈ [[q]])
⇔ {(s, h ∪ h′) : (s, h′) ∈ [[p]] ∧ dom(h) ∩ dom(h′) = ∅} ⊆ [[q]]
⇔ {(s, h)} ·∪ [[p]] ⊆ [[q]] .

and therefore, for arbitrary set R of states,

R ⊆ [[p −∗ q]]
⇔ ∀ (s, h) ∈ R : (s, h) ∈ [[p −∗ q]]
⇔ ∀ (s, h) ∈ R : {(s, h)} ·∪ [[p]] ⊆ [[q]]
⇔ R ·∪ [[p]] ⊆ [[q]] .

Hence, by definition of the residual, [[p −∗ q]] = [[p]]\[[q]]. The second equation
follows immediately since multiplication ·∪ in AS commutes (cf. Section 2). ��

Now all laws of [19] about −∗ follow from the standard theory of residuals
(e.g. [2]). Many of these laws are proved algebraically in [4]. For example, the two
main properties of separating implication, namely the currying and decurrying
rules, are nothing but the transcriptions of the defining Galois connection for
right residuals.

Corollary 5.5. In separation logic the following inference rules hold:

p ∗ q ⇒ r

p ⇒ (q −∗ r) , (currying)
p ⇒ (q −∗ r)
p ∗ q ⇒ r

. (decurrying)

This means that q −∗ r is the weakest assertion guaranteeing that a state in
[[q −∗ r]] merged with a state in [[q]] yields a state in [[r]].

As far as we know, in his works Reynolds only states that these laws follow
directly from the definition. We are not aware of any proof of the equalities given
in Lemma 5.4, although many authors state this claim and refer to Reynolds.

As a further example we prove the algebraic counterpart of the inference rule
q ∗ (q −∗ p) ⇒ p .

Lemma 5.6. Let S be a quantale. For a, b ∈ S the inequality q ·(q \ p) ≤ p holds.

Proof. By definition of residuals we immediately get
q · (q \ p) ≤ p ⇔ q \ p ≤ q \ p ⇔ true . ��

6 Special Classes of Assertions

Reynolds distinguishes different classes of assertions [19]. We will give algebraic
characterisations for three main classes, namely pure, intuitionistic and precise
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assertions . Pure assertions are independent of the heap of a state and there-
fore only express conditions on store variables. Intuitionistic assertions do not
describe the domain of a heap exactly. Hence, when using these assertions one
does not know whether the heap contains additional anonymous cells. In con-
trast, precise assertions point out a unique subheap which is relevant to its
predicate.

6.1 Pure Assertions

An assertion p is called pure iff it is independent of the heaps of the states
involved, i.e.,

p is pure ⇔df (∀ h, h′ ∈ Heaps : s, h |= p ⇔ s, h′ |= p) .

Theorem 6.1. In AS an element [[ p ]] is pure iff it satisfies, for all [[ q ]] and [[ r ]],

[[ p ]] ·∪ [[ true ]] ⊆ [[ p ]] and [[ p ]] ∩ ([[ q ]] ·∪ [[ r ]]) ⊆ ([[ p ]] ∩ [[ q ]]) ·∪ ([[ p ]] ∩ [[ r ]]) .

Before we give the proof, we derive a number of auxiliary laws. The above the-
orem motivates the following definition.

Definition 6.2. In an arbitrary Boolean quantale S an element p is called pure
iff it satisfies, for all a, b ∈ S,

p · � ≤ p , (2)
p � (a · b) ≤ (p � a) · (p � b) . (3)

The first equation models upwards closure of pure elements. It can be strength-
ened to an equation since its converse holds for arbitrary Boolean quantales. The
second equation enables pure elements to distribute over meet and is equivalent
to downward closure.

Lemma 6.3. Property (3) is equivalent to p�� ≤ p, where p�� forms the down-
ward closure of p.

Proof. (⇐): Using Equation (Ded), isotony and the assumption, we get

p � a · b ≤ (p�b � a) · b ≤ (p�� � a) · b ≤ (p � a) · b

and the symmetric formula p � a · b ≤ a · (p � b). From this the claim follows by

p � (a · b) = p � p � (a · b) ≤ p � ((p � a) · b) ≤ (p � a) · (p � b) .

(⇒): By Axiom (3) we obtain p � (p · �) ≤ (p � p) · (p � �) = 0 and hence, by
shunting and the exchange law (exc), p�� ≤ p. ��

Corollary 6.4. p is pure iff p · � ≤ p and p · � ≤ p.

Corollary 6.5. Pure elements form a Boolean lattice, i.e., they are closed under
+, � and .
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Moreover we get a fixed point characterisation if the underlying quantale com-
mutes.

Lemma 6.6. In a Boolean quantale, an element p is pure iff p = (p � 1) · �
holds.

Proof. We first show that p = (p�1) ·� follows from Inequations (2) and (3). By
neutrality of � for �, neutrality of 1 for ·, meet-distributivity (3) and isotony,
we get

p = p � � = p � (1 · �) ≤ (p � 1) · (p � �) ≤ (p � 1) · � .

The converse inequation follows by isotony and Inequation (2):

(p � 1) · � ≤ p · � ≤ p .

Next we show that p = (p � 1) · � implies the two inequations p · � ≤ p and
p ·� ≤ p which, by Corollary 6.4, implies the claim. The first inequation is shown
by the assumption, the general law � · � = � and the assumption again:

p · � = (p � 1) · � · � = (p � 1) · � = p .

For the second inequation, we note that in a Boolean quantale the law s · � =
(s � 1) · � holds for all subidentities s (s ≤ 1) (e.g. [6]). From this we get

p · � = (p � 1) · � · � = (p � 1) · � · � = (p � 1) · � = (p � 1) · � = p . ��

Corollary 6.7. The set of pure elements forms a complete lattice.

Proof. Lemma 6.6 characterises the pure elements as the fixed points of the
isotone function f(x) = (x � 1) · � on the quantale. By Tarski’s fixed point
theorem these form a complete lattice. ��

Proof of Theorem 6.1. By Lemma 6.6 and definition of the elements of AS it is
sufficient to show that the following formulas are equivalent in separation logic

∀ s ∈ Stores , ∀ h, h′ ∈ Heaps : (s, h |= p ⇔ s, h′ |= p) , (4)
∀ s ∈ Stores , ∀ h ∈ Heaps : (s, h |= p ⇔ s, h |= (p ∧ emp ) ∗ true) . (5)

Since both assertions are universally quantified over states we omit that quantifi-
cation in the remainder and only keep the quantifiers on heaps. Before proving
this equivalence we simplify s, h |= (p ∧ emp ) ∗ true. Using the definitions of
Section 3, we get for all h ∈ Heaps

s, h |= (p ∧ emp ) ∗ true
⇔ ∃ h1, h2 ∈ Heaps : dom(h1) ∩ dom(h2) = ∅ and h = h1 ∪ h2

and s, h1 |= p and s, h1 |= emp and s, h2 |= true
⇔ ∃ h1, h2 ∈ Heaps : dom(h1) ∩ dom(h2) = ∅ and h = h1 ∪ h2

and s, h1 |= p and h1 = ∅
⇔ ∃ h2 ∈ Heaps : h = h2 and s, ∅ |= p
⇔ s, ∅ |= p .
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The last line shows that a pure assertion is independent of the heap and hence, in
particular, has to be satisfied for the empty heap. Next we show the implication
(4) ⇒ (5). Instantiating Equation (4) and using the above result immediately
imply the claim:

∀ h, h′ ∈ Heaps : (s, h |= p ⇔ s, h′ |= p)
⇒ ∀ h ∈ Heaps : (s, h |= p ⇔ s, ∅ |= p)
⇔ ∀ h ∈ Heaps : (s, h |= p ⇔ s, h |= (p ∧ emp ) ∗ true) .

For the converse direction, we take two instances of (5). Then, using again the
above result, we get

∀ h ∈ Heaps : (s, h |= p ⇔ s, h |= (p ∧ emp ) ∗ true)
and ∀ h′ ∈ Heaps : (s, h′ |= p ⇔ s, h′ |= (p ∧ emp ) ∗ true)

⇒ ∀ h, h′ ∈ Heaps : (s, h |= p ⇔ s, h |= (p ∧ emp ) ∗ true
and s, h′ |= p ⇔ s, h′ |= (p ∧ emp ) ∗ true)

⇔ ∀ h, h′ ∈ Heaps : (s, h |= p ⇔ s, ∅ |= p and s, h′ |= p ⇔ s, ∅ |= p)
⇒ ∀ h, h′ ∈ Heaps : (s, h |= p ⇔ s, h′ |= p) .

��
The complexity of this proof in predicate-logic illustrates the advantage that is
gained by passing to an algebraic treatment. Logic-based formulas (in particular
in separation logic) can become long and complicated. Calculating at the abstract
level of quantales often shorten the proofs. Moreover the abstraction paves the
way to using first-order off-the-shelf theorem provers for verifying properties;
whereas a first-order theorem prover for separation logic has yet to be developed
and implemented (cf. Section 7).

To conclude the paragraph concerning pure elements we list a couple of prop-
erties which can be proved very easily by our algebraic approach.

Lemma 6.8. Consider a Boolean quantale S, pure elements p, q ∈ S and arbi-
trary elements a, b ∈ S Then

(a) p · a = p � a · �;
(b) (p � a) · b = p � a · b;
(c) p · q = p � q; in particular p · p = p and p · p = 0.

Their corresponding counterparts in separation logic and the proofs can again
be found in [4].

The following lemma shows a.o. that in the complete lattice of pure elements
meet and join coincide with composition and sum, respectively.

As far as we know these closure properties are new and were not shown in
separation logic so far.

6.2 Intuitionistic Assertions

Let us now turn to intuitionistic assertions. Following [19], an assertion p is
intuitionistic iff

∀ s ∈ Stores , ∀ h, h′ ∈ Heaps : (h ⊆ h′ and s, h |= p) implies s, h′ |= p . (6)
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This means for a heap that satisfies an intuitionistic assertion p that it can be
extended by arbitrary cells and still satisfies p.

Similar calculations as in the proof of Theorem 6.1 yield the equivalence of
Equation (6) and

∀ s ∈ Stores , ∀ h ∈ Heaps : (s, h |= p ∗ true ⇒ s, h |= p) . (7)

Lifting this to an abstract level motivates the following definition.

Definition 6.9. In an arbitrary Boolean quantale S an element i is called in-
tuitionistic iff it satisfies

i · � ≤ i . (8)

Elements of the form i · � are also called vectors or ideals.

Corollary 6.10. Every pure element of a Boolean quantale is intuitionistic.

As before we just give a couple of properties. The proofs are again straightfor-
ward at the algebraic level.

Lemma 6.11. Consider a Boolean quantale S, intuitionistic elements i, j ∈ S
and arbitrary elements a, b ∈ S Then

(a) (i � 1) · � ≤ i;
(b) i · a ≤ i � (a · �);
(c) (i � a) · b ≤ i � (a · b);
(d) i · j ≤ i � j.

Using the quantale AS, it is easy to see that none of these inequations can
be strengthened to an equation. In particular, unlike as for pure assertions,
multiplication and meet need not coincide.

Example 6.12. Consider i =df j =df [[ x �→ 1 ∗ true ]] = [[ x �→ 1 ]] ·∪ [[ true ]].
By this definition it is obvious that i and j are intuitionistic. The definitions of
Section 3 then immediately imply

i ∩ j = [[ x �→ 1 ]] ·∪ [[ true ]]
i ·∪ j = [[ x �→ 1 ]] ·∪ [[ true ]] ·∪ [[ x �→ 1 ]] ·∪ [[ true ]] = ∅ .

The last step follows from Example 5.2. ��

Other classes of assertions for separation logic are given in [19] and most of their
algebraic counterparts in [4].

6.3 Precise Assertions

An assertion p is called precise if and only if for all states (s, h), there is at most
one subheap h′ of h for which (s, h′) |= p. According to [18], this definition
is equivalent to distributivity of ∗ over ∧ . Hence, using isotony of ∗ we can
algebraically characterise precise assertions as follows.
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Definition 6.13. In an arbitrary Boolean quantale S an element r is called
precise iff for all p, q

(r ∗ p) � (r ∗ q) ≤ r ∗ (p � q) . (9)

Next we give some closure properties for this assertion class.

Lemma 6.14. If p and q are precise then also p ∗ q is precise.

Proof. For arbitrary r1 and r2 we calculate

p ∗ q ∗ r1 � p ∗ q ∗ r2 ≤ p ∗ (q ∗ r1 � q ∗ r2) ≤ (p ∗ q) ∗ (r1 � r2)

assuming p and q are precise. ��

Lemma 6.15. If p is precise and q ≤ p then q is precise, i.e., precise assertions
are downward closed.

A proof can be found in [6].

Corollary 6.16. For an arbitrary assertion q and precise p, also p�q is precise.

7 Conclusion and Outlook

We have presented a treatment towards an algebra of separation logic. For as-
sertions we have introduced a model based on sets of states. By this, separating
implication coincides with a residual and most of the inference rules of [19] are
simple consequences of standard residual laws. For pure, intuitionistic and pre-
cise assertions we have given algebraic axiomatisations.

The next step will be to embed the command language of separation logic
into a relational algebraic structure. A first attempt is given in [5] where we have
defined a relational semantics for the heap-dependent commands and lifted the
set-based semantics of assertions to relations. There, we are able to characterise
the frame rule

{p} c {q}
{p ∗ r} c {q ∗ r} ,

where p, q and r are arbitrary assertions and c is a command. The rule assumes
that no free variable of r is modified by c. However, a complete algebraic proof
of the frame rule is still missing, since we do not yet know how to characterise
the conditions controlling the modification of free variables.

To underpin our approach we have algebraically verified one of the standard
examples — an in-place list reversal algorithm. The details can be found in [4].
The term in-place means that there is no copying of whole structures, i.e., the
reversal is done by simple pointer modifications.

So far we have not analysed situations where data structures share parts
of their cells (cf. Figure 2). First steps towards an algebraic handling of such
situations are given in [15,8]. In future work, we will adapt these approaches for
our algebra of separation logic.
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x 1 2 3 4 5
◦

y 7 8

Fig. 2. Two lists with shared cells

Our algebraic approach to separation logic also paves the way to verifying-
properties with off-the-shelf theorem provers. Boolean semirings and quantales
have proved to be reasonably well suitable for automated theorem provers [10].
Hence one of the next plans for future work is to analyse the power of such
systems for reasoning with separation logic. A long-term perspective is to incor-
porate reasoning about concurrent programs with shared linked data structures
along the lines of [16].

Acknowledgements. We are most grateful to the anonymous referees for their
many valuable remarks.
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Abstract. We axiomatise and study operations for relational domain
and antidomain on semigroups and monoids. We relate this approach
with previous axiomatisations for semirings, partial transformation semi-
groups and dynamic predicate logic.

1 Introduction

We axiomatise and study the(anti)domain and (anti)range operation on semi-
groups and monoids, generalising the concept of domain monoid in [JS08], and
those of (anti)domain and (anti)range for semirings [DS08a] and a family of near-
semirings [DS08b]. Our study of the antidomain operation is strongly based on
Hollenberg’s axioms [Hol97] which surely deserve more attention.

Our interest in these structures is threefold: First, they play a crucial role
in the study of free algebras with (anti)domain operations, for representability
results with respect to functions and relations, and for algebraising multimodal
logics. Second, they form a basis for comparing and consolidating axiomatisations
for categories, semigroups and Kleene algebras. Third, they provide a simple
flexible basis for automated theorem proving in program and system verification.

Various expansions of semigroups with unary operations have been stud-
ied in semigroup theory (cf. [Sch70, JaS01, JaS04]), mostly motivated by the
semigroups of partial transformations. Our primary model of interest is the al-
gebra Rel(X) of binary relations R on a set X with composition and unary
(anti)domain and (anti)range operations given as subidentity relations. These
are defined by

d(R) = {(u, u) ∈ X2 : (u, v) ∈ R for some v ∈ X},
a(R) = {(u, u) ∈ X2 : (u, v) /∈ R for all v ∈ X},
r(R) = {(v, v) ∈ X2 : (u, v) ∈ R for some u ∈ X},
r′(R) = {(v, v) ∈ X2 : (u, v) /∈ R for all u ∈ X}.

The algebra Rel(X) is a standard semantic model for the input-output relation of
nondeterministic programs and specifications, and the domain/range operations

R. Berghammer et al. (Eds.): RelMiCS/AKA 2009, LNCS 5827, pp. 73–87, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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can be used to define pre- and postconditions and modal (program) operators
on a state space. The (anti)domain and (anti)range operations induce a suitable
test algebra—a state space—on the set of subidentity relations.

In the calculus of relations, partial and total functions, injections and surjec-
tions arise as special relations. Previous work in semigroup theory and category
theory has investigated domain and antidomain predominantly in the context of
(partial) functions. In the same way, domain axiomatisations for functions are
specialisations of domain axiomatisations for relations. Therefore, the following
subalgebras of Rel(X) are of interest:

PT (X), the algebra of partial transformations (i.e. partial functions) on X ;
PI (X), the algebra of partial injections on X ;
T (X), the algebra of transformations (i.e. total functions) on X ;
S (X), the algebra of permutations on X .

The first one corresponds to models of deterministic programs. The second and
fourth case also consider a unary operation R−1 of converse. The domain and
range operations are then definable as d(R) = R;R−1∩ idX and r(R) = R−1;R∩
idX . For each of these algebras it is natural to study the class of all algebras
that can be embedded in them. Depending on the choice of unary operations in
the signature, one obtains the class of groups, semigroups, inverse semigroups,
and twisted domain semigroups (axiomatisations can be found below).

Many results in this paper have been obtained by automated theorem proving
and automated model generation, using the tools Prover9 and Mace4 [McC07].
Instead of presenting these proofs we add input templates for domain semigroups
and antidomain monoids to the paper and encourage the reader to replay our
arguments with these tools. They are easy to install and use.

2 Motivation and Overview

We are interested in algebras where elements represent actions or computations
of some system and where operations model the control flow in the system. Mul-
tiplication, for instance, could represent the sequential or parallel composition
of actions and addition could represent nondeterministic choice. Special actions
like multiplicative units could model ineffective actions—sometimes called skip—
and additive units could model abortive actions. Examples of such algebras are
semigroups or monoids that model sequential composition, and semirings that
model sequential composition and nondeterministic choice. Concrete models of
such algebras are partial and total functions, binary relations, languages, sets of
paths in graphs or sets of traces.

In this context, a domain operation yields enabledness conditions for actions,
that is, the domain d(x) of an action x abstractly models those states from which
the action x can be executed. Analogously, the antidomain a(x) models those
states from which the action x cannot be executed.

The starting point of the current investigation is a previous axiomatisation of
domain and antidomain operations for semirings (S, +, ·, 0, 1), in which a domain
operation is a map d : S → S that satisfies
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x = d(x) · x, d(x · y) = d(x · d(y)), d(x) + 1 = 1,

d(0) = 0, d(x + y) = d(x) + d(y).

It can be shown that the domain algebra induced by this operation—the set
d(S)—is a distributive lattice and that each domain semiring is automatically
idempotent, that is, x + x = x holds for all x ∈ S. If the semiring elements
represent actions of some system, then d(S) represents the states from which
actions are enabled. Distributive lattices are suitable statespaces, but Boolean
algebras are perhaps even better. To induce a Boolean domain algebra it is
convenient to axiomatise a notion of antidomain (the Boolean complement of
domain) as a map a : S → S that satisfies

a(x) · x = 0, a(x · y) = a(x · a(a(y))), a(a(x)) + a(x) = 1.

Also antidomain semirings are automatically idempotent. Domain operations
can be obtained in antidomain semirings by defining d(x) = a(a(x)). These
definitions can readily be adapted to some weaker cases of semirings—so-called
near-semirings—in which some of the semiring axioms are dropped [DS08b].

A natural generalisation is to investigate how these axioms can be adapted
when the operation of addition is dropped and the domain algebras induced are
still meant to yield useful state spaces. We consider a whole family of domain and
antidomain axiomatisations for semigroups and monoids which is presented in
Table 1 as an overview. Precise definitions are given in subsequent sections. In the
case of domain, the weakest axiomatisations are so-called left-closure semigroups
and monoids (LC-semigroups/monoids) (cf. [JaS01]). The domain algebras of
these structures are meet-semilattices, but some natural properties of domain do
not hold in this class. Domain semigroups and monoids (d-semigroups/monoids)
capture some of the properties of domain for binary relations, while twisted d-
semigroups/monoids capture precisely the quasiequational properties of domain
for partial functions. In the case of antidomain, closable semilattice pseudo-
complemented semigroups (closable SP-semigroups) were introduced in [JaS04].
Their axioms induce domain algebras that are Boolean algebras, but again some
natural properties of antidomain do not hold. Antidomain monoids (a-monoids)
capture all the equational properties of antidomain for binary relations, while
twisted a-monoids capture some of the properties of antidomain for partial func-
tions. A more thorough investigation of the whole family is the subject of this
paper.

Table 1. Family of domain semigroups

domain antidomain

LC-semigroups LC-monoids closable SP-semigroups

� � �

d-semigroups d-monoids a-monoids

� � �

twisted d-semigroups twisted d-monoids twisted a-monoids
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3 Domain Semigroups

Our aim is to axiomatise domain and antidomain operations on semigroups
and monoids that capture the fact that some computations may or may not be
enabled from some set of states. We model the state space implicitly or internally
through the images induced by the domain operations.

We consider semigroups (S, ·) with an associative multiplication, usually left
implicit, and monoids with a left and right multiplicative unit 1.

A domain semigroup, or d-semigroup, is a semigroup (S, ·) extended by a
domain operation d : S → S that satisfies the following axioms.

(D1) d(x)x = x
(D2) d(xy) = d(xd(y))
(D3) d(d(x)y) = d(x)d(y)
(D4) d(x)d(y) = d(y)d(x)

A monoid that satisfies these axioms is called a domain monoid or d-monoid.
It is easy to check that the axioms (D1)-(D4) hold in Rel(X) and, in fact,

in all domain semirings. The axiom (D2) has been called locality axiom in the
context of domain semirings. In semigroup theory, it has previously been called
left-congruence condition [JaS01].

The axioms (D1)-(D4) are irredundant in the classes of d-semigroups and d-
monoids: Mace4 found models that satisfy the semigroup or monoid axiom and
three of the domain axioms, but not the fourth one, for each combination of
domain axioms.

The class of right closure semigroups is defined in [JaS01]. The intended mod-
els are functions under composition. We present a dual set of axioms for relational
composition.

A left closure semigroup, or LC-semigroup, is a semigroup that satisfies the
following axioms.

(D1) d(x)x = x
(L2) d(d(x)) = d(x)
(L3) d(x)d(xy) = d(xy)
(D4) d(x)d(y) = d(y)d(x)

Analogously, an LC-monoid is an LC-semigroup that is also a monoid.
Again, it can be shown that the domain axioms of LC-semigroups and LC-

monoids are irredundant.

Lemma 1. The class of d-semigroups is strictly contained in the class of LC-
semigroups.

Prover9 has shown that the axioms (L2) and (L3) follow from the domain axioms
(D1), (D3) and (D4). Mace4 presented a four-element LC-semigroup in which
(D3) does not hold. It is easy to prove the same result for classes of monoids.
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Lemma 2. d-semigroups are LC-semigroups that satisfy the locality axiom.

A domain element of an LC-semigroup, domain semigroup or the corresponding
monoid S is an element of d(S) = {d(x) : x ∈ S}. The next lemma presents a
very useful characterisation of domain elements.

Lemma 3. The domain elements of an LC-semigroup are precisely the fixed
points of the domain operation.

Proof. If x ∈ d(S), then x = d(y) for some y ∈ S and d(x) = d(d(y)) = d(y) = x
by (L2). If x ∈ S satisfies d(x) = x, then x ∈ d(S) by definition. ��

This fixed point characterisation of domain elements in LC-semigroups, which
a fortiori holds in domain semirings, is a key to checking closure properties of
domain elements and describing the algebra of domain elements. It allows us to
express the fact that x is a domain element within the language as d(x) = x.

Lemma 4

(a) For any LC-semigroup S, the set d(S) is a meet-subsemilattice of S. If S
has a right unit 1, then d(1) = 1 is the top element of d(S).

(b) Every meet-semilattice is a domain semigroup if d(x) = x is imposed, and
similarly every meet-semilattice with a top element is a domain monoid.

Proof. (a) To show that domain elements are closed under composition, we use
the fixed point lemma to verify that d(d(x)d(y)) = d(x)d(y). Hence, by (D4),
d(S) is a commutative subsemigroup. Moreover d(x)d(x) = d(x) holds, which
implies that d(S) is a subsemilattice. If x1 = x holds in S, then d(1) = d(1)1 = 1
by (D1). The semilattice-order is defined, as usual, by d(x) ≤ d(y) ⇔ d(x)d(y) =
d(x). Thus d(x) ≤ 1 immediately follows from the monoidal right unit axiom.

(b) This fact is well known for LC-semigroups [JaS01]. In the case of d-
semigroups we must verify that (D1)-(D4), with d(s) = s for each element s,
hold in every semilattice, which is trivial. ��

Because of these algebraic properties we call d(S) the domain algebra of S. It
can be shown [JaS01] that the semilattice-order on the domain algebra can be
extended to a partial order—called the fundamental order—on the whole LC-
semigroup by

x ≤ y ⇔ x = d(x)y.

On partial functions, the dual of the fundamental order is called the refinement
order.

Lemma 5. In any LC-semigroup the fundamental order coincides with the
semilattice-order on the domain algebra, and is preserved by multiplication on
the right.

Note that preservation by multiplication on the left need not hold even on d-
semigroups. This reflects the situation in Rel(X), whereas for partial functions
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the fundamental order coincides with inclusion and is preserved by multiplication
on both sides.

It seems interesting to compare the fundamental order ≤ with the usual nat-
ural order on domain semirings, which is defined as x � y ⇔ x + y = y.

Lemma 6. The ordering ≤ is contained in � of domain semirings, but not
necessarily equal.

Proof. Prover9 has shown that x = d(x)y ⇒ x + y = y holds in all domain
semirings; Mace4 has found a three-element counterexample for the converse
implication. ��

We also note that the usual relational demonic refinement ordering can be defined
in this framework:

x refines y iff d(y) ≤ d(x) and d(y)x ≤ y.

We now outline a calculus of domain semigroups and we study some properties
of their domain algebras. To formulate statements as strongly as possible from a
logical point of view, we state positive properties for LC-semigroups and nega-
tive ones for domain semigroups. Automated theorem proving easily verifies the
following basic laws.

Lemma 7. Let S be an LC-semigroup and let x, y ∈ S. Then

(a) d(xy) ≤ d(x).
(b) d(x)y ≤ y, but not necessarily yd(x) ≤ y.
(c) x ≤ d(x) ⇔ x = d(x).
(d) x ≤ 1 ⇔ x = d(x) if 1 is a right unit.
(e) x ≤ y ⇒ d(x) ≤ d(y).
(f) x ≤ px ⇔ d(x) ≤ p and x = px ⇔ d(x) ≤ p hold for all p ∈ d(S).

Case (d) implies that, in d-monoids, the set of all domain elements is precisely the
set of all subidentities. This is in contrast to the situation in domain semirings,
where the domain elements can form a strict subset. There is no contradiction,
since the subidentities on domain semigroups are taken with respect to ≤ whereas
the subidentities on domain semirings are taken with respect to �, which may
admit more subidentities than ≤.

Case (f) captures a natural property of domain, namely

d(x) = inf{p ∈ d(S) : x ≤ px}.

Hence d(x) = inf{p ∈ d(S) : x = px} since all domain elements are left subiden-
tities by (b). Accordingly, d(x) is the least element in d(S) which left preserves
x, and the least domain element satisfying (D1). The assumption in (f) that
p ∈ d(S) cannot be much relaxed. The property fails if p is just a subidentity or
an idempotent subidentity.
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Lemma 8

(a) Every monoid can be expanded to a d-monoid.
(b) Some semigroups cannot be expanded to d-semigroups.
(c) Domain algebras of d-monoids need not be unique.

Proof
(a) The map d(x) = 1 for all x ∈ S satisfies (D1) to (D4).
(b) The semigroup of positive integers under addition has no idempotents.

Hence there are no candidates for membership in the domain algebra, and it is
impossible to define a domain operation.

(c) The two d-monoids defined by

· 0 1
0 0 0
1 0 1

with domain operations d1(x) = x and d2(x) = 1 prove the claim. ��
An expansion of idempotent semirings to d-semirings is not always possible.
There is a three-element counterexample.

An interesting question is whether the axiomatisation of d-monoids captures
all the properties of the domain operation of binary relations. A d-monoid is
called representable if it can be embedded in Rel(X) for some set X such that
·, d and 1 correspond to composition, relational domain and idX . By Schein’s
fundamental theorem for relation algebras [Sch70] the class of representable d-
monoids is a quasivariety.

Proposition 9. The following quasiidentity fails in a 4-element d-monoid but
holds in Rel(X):

xy = d(x) and yx = x and d(y) = 1 imply x = d(x).

Proof. Finding the counterexample for d-monoids is easy with Mace4. To prove
that the result holds for binary relations, consider x, y ∈ Rel(X) and (a, b) ∈ x.
Then d(y) = 1 implies (b, c) ∈ y for some c. It follows from xy = d(x) that c = a,
hence (b, a) ∈ y. Now yx = x implies that (b, b) ∈ x. Finally xy = d(x) yields
(b, a) ∈ d(x), whence b = a. Since (a, b) is arbitrary it follows that x = d(x). ��
Corollary 10. The quasivariety of representable d-monoids is not a variety.

4 Twisted Domain Semigroups

Partial functions under composition satisfy another equational property called
the twisted law in [JaS01]:

xd(y) = d(xy)x.

This identity fails in Rel(X) if we take x to be any relation that is not deter-
ministic. However it is satisfied if composition is the relational demonic compo-
sition (defined below in the section on antidomain). A d-semigroup/monoid or
LC-semigroup/monoid is twisted if it satisfies the twisted law. The next lemma
follows easily by automated theorem proving and counterexample search.
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Lemma 11. The classes of twisted LC-semigroups and twisted d-semigroups
coincide, and they are strictly contained in the class of d-semigroups.

The results of this section characterise part of the spectrum between LC-semi-
groups and twisted semigroups. LC-semigroups, on the one hand, yield a uniform
basis for characterising domain operations for relations and functions, but they
do not capture locality, which holds in relational models. Twisted semigroups,
on the other hand, satisfy locality, but capture only deterministic relations, that
is, partial functions. Domain semigroups are located between these two extremes
and capture relations better than LC-semigroups.

The domain semigroup axioms, but not the twisted axiom (Mace4 presented a
five element counterexample) hold in all domain semirings, hence domain semi-
groups are a natural generalisation of domain semirings. Partial functions, of
course, are not closed under union hence do not form a semiring.

We have seen in Section 3 that the fundamental order ≤ is preserved by
multiplication on the right. If the twisted identity d(zx)z = zd(x) is imposed on
an LC-semigroup then it is preserved by multiplication on the left as well since
x ≤ y implies x = d(x)y, hence d(zx)zy = zd(x)y = zx, i.e. zx ≤ zy.

Various representation theorems have been proved for families of semigroups
with respect to partial functions. For example, every group is embedded in the
symmetric group S (X) of all permutations of a set X . Similarly, every semigroup
is embedded in the transformation semigroup T (X) of all functions on a set X .
Inverse semigroups are semigroups with a unary operation −1 that satisfies the
identities x−1−1 = x, xx−1x = x and xx−1yy−1 = yy−1xx−1. It is a standard
result of semigroup theory (independently due to Vagner 1952 and Preston 1954)
that every inverse semigroup is embedded in the symmetric inverse semigroup
PI(X) of all partial injections on X . We recall below a fourth instance of such
an embedding due to Trokhimenko [Tro73] (cf. [JaS0a]). We present a concise
variant of the proof for the domain setting because it uses a general construction
that should be of interest for the RelMiCS/AKA community.

Theorem 12. [Tro73, JaS01] Every twisted d-semigroup can be embedded in
a partial transformation semigroup. If the semigroup has a unit, it is mapped to
the identity function.

Proof. Let S be a twisted d-semigroup and consider the partial transformation
semigroup PT (S). For a ∈ S define

• Da = {xd(a) : x ∈ S} = {y ∈ S : yd(a) = y},
• fa : Da → S by fa(x) = xa, and
• h : S → PT (S) by h(a) = fa.

The map h is called the Cayley embedding and it remains to check that

(a) d(fa) = fd(a),
(b) fa;fb = fab, and
(c) h is injective.
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By definition, d(fa) = {(xd(a), xd(a)) : x ∈ S}, whereas fd(a) is defined on
Dd(a) = {xd(d(a)) : x ∈ S} by fd(a)(x) = xd(a). Since d(d(a)) = d(a) and
xd(a)d(a) = xd(a), it follows that (a) holds.

To see that (b) holds, note that (fa;fb)(x) = fb(fa(x)) = xab = fab(x), so it
suffices to show that both functions have the same domain. Note that under the
assumption of the twisted law we have x = xd(y) ⇔ d(x) = d(xy).

Now x is in the domain of fa;fb if and only if x ∈ Da and xa ∈ Db, which
means xd(a) = x and xad(b) = xa. This can be expressed by d(x) = d(xa) and
d(xa) = d(xab). Hence d(x) = d(xab), and by the above equivalence we obtain
xd(ab) = x, which shows that x is in the domain of fab. Conversely, if xd(ab) = x
then d(x) = d(xd(ab)) = d(xd(ab)d(a)) = d(xd(a)) = d(xa) by (L3), (D4) and
(D2), and likewise d(xa) = d(xd(ab)a) = d(xd(ab)d(a)) = d(xd(ab)) = d(xab).

So h is a d-semigroup homomorphism, and it is injective since if fa = fb then
x = xd(a) is equivalent to x = xd(b). It follows that d(a) = d(a)d(b) = d(b),
whence a = d(a)a = fa(d(a)) = fb(d(a)) = d(a)b = d(b)b = b.

Finally, if S has a unit it follows immediately from the definitions that D1 = S
and therefore h(1) = f1 = idS . ��

Corollary 13. Every commutative d-semigroup is twisted, and can be embedded
in a partial transformation semigroup.

5 Domain-Range Semigroups

A range operation can be defined on arbitrary semigroups by exploiting semi-
group duality (with respect to opposition).

A domain-range semigroup, or dr-semigroup for short, is a semigroup with
two unary operations d and r that satisfy the following axioms.

(D1) d(x)x = x (R1) xr(x) = x
(D2) d(xy) = d(xd(y)) (R2) r(xy) = r(r(x)y)
(D3) d(d(x)y) = d(x)d(y) (R3) r(xr(y)) = r(x)r(y)
(D4) d(x)d(y) = d(y)d(x) (R4) r(x)r(y) = r(y)r(x)
(D5) d(r(x)) = r(x) (R5) r(d(x)) = d(x)

Mace4 can show that the axioms (D5) and (R5) are not implied by the other
axioms. This means that without these axioms, the domain algebra and the
range algebra can be different. By the fixed point lemma for domain and its
dual, the axioms (D5) and (R5) enforce that the domain algebra and the range
algebra coincide, and both these axioms are needed for this result. (D4) and
(R4) can be merged into the equivalent identity d(x)r(y) = r(y)d(x).

By duality, it is clear that the identity x = yr(x) also induces an ordering on
S, but Mace4 can show that the order induced by domain and that by range
need not coincide.

Again, the main examples of dr-semigroups are Rel(X) and PT (X). Inverse
semigroups are also examples if we define d(x) = xx−1, r(x) = x−1x. In fact
the twisted law holds for d, and its dual holds for r. The above representation
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theorem of Trokhimenko reduces to the Vagner-Preston representation theorem
for inverse semigroups. However the twisted law does not hold for r in arbi-
trary partial transformation semigroups (simply because not all functions are
injective).

Schweizer and Sklar [SS67] have provided an axomatisation for abstract func-
tion systems, using the following domain and range axioms.

d(x)x = x d(xd(y)) = d(xy) d(r(x)) = r(x) d(x)r(y) = r(y)d(x)
xr(x) = x r(r(x)y) = r(xy) r(d(x)) = d(x) xd(y) = d(xy)x

Schein has shown that adding the quasiidentity

xy = xz ⇒ r(x)y = r(x)z

axiomatises precisely the quasivariety of dr-semigroups of partial transformations
(cf. [Sch70]). Prover9 easily shows that the first set of axioms without Schein’s
quasi-identity implies the axioms (D3) and (R3).

An interesting question is whether every dr-semigroup can be embedded into
Rel(X) for some set X . We leave it open.

6 Antidomain

We have seen in Section 2 that domain semirings admit a very compact ax-
iomatisation that induces a Boolean domain algebra. It is based on a notion of
antidomain from which domain can be obtained. In this setting, antidomain is
a more fundamental notion than domain.

This section shows how this approach can be generalised to the semigroup or
monoid case. We use the abbreviation x′ = a(x) for the antidomain operation,
and define an antidomain monoid, or a-monoid, (S, ·, 1,′ ) as a monoid (S, ·, 1)
that satisfies

(A1) x′x = 0
(A2) x0 = 0
(A3) x′y′ = y′x′

(A4) x′′x = x
(A5) x′ = (xy)′(xy′)′

(A6) (xy)′x = (xy)′xy′.

This axiomatisation is essentially due to Hollenberg [Hol97]. The one presented
here is slightly more compact, and axiom (A5) is new, though essentially dual
to one of Huntington’s axioms for Boolean algebras. The axioms (A5) and (A6)
might deserve further explanation. Intuitively, an expression (xy)′ can be under-
stood as a modal box operator [x]y′, and it describes the set of states from which
each x-step must lead to a state from which y is not enabled. Under this inter-
pretation, an intuitive reading of (A5) is x′ = ([x]y′) · ([x]y′′). This is a special
case of the multiplicativity law [x](p ·q) = ([x]p) ·([x]q) for boxes, since x′ = [x]0.
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(A6) can be rewritten as ([x]y′)x = ([x]y′)xy′, which says that executing x from
those states from which each x-step must lead into y′, leads into y′.

We write S′ for the set {x′ : x ∈ S} of all antidomain elements of S. The
constants 0 and 1 can be omitted from the language if we replace (A3) by x′x =
y′y, (A2) by xx′x = x′x, and the monoid unit laws by x(x′x)′ = x (the left-unit
law can be deduced from these axioms). In this sense the terminology antidomain
semigroup is appropriate. However we prefer to use the more readable notation
that makes the constants explicit. We can also define

x + y = (x′y′)′

as an abbreviation. Mace4 can show that the antidomain axioms are irredundant.

Lemma 14

(a) A monoid is trivial if it can be extended by an antidomain operation that has
a fixed point.

(b) The map d(x) = x′′ is a domain operation.
(c) The antidomain elements of an a-monoid are the fixed points of domain.

The fixed point lemma in (c) is again a powerful tool for analysing the structure
of antidomain elements.

Proposition 15. Let S be an a-monoid. Then (S′, +, ·, ′, 0, 1) is a Boolean sub-
algebra.

Proof. We automatically verified the following properties. First, antidomain el-
ements are are closed under addition and multiplication: (x′ + y′)′′ = x′ + y′

and (x′y′)′′ = x′y′. Closure under antidomain is trivial. Second, Huntington’s
axioms for Boolean algebras hold: x + y = y + x, (x + y) + z = x + (y + z), and
x′ = (x + y)′ + (x + y′)′. Finally, x′x′′ = 0 = x′′x′ and x′ + x′′ = 1. ��

In fact, Lemma 14 and Proposition 15 follow already from the antidomain axioms
without (A6).

In Boolean domain semirings, the domain algebra is uniquely determined. It
is the maximal Boolean subalgebra of the subalgebra of subidentities.

Lemma 16. The antidomain algebra of an a-monoid need not be unique.

Mace4 presented a five-element model with two different antidomain operations.
Another interesting observation is that using antidomain, demonic composi-

tion � can be defined (it is associative in the presence of the twisted law):

x � y = (xy′)′xy.

The following lemma collects some further properties of antidomain. Note that
≤ is the fundamental order which on the subidentities coincides with the lattice
order.
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Lemma 17. Let S be an a-monoid. For all x, y, z ∈ S, the following laws hold.

(a) 0x = 0
(b) (xy′′)′ = (xy)′

(c) (x′y)′′ = x′y′′

(d) x ≤ 1 implies xy = 0 ⇔ x ≤ y′

(e) x ≤ 1 ⇔ x′′ = x.
(f) x′ ≤ (xy)′

(g) xy = 0 ⇔ xy′′ = 0

As in the case of d-monoids, by Schein’s fundamental theorem, the class of rep-
resentable a-monoids forms a quasivariety. Hollenberg has shown the following
two additional results for a-monoids.

Theorem 18. [Hol97]

(a) The variety of a-monoids and the variety generated by all representable a-
monoids are the same.

(b) The quasivariety of representable a-monoids is not a variety.

Hollenberg’s counterexample for (b) is a 5-element Heyting algebra which fails
the quasiidentity x′′y = x′′ ∧ x′y = x′ ⇒ y = 1 that holds in all representable a-
monoids. Since each Heyting algebra is a commutative a-monoid, it is twisted by
Corollary 13. Consequently, in contrast to the case of d-monoids, the antidomain
operation need not be represented correctly by the Cayley map. This indicates
why the construction from Theorem 12 cannot even be adapted to twisted a-
monoids. The question whether the quasivariety of representable a-monoids is
finitely axiomatisable is open.

A weaker axiomatisation of an antidomain operation for semigroups is ob-
tained as a subvariety of semilattice pseudo-complemented semigroups defined
in [JaS04]. Recall that a pseudo-complement on a meet-semilattice is a unary
operation ′ that satisfies

xy = 0 ⇔ y ≤ x′.

In the variety of semilattices with a unary operation, this formula is equivalent
to the identities x′x = 0, x0′ = x and x(xy)′ = xy′. The following result is
proved in [Fri62].

Theorem 19. For any pseudocomplemented meet-semilattice S, the set B(S) =
{x′′ : x ∈ S} is a Boolean algebra with operations x′, xy and x′′ + y′′ = (x′y′)′.

A semilattice pseudo-complemented semigroup or SP-semigroup is a semigroup
that satisfies the following identities.

(A1) x′x = 0
(S2) x0′ = x
(A3) x′y′ = y′x′

(S4) x′(x′y)′ = x′y′



Domain and Antidomain Semigroups 85

In any SP-semigroup S the set B(S) = {x′′ : x ∈ S} is a meet-subsemilattice
that is pseudo-complemented by the antidomain operation. As in Theorem 19,
the set B(S) is a Boolean algebra with join given by x′′ + y′′ = (x′′′y′′′)′.

An SP-semigroup is called closable in [JaS04] if (A4), that is, x′′x = x, holds.

Lemma 20

(a) Every closable SP-semigroup is a d-semigroup with d(x) = x′′.
(b) A closable SP-semigroup is an a-monoid if and only if (A2) and (A6) hold.

Therefore, (A5) could be replaced by (S4) in the a-monoid axioms.
The proper superclass of a-monoids defined by (A1)-(A5) is interesting in its

own right. Note that (A6) holds in every antidomain semiring, since

(xy)′x = (xy)′x(y′ + y′′) = (xy)′xy′ + (xy′′)′xy′′ = (xy)′xy′ + 0 = (xy)′xy′.

Modal box and diamond operators can be defined already in this weaker setting.
Let 〈x〉p = (xp)′′ and let [x]p = (xp′)′, where p = p′′. Then the diamond

operator is strict and additive and the box operator is costrict and multiplicative:

〈x〉0 = 0, 〈x〉(p + q) = 〈x〉p + 〈x〉q, [x]1 = 1, [x](p · q) = ([x]p) · ([x]q).

Also [x]p = (〈x〉p′)′ and 〈x〉p = ([x]p′)′. This definition of modal operators is not
possible in the weaker setting of closable SP-semigroups. Hence SP-semigroups
have Boolean domain algebras, but are too weak to obtain Boolean algebras with
operators.

Modal algebras allow one to define a notion of determinism as 〈x〉p ≤ [x]p.
We therefore call an a-monoid deterministic if it satisfies

(xy′′)′′ ≤ (xy′)′.

Proposition 21. An a-monoid is deterministic if and only if it is twisted.

Note that the twisted law implies (A6), but not every a-monoid is twisted or
deterministic, and determinism does not imply (A6).

Finally, a notion of antirange can be axiomatised dually to that of antidomain.
Because the antidomain and the antirange algebra automatically coincide, they
need no further linking. In this setting, forward box and diamond operators |x]
and |x〉 can be defined from antidomain, and backward operators [x| and 〈x|
from antirange. We have the following laws.

demodalisation |x〉p ≤ q ⇔ q′xp = 0 and 〈x|p ≤ q ⇔ pxq′ = 0
conjugation (|x〉p)q = 0 ⇔ p(〈x|q) = 0
Galois connections |x〉p ≤ q ⇔ p ≤ [x|q and 〈x|p ≤ q ⇔ p ≤ |x]q

In this setting, (A6) and its dual for antirange become derivable. For instance,
(A6) is just the cancellation law 〈x|x]p ≤ p of the Galois connection. Note
that because of the Galois connection, diamond operators are even completely
additive, and box operators are completely multiplicative. In conclusion, monoids
with antidomain and antirange allow us to define and calculate with modal
operators.
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7 Templates for Prover9 and Mace4

op(400, infix, ";").
op(500, infix, "+").
op(300, postfix, "’").

formulas(assumptions). % domain semigroups

x;(y;z)=(x;y);z.
d(x);x=x.
d(x;y)=d(x;d(y)).
d(d(x);y)=d(x);d(y).
d(x);d(y)=d(y);d(x).

x<=y <-> x=d(x);y.

end_of_list.

formulas(assumptions). % antidomain monoid

x;(y;z)=(x;y);z.
x;1=x.
x’;x=0.
x;0=0.
x’;y’=y’;x’.
x’’;x=x.
x’=(x;y)’;(x;y’)’.
(x;y)’;x=((x;y)’;x);y’.

x<=y <-> x=x’’;y.

end_of_list.

formulas(goals). % insert goal here

end_of_list.

8 Conclusion

We have axiomatised operations for relational domain and antidomain for semi-
groups and monoids, studied the structure of the domain algebras, developed
the basic calculi, and compared these algebras with previous axiomatisations.
Our approach continues and also generalises previous work on axiomatisations
of domain for semirings and Kleene algebras. It forms the basis for further inves-
tigations, for instance, representation theorems, free algebras and other domain
algebras.
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Partial and total functions and deterministic programs are central to com-
puter science applications, while relations and nondeterminism are important
for specifications and for modelling more general computing systems. But the
algebraic background that has been developed in semigroup theory over the
last fifty years does not seem to be widely known and, to our knowledge, no
link between functional and relational domain axiomatisations has so far been
provided.

Besides closing this gap, a benefit of the abstract algebraic approach is also
that the analysis of functions and relations with (anti)domain can—to a large
extent—be automated. This allowed us to condense the paper and focus on the
conceptual development.
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Matematika 11(138), 71–78 (in Russian)

www.prover9.org


Composing Partially Ordered Monads

Patrik Eklund and Robert Helgesson

Ume̊a University, Department of Computing Science, SE-90187 Ume̊a, Sweden
{peklund,rah}@cs.umu.se

Abstract. Composition of the many-valued powerset partially ordered
monad with the term monad provides extensions to non-classical rela-
tions and also new examples for Kleene algebras.

Keywords: Kleene algebra, partially ordered monad.

1 Introduction

Monads equipped with order structures extend to partially ordered monads. In
this paper we show how partially ordered monads can be composed building
upon the underlying monad compositions. In particular we focus on composing
the partially ordered many-valued powerset monad with the term monad. The
order structure for the composed partially ordered monad is inherited from the
partially ordered many-valued powerset monad. Partially ordered monads with
some additional conditions are further shown to establish Kleene algebras, thus
providing a generalized notion of powerset Kleene algebras extending the ex-
amples of Kleene algebras beyond strings strings [22] and relations [37]. Kleene
algebras are used e.g. in formal languages [36] and analysis of algorithms [1,25].

Previous work on monads based on many-valued set functors include com-
pactifications of generalised convergence spaces based on double powerset [7,8].
Further work for extension structures using partially ordered monads are found
in [15,16]. Composition of monads involving many-valued set functors was first
developed in [10].

Monads and monad compositions have been used in functional programming
for structuring of functional programs [31,32]. In particular for parsing and type
checking monad compositions have been useful [38]. A folklore example in logic
programming is most general unifiers identified as co-equalisers in Kleisli cate-
gories of term monads [35].

Partially ordered monads are due to [14,15] and evolve from studies around
filter based convergence structures and Cauchy structures [23,21]. More general
set functors for convergence were considered in [12]. Empowering general struc-
tures with monads was initiated in [13]. More examples involving the fuzzy filter
monad were developed in [7]. Monad and partially ordered monad techniques
for compactification were developed in [8,16] originally inspired by a compacti-
fication construction [34] for filter based limit spaces.

The present paper is organized as follows. Section 2 describes the partially
ordered many-valued powerset monads, followed by partially ordered monad
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compositions in Section 3. Partially ordered monads in a Kleene algebra setting
is then described in Section 4.

2 Partially Ordered Monads

Before introducing partially ordered monads we recall the regular, unordered,
monad and give two important examples. These examples, the powerset monad
and term monad, respectively will later be used in exemplifying partially ordered
monads and their subconstructions. Further, a brief exposition will be given on
the Kleisli categories.

A monad over a category C is a structure F = (F, η, µ), where F : C �� C
is a (covariant) functor, and η : id �� F and µ : F ◦ F �� F are natural
transformations for which µ ◦ Fµ = µ ◦ µF and µ ◦ Fη = µ ◦ ηF = idF hold.

The Kleisli category CF for F over C is given by Ob(CF) = Ob(C) and
HomCF(X, Y ) = HomC(X, FY ). Morphisms f : X � Y in CF are morphisms
f : X ��FY in C, with ηF

X : X ��FX the identity morphism. Composition of
morphisms in CF is given by

(X
f � Y ) � (Y

g � Z) = X
µF

Z◦Fg◦f �� FZ.

2.1 The Many-Valued Powerset Monads

Let L be a completely distributive lattice. For L = {0, 1} we write L = 2.
The covariant powerset functor L is defined by LX being the set of mappings
A : X �� L, and for morphisms f : X �� Y in Set we define ([18])

Lf(A)(y) =
∨

f(x)=y

A(x).

Further, ηX : X �� LX is given by

ηX(x)(x′) =

{
1 if x = x′

0 otherwise
(1)

and µ : L ◦ L �� L by

µX(M)(x) =
∨

A∈LX

A(x) ∧M(A). (2)

This makes L = (L, η, µ) a monad [29].
We may write 2 for the usual covariant powerset monad (2, η, µ), where 2X

is the powerset of X , ηX(x) = {x} and µX(B) =
⋃
B. Further, note that the

transitivity condition, relationally viewed as f ◦f ⊆ f , translates to
⋃

2f(f(x)) ⊆
f(x) for all x ∈ X . The category of ‘sets and relations’, i.e. where objects are sets
and morphisms f : X ��Y are ordinary relations f ⊆ X ×Y with composition
of morphisms being relational composition, is isomorphic to the Kleisli category
Set2.
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2.2 The Term Monad

Monads equip functors with algebraic structure. Godement [17] and Huber [20]
showed that adjoint pairs give rise to monads. Lawvere [27] introduced universal
algebra into category theory thereby introducing the term monad. In 1966/67
monads and their applications were further developed during seminars at the
Forschungsinstitut für Mathematik at ETH in Zürich, including Beck’s develop-
ments of distributive laws for monad compositions [4].

We will use a purely functorial description of term over a signature describing
the term monad in a more formal way. A conventional (almost verbal) inductive
definition of terms is not formal enough to yield a precise functorial notation,
and further, does not reveal any substructures.

To begin with, for a set A, i.e. an object in Set, the constant set functor ASet

is the covariant set functor that assigns sets X to A, and mappings f to the
identity map idA. The coproduct

∐
i∈I Fi of covariant set functors Fi assigns to

each set X the disjoint union
⋃

i∈I({i}×FiX), and to each morphism X
f ��Y

in Set the mapping (i, m) �→ (i, Fif(m)), where (i, m) ∈ (
∐

i∈I Fi)X .
We will restrict to one-sorted signatures, and we therefore let (Ωn)n≤k, k a

cardinal number, be a family of sets representing the operator domain, Here Ωn

contains n-ary operators. We write Ωnidn instead of (Ωn)Set × idn. Note that∐
n≤k ΩnidnX is the set of all triples (n, ω, (xi)i≤n) with n ≤ k, ω ∈ Ωn and

(xi)i≤n ∈ Xn.
Given these notations, the term functor TΩ is now defined by transfinite

induction. Firstly,
T0

Ω = id

and then

Tι
Ω = (

∐
n≤k

Ωnidn) ◦
⋃
κ<ι

Tκ
Ω

for each positive ordinal ι. Induction is then in

TΩ =
⋃
ι<k̄

Tι
Ω

where k̄ is the least cardinal greater than k and ℵ0.
We have that (TΩX, (σω)ω∈Ω) is an Ω-algebra, if σω((mi)i≤n) =

(n, ω, (mi)i≤n) for ω ∈ Ωn and mi ∈ TΩX . Morphisms X
f �� Y in Set are

extended in the usual way to the corresponding Ω-homomorphisms

(TΩX, (σω)ω∈Ω)
TΩf �� (TΩY, (τω)ω∈Ω),

where TΩf is given as the Ω-extension of X
f �� Y � � �� TΩY associated with

(TΩY, (τnω)(n,ω)∈Ω).
To obtain the term monad [29], define ηTΩ

X (x) = x, and let µTΩ

X = id�
TΩX be

the Ω-extension of idTΩX with respect to (TΩX, (σnω)(n,ω)∈Ω).
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2.3 Basic Triples and Partially Ordered Monads

Let acSLAT be the category of almost complete semilattices, i.e. partially ordered
sets (X,�) such that the suprema

∨
A of all non-empty subsets A of X exists.

Morphisms f : (X,�) �� (Y,�) satisfy f(
∨
A) =

∨
f [A] for non-empty A ∈

2X .
A basic triple ([14]) is a triple Φ = (F,�, η), where (F,�) : Set �� acSLAT,

X �→ (FX,�) is a covariant functor, with F : Set �� Set as the underlying set
functor, and η : id ��F is a natural transformation. Note, it follows immediately
from the definition of (F,�) that

Ff(
∨

B) =
∨

B∈B
Ff(B) (3)

for all Set-morphisms f : X ��Y and non-empty B ∈ 2FX . That is, morphisms
under F preserve non-empty suprema.

If (F,�, ηF ) and (G,�, ηG) are basic triples, then (F ◦ G,�, ηF G ◦ ηG) is also
a basic triple.

Consider L as a functor from Set to acSLAT with A ≤ B, A, B ∈ LX , meaning
A(x) ≤ B(x) for all x ∈ X . Then (L,≤, η) is a basic triple where ηX : X ��LX
is given by (1).

A partially ordered monad is a quadruple F = (F,�, η, µ), such that

(i) (F,�, η) is a basic triple.
(ii) µ : FF �� F is a natural transformation such that (F, η, µ) is a monad.
(iii) For all mappings f, g : Y �� FX , f � g implies µX ◦ Ff � µX ◦ Fg, where

� is defined argumentwise with respect to the partial ordering of FX .
(iv) µX : (FFX,�) �� (FX,�) preserves non-empty suprema. That is,

µX(
∨

M) =
∨

M∈M
µX(M) (4)

for non-empty M ∈ 2FFX .

We observe that condition (iii) together with the known existence of a suprema
implies that

µX ◦ F(∨ifi) = ∨i(µX ◦ Ffi) (5)

given any family of morphisms {fi : Y �� FX}i∈I and where the morphism
∨ifi : Y �� FX is defined by (∨ifi)(x) =

∨
i∈I fi(x). This holds since g ≤ ∨ifi

for all g ∈ {fi : Y ��FX}i∈I and the resulting inequality µX ◦Fg ≤ µX ◦F(∨ifi)
subsequently give the identity of (5).

The basic triple (L,≤, ηL) can be extended to a partially ordered monad [16]
using the multiplication µ as given in (2). In the following we illustrate in some
detail that this monad have the properties given in (3), (4), and (5).
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First, given f : X �� Y and non-empty B ∈ 2LX we show (3) by

Lf(
∨

B)(y) = Lf(
∨

B∈B
B)(y)

=
∨

f(x)=y

(
∨

B∈B
B)(x)

=
∨

f(x)=y

∨
B∈B

B(x)

=
∨

B∈B

∨
f(x)=y

B(x)

=
∨

B∈B
Lf(B)(y).

Second, given M ∈ 2LLX and x ∈ X we have (4) by

µX(
∨

M)(x) =
∨

B∈LX

B(x) ∧
∨

M∈M
M(B)

=
∨

B∈LX

∨
M∈M

B(x) ∧ M(B)

=
∨

M∈M

∨
B∈LX

B(x) ∧ M(B)

=
∨

M∈M
µX(M)(x).

Finally, for B ∈ LX and x ∈ X , (5) is shown by

[µX ◦ L(∨ifi)](B)(x) =
∨

B′∈LX

B′(x) ∧
∨

(∨ifi)(y)=B′
B(y)

=
∨

B′∈LX

∨
(∨ifi)(y)=B′

[B′(x) ∧ B(y)]

=
∨

y∈Y

[
∨
i∈I

fi(y)(x) ∧ B(y)]

=
∨
i∈I

∨
y∈Y

[fi(y)(x) ∧ B(y)]

=
∨
i∈I

∨
B′∈LX

∨
fi(y)=B′

[fi(y)(x) ∧ B(y)]

=
∨
i∈I

(
∨

B′∈LX

B′(x) ∧ Lfi(B)(B′))

= (∨i(µX ◦ Lfi))(B)(x).
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3 Composing Partially Ordered Monads

We may go further and consider composed monads as given in [10]. This defi-
nition, reproduced in Definition 1, state the requirements necessary when con-
structing a new monad based on the composition of two monads’ underlying
functors.

Definition 1. Given monads F = (F, ηF , µF ) and G = (G, ηG, µG), a distribu-
tive law is given by a natural transformation σ : G ◦ F �� F ◦ G (the swapper)
such that

(i) σGX ◦ GηFG
X = ηF

GGX
◦ ηG

GX
(ii) FµG

X
◦ σGX ◦ GµFG

X = µFG
X

◦ FµG
FGX

◦ σGFGX

(iii) σX ◦ ηG
FX = FηG

X

The conditions on the swapper in a distributive law are precisely what we need
so that we can compose monads to get a monad: F•G = (F◦G, ηFG, µFG) where

– ηFG
X = ηF

GX
◦ ηG

X and

– µFG
X : FGFGX

FσGX �� FFGGX
µF

GGX �� FGGX
FµG

X �� FGX

Now, consider monad composition where the participating monads are partially
ordered. Will the composition then also be ordered? The following proposition
shows that this is indeed the case, if the swapper uphold an ordering condition.
In fact, as the proposition shows, the “inner” monad is not required to be a
partially ordered monad.

Proposition 1. Let F = (F,�F , ηF , µF ) be a partially ordered monad and G =
(G, ηG, µG) be any monad such that F • G exists and the swapper is such that if
f, g : Y �� FX, f �F g, then σX ◦ Gf �F σX ◦ Gg. Then (F ◦ G,�F , ηFG, µFG)
is a partially ordered monad.

Proof. First, to show that (F◦G,�F , ηFG) is a basic triple we endow G with some
trivial partial order, e.g. the diagonal. This in turn equips G with an underlying
basic triple. The result is then immediate from composition of basic triples.

It remains to show that morphisms f, g : Y �� FGX such that f�F g imply
that µFG

X
◦FGf �F µFG

X
◦FGg and that µFG preserves non-empty suprema. The

latter is immediate since morphisms under F preserve non-empty suprema and
µF does so by definition.

For the implication, we observe that expansion of µFG gives

FµG
X ◦ µF

GGX ◦ FσGX ◦ FGf �F FµG
X ◦ µF

GGX ◦ FσGX ◦ FGg.

Using the naturality of µG and µF we rewrite to

µF
GX ◦ FFµG

X ◦ FσGX ◦ FGf �F µF
GX ◦ FFµG

X ◦ FσGX ◦ FGg

that – since functors distribute over morphism composition – we may equiva-
lently state in the form

µF
GX ◦ F(FµG

X ◦ σGX ◦ Gf) �F µF
GX ◦ F(FµG

X ◦ σGX ◦ Gg).
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Since F is a partially ordered monad it therefore suffices to show that

FµG
X ◦ σGX ◦ Gf �F FµG

X ◦ σGX ◦ Gg.

The result now immediately follows by applying the proposition condition on σ
and preservation of non-empty suprema of morphisms under F. ��

Recalling the L and TΩ monads we may form the composition L • TΩ as given
in ([10]). For brevity we say T instead of TΩ. In the composition σ is such that
σX|T0LX = idLX for the base case and for a term t = (n, ω, (ti)i≤n) ∈ TαLX ,
α > 0, ti ∈ TβiLX , βi < α.

σ(t)((n′, ω′, (t′i)i≤n′ )) =

{∧
i≤n σX(ti)(t′i) if n = n′ and ω = ω′

0 otherwise.

We may now extend L such that it becomes partially ordered by letting A ≤ B
with A, B ∈ LX if A(x) ≤ B(x) for all x ∈ X . We may show that σ uphold the
condition of Proposition 1 by determining that if f, g : Y �� LX , f(y) ≤ g(y)
for all y ∈ Y , then (σX ◦ Tf)(t) ≤ (σX ◦ Tg)(t) for all t ∈ TY . The result is
immediate if t ∈ T0Y . If, however, t = (n, ω, (ti)i≤n), t′ = (n, ω, (t′i)i≤n) ∈ TαY
with α > 0 then assume σX ◦ Tf(ti) ≤ σX ◦ Tg(ti) for each ti. By induction we
then have

σX(Tf(t))(t′) =
∧
i≤n

σX(Tf(ti))(t′i) ≤
∧
i≤n

σX(Tg(ti))(t′i) = σX(Tg(t))(t′).

Thus, the composed monad L•TΩ is partially ordered and share its order relation
with L.

4 Kleene Monads

An idempotent semiring is defined by (K, +, ·,∗ , 0, 1) satisfying the conditions

p + (q + r) = (p + q) + r (6)
p + q = q + p (7)
p + 0 = p (8)
p + p = p (9)

p · (q · r) = (p · q) · r (10)
1 · p = p (11)
p · 1 = p (12)

p · (q + r) = p · q + p · r (13)
(p + q) · r = p · r + q · r (14)

0 · p = 0 (15)
p · 0 = 0 (16)



Composing Partially Ordered Monads 95

A Kleene algebra [25,26,36] is an idempotent semiring (K, +, ·,∗, 0, 1) satisfying
the conditions

1 + p · p∗ = p∗ (17)
1 + p∗ · p = p∗ (18)

q + p · r ≤ r ⇒ p∗ · q ≤ r (19)
q + r · p ≤ r ⇒ q · p∗ ≤ r (20)

Instead of (19) and (20) we may use the equivalent conditions

p · r ≤ r ⇒ p∗ · r ≤ r (21)
r · p ≤ r ⇒ r · p∗ ≤ r (22)

Definition 2. The partially ordered monad F = (F,�, η, µ) over Set is said to
be a Kleene monad, if there exists a natural transformation 0 : id �� F such
that the conditions

f � 0X = 0X (23)
0X � f = 0X (24)

are fulfilled for any morphism f : id �� F. When ambiguity is a risk, we say
0F rather than 0.

As will be seen later these conditions will precisely encode the requirements nec-
essary to define a Kleene algebra over a monad. Before then we first demonstrate
that the monad L fulfill these conditions.

Proposition 2. The monad L is a Kleene monad with 0X(x) : X ��LX being
the constant 0 function for all X, x ∈ X.

Proof. We begin by showing that 0 is a natural transformation. We have for
some function f : X �� Y and y ∈ Y

(Lf ◦ 0X)(y) =
∨

f(x)=y

0X(x) = 0 = (0X ◦ f)(y).

We must also show that 0 uphold (23) and (24). This is done as follows.

(23) Given any function f : X �� LX and x, y ∈ X we have

(f � 0X)(x)(y) = (µX ◦ L0X ◦ f)(x)(y)

=
∨

A∈LX

A(y) ∧ (
∨

0X (x′)=A

f(x)(x′))

which gives two cases. If A is the constant zero function then we have∨
A∈LX

0 ∧ (
∨

0X (x′)=A

f(x)(x′)) = 0
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otherwise we have ∨
A∈LX

A(y) ∧ 0 = 0

since 0X(x′) = A is never satisfied.
(24) Given any function f : X �� LX and x, y ∈ X we have

(0X � f)(x)(y) = (µX ◦ Lf ◦ 0X)(x)(y)

=
∨

A∈LX

A(y) ∧ (
∨

f(x′)=A

0X(x)(x′))

=
∨

A∈LX

A(y) ∧ (
∨

f(x′)=A

0)

=
∨

A∈LX

A(y) ∧ 0 = 0.

All requirements from Definition 2 have been shown and we may conclude that
L indeed is a Kleene monad. ��

We have previously seen that the composition of a partially ordered monad
with any other monad is itself partially ordered. This makes the composition
eligible for being a Kleene monad. The following proposition establishes that
this is the case, provided that is the composition swapper respects the natural
transformation 0.

Proposition 3. Let F = (F,�F , ηF , µF ) be a Kleene monad and G =
(G, ηG, µG) be any monad such that the composition F •G exists. Then F •G is
a Kleene monad with 0 = 0FG = 0F � ηG, provided that f � 0F

GX = 0FG
X , for all

morphisms f : X �� FGX, and the swapper, σ, is such that σ ◦ G0F = 0FG.

Proof. Naturality of 0 is immediate from the naturality of 0F and ηG. The re-
maining conditions are shown as follows.

(23) Given any function f : X �� FGX we have

(f � 0X) = µFG
X ◦ FG0X ◦ f

= FµG
X ◦ µF

GGX ◦ FσGX ◦ FG0X ◦ f

= µF
GX ◦ FFµG

X ◦ FσGX ◦ FG0X ◦ f

= µF
GX ◦ FFµG

X ◦ FσGX ◦ FGFηG
X ◦ FG0F

X ◦ f

= µF
GX ◦ FFµG

X ◦ FFGηG
X ◦ FσX ◦ FG0F

X ◦ f

= µF
GX ◦ FσX ◦ FG0F

X ◦ f

= µF
GX ◦ F(σX ◦ G0F

X) ◦ f

= µF
GX ◦ F0F

GX ◦ f

= f � 0F
GX = 0FG

X
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(24) Given any function f : X �� FGX we have

0X � f = µFG
X ◦ FGf ◦ 0X

= FµG
X ◦ µF

GGX ◦ FσGX ◦ FGf ◦ 0X

= µF
GX ◦ FFµG

X ◦ FσGX ◦ FGf ◦ 0X

= µF
GX ◦ F(FµG

X ◦ σGX ◦ Gf) ◦ 0X

= µF
GX ◦ F(FµG

X ◦ σGX ◦ Gf) ◦ 0F
GX ◦ ηG

X

= (0F
GX � (FµG

X ◦ σGX ◦ Gf)) ◦ ηG
X

= 0F
GX ◦ ηG

X = 0X .

Since all required properties are upheld, we conclude that F • G is a Kleene
monad. ��

We apply Proposition 3 in showing that the composition L • TΩ is a Kleene
monad.

Proposition 4. The partially ordered monad L • TΩ is a Kleene monad.

Proof. We must show that f � 0L
TX = 0LT

X , for all f : X �� LTX , and that
σX ◦ T0L

X = 0L
TX . We begin by showing the former. Let x ∈ X , y ∈ TX , and

f : X �� LTX be any function, we then have

(f � 0L
TX)(x)(y) = (µL

TX ◦ L0L
TX ◦ f)(x)(y)

=
∨

A∈LTX

A(y) ∧ (
∨

0L
TX

(x′)=A

f(x)(x′))

= 0 = (0L
TX ◦ ηT

X)(x)(y).

We now show that σX ◦ T0L
X = 0L

TX . Let 0 denote the constant zero function.
Consider now a term t ∈ T0, we have

(σX ◦ T0L
X)(t) = (idLX ◦ 0L

TX)(t) = 0L
TX(t).

Thus, the result holds for the base case. Let

t = (n, ω, (ti)t≤n), t′ = (n, ω, (t′i)i≤n) ∈ TαX

with α > 0 and assume (σX ◦ T0L
X)(ti) = 0L

TX(ti) for each ti. By induction we
have

σX(0L
X(t))(t′) =

∧
i≤n

σX(0L
X(ti))(t′i) =

∧
i≤n

0L
TX(ti)(t′i) = 0 = 0L

TX(t)(t′)

which establishes our desired result. ��

Having established the notion of Kleene monads we may now define a Kleene
algebra over these monads. Let 1 = ηX , and further, for f1, f2 ∈ Hom(X, FX),
define
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f1 + f2 = f1 ∨ f2,

i.e. pointwise according to (f1 + f2)(x) = f1(x) ∨ f2(x), and

f1 · f2 = f1 � f2

where f1�f2 = µX ◦Ff2◦f1 is the composition of morphisms in the corresponding
Kleisli category of F.

A partial order � on Hom(X, FX) is defined pointwise, i.e. for f1, f2 ∈
Hom(X, FX) we say f1 � f2 whenever f1(x) � f2(x) for all x ∈ X . Note
that f1 � f2 if and only if f1 + f2 = f2.

Proposition 5. Let F = (F,�, η, µ) be a Kleene monad.
Then (Hom(X, FX), +, ·, 0, 1) is an idempotent semiring.

Proof. We show each condition in turn:

(6) Follows immediately from associativity of ∨.
(7) Follows immediately from commutativity of ∨.
(8) Follows immediately from 0 being the identity element of ∨.
(9) Follows immediately from idempotency of suprema.
(10) Follows immediately from associativity of morphisms in the Kleisli cate-

gory.
(11) By naturality of η and the definition of monads we have

1 · f1 = ηX � f1 = µX ◦ Ff1 ◦ ηX = µX ◦ ηFX ◦ f1 = f1.

(12) The result follows directly from the definition of monads, i.e., we have

f1 · 1 = f1 � ηX = µX ◦ FηX ◦ f1 = f1.

(13) By naturality of µ together with (5) we obtain

f1 · (f2 + f3) = µX ◦ F(f2 + f3) ◦ f1

= ([µX ◦ Ff2] + [µX ◦ Ff3]) ◦ f1

= [µX ◦ Ff2 ◦ f1] + [µxFf3 ◦ f1]
= f1 · f2 + f1 · f3.

(14) By naturality of µ together with (3) we obtain

(f1 + f2) · f3 = µX ◦ Ff3 ◦ (f1 + f2)
= µX ◦ ([Ff3 ◦ f1] + [Ff3 ◦ f2])
= [µX ◦ Ff3 ◦ f1] + [µX ◦ Ff3 ◦ f2]
= f1 · f3 + f2 · f3.

(15) Follows immediately from (24) since

0 · f1 = 0X � f1 = 0X .
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(16) Follows immediately from (23) since

f1 · 0 = f1 � 0X = 0X

And with each necessary condition shown to hold, we conclude that Kleene
monads are idempotent semirings. ��

The introduction of Kleene asterates is now obvious. For mappings f : X ��FX ,
define

f∗ =
∞∨

k=0

fk

where f0 = 1 and fk+1 = f �fk = µX ◦Ffk◦f . Suprema of mappings gi : X ��Y
is given by (

∨
gi)(x) =

∨
gi(x).

Theorem 1. Let F = (F,�, η, µ) be a Kleene monad.
Then (Hom(X, FX), +, ·,∗ , 0, 1) is a Kleene algebra.

Proof. The remaining conditions are proved as follows.

(17) We have

1 + f · f∗ = 1 ∨ (µX ◦ Ff∗ ◦ f)

= 1 ∨ (µX ◦ F
∞∨

k=0

fk ◦ f)

(5)
= 1 ∨

∞∨
k=0

fk · f

= f0 ∨
∞∨

k=0

fk+1

=
∞∨

k=0

fk = f∗.

(18) Similarly we have

1 + f∗ · f = 1 ∨ (µX ◦ Ff ◦ f∗)

= 1 ∨ (µX ◦ Ff ◦
∞∨

k=0

fk)

(3),(4)
= 1 ∨

∞∨
k=0

fk · f

= f0 ∨
∞∨

k=0

fk+1

=
∞∨

k=0

fk = f∗.
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(21) Firstly, note that f1 ≤ f2 implies µX ◦ Ff1 ≤ µX ◦ Ff2, and therefore
µX ◦ Ff1 ◦ g ≤ µX ◦ Ff2 ◦ g, i.e. g · f1 ≤ g · f2. Therefore f · g ≤ g implies
f · f · g ≤ f · g ≤ g, and then also fk · g ≤ g, for all k. Thus f · g ≤ g implies

f∗ · g = µX ◦ Fg ◦ f∗

= µX ◦ Fg ◦
∞∨

k=0

fk

=
∞∨

k=0

µX ◦ Fg ◦ fk

=
∞∨

k=0

fk · g ≤ g

(22) Similarly, note that f1 ≤ f2 implies µX ◦ Fg ◦ f1 ≤ µX ◦ Fg ◦ f2, i.e.
f1 · g ≤ f2 · g, by which we will have that g · f ≤ g implies g · fk ≤ g, for all
k. Thus g · f ≤ g implies

g · f∗ = µX ◦ Ff∗ ◦ g

= µX ◦ F
∞∨

k=0

fk ◦ g

=
∞∨

k=0

µX ◦ Ffk ◦ g

=
∞∨

k=0

g · fk ≤ g ��

5 Conclusion

Extending monads to include partial order opens up a range of applications in
topology and algebra, in particular as partially ordered monads can be composed
basically in the same way as ordinary monads. The application towards semir-
ings and Kleene algebras clearly invites to further investigations on language
constructions and their semantics. Partially ordered monads also become natu-
ral extensions to the term monad as used in general logics. Both these directions
should be further developed.
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Abstract. We provide a relation-algebraic characterization of liveness
in Petri nets based on a relation-algebraic definition of both the structure
and the state space of Petri nets. Such an approach, compared to the
common ones that apply predicate logic and set theory, shifts the formal-
ization to a more abstract level. As a main benefit, Petri net properties
can be proved in a rigorous mathematical style. Since the characteriza-
tions are executable relational specifications, they provide the possibility
for tool support.

1 Introduction

Technical systems can be of different kinds. They may never stop (such as oper-
ating systems), they may willingly or unwillingly stop in parts due to a deadlock
(an operating system being gracefully degraded or blocked by concurrent threads
waiting on each other), they may stop after performing a certain task (an air
bag), or they may not even work at all (such as a paper jammed or damaged
printer). It is often difficult to verify such liveness properties in concurrent sys-
tems. As Petri nets allow one to model them, analyzing the liveness properties
of a Petri net replaces the analysis of the underlying system in order to, for
example, determine the reason why a deadlock occurs.

In Software Engineering, relations occur in many places. For instance, in [4] it
is shown how the pipes-and-filters architecture can be seen as a system of rela-
tions. UML class diagrams, as another example, relate elements such as classes
and interfaces via association, aggregation, or inheritance. This can be utilized to
express the structure of design patterns and the semantics of three-dimensional
design languages by means of relations; see [1]. Graph-like structures and graphs
in essence are of particular interest for relational analysis and, since the static
part of a Petri net is a bipartite graph, static properties can be analyzed with
relation algebra as well; cf. [2,9].

However, literature on the relation-algebraic treatment of dynamic properties
of Petri nets seems to be rare. To our knowledge, [2] is the first paper on this
topic. But it only considers the restricted class of condition/event nets. For the
first time it seems that general place/transition nets are discussed in [6], where

R. Berghammer et al. (Eds.): RelMiCS/AKA 2009, LNCS 5827, pp. 103–118, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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especially the reachability relation is formalized with relation-algebraic means.
This work is continued in [8] particularly with regard to tool support, and in [7]
in view of the simultaneous evaluation of reachable markings in a single step. The
present paper is based on [6]. The novelties are a relation-algebraic treatment of
liveness properties and relation-algebraic specifications of deadlocks, traps, and
the important deadlock/trap property.

Our view on general Petri nets, when compared to approaches using predicate
logic and set theory, shifts their formalization to a more abstract level. It allows
rigorously for the deduction of specifications of liveness, deadlocks and traps,
the deadlock/trap property, and of further other qualities from net-theoretic
formulae, which are thus correct by construction. Since the resulting relation-
algebraic specifications also are executable, tool support is possible. We embed-
ded the specifications discussed here into our Petri net tool PetRA [8] that is
tailored for analyzing both static and dynamic qualities of Petri nets. The tool
bases on the Kure-Java library, an efficient BDD-implementation of relation
algebra that has been extracted from the RelView tool [10,11]. The approach
discussed in [12] introduces BDDs for the analysis of Petri nets and provides
algorithms manipulating BDDs directly. The efficiency of this data structure is
demonstrated by the Dining Philosophers example. In addition to this approach,
we investigate a relation-algebraic characterization of Petri nets which allows us
to manipulate BDDs by algorithms that are mathematically precise and cor-
rect by construction. That is, we encapsulate BDDs and provide a mathematical
and thus abstract interface to state space analysis independent from the data
structure representing relations.

2 Preliminaries

In this section, we introduce the basic notions of relations and Petri nets which
are needed in the remainder of the paper. For more details, we have to refer to
the literature, see e.g. [14] for relations and [13] for Petri nets.

2.1 Relations and Relation Algebra

Assuming a (heterogeneous) relation algebra as defined in [14], its elements are
called (abstract) relations. If R is a concrete (set-theoretic) relation between sets
X, Y , this is denoted by R : X ↔ Y . Instead of 2X×Y , we write [X ↔ Y ] for the
set of all relations between X and Y and Rx,y instead of 〈x, y〉 ∈ R to express
that x ∈ X and y ∈ Y are related via R. The latter notation is motivated by
the fact that we frequently interpret relations as Boolean matrices.

If R and S are relations, R ∪ S, R ∩ S, R; S, and R ⊆ S denote their union,
intersection, composition, and inclusion, respectively. Furthermore, RT denotes
the converse of R, R its negation, R+ its transitive closure, and R∗ its reflexive
transitive closure. The empty relation is denoted by O, the universal relation by
L, and the identity relation by I.

A relation R is univalent if RT; R ⊆ I, total if R; L = L, and a mapping if it
is both univalent and total. R is injective if RT is univalent and surjective if RT



A Relation-Algebraic Approach to Liveness of Place/Transition Nets 105

is total. For a mapping R from X to Y with Rx,y, we write R(x) to refer to the
image y ∈ Y of x ∈ X as usual in this case.

A vector v is a relation v with v; L = v, and a point v is a vector with v; vT ⊆ I
and L; v = L. A concrete vector on a set X is denoted by v : X ↔ � for any
singleton set � := {�}. We omit � as subscript and write vx instead of vx,�. Such
a vector can be considered as a Boolean matrix with exactly one column, i.e., as
a Boolean column vector, and models the subset {x ∈ X | vx} of X . If v is even
a point, it models an element x of X . This means that for all y ∈ X it holds vy

iff x = y. Based on these properties, the vectors R; L and RT; L are called the
domain and codomain of R, respectively, and for a vector v we call R ∩ v; L the
domain restriction of R through v. Each relation R representable as v;wT, with
v and w being points, is an atom of the underlying relation algebra. Moreover,
for each concrete non-empty relation R : X ↔ Y there exist a pair v : X ↔ �

and w : Y ↔ � of points such that v;wT ⊆ R (cf. point axiom of [14]).
The membership symbol ∈ is modeled by a relation M : X ↔ 2X between X

and its powerset such that for all x ∈ X and S ∈ 2X we have Mx,S iff x ∈ S.
A relational direct product is a pair of relations (π, ρ) with πT; π = I, ρT; ρ = I,
π; πT∩ρ; ρT = I, and πT; ρ = L. This axiomatization has up to isomorphism only
one model and this is in the case of concrete relations the pair consisting of the
natural projections π : X × Y ↔ X and ρ : X × Y ↔ Y of X × Y .

Finally, for each relation R, by R := (π; R∩ ρ); L the vector representation of

R is defined, and for each vector v by v := MT; v ∪ M
T
; v the point representation

of v is defined. Given a concrete relation R : X ↔ Y , its vector representation is
of type [X × Y ↔ �] and for all x ∈ X and y ∈ Y we have Rx,y iff R〈x,y〉. The
type of the point representation v of a concrete vector v : X ↔ � is [2X ↔ �]
and if v models Y as subset of X , then the point v models Y as an element of
2X . We say that r : 2X×Y ↔ � is the point representation of R : X ↔ Y if it is
the point representation of the vector representation of R.

In Section 4 we will need the following auxiliary result on relations contained
in identity relations (so-called partial identities).

Lemma 1. S ⊆ I implies S; R = S; L ∩ R.

Proof. The inclusion S; R ⊆ S; L∩R follows from S; R ⊆ S; L and S; R ⊆ I; R =
R, and for the proof of the reverse inclusion via

S; L ∩ R ⊆ (S ∩ R; LT); (L ∩ ST; R) ⊆ S;ST; R ⊆ S; IT; R = S; R

we use the Dedekind rule (see [14]) in the first step. ��

We will also apply that partial identities S are symmetric, that is, the equation
S = ST holds.

2.2 Basic Notions of Petri Nets

A Petri net (or place/transition net) is a 6-tuple P = (P, T, F, C, W, M0) with
disjoint sets P of places and T of transitions, F ⊆ (P ×T )∪(T×P ) as (bipartite)
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flow relation, C : P → N as capacity function, W : F → N as weight function,
and M0 : P → N as initial marking. For the capacities of all places p ∈ P and the
weights of all arcs f ∈ F the properties C(p) �= 0 and W (f) �= 0 are demanded
and, furthermore, M0(p) ≤ C(p) has to hold for all p ∈ P .

For explaining the following notions, we assume a fixed Petri net P with
constituents P, T, F, C, W and M0 to be given.

By •t we denote the set of (immediate) predecessor places of t ∈ T w.r.t. F
and by t• the set of (immediate) successor places of t. Furthermore, M denotes
the set off all possible markings of P , that is, the set of functions M : P → N
satisfying M(p) ≤ C(p) for all p ∈ P . Then a transition t ∈ T is activated
under M ∈ M, abbreviated as M

t� , if M(p) ≥ W (p, t) for all p ∈ •t and
M(p) ≤ C(p) − W (t, p) for all p ∈ t•. In this case, t can fire under M . Its firing
produces a marking M ′ ∈ M, where M ′ is defined through

M ′(p) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
M(p) − W (p, t) if p ∈ •t \ t•,
M(p) + W (t, p) if p ∈ t • \ • t,
M(p) − W (p, t) + W (t, p) if p ∈ •t ∩ t•,
M(p) otherwise.

We say that M ′ is immediately reachable from M under t and write M
t� M ′ for

that relationship. Based on this notion, general reachability for markings can be
defined as follows: A marking M ′ ∈ M is reachable from M ∈ M, in symbols
M

∗�M ′, if M = M ′ or there exists a non-empty sequence t1, . . . , tn of transitions
and a non-empty sequence N1, . . . , Nn, Nn+1 of markings such that M = N1,
M ′ = Nn+1 and Ni

ti� Ni+1 for all i, 1 ≤ i ≤ n. In this case t1, . . . , tn is called
a firing sequence. The set of markings reachable from M0 ∈ M is called the set
of reachable markings of P and denoted as M0. If we restrict the reachability
relation to this set, we arrive at the notion of the reachability graph of P . That
is, the vertex set of this graph is M0 and there is an arc from M ∈ M0 to
M ′ ∈ M0 iff M ′ is reachable from M .

A set X of places is sufficiently marked under a marking M ∈ M if there
exist p ∈ X and t ∈ T such that p ∈ •t (i.e., t is a successor transition of the
place p) and M(p) ≥ W (p, t).

We close this section with introducing some kinds of liveness, the notion we
are primarily interested in this paper, and its counterpart deadness.

Assume t ∈ T to be a transition of the Petri net P . Then t is weakly live
if it is activated under at least one reachable marking, that is, if there exists
M ∈ M0 with M

t� . It is live if it is weakly live under all reachable markings.
This means that for all M ∈ M0 there exists M ′ ∈ M0 such that both M

∗� M ′

and M ′ t� hold. The entire Petri net P is said to be live if all its transitions are
live. A transition t ∈ T that is not weakly live is dead. Deadness is also defined
for reachable markings: M ∈ M0 is dead if there is no transition activated under
M , i.e., if for all t ∈ T the property M

t� does not hold. In this case P is also
called dead under M . And, finally, P is a weakly live Petri net if it does not have
a dead marking.
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3 Relation-Algebraic Characterization of Liveness

The relation-algebraic characterization of liveness requires a transition system
given by means of suitable relations. To establish it, in Section 3.1 we first start
with a relation-algebraic transcription of the definition of Petri nets. Therefore,
we need a relational description of the set of natural numbers. In order to not
conflict with the denotation N, we use a set N together with an injective map-
ping, i.e., the successor relation S : N ↔ N , and a point z : N ↔ � modeling
the number zero. Furthermore, we demand the laws S; z = O and (ST)∗; z = L to
hold. As shown in [3], the relational structure (N, S, z) has up to isomorphism
only one model and this “standard model” consists of the natural numbers with
the successor function n �→ n + 1 and the number zero. For this model, the first
law says that zero is not a successor of a natural number, and the second law
corresponds to Peano’s induction axiom. Based on S and its converse relation
P := ST (the predecessor relation), the usual linear orderings ≤ and ≥ on N are
represented through S∗ and P∗, respectively.

3.1 Modeling Petri Nets with Relations

Supposing S : N ↔ N , P : N ↔ N and z : N ↔ �, we start with the following
definition. It is the direct transformation of the description of a Petri net given
in Section 2.2 into the language of relations.

Definition 1. A (place/transition) Petri net is relation-algebraically modeled
by a 6-tuple P = (R, S, W •t, W t•, C, M0) with relations

R : P ↔ T S : T ↔ P

for representing the (bipartite) flow relation and mappings

W •t : P × T ↔ N W t• : T × P ↔ N C : P ↔ N M0 : P ↔ N

for representing the weights of the arcs contained in R and in S, respectively,
the capacities of the places, and the initial marking. Furthermore, the following
four properties are required to hold:

(a) C; z = O (b) R = πT; (W •t; z; L ∩ ρ)
(c) S = βT; (W t•; z; L ∩ α)T (d) M0 ⊆ C; P∗

Here the relational direct products (π, ρ) and (α, β) consist of the natural projec-
tions of P × T and T × P , respectively. ��

The above four relational formulae (a) to (d) exactly correspond to the restric-
tions of and the dependencies between the respective functions defined for Petri
nets in Section 2.2. We show this in the following by using well-known corre-
spondences between relation-algebraic terms and predicate logic and the common
notation of function application in the case of relations which are mappings.
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To verify that the equation (a) specifies all place capacities to be non-zero is
rather trivial:

C; z = O ⇐⇒ ¬∃ p : (C ; z)p ⇐⇒ ¬∃ p, n : Cp,n ∧ zn ⇐⇒ ¬∃p : C(p) = 0

By the next two equations (b) and (c) it is specified that all weights of arcs are
non-zero and in the case of a non-arc the weight of the corresponding pair is
defined as zero. Namely, due to

R = πT; (W •t; z; L ∩ ρ) ⇐⇒ ∀ p, t : Rp,t ↔ (πT; (W •t ; z; L ∩ ρ))p,t

⇐⇒ ∀ p, t : Rp,t ↔ ∃ q : πq,p ∧ (W •t ; z; L ∩ ρ)q,t

⇐⇒ ∀ p, t : Rp,t ↔ ∃ q : πq,p ∧ ρq,t ∧ (W •t ; z)q

⇐⇒ ∀ p, t : Rp,t ↔ ∃ q : q = 〈p, t〉 ∧ (W •t ; z)q

⇐⇒ ∀ p, t : Rp,t ↔ (W •t ; z)〈p,t〉
⇐⇒ ∀ p, t : Rp,t ↔ ∃n : W •t 〈p,t〉,n ∧ zn

⇐⇒ ∀ p, t : Rp,t ↔ W •t(p, t) = 0

⇐⇒ ∀ p, t : Rp,t ↔ W •t(p, t) �= 0

the equation (b) says that this holds for all pairs from P × T and, analogously,
one can show that the equation (c) says that this holds for all pairs from T ×P .
And, finally, from the derivation

M0 ⊆ C; P∗ ⇐⇒ ∀ p, n : M0 p,n → (C ; P∗)p,n

⇐⇒ ∀ p, n : M0(p) = n → (C ; (S∗)T)p,n

⇐⇒ ∀ p, n : M0(p) = n → ∃n′ : Cp,n′ ∧ (S∗)Tn′,n

⇐⇒ ∀ p, n : M0(p) = n → ∃n′ : Cp,n′ ∧ S∗
n,n′

⇐⇒ ∀ p, n : M0(p) = n → S∗
n,C(p)

⇐⇒ ∀ p, n : M0(p) = n → n ≤ C(p)
⇐⇒ ∀ p : M0(p) ≤ C(p)

we obtain that the last formula (d) of the definition specifies that all values of
the initial marking M0 are bounded by the respective capacities.

3.2 A Relation-Algebraic Transition System

As the descriptions in Section 2.2 show, considering liveness properties of Petri
nets means to investigate which markings are reachable from each other and
which transitions are activated under which markings. Thus, the Petri net’s state
space is under consideration and the desired information can be deduced from a
transition system with rules of the form M

t→ M ′ for all M, M ′ ∈ M0 and t ∈ T

such that M
t� M ′. Section 2.2 also shows that the different notions of liveness we

have introduced are not referring to the specific immediately reachable marking
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generated by firing an activated transition. Hence, a first step to liveness analysis
is to generate the reachability graph if the state space is finite, or the coverability
graph (see [5]) if the state space is infinite.

Markings are functions from P to N and, since functions are specific con-
crete relations1, each marking is a relation between P and N , too. As a conse-
quence, the type of the reachability relation R of a Petri net – the relation of
the reachability graph if restricted to the reachable markings – can be taken as
[[P ↔ N ] ↔ [P ↔ N ]]. The relation itself is component-wisely specified by

RM,M ′ :⇐⇒ M ∈ M0 ∧ M ′ ∈ M0 ∧ M
∗�M ′ (1)

for all markings M and M ′, now taken as elements from the set [P ↔ N ]. Besides
the reachability relation of (1), a relation A of type [[P ↔ N ] ↔ T ] is necessary
for dealing with liveness. It relates each reachable marking to the transitions it
activates. Hence, we have

AM,t :⇐⇒ M ∈ M0 ∧ M
t� (2)

for all markings M : P ↔ N and transitions t ∈ T as component-wise speci-
fication. The two relations R and A are sufficient to elegantly characterize the
different notions of liveness relation-algebraically and to formally prove liveness
properties of a Petri net as will be shown in the subsequent sections.

Next, we present an algorithm to generate the relations R and A component-
wisely specified by (1) and (2) for a given Petri net. To this end, we assume
a relational function cn : [P ↔ N ] → [T ↔ �] to be at hand that yields for a
marking M : P ↔ N the modeling of the set of transitions that are activated
under M as a vector cn(M) of type [T ↔ �], and also a relational function
irm : [P ↔ N ]× [T ↔ �] → [P ↔ N ], that yields for a marking M : P ↔ N and
a transition t, modeled as a point v of type [T ↔ �], the immediately reachable
marking M ′ of M under t, again as a relation irm(M, v) of type [P ↔ N ]. For the
formulation of the algorithm and its understanding the explicit relation-algebraic
specifications of the functions are not necessary. Therefore, we refer the interested
reader to [6], where it is shown how to formally develop the relation-algebraic
expressions for cn(M) and irm(M, v) from their component-wise definitions

cn(M )t :⇐⇒ M
t� (3)

for all M : P ↔ N and t ∈ T , and

irm(M, v) = M ′ :⇐⇒ M
t� M ′ (4)

1 To distinguish between the “usual” notion of a function and the relational view as
univalent and total elements of a relation algebra, we have introduced the notion
“mapping” for the latter ones in Section 2.1. Although for concrete relations both
notions coincide, we prefer the term “mapping” if the relation-algebraic view plays
the decisive role and use the word “function” in the other cases.
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for all M : P ↔ N , M ′ : P ↔ N , t ∈ T , and points v : T ↔ � such that the
transition t is modeled by the point v. The paper [6] also presents the RelView-
implementations of cn and irm.

From (2) we get that the relation A thereupon relates a reachable marking M
to the transitions that are activated under M . To make both the construction and
the use of these relations clear, we provide a depth-first algorithm simultaneously
constructing R and A. Therewith, we proceed to establish the desired transition
system by the following algorithm. It is formulated in pseudo code, but this
immediately may be translated into the language of the RelView tool.

Algorithm 1. Let P be a Petri net. Then do the following:

1. initialize R with O : [P ↔ N ] ↔ [P ↔ N ]
2. initialize A with O : [P ↔ N ] ↔ T
3. let M := M0
4. let m be the point representation of M
5. let R := R∪m;mT

6. let A := A∪ m; cn(M )T

7. for each point v included in cn(M) do:
(a) let m’ be the point representation of M ′ = irm(M, v)
(b) let R := R∪ m;m’T

(c) if R∩m’;m’T = O restart at step 4 with M := M ′
8. let R := R+

In step 5 of the algorithm, the singleton set {〈M, M〉} is modeled by the atom
m;mT. Its insertion into R by means of the union operation reflects the fact
that each marking is immediately reachable from itself. Simultaneously, we mark
the marking M as “already processed” to establish the termination condition for
recursive calls in step (c). Step 6 relates M to all transitions activated under
it because of the meaning of the relational function cn stated in (3). Due to
(4), the call of irm in step (a) constitutes M ′ to be reachable from M . If M ′

has already been reached before, we continue with the next transition activated
under M . Otherwise, we depth-first execute the algorithm recursively on M ′.
When no further reachable marking can be calculated, the transitive closure of
R constructed so far delivers the desired reachability relation.

Since the depth-first algorithm computes all markings reachable from the
initial marking M0, and since RM,M holds for all such markings we have that
the vector R; L exactly models the set M0 of the reachable markings of P , but
now as subset of the set [P ↔ N ]. This means that for all M : P ↔ N the
equivalence

(R; L)M ⇐⇒ M ∈ M0 (5)

holds. For the domain of R we even have the equation

R; L = (I ∩R); L. (6)

Here “⊆” follows from R ⊆ (I ∩R); L which, in turn, is a consequence of

RM,M ′ =⇒ ∃M ′′ : RM,M ′′ ∧ IM,M ′′ ∧ LM ′′,M ′ ⇐⇒ ((R ∩ I); L)M,M ′
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for all markings M, M ′ ∈ [P ↔ N ], and the converse inclusion is always true. To
test whether a reachable marking M ′ is reachable from a reachable marking M ,
we only have to test m;m’T ⊆ R, where m and m′ are the point representations
of M and M ′, respectively. Note that, because of (2), the domain of A only con-
tains reachable markings which activate at least one transition. If we remember
the notion of a dead marking M as one such that there is no transition activated
under M , then we have

R∩A; L ⊆ I, (7)

since in the relation R reachable dead markings are only related to themselves.

3.3 Characterization of Liveness

With a transitions system given by R and A, we can now relation-algebraically
characterize the different notions of liveness as introduced in Section 2.2. We
prove their correctness by showing their equivalence to the respective formalized
definition. In doing so, we use rigorous transformation rules between predicate
logic and relation-algebraic expressions and also laws of relation algebra. We
start with the liveness properties (and their counterparts) of transitions (and
markings, respectively).

Theorem 1. Let P be a Petri net and R and A be the relations of Section 3.2.
Then the vectors

(a) AT; L (b) AT; L (c) R;AT
;R; L (d) R; L ∩ A; L

of type [T ↔ �] in the cases (a) to (c) and [[P ↔ N ] ↔ �] in the case (d) model
the set of weakly live transitions, of all dead transitions, of all live transitions,
and of all dead markings of P, respectively.

Proof. (a) Because of (2), we have for all all transitions t ∈ T :

(AT; L)t ⇐⇒ ∃M : AT
t,M ∧ Lt ⇐⇒ ∃M : M ∈ M0 ∧ M

t�

The right-most formula of this calculation formalizes the fact that t is a weakly
live transition.

(b) This proof is a trivial consequence of (a), since, by definition, each tran-
sition t ∈ T is not weakly live iff t is dead.

(c) Using (1), (2), and (5), the claim follows from the following equivalence for
all transitions t ∈ T , since the last formula of the derivation is the formalization
of t to be a live transition.

(R;AT
;R; L)t ⇐⇒ ¬∃M : R;AM,t ∧ (R; L)M

⇐⇒ ¬∃M : ¬∃M ′ : (RM,M ′ ∧ AM ′,t) ∧ (R; L)M

⇐⇒ ∀M : (R; L)M → ∃M ′ : (RM,M ′ ∧AM ′,t)

⇐⇒ ∀M : M ∈ M0 → ∃M ′ : M ′ ∈ M0 ∧ M
∗�M ′ ∧ M ′ t�
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(d) Let M : P ↔ N be any marking. With the help of (2) and (5), we get the
result by the following equivalence since its last formula says that M is dead.

(R; L ∩ A; L)M ⇐⇒ (R; L)M ∧ A; LM ⇐⇒ M ∈ M0 ∧ ¬∃ t : M
t� ��

The next theorem shows how to test the two liveness properties we have intro-
duced for entire Petri nets by means of relation-algebraic formulae.

Theorem 2. Let again P be a Petri net and R and A be as in Section 3.2.
Then P is weakly live iff R; L ⊆ A; L and live iff R; L ⊆ R;A.

Proof. The first statement directly follows from the definition of weak liveness
and Theorem 1 (d), since R; L ∩ A; L = O iff R; L ⊆ AL.

By Theorem 1 (c), liveness is equivalent to R;AT
;R; L = L and, therefore,

the following computation shows the second claim.

R;AT
;R; L = L ⇐⇒ R;AT

;R; L ⊆ O

⇐⇒ L; (R; L)T ⊆ (R;A)T Schröder equivalences [14]

⇐⇒ R; L ⊆ R;A as L; (R; L)T = (R; L)T ��

4 Proving Liveness Properties with Relation Algebra

As we have relation-algebraically specified liveness in Petri nets, we can now use
this for formal calculations. The following proofs make use of laws of abstract
relation algebra, which, however, we refer to only in the case of a non-trivial
proof step. In contrast to proofs usually found in the Petri net literature, where
net-theoretic considerations are used, we base our proofs on sheer mathematical
argumentation. To elaborate the main result of this section, a sufficient criterion
for weak liveness saying that a Petri net is weakly live if it contains at least
one live transition, we need some further properties on the relations R and A of
Section 3.2. In words, the following theorem says that for all reachable markings
M from the existence of a transition that is activated under M it follows for all
transitions t that there is an ancestor marking of M under which t is activated.

Theorem 3. We have R;A ⊆ A; L.

Proof. Starting with the left-hand side of the inclusion to show, we calculate:

R;A = ((R∩A; L) ∪ (R∩A; L));A
⊆ ((R∩A; L) ∪ (I ∩A; L));A due to (7)

= (R∩A; L);A ∪ (I ∩A; L);A distributivity

Now, we start from the right-hand side of the inclusion and obtain

A; L ⊇ A; L;A ⊇ (R∩A; L);A
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due to L ⊇ L;A and A; L ⊇ (R∩A; L). So, it remains to show that (I ∩A; L);A
is empty. For this, we apply Lemma 1 and that A; L is a vector and obtain then

(I ∩ A; L);A = (I ∩ A; L); L ∩ A ⊆ A; L ∩ A = O. �

An immediate consequence of Theorem 3 is the following corollary. In usual
terminology it says that for all markings M ′ and transitions t, if there is an
ancestor marking M of M ′ such that no transition is activated under M , then
there is an ancestor marking M of M ′ such that t is not activated under all
markings reachable from M .

Corollary 1. We have A; L
T
;R ⊆ R;AT

;R.

It is known from Petri net theory that a live Petri net is also weakly live. We
formulate this fact as another immediate consequence of Theorem 3:

Corollary 2. R; L ⊆ R;A implies R; L ⊆ A; L.

As the last result of this section we prove the above stated criterion for weak
liveness, viz. that at least one live transition exists, relation-algebraically by
means of the relations R and A.

Theorem 4. R;AT
;R; L �= O implies R; L ⊆ A; L.

Proof. We use contraposition and assume the negation of R; L ⊆ A; L to hold,
i.e., R; L ∩ A; L �= O. Hence, we have to show R;AT

;R; L = L. From Corollary
1 we get that A; L

T
;R; L = L implies R;AT

;R; L = L and this reduces our task
to the proof of A; L

T
;R; L = L. To reach this goal, we calculate as follows:

((A; L
T
);R)

T

= RT;A; L

⊇ (I ∩R)T;A; L

= (I ∩R);A; L since I ∩R ⊆ I

= (I ∩R); L ∩ A; L due to Lemma 1

= R; L ∩ A; L due to (6)

Since both R; L and A; L are vectors, their intersection is a vector as well. By
assumption, R; L ∩ A; L �= O. As a consequence, L; (R; L ∩ A; L) = L due to the
Tarski rule (see [14]). Combining this with the above calculation, we arrive at

L; ((A; L
T
);R)

T
= L which, in turn, is equivalent to A; L

T
;R; L = L. ��

Certainly, mindful readers have noticed that the results of this section do not
depend on the specific interpretation of R and A and, therefore, can be trans-
formed into general relation-algebraic properties. This allows for their reuse. For
instance, Theorem 3 becomes that R; A ⊆ A; L for all relations R and A such
that R ∩A; L ⊆ I. If, for example, R : V ↔ V is the relation of a directed graph
with vertex set V and A : V ↔ � is a vector describing a subset X of the vertex
set V , then this generalization expresses that if all arcs starting not in X are
loops, then X is a predecessor-closed set.
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Fig. 1. A Petri net not having the deadlock/trap property

5 The Deadlock/Trap Property

A set X of places of a Petri net is called a trap if it is non-empty and each of
its successor transitions is also a predecessor transition. The dual notation is
that of a co-trap. X is a co-trap (or deadlock) if it is non-empty and each of its
predecessor transitions is also a successor transition. Both notions are very useful
for reasoning about liveness properties. The most important results in respect
thereof use the deadlock/trap property. This property says that each minimal
co-trap (w.r.t. set inclusion) contains a trap that is sufficiently marked under
M0. With it, in certain situations liveness can be treated without reference to
reachability. For instance, a Petri net that possesses the deadlock/trap property
is weakly live; a Free-Choice net (a net where each transition with a forward-
branching predecessor place may not be backwards branching) is live iff it has
the deadlock/trap property (Commoner’s theorem).

Example 1. Figure 1 shows a simple Petri net as depicted by the tool PetRA

described in the next section. The net has four places p1, p2, p3, p4, drawn as cy-
cles, five transitions t1, t2, t3, t4, t5, drawn as rectangles, and an initial marking,
indicated by the tokens. The latter means the following:

M0 : P → N M0(p2) = M0(p3) = 1 M0(p1) = M0(p4) = 0

For this net, the deadlock/trap property does not hold, since, for instance, the
set {p1, p2} is a minimal co-trap that contains no trap. From the flow relation
we get that the net possesses the Free-Choice property. Hence, is not live due to
Commoner’s theorem. Indeed, using the specifications of Theorem 1, the PetRA

tool shows that the transitions t4, t5 are live, whereas the transitions t1, t2, t3 are
only weakly live. ��

For the following, we assume that each Petri net under consideration is relation-
algebraically modeled by the 6-tuple P = (R, S, W •t, W t•, C, M0) as introduced
in Section 3.1. Furthermore, we denote by M : P ↔ 2P the membership relation
between P and its powerset, and by π : P × T ↔ P and ρ : P × T ↔ T the
projections of P × T . The following theorem is the first step towards a relation-
algebraic specification of the deadlock/trap property.
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Theorem 5. Let P be a Petri net. Then the vectors

T := MT; L ∩ (RT; M ∩ S ; M)
T
; L C := MT; L ∩ (S ; M ∩ RT; M)

T
; L

of type [2P ↔ �] model the set of traps and co-traps, respectively.

Proof. For all X ∈ 2P we have

(MT; L)X ⇐⇒ ∃ p : Mp,X ⇐⇒ X �= ∅

and, furthermore,

(RT; M ∩ S ; M)
T
; LX ⇐⇒ ¬∃ t : (RT; M)t,X ∧ S ; Mt,X ∧ LX

⇐⇒ ∀ t : (RT; M)t,X → (S ; M)t,X

⇐⇒ ∀ t : (∃p : Rp,t ∧ p ∈ X) → (∃p : St,p ∧ p ∈ X).

The last formula of the second derivation says that each successor transition t
of X is also a predecessor transition of X . Hence, we have shown the first claim.

The second claim follows from the above proof by simultaneously exchanging
the flow relations RT and S. ��
Hence, for all X ∈ 2P we have TX if X is a trap and CX if X is a co-trap. Since
E := MT; M is the relation-algebraic specification of set inclusion on 2P , it is
very easy to model the set of all minimal co-traps by a vector C̃ : 2P ↔ �. We
obtain (see e.g., [14] for a relation-algebraic specification of minimal elements)

C̃ = C ∩ (ET ∩ I); C. (8)

As the next step towards our goal we treat sufficiently marked traps relation-
algebraically.

Theorem 6. Let P be a Petri net. Then the vector

S := T ∩ MT; (R; ρT ∩ M0; P∗; (W •t)T ∩ πT); L

of type [2P ↔ �] models the set of traps that are sufficiently marked under M0.

Proof. For all X ∈ 2P we have the following equivalence.

(MT; (R; ρT ∩ M0 ; P∗; (W •t)T ∩ πT); L)X

⇐⇒ ∃ p : Mp,X ∧ ((R; ρT ∩ M0 ; P∗; (W •t)T ∩ πT); L)p

⇐⇒ ∃ p : Mp,X ∧ ∃ 〈q, t〉 : (R; ρT)p,〈q,t〉 ∧ (M0 ; P∗; (W •t )T)p,〈q,t〉 ∧ πT
p,〈q,t〉

⇐⇒ ∃ p : p ∈ X ∧ ∃ 〈q, t〉 : (R; ρT)p,〈q,t〉 ∧ (M0 ; P∗; (W •t)T)p,〈q,t〉 ∧ p = q

⇐⇒ ∃ p : p ∈ X ∧ ∃ t : (R; ρT)p,〈p,t〉 ∧ (M0 ; P∗; (W •t )T)p,〈p,t〉
⇐⇒ ∃ p : p ∈ X ∧ ∃ t : Rp,t ∧ P∗

M0(p),W (p,t)

⇐⇒ ∃ p : p ∈ X ∧ ∃ t : Rp,t ∧ M0(p) ≥ W (p, t)

The last formula combined with the first statement of Theorem 5 yields the
result. ��
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After these preparations, we are in the position to translate the above informal
description of the deadlock/trap property into a relation-algebraic formula. This
yields the following result.

Theorem 7. A Petri net P possesses the deadlock/trap property iff C̃ ⊆ ET;S.

Proof. The inclusion C̃ ⊆ ET;S is equivalent to

∀X : C̃X → ∃Y : EY,X ∧ SY

and from the meaning of C̃, E, and S we immediately see that the formula
specifies the deadlock/trap property. ��

6 Tool Support

We implemented the descriptions and characterizations presented in this paper in
our Petri net tool PetRA. Based on our object-oriented Java library Kure-Java
which allows us to mechanize the algebra of relations by an efficient implemen-
tation of relations via BDDs and which provides a lot of pre-defined operations
and tests, PetRA is capable of executing relational characterizations and allows
for both the editing and relation-algebraic analysis of Petri nets. Figure 2 gives a
screen shot of the Petri net tool PetRA. A list of all reachable markings of the net
shown is provided in a separate window. Selecting an entry from this list displays
the respective marking within the net.

PetRA offers a flexible way to graphically draw a Petri net, to transform it
into its relation-algebraic representation, to trigger analyses, and to illustrate

Fig. 2. A Petri net as displayed by PetRA
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Fig. 3. Results of test runs on the net displayed in Fig. 2

within the net the results an executed relational specification delivers. The spec-
ifications where technically tuned up – we simply exploited some knowledge on
the BDDs representing relations within RelView and Kure-Java (see Fig. 3) –
and have been executed on a 1.7 GHz Centrino with 2GB RAM. We conducted
some test runs on a sample Petri net with places and transitions added stepwise
to expand the state space from run to run. In the first run, we started with 17
places and 14 transitions. The net had 184 reachable markings and 33856 entries
in R, and it took 5 seconds to construct the transition system. Finally in the last
run, the net consisted of 42 places and 40 transitions. The 964 markings in R
with its 929296 entries were calculated within 10 minutes. Checking the liveness
properties, however, was in all cases done in less than 1 second.

In [7] some well-known examples from computer science (viz., Petri net de-
scriptions of readers/writers, consumer/producer, the dining philosophers and
a small communication protocol) are investigated with relation-algebraic means
and using PetRA. The paper also reports on the corresponding runtime tests
in more detail.

7 Conclusion

In the design and implementation of large software systems usually high-level
concepts, techniques, and strategies from, for instance, model-driven architec-
ture, object-orientation, and component-oriented approaches play a prominent
role. Still, source code appearing in practice is frequently very complex, and
particularly parallel threads or data flows are hard to overview, to test, and to
maintain. To detect livelocks or deadlocks in concurrent, distributed, or stochas-
tic software is even today one of the most serious problems. As Petri nets allow
to model such concurrent systems, analyzing liveness properties in Petri nets is
a well-known approach to, for instance, detect both deadlocked threads and the
reasons for such situations in the underlying system. We have presented a set of
relation-algebraic specifications of liveness properties, of traps and co-traps, and
of the deadlock/trap property. These specifications are correct by construction
and, as another main benefit, they can immediately be executed within PetRA.
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Recently, rather than stand-alone tools modern software development environ-
ment are used to cope with the technical and organizational complexity arising
when large software systems are developed. Consequently, a well-suited devel-
opment environments needs to be flexible and open for extensions providing
powerful functionality needed to develop complex systems. As another relation-
algebraic Petri net tool besides PetRA, we developed such an extension, called
RelClipse, for the Eclipse platform. This tool allows in an industrial develop-
ment environment to model as a Petri net suitable parts of a software system
under implementation and to analyze its properties by means of relation algebra.
Hence, the approach makes the development of the crucial analysis features of
a Petri net tool less error-prone than without a formal approach or with one
that does not allow for correct-by-construction transformations. The integration
into Eclipse demonstrates the practical applicability of relation-algebra within
working software development environments and processes.

References

1. Berghammer, R., Fronk, A.: Applying relational algebra in 3D graphical software
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Abstract. In this paper, we introduce two notions of continuity for
idempotent left semirings, which are called ∗-continuity and D-continuity.
Also, for a ∗-continuous idempotent left semiring, we introduce a notion
of ∗-ideals. Then, we show that the set of ∗-ideals of a ∗-continuous
idempotent left semiring forms a D-continuous idempotent left semiring
and the construction satisfies a universal property.

1 Introduction

Kleene algebras [4] are idempotent semirings with ∗ satisfying

1 + aa∗ ≤ a∗ (1)
1 + a∗a ≤ a∗ (2)

ax ≤ x → a∗x ≤ x (3)
xa ≤ x → xa∗ ≤ x (4)

where ≤ refers to the natural order in the idempotent semiring. A Kleene algebra
is called ∗-continuous if it satisfies the axiom

ab∗c =
∑
n≥0

abnc (5)

where
∑

refers to the least upper bounds in the natural order ≤. In fact, (5)
implies (1)-(4) in each idempotent semiring. Thus, ∗-continuous Kleene alge-
bras might be called ∗-continuous idempotent semirings. Conway’s S-algebras
are idempotent semirings with arbitrary sums

∑
and their binary operator ·

distributes over
∑

from the both sides. Thus, S-algebras might be called com-
plete idempotent semirings. In [1], Conway has given a construction that embeds
every ∗-continuous Kleene algebra into an S-algebra. This construction can be
described as an ideal completion. In [3], Kozen has shown that the construction
satisfies a universal property.

This paper provides similar results to [3] on variants of lazy Kleene algebras
[6] that are idempotent left semirings with a unary operator ∗ satisfying (1)
and (3). We define ∗-continuous idempotent left semirings and D-continuous
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idempotent left semirings. For an idempotent left semiring, we do not adopt (5)
as a condition of ∗-continuity since it implies (1)-(4) even in each idempotent
left semiring. Therefore, the condition of ∗-continuity is weakened, ∗-continuous
idempotent left semirings satisfy (1) and (3). We give a construction that embeds
every ∗-continuous idempotent left semiring into a D-continuous idempotent left
semiring. As in the case of [1], this construction can be described as an ideal
completion. We also show that the construction satisfies a universal property.

2 Idempotent Left Semirings

Idempotent left semirings [6] are defined as follows.

Definition 1. An idempotent left semiring, or briefly an IL-semiring is a tuple
(S, +, ·, 0, 1) with a set S, two binary operations + and ·, and 0, 1 ∈ S satisfying
the following properties:

– (S, +, 0) is an idempotent commutative monoid.
– (S, ·, 1) is a monoid.
– For all a, b, c ∈ S, a · c+ b · c = (a+ b) · c, a · b+a · c ≤ a · (b+ c), and 0 ·a = 0,

where the natural order ≤ is given by a ≤ b iff a + b = b.

We often abbreviate a · b to ab.

Remark 1. An IL-semiring S satisfying ab + ac = a(b + c) and a0 = 0 for all
a, b, c ∈ S is an idempotent semiring.

Let S be an IL-semiring. For a ∈ S, a mapping ϕa : S → S is defined by
ϕa(x) = ax + 1. Then the mapping preserves the natural order ≤ on S. For a
natural number n, ϕn

a is defined by induction:

– ϕ0
a is the identity mapping,

– ϕn+1
a = ϕa ◦ ϕn

a .

For A ⊆ S,
∑

A denotes the least upper bound of A with respect to the natural
order ≤ on S if it exists.

Definition 2. A ∗-continuous IL-semiring is a tuple (S, +, ·, ∗, 0, 1) with a set
S, two binary operations + and ·, a unary operation ∗, and 0, 1 ∈ S satisfying
the following properties:

– (S, +, ·, 0, 1) is an IL-semiring.
– For all a, b, c ∈ S, the least upper bound of {aϕn

b (0)c | n ≥ 0} exists in S.
– ab∗c =

∑
n≥0

aϕn
b (0)c holds for all a, b, c ∈ S.

Replacing a and c with 1, we have b∗ =
∑
n≥0

ϕn
b (0). We write ILS∗ for the category

whose objects are ∗-continuous IL-semirings and whose arrows are homomor-
phisms between them.
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Lemma 1. Let S be a ∗-continuous IL-semiring and a, b ∈ S. Then, for each
natural number n ≥ 0,

1. ab ≤ b implies ϕn
a(0)b ≤ b, and

2. b(a + 1) ≤ b implies bϕn
a (0) ≤ b.

Proof. These two are proved by induction on n ≥ 0. For n = 0, ϕ0
a(0)b = 0 ≤ b.

Assume that ϕn
a (0)b ≤ b. Then, the following holds.

ϕn+1
a (0)b = (aϕn

a (0) + 1)b
= aϕn

a(0)b + b
≤ ab + b (by induction hypothesis)
≤ b (by ab ≤ b)

For n = 0, bϕ0
a(0) = b0 ≤ b. For n = 1, bϕ1

a(0) = b(a0 + 1) ≤ b(a + 1) ≤ b.
Assume that bϕn+1

a (0) ≤ b and note that 1 ≤ aϕn
a(0) + 1 = ϕn+1

a (0). Then, the
following holds.

bϕn+2
a (0) = b(aϕn+1

a (0) + 1)
≤ b(aϕn+1

a (0) + ϕn+1
a (0)) (by notice)

= b(a + 1)ϕn+1
a (0)

≤ bϕn+1
a (0) (by b(a + 1) ≤ b)

≤ b (by induction hypothesis) ��

A lazy Kleene algebra is an IL-semiring with a unary operation ∗ satisfying

1 + aa∗ ≤ a∗ and ab ≤ b → a∗b ≤ b .

The following property shows that a ∗-continuous IL-semiring is a lazy Kleene
algebra satisfying the D-axiom [7] (or a monodic tree Kleene algebra [8]).

Proposition 1. A ∗-continuous IL-semiring S satisfies the following.

1. 1 + aa∗ ≤ a∗.
2. ab ≤ b implies a∗b ≤ b.
3. b(a + 1) ≤ b implies ba∗ ≤ b (the D-axiom).

Proof. Note that 1 ≤ a∗ since 1 ≤ a0 + 1 ≤
∑
n≥0

ϕn
a (0) = a∗. Also aa∗ ≤ a∗

since aa∗ =
∑
n≥0

aϕn
a(0) ≤

∑
n≥1

ϕn
a(0) ≤

∑
n≥0

ϕn
a (0) = a∗. So we have 1 + aa∗ ≤ a∗.

Suppose ab ≤ b. Then we have a∗b =
∑
n≥0

ϕn
a(0)b ≤ b by Lemma 1. Similarly, it

holds that b(a + 1) ≤ b implies ba∗ ≤ b. ��

Definition 3. A ∗-continuous IL-semiring satisfying the right zero law (or the
0-axiom) is a ∗-continuous IL-semiring satisfying a0 = 0 for every element a.
A ∗-continuous IL-semiring satisfying left distributivity (or the +-axiom) is a
∗-continuous IL-semiring satisfying ab+ac = a(b+c) for all elements a, b, and c.
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We write

– ILS∗
0 for the category whose objects are ∗-continuous IL-semirings satisfying

the right zero law and whose arrows are homomorphisms between them,
– ILS∗

+ for the category whose objects are ∗-continuous IL-semirings satisfying
left distributivity and whose arrows are homomorphisms between them, and

– ILS∗
0,+ for the category whose objects are ∗-continuous IL-semirings satisfy-

ing both of the right zero law and left distributivity and whose arrows are
homomorphisms between them.

The following is immediate from Proposition 1.

Corollary 1. Let S be a ∗-continuous IL-semiring.

– If S satisfies the right zero law, S is a lazy Kleene algebra satisfying the
D-axiom and the 0-axiom [7] (or a probabilistic Kleene algebra [5]).

– If S satisfies left distributivity, S is a lazy Kleene algebra satisfying the D-
axiom and the +-axiom [7].

– If S satisfies the right zero law and left distributivity, S is a lazy Kleene al-
gebra satisfying the D-axiom, the 0-axiom, and the +-axiom [7] (or a Kleene
algebra [3,4]).

Remark 2. If S is a ∗-continuous IL-semiring satisfying the right zero law and
left distributivity, then ϕn+1

a (0) =
∑

0≤k≤n

ak holds for each a ∈ S and natural

number n. Thus,
∑
n≥0

ϕn
a (0) =

∑
n≥0

an. Therefore, S is a ∗-continuous Kleene

algebra [3].

Kozen has given an example of a Kleene algebra which is not ∗-continuous in
[3, Section 3]. The example shows that the converse statements of Proposition 1
and Corollary 1 need not hold.

Definition 4. A complete IL-semiring S is an IL-semiring satisfying the follow-
ing properties: For each A ⊆ S,

– the least upper bound of A exists in S, and
– (

∑
A)a =

∑
{xa | x ∈ A} for each a ∈ S.

A D-continuous IL-semiring (or a complete IL-semiring preserving right directed
joins [7]) S is a complete IL-semiring satisfying

a
∑

A =
∑

{ax | x ∈ A}

for each a ∈ S and each directed subset A ⊆ S. A D-continuous IL-semiring
satisfying the right zero law (or preserving the right 0 [7]) is a D-continuous
IL-semiring satisfying a0 = 0 for each element a. A D-continuous IL-semiring
satisfying left distributivity (or preserving the right + [7]) is a D-continuous
IL-semiring satisfying ab + ac = a(b + c) for any elements a, b, and c.
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Remark 3 (Nishizawa et al. [7]). A D-continuous IL-semiring satisfies the right
zero law and left distributivity iff it is an S-algebra or a complete idempotent
semiring.

We write

– ILSD for the category whose objects are D-continuous IL-semirings and
whose arrows are completely join-preserving homomorphisms between them,

– ILSD
0 for the category whose objects are D-continuous IL-semirings satis-

fying the right zero law and whose arrows are completely join-preserving
homomorphisms between them,

– ILSD
+ for the category whose objects are D-continuous IL-semirings satisfying

left distributivity and whose arrows are completely join-preserving homomor-
phisms between them, and

– ILSD
0,+ for the category whose objects are D-continuous IL-semirings satisfy-

ing both of the right zero law and left distributivity and whose arrows are
completely join-preserving homomorphisms between them.

3 Connection between ILS∗ and ILSD

Let Q and Q′ be objects and f : Q → Q′ an arrow of ILSD. For each a ∈ Q, defin-
ing a∗ =

∑
n≥0

ϕn
a (0), Q is a ∗-continuous IL-semiring since the set {ϕn

a(0) | n ≥ 0}

is a directed subset of Q. Also, f preserves ∗ since f preserves +, ·,
∑

, 0, 1, and
∗ is defined using these operators. Therefore, ILSD is a subcategory of ILS∗.
The inclusion functor from ILSD to ILS∗ is denoted by G : ILSD → ILS∗. In this
section, we construct a functor from ILS∗ to ILSD which is a left adjoint to G.

3.1 ∗-Ideal

Conway [1] introduced ∗-ideals for ∗-continuous Kleene algebras. ∗-ideals for
∗-continuous IL-semirings are defined as follows.

Definition 5. Let S be a ∗-continuous IL-semiring. A ∗-ideal is a subset A of
S such that

– A is nonempty,
– A is closed under +,
– A is closed downward under ≤,
– if aϕn

b (0)c ∈ A for all n ≥ 0, then ab∗c ∈ A.

The set of ∗-ideals of ∗-continuous IL-semiring S is denoted by I(S). Note that
I(S) is closed under arbitrary intersection.

We say that a nonempty set A generates a ∗-ideal I if I is the smallest ∗-ideal
containing A. 〈A〉 denotes the ∗-ideal generated by A. If A is a singleton {a}, we
often abbreviate 〈{a}〉 to 〈a〉. Such a ∗-ideal is called principal. Note that 〈−〉
is well-defined on nonempty subsets of S. Also note that 〈−〉 is monotone and
idempotent, i.e. A ⊆ B implies 〈A〉 ⊆ 〈B〉 and 〈〈A〉〉 = 〈A〉 for any nonempty
subsets A, B ⊆ S.
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Lemma 2. Let S be a ∗-continuous IL-semiring. For a set A of nonempty sub-
sets of S,

〈
⋃

A〉 = 〈
⋃

{〈A〉 | A ∈ A}〉 .

Proof. The inclusion ⊆ follows from monotonicity of 〈−〉. Again, by monotonicity
of 〈−〉, 〈A〉 ⊆ 〈

⋃
A〉 for each A ∈ A. Thus,

⋃
{〈A〉 | A ∈ A} ⊆ 〈

⋃
A〉. So, we

have 〈
⋃

{〈A〉 | A ∈ A}〉 ⊆ 〈
⋃

A〉 by monotonicity and idempotency of 〈−〉. ��

Let S be a ∗-continuous IL-semiring. For subsets A, B ⊆ S, define

A ⊕ B = {a + b | a ∈ A, b ∈ B}
A � B = {a · b | a ∈ A, b ∈ B}

A↓ = {y | ∃x ∈ A. y ≤ x}
A∗ = {ab∗c | ∀n ≥ 0. aϕn

b (0)c ∈ A} .

Note that for principal ideals,

〈a〉 = {a}↓ .

Also note that
(A ⊕ B) � C = (A � C) ⊕ (B � C)

A � (B↓) ⊆ (A � B)↓
(A↓) � B ⊆ (A � B)↓
A � (B∗) ⊆ (A � B)∗
(A∗) � B ⊆ (A � B)∗ .

Remark 4 (Kozen [3]). If S satisfies left distributivity, then

C � (A ⊕ B) = (C � A) ⊕ (C � B)

for any subsets A, B, C ⊆ S.

For a nonempty subset A ⊆ S, we define

τ(A) = (A ⊕ A) ∪ A↓ ∪A∗ .

Note that A ⊆ τ(A) and that τ is monotone, i.e. A ⊆ B implies τ(A) ⊆ τ(B) for
any nonempty subsets A, B ⊆ S. Also note that A is a ∗-ideal iff it is nonempty
and τ(A) ⊆ A. So, if a ∗-ideal I is generated by some A ⊆ S, I is the least fixed
point of τ containing A. Using τ , we define the transfinite sequence

τ0(A) = A
τα+1(A) = τ(τα(A))

τλ(A) =
⋃

α<λ

τα(A) if λ is a limit ordinal

τ∗(A) =
⋃
α

τα(A) .
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for each nonempty subset A ⊆ S. Since τ is monotone, the least ordinal κ such
that τκ+1(A) = τκ(A) exists. For such a κ, τ∗(A) = τκ(A). Thus, τ∗(A) is the
least fixed point of τ containing A. Therefore

τ∗(A) = 〈A〉 .

For ∗-ideals I and J , I � J and A � B generate the same ∗-ideal if B is closed
under +, and A and B generate I and J , respectively. We use Lemma 3 to show
this. Unlike in the case of [3], the assumption on B is needed in the case of
∗-continuous IL-semirings due to lack of left distributivity of · over +.

Lemma 3. Let S be a ∗-continuous IL-semiring. The following holds for non-
empty subsets A, B ⊆ S.

1. τ(A) � B ⊆ τ(A � B).
2. A � τ(B) ⊆ τ(A � B) if B is closed under +.

Proof. 1 follows form

τ(A) � B = ((A ⊕ A) ∪ A↓ ∪A∗) � B

= ((A ⊕ A) � B) ∪ (A↓ �B) ∪ (A∗ � B)
⊆ ((A � B) ⊕ (A � B)) ∪ (A � B)↓ ∪ (A � B)∗
= τ(A � B) .

2 follows from

A � τ(B) = A � ((B ⊕ B) ∪ B↓ ∪B∗)
= A � (B ∪ B↓ ∪B∗)
= A � (B↓ ∪B∗)
= (A � B↓) ∪ (A � B∗)
⊆ ((A � B) ⊕ (A � B)) ∪ (A � B)↓ ∪ (A � B)∗
= τ(A � B) . ��

Remark 5 (Kozen [3]). If S satisfies left distributivity, then

A � τ(B) ⊆ τ(A � B)

for any nonempty subsets A, B ⊆ S.

Lemma 4. Let S be a ∗-continuous IL-semiring. The following holds for non-
empty subsets A, B ⊆ S.

1. 〈A � B〉 = 〈〈A〉 � B〉.
2. 〈A � B〉 = 〈A � 〈B〉〉 if B is closed under +.
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Proof. 1. The inclusion ⊆ follows from monotonicity of 〈−〉. For the reverse
inclusion, we prove by transfinite induction that for each ordinal α,

τα(A) � B ⊆ 〈A � B〉 .

It is clear that τ0(A) � B = A � B ⊆ 〈A � B〉. Also,

τα+1(A) � B = τ(τα(A)) � B
⊆ τ(τα(A) � B) (by 1 of Lemma 3)
⊆ τ(〈A � B〉) (by induction hypothesis)
= 〈A � B〉

since τ(I) = I for a ∗-ideal I. For limit ordinal λ,

τλ(A) � B = (
⋃

α<λ

τα(A)) � B

=
⋃

α<λ

(τα(A) � B)

⊆ 〈A � B〉 .

Thus we have τ∗(A)�B ⊆ 〈A�B〉. Therefore, by monotonicity and idempotency
of 〈−〉,

〈〈A〉 � B〉 = 〈τ∗(A) � B〉
⊆ 〈A � B〉 .

Using 2 of Lemma 3 instead of 1 of it, 2 is proved similarly to 1. ��

Remark 6 (Kozen [3]). If S satisfies left distributivity, then

〈A � B〉 = 〈〈A〉 � 〈B〉〉

for any nonempty subsets A, B ⊆ S.

3.2 Functor from ILS∗ to ILSD

Let S be a ∗-continuous IL-semiring and consider the poset (I(S),⊆). Since
〈0〉 = {0}, 〈0〉 is the least element of I(S). For each subset A ⊆ I(S), a ∗-
ideal 〈

⋃
A〉 is the least upper bound of A. We write

∑
A for 〈

⋃
A〉. For any

I, J ∈ I(S), we write I + J for
∑

{I, J}, and define I · J = 〈I � J〉.

Proposition 2. Let S be a ∗-continuous IL-semiring. For each I ∈ I(S) and
A ⊆ I(S), the following holds.

1. 〈0〉 · I = 〈0〉.
2. 〈1〉 · I = I = I · 〈1〉.
3. (

∑
A) · I =

∑
{J · I | J ∈ A}.

4. If A is directed, I · (
∑

A) =
∑

{I · J | J ∈ A}.
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Proof. 1 follows from definition of �. The first equation of 2 follows from

〈1〉 · I = 〈〈1〉 � I〉
= 〈{1} � I〉 (by 1 of Lemma 4)
= 〈I〉
= I .

Since 〈1〉 = {1}↓, 〈1〉 is closed under +. So, using 2 of Lemma 4 instead of 1 of
it, the second equation of 2 is proved similarly to the first equation. 3 follows
from

(
∑

A) · I = 〈(
∑

A) � I〉
= 〈〈

⋃
A〉 � I〉

= 〈(
⋃

A) � I〉 (by 1 of Lemma 4)

= 〈
⋃

{J � I | J ∈ A}〉
= 〈

⋃
{〈J � I〉 | J ∈ A}〉 (by Lemma 2)

= 〈
⋃

{J · I | J ∈ A}〉
=

∑
{J · I | J ∈ A} .

If A is a directed subset of I(S),
⋃

A is closed under + since

x, y ∈
⋃

A ⇐⇒ ∃I, J ∈ A. x ∈ I and y ∈ J

=⇒ ∃H ∈ A. x, y ∈ H (A is directed)
=⇒ ∃H ∈ A. x + y ∈ H (H is a ∗-ideal)
⇐⇒ x + y ∈

⋃
A .

So, using 2 of Lemma 4 instead of 1 of it, 4 is proved similarly to 3. ��

Therefore I(S) forms a D-continuous IL-semiring.
Let S be a ∗-continuous IL-semiring. Using 〈x〉 = {x}↓, it is verified that the

mapping
x �→ 〈x〉

from S to I(S) is one-to-one and preserves +, ·, ∗, 0, and 1. Thus, this mapping
is an arrow from S to I(S) in ILS∗.

Let S be a ∗-continuous IL-semiring and Q a D-continuous IL-semiring. Given
a homomorphism g : S → G(Q), we define

g[A] = {g(a) | a ∈ A}

for each A ⊆ S. Note that

g[A � B] = g[A] � g[B]
g[A ⊕ B] = g[A] ⊕ g[B]

g[A↓] ⊆ g[A]↓
g[A∗] ⊆ g[A]∗

for all A, B ⊆ S.
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Lemma 5. For each nonempty subset A ⊆ S and ordinal α, the following holds.

g[τ(A)] ⊆ τ(g[A])
g[τα(A)] ⊆ τα(g[A])

g[〈A〉] ⊆ 〈g[A]〉
〈g[〈A〉]〉 = 〈g[A]〉 .

Proof. The first inclusion follows from

g[τ(A)] = g[(A ⊕ A) ∪ A↓ ∪A∗]
= g[A ⊕ A] ∪ g[A↓] ∪ g[A∗]
⊆ (g[A] ⊕ g[A]) ∪ g[A]↓ ∪ g[A]∗
= τ(g[A]) .

The second follows from the first by transfinite induction. The third follows from
the second since 〈−〉 = τ∗. The inclusion 〈g[〈A〉]〉 ⊆ 〈g[A]〉 follows from the third,
and the reverse inclusion follows from the monotonicity of g and 〈−〉. ��

Therefore, g[I] and g[A] generate the same ∗-ideal if I ∈ I(S) is generated by
A ⊆ S. For I ∈ I(S), the least upper bound of g[I] exists in Q, which is denoted
by

∑
g[I], since the least upper bound of any subset of Q exists in Q.

Lemma 6. If I ∈ I(S),
∑

g[I] =
∑

g[A] for any generating set A of I.

Proof. By Lemma 5,
〈g[I]〉 = 〈g[〈A〉]〉 = 〈g[A]〉

for any generating set A of I. Since

〈g[I]〉 = 〈g[A]〉 ⊆ 〈
∑

g[A]〉 = (
∑

g[A])↓ ,∑
g[A] is an upper bound of g[I]. By g[A] ⊆ g[I],

∑
g[A] ≤

∑
g[I]. Thus,∑

g[A] =
∑

g[I] since
∑

g[I] is the least upper bound of g[I]. ��

Let S be a ∗-continuous IL-semiring and Q a D-continuous IL-semiring. For a
homomorphism g : S → G(Q), define the map ĝ : I(S) → Q by

ĝ(I) =
∑

g[I] .

Proposition 3. The map ĝ preserves
∑

, ·, 0 and 1.

Proof. Note that
∑

(
⋃

B) =
∑

{
∑

B | B ∈ B} for a subset B of the powerset
℘(Q). Then, for A ⊆ I(S),
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ĝ(
∑

A) =
∑

g[
∑

A]

=
∑

g[〈
⋃

A〉]
=

∑
g[

⋃
A] (by Lemma 6)

=
∑

(
⋃

{g[I] | I ∈ A})
=

∑
{
∑

g[I] | I ∈ A}
=

∑
{ĝ[I] | I ∈ A} .

For I, J ∈ I(S),

ĝ(I · J) =
∑

g[I · J ]

=
∑

g[〈I � J〉]
=

∑
g[I � J ] (by Lemma 6)

=
∑

g[I] � g[J ]

= (
∑

g[I]) · (
∑

g[J ]) (g[J ] is directed)
= ĝ(I) · ĝ(J) .

Also, we have
ĝ(〈0〉) =

∑
g[〈0〉] =

∑
g[{0}] = 0

and
ĝ(〈1〉) =

∑
g[〈1〉] =

∑
g[{1}] = 1 . ��

Theorem 1. Let S be a ∗-continuous IL-semiring and Q a D-continuous IL-
semiring. For a homomorphism g : S → G(Q), ĝ is a unique completely join-
preserving homomorphism from I(S) to Q such that g = ĝ ◦ 〈−〉.

Proof. For each a ∈ S, we have

ĝ(〈a〉) =
∑

g[〈a〉] =
∑

g[{a}] = g(a)

by Lemma 6. Assume that a completely join-preserving homomorphism f from
I(S) to Q satisfies g = f ◦ 〈−〉. Then, it holds that

ĝ(I) =
∑

g[I]

=
∑

{g(a) | a ∈ I}
=

∑
{f(〈a〉) | a ∈ I} (by assumption)

= f(
∑

{〈a〉 | a ∈ I})
= f(I)

for each I ∈ I(S). Thus, ĝ = f . ��
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For a ∗-continuous IL-semiring S and a homomorphism h : S → S′, we define

F (S) = I(S) and F (h) = 〈̂−〉 ◦ h ,

respectively. Then, F is a functor from ILS∗ to ILSD. It is immediate from The-
orem 1 that the following holds.

Corollary 2. The functor F : ILS∗ → ILSD is a left adjoint to the inclusion
functor G : ILSD → ILS∗.

4 Connections between ILS∗
0 and ILSD

0 , ILS∗
+ and ILSD

+,
and ILS∗

0,+ and ILSD
0,+

ILS∗
0, ILS∗

+, and ILS∗
0,+ are full subcategories of ILS∗. The inclusion functors from

ILS∗
0, ILS∗

+, and ILS∗
0,+ to ILS∗ are denoted by E∗

0 , E∗
+, and E∗

0,+, respectively.
Also, ILSD

0 , ILSD
+ , and ILSD

0,+ are full subcategories of ILSD. The inclusion func-
tors from ILSD

0 , ILSD
+ , and ILSD

0,+ to ILSD are denoted by ED
0 , ED

+ , and ED
0,+,

respectively. These six inclusion functors are visualised as follows.

ILS∗
0,+

E∗
0,+

���
��

��
��

��
ILS∗

0

E∗
0

��

ILSD
0,+

ED
0,+

���
��

��
��

��
ILSD

0

ED
0

��
ILS∗

+
E∗

+ �� ILS∗ ILSD
+

ED
+ �� ILSD

Note that
E∗

v (S) = S
ED

v (Q) = Q
ILS∗

v(S, S′) = ILS∗(E∗
v (S), E∗

v (S′))
ILSD

v (Q, Q′) = ILSD(ED
v (Q), ED

v (Q′))

for any objects S, S′ of ILS∗
v and Q, Q′ of ILSD

v , where v is either 0, +, or 0, +.
We have already shown that ILSD is a subcategory of ILS∗. It is immediate

from this fact that ILSD
0 is a subcategory of ILS∗

0, so is ILSD
+ of ILS∗

+, and so is
ILSD

0,+ of ILS∗
0,+. The inclusion functors from ILSD

0 to ILS∗
0, from ILSD

+ to ILS∗
+,

and from ILSD
0,+ to ILS∗

0,+ are denoted by G0, G+, and G0,+, respectively. Note
that

Gv = G ◦ ED
v ,

where v is either 0, +, or 0, +. In this section, we construct left adjoint functors
to G0 : ILSD

0 → ILS∗
0, G+ : ILSD

+ → ILS∗
+, and G0,+ : ILSD

0,+ → ILS∗
0,+.

Proposition 4. Let S be a ∗-continuous IL-semiring.

1. If S satisfies the right zero law, I · 〈0〉 = 〈0〉 for each I ∈ I(S).
2. If S satisfies left distributivity, I ·(J +J ′) = I ·J +I ·J ′ for all I, J, J ′ ∈ I(S).
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Proof. 1. Since 〈0〉 = {0} and S satisfies the right zero law, we have

I · 〈0〉 = 〈I � {0}〉 = 〈0〉 .

2. It is sufficient to show that I · (J + J ′) ⊆ I · J + I · J ′. It follows from

I · (J + J ′) = 〈I � 〈J ∪ J ′〉〉
= 〈I � (J ∪ J ′)〉 (by Remark 6)
= 〈(I � J) ∪ (I � J ′)〉
⊆ 〈〈I � J〉 ∪ 〈I � J ′〉〉
= I · J + I · J ′ ��

Define F0 = F ◦E∗
0 , F+ = F ◦E∗

+, and F0,+ = F ◦E∗
0,+. Then, by Proposition 4,

F0 is a functor from ILS∗
0 to ILSD

0 , F+ is a functor from ILS∗
+ to ILSD

+ , and F0,+

is a functor from ILS∗
0,+ to ILSD

0,+.

Theorem 2. 1. The functor F0 : ILS∗
0 → ILSD

0 is a left adjoint to the inclusion
functor G0 : ILSD

0 → ILS∗
0.

2. The functor F+ : ILS∗
+ → ILSD

+ is a left adjoint to the inclusion functor
G+ : ILSD

+ → ILS∗
+.

3. The functor F0,+ : ILS∗
0,+ → ILSD

0,+ is a left adjoint to the inclusion functor
G0,+ : ILSD

0,+ → ILS∗
0,+.

Proof. 1. Let S be an object of ILS∗
0 and Q an object of ILSD

0 . Then, it follows
from

ILS∗
0(S, G0(Q)) = ILS∗(E∗

0 (S), G(ED
0 (Q)))

∼= ILSD(F (E∗
0 (S)), ED

0 (Q)) (by Corollary 2)
= ILSD

0 (F0(S), Q) .

2 and 3 are shown analogously. ��

5 Conclusion and Outlook

In this paper, we have studied eight categories ILS∗, ILS∗
0, ILS∗

+, ILS∗
0,+, ILSD,

ILSD
0 , ILSD

+ , and ILSD
0,+. Among them, there are the inclusion functors as follows.

ILS∗
0,+

E∗
0,+

���
��
��
��
��
��
��
��
��
��
��
��
�

ILSD
0,+

G0,+��

ED
0,+

���
��
��
��
��
��
��
��
��
��
��
��
�

ILS∗
0

E∗
0

��

ILSD
0

G0��

ED
0

��

ILS∗
+

E∗
+ ���

��
��

��
��

ILSD
+G+

��

ED
+ ���

��
��

��
�

ILS∗
ILSD

G
��
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A functor F : ILS∗ → ILSD has been constructed via an ideal completion. Then,
it has been shown that the functor F is a left adjoint to G : ILSD → ILS∗.
Also, functors F0 : ILS∗

0 → ILSD
0 , F+ : ILS∗

+ → ILSD
+ , and F0,+ : ILS∗

0,+ → ILSD
0,+

have been given by restriction of F to subcategories ILS∗
0, ILS∗

+, and ILS∗
0,+,

respectively. Then, it also has been shown that

– F0 is a left adjoint to G0 : ILSD
0 → ILS∗

0,
– F+ is a left adjoint to G+ : ILSD

+ → ILS∗
+, and

– F0,+ is a left adjoint to G0,+ : ILSD
0,+ → ILS∗

0,+

using that the inclusion functors E∗, E∗
0 , E∗

+, E∗
0,+, ED, ED

0 , ED
+ , and ED

0,+ are
full. These four adjunctions are visualised as follows.

ILS∗
F ��

ILSD

G

⊥�� ILS∗
0

F0 ��
ILSD

0
G0

⊥��

ILS∗
+

F+ ��
ILSD

+
G+

⊥�� ILS∗
0,+

F0,+ ��
ILSD

0,+
G0,+

⊥��

AD-continuous IL-semiring is defined as an IL-semiring having arbitrary joins. Re-
stricting to countable, rather than arbitrary, joins, we may consider ω-continuous
IL-semirings. We have not checked whether each adjunction we gave in this paper
factors into two adjunctions as follows or not

ILS∗ ��
ILSω

��
⊥�� ILSD⊥��

where ILSω denotes the category of ω-continuous IL-semirings with ω-continuous
semiring homomorphisms.

∗-continuity introduced in this paper is too strong for lazy Kleene algebras
since these need not satisfy

b(a + 1) ≤ b → ba∗ ≤ b .

Also, in [2], it is shown that a∗ need not be given by
∑
n≥0

ϕn
a (0) for each element

a if we consider a lazy Kleene algebra consisting of the set of up-closed multire-
lations over the set of natural numbers and the first transfinite ordinal number.
We need more consideration to obtain a similar relationship among lazy Kleene
algebras and complete IL-semirings.
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A Semiring Approach to Equivalences,
Bisimulations and Control

Roland Glück1, Bernhard Möller1, and Michel Sintzoff2

1 Universität Augsburg
2 Université catholique de Louvain

Abstract. Equivalences, partitions and (bi)simulations are usually tack-
led using concrete relations. There are only few treatments by abstract
relation algebra or category theory. We give an approach based on the the-
ory of semirings and quantales. This allows applying the results directly to
structures such as path and tree algebras which is not as straightforward
in the other approaches mentioned. Also, the amount of higher-order for-
mulations used is low and only a one-sorted algebra is used. This makes
the theory suitable for fully automated first-order proof systems. As a
small application we show how to use the algebra to construct a simple
control policy for infinite-state transition systems.

1 Introduction

Semirings have turned out to be useful for algebraic reasoning about relations
and graphs, for example in [3]. Even edge-weighted graphs were successfully
treated in this setting by means of fuzzy relations, as shown in [5] and [6]. Hence
it is surprising that up to now no treatment of equivalence relations and bisim-
ulations in this area has taken place, although a relational-algebraic approach
was given in [11]. A recent, purely lattice-theoretic abstraction of bisimulations
appears in [8]. The present paper was stimulated by [10], since the set-theoretic
approach of that paper lends itself to a more compact treatment using modal
semirings. This motivated the treatment of subsequent work by the third author
by the same algebraic tools, as presented here. In Sect. 2 we consider partitions
and equivalences. Sect. 3 explores equivalences in depth, while Sect. 4 is dedi-
cated to bisimulations. As a short application in Sect. 5 a generic construction
of a simple control policy is shown.

2 Semirings, Tests and Partitions

2.1 Idempotent Semirings and Tests

Semirings abstract the operations of choice and sequential composition.

Definition 2.1
1. An idempotent semiring is a structure S = (M, +, 0, ·, 1) such that 0 �= 1,

(M, +, 0) and (M, ·, 1) are monoids, choice + is commutative and idempo-
tent, and composition · distributes through + and is strict in both arguments.

R. Berghammer et al. (Eds.): RelMiCS/AKA 2009, LNCS 5827, pp. 134–149, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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2. The natural order ≤ is given by x ≤ y ⇔df x + y = y.
3. We call an element x ∈ N of a subset N ⊆ M atomic in N if x �= 0 and

∀ y ∈ N : y �= 0 ∧ y ≤ x ⇒ y = x.
4. A subset N ⊆ M is atomic if every element x ∈ N is the supremum of the

atoms of N below x.
5. A quantale is an idempotent semiring that is a complete lattice under the

natural order and in which composition distributes over arbitrary suprema.

In an idempotent semiring the element 0 is +-irreducible, i.e., x+ y = 0 ⇒ x =
0 = y. Moreover, 0 is the least element w.r.t. ≤.

An example for a quantale is (Rel([0, 9]),∪, ∅, ;, id[0,9]), where Rel([0, 9]) de-
notes the set of all binary relations over the interval [0, 9] ⊆ R, idX denotes the
identity relation on X ⊆ [0, 9] and ; denotes relational composition.

As a running example we will use a simple non-deterministic transition system
the state of which is given by a single variable with values in [0, 9]. It is described
by the following relation T between input states x and output states y:

xTy ⇔df (x ∈ [0, 2]∧y = x+4) ∨ (x ∈ [4, 6]∧y = x+3) ∨ (x ∈ [4, 6]∧y = x−4) .

To model sets of states (or equivalently assertions about states) in the semiring
setting one uses tests [7].

Definition 2.2. The set test(S) of tests of an idempotent semiring S is the
maximal Boolean subalgebra of the elements below 1. The complement of a test
p w.r.t. 1 is denoted by ¬p; it is the unique test q with p + q = 1 and p · q = 0.
The set of atomic tests of S, i.e., of atoms in test(S), is denoted by atest(S).

The elements 1 and 0 are tests. Moreover, for tests p, q their composition p · q
coincides with their infimum. Hence p ≤ q ⇔ p · q = p. (1)

The tests in our running example are precisely the subrelations of the identity
relation on [0, 9], including the empty relation. They correspond in an obvious
manner to subsets of [0, 9] and thus can be used to handle these without intro-
ducing a new sort. In this example the set test(S) is atomic and atest(S) is the
set {{(x, x)} |x ∈ [0, 9]}.

For the remainder of this paper we assume test(S) to be atomic; an atomic
test abstractly corresponds to a single state or graph node.

In the sequel we will often form sums of subsets of test(S). For better readabil-
ity we use the abbreviation

∑
P =df

∑
p∈P p for finite P ⊆ test(S); it coincides

with the supremum of P . If the underlying semiring is a quantale we therefore
denote by

∑
P the supremum of an arbitrary P ⊆ test(S).

By +-irreducibility of 0 we have∑
P �= 0 ⇔ ∃ p ∈ P : p �= 0 (2)

2.2 Partitions

We now define the familiar concept of partition in terms of the tests of an
idempotent semiring.
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Definition 2.3. A finite subset P ⊆ test(S) is called a partition if
∑

P = 1
and for all p, q ∈ P the equivalence p · q = 0 ⇔ p �= q holds.

Hence {1} is a partition, as is atest(S), since test(S) is assumed to be atomic.
Moreover, every element of a partition is a test different from 0. For a subset
P ′ ⊆ P of a partition P we have ¬

∑
P ′ =

∑
(P − P ′). Hence the complement

¬p of p ∈ P satisfies
¬p =

∑
(P − {p}) . (3)

In our running example {id[0,6], id]6,9]} and {id[0,9]∩Q, id[0,9]−Q} are partitions.

Definition 2.4. We say that partition Q refines partition P , in signs Q ≤r P ,
if every element of P can be written as the sum of suitable elements of Q. When
Q ≤r P we say also that P is coarser than Q. Clearly, ≤r is an order.

Lemma 2.5. Assume that partition Q refines partition P . Then for all q ∈ Q
and p ∈ P we have q · p �= 0 ⇒ q ≤ p.

Proof. By assumption there is a subset Q′ ⊆ Q with p =
∑

Q′. By distributivity,
q · p = q ·

∑
Q′ =

∑
q′∈Q′ q · q′. By (2) there must be a q′ ∈ Q′ with q · q′ �= 0.

Since Q is a partition this implies q = q′ and hence q · q′ = q and q ≤ p. ��

Lemma 2.6. A partition Q refines a partition P iff for all q ∈ Q there is a
unique p ∈ P with p · q �= 0.

Proof. (⇒) For an arbitrary q ∈ Q we show first the existence of a p ∈ P with
p · q �= 0. This is seen by q = 1 · q = (

∑
P ) · q =

∑
p∈P (p · q). Since q �= 0, by (2)

there must be a p ∈ P with p · q �= 0.
To show uniqueness we assume that there are two different p, p′ ∈ P such that

p · q �= 0 and p′ · q �= 0 hold. By Lemma 2.5 this implies q ≤ p and q ≤ p′. Hence
0 �= q = q · q ≤ p · p′, contradicting p �= p′.

(⇐) Consider an arbitrary p ∈ P and set Q′ = {q ∈ Q | p · q �= 0}. We claim
p =

∑
Q′. First, p = p ·

∑
Q = p · (

∑
Q′ +

∑
(Q − Q′)) = p ·

∑
Q′. By (1) this

is equivalent to p ≤
∑

Q′.
The reverse inequality

∑
Q′ ≤ p holds iff ∀ q ∈ Q′ : q ≤ p. Suppose q �≤ p

for some q ∈ Q′. By (3) this is equivalent to 0 �= q · ¬p = q ·
∑

(P − {p}) =∑
p′∈P−{p} q · p′. By (2) there must be a p′ ∈ P −{p} with q · p′ �= 0. But this is

a contradiction to q · p �= 0 and the uniqueness assumption. ��

Lemma 2.7. Let P and Q be partitions with Q ≤r P and assume p ∈ P and
p =

∑
Q′ for some Q′ ⊆ Q. Then for all q ∈ Q we have p · q �= 0 ⇔ q ∈ Q′.

Proof. (⇒) Because of q · p = q ·
∑

q′∈Q′ q′ =
∑

q′∈Q′(q · q′) �= 0 there has to be
a q′ ∈ Q′ with q · q′ �= 0. According to the definition of a partition this implies
q = q′ and hence q ∈ Q′.

(⇐) Let q ∈ Q′. Then q ≤ p and therefore p · q = q. The claim follows from
q �= 0, because q �= 0 holds for all q ∈ Q. ��
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We now focus on binary relations R which do not connect different sets in a given
partition P : for all p ∈ P and for all x, y such that xRy we have x ∈ p ⇔ y ∈ p.
For example, R may be an equivalence and P may be the set of its equivalence
classes. This is captured by the following abstract definition.

Definition 2.8. An element r ∈ M respects a partition P if r =
∑

p∈P p · r · p.

Lemma 2.9. Let r ∈ M respect the partition P and let p, p′ ∈ P such that
p �= p′. Then p · r · p′ = 0.

Proof. Due to the definition of a partition we have for all p′′ ∈ P that p · p′′ = 0
or p′ · p′′ = 0. Now, by respectance and distributivity,

p ·r ·p′ = p · (
∑

p′′∈P p′′ ·r ·p′′) ·p′ =
∑

p′′∈P p ·p′′ ·r ·p′′ ·p′ =
∑

p′′∈P 0 = 0. ��

An easy consequence of this is the following.

Corollary 2.10. Let r ∈ M respect the partition P . Then for all p ∈ P one has
p · r · ¬p = 0 = ¬p · r · p.

Proof. By (3), respectance, distributivity and Lemma 2.9,

p · r · ¬p = p · r ·
∑

(P −{p}) =
∑

p′∈P−{p} p · r · p′ =
∑

p′∈P−{p} 0 = 0. ��

The above lemma is used to prove another important property.

Theorem 2.11. Let partition Q refine partition P . If r ∈ M respects Q then it
respects P , too.

Proof. For every p ∈ P we denote by Qp ⊆ Q the unique subset of Q with∑
Qp = p. Because of the partition properties

⋃
p∈P Qp = Q holds. Then by defi-

nition of Qp, distributivity, splitting the sum, Lemma 2.9 and since
⋃

p∈P Qp = Q
and r respects Q,∑

p∈P p · r · p =
∑

p∈P ((
∑

Qp) · r · (
∑

Qp) =
∑

p∈P (
∑

q,q′∈Qp
(q · r · q′))

=
∑

p∈P ((
∑

q∈Qp
q · r · q) + (

∑
q,q′∈Qp,q �=q′ q · r · q′))

=
∑

p∈P (
∑

q∈Qp
q · r · q) =

∑
q∈Q q · r · q = r ��

2.3 Modal Semirings and Symmetry

In the sequel the concept of symmetry will play an important role. To define it
we use modal operators.

Definition 2.12. A modal (idempotent) semiring (M, +, 0, ·, 1, ||·〉, 〈·||) consists
of an idempotent semiring S = (M, +, 0, ·, 1) and the forward and backward
diamond operators ||·〉, 〈·|| : M → (test(S) → test(S)), characterised by the
following axioms (e.g. [4]): for all x, y ∈ M and p, q ∈ test(S),

||x〉q ≤ ¬p ⇔ p · x · q ≤ 0 ⇔ 〈x||p ≤ ¬q , (4)
||x〉(||y〉q) = ||x · y〉q 〈x||(〈y||q) = ||y · x〉q (5)
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By these definitions, 〈x||q and ||x〉q abstractly describe the image and the inverse
image of q under x, resp. From (4) we obtain, for all p, q ∈ test(S),

||p〉q = p · q = 〈p||q . (6)

The operators enjoy many further properties, e.g., strictness ||x〉0 = 0 = 〈x||0 and
additivity ||x + y〉q = ||x〉q + ||y〉q and ||x〉(q + r) = ||x〉q + ||x〉r. This also entails
that they are isotone in both arguments.

In our example we have ||T 〉id[7,8] = id[4,5] and 〈T ||id[5,6[ = id[1,2[ ∪ id[8,9[.
Corresponding box operators can be defined as standard de Morgan duals of

the diamonds, but we do not need them for the present paper. For details see
again [4].

As mentioned above, the diamonds distribute through + in both arguments;
in a quantale they even distribute through arbitrary sums. Moreover, by shunting
we obtain from (4) that p · ||x〉q ≤ 0 ⇔ p · x · q ≤ 0 ⇔ q · 〈x||p ≤ 0. Therefore,
for atomic p,

p · x · q �= 0 ⇔ p ≤ ||x〉q . (7)

A symmetric property holds for 〈·||.
Frequently, reasoning can be made more compact by lifting the order on

test(S) pointwise to functions f, g : test(S) → test(S) by setting

f ≤ g ⇔df ∀p ∈ test(S) : f(p) ≤ g(p)

E.g., 〈x|| ≤ 〈y|| abbreviates ∀p ∈ test(S) : 〈x||p ≤ 〈y||p. An analogous convention
applies to the equality of such functions.

In relation algebra, symmetry of a relation R is expressed as R� ⊆ R or,
equivalently, as R� = R, where R� is the converse of R. Since in semirings there
is no converse operation, we have to find express symmetry differently.

Assuming temporarily an abstract converse x� of an element x we would
certainly expect p · x� · q = 0 ⇔ q · x · p = 0 for all p, q ∈ test(S). By Axiom
(4) this means ||x�〉 = 〈x|| and 〈x�|| = ||x〉. Therefore if we consider just the
behaviour of an element w.r.t. tests we can avoid the converse by passing to the
respective mirror diamond. This motivates the following.

Definition 2.13. An element x of a modal semiring is symmetric if 〈x|| = ||x〉.

It is straightforward to check that the set of symmetric elements is closed under
+. In a quantale it is even closed under arbitrary sums.

Our example relation is not symmetric: We have ||T 〉{(5, 5)} = {(1, 1)}, but
〈T ||{(5, 5)} = {(1, 1), (8, 8)}. If we restrict it to the relation T ′ = T ;(id[0,2]∪id[4,6])
we obtain a symmetric relation, as is easily verified.

It turns out that in a special class of semirings this notion has interesting
equivalent characterisations.

Definition 2.14. Assume a modal semiring S with a greatest element ". Then
S satisfies the Tarski rule if x �= 0 ⇔ " · x · " = ".
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The Tarski rule holds, for instance, in the modal semiring of binary relations.
Since 0 is an annihilator for ·, this rule is equivalent to

" · x · " = " · y · " ⇔ (x = 0 ⇔ y = 0) ⇔ (x ≤ 0 ⇔ y ≤ 0) . (8)

A useful consequence of the Tarski rule is

" · x · " · y · " = 0 ⇔ (x ≤ 0 ∨ y ≤ 0) (9)

which, in turn, implies " · x · " · y · " = 0 ⇔ " · y · " · x · " = 0 and hence

" · x · " · y · " = " · y · " · x · " . (10)

For the remainder of this section we assume that the Tarski rule holds.

Lemma 2.15. The following statements for an element x are equivalent:

1. ∀ p, q ∈ test(S) : " · p · x · q · " = " · q · x · p · ".
2. ∀ p, q ∈ test(S) : p · x · q ≤ 0 ⇔ q · x · p ≤ 0.
3. x is symmetric.

Proof. The equivalence of Parts 1 and 2 is just a special case of (8). Therefore
it suffices to show the equivalence of Parts 2 and 3. For an arbitrary x ∈ M we
argue as follows:

∀p, q ∈ test(S) : p · x · q ≤ 0 ⇔ q · x · p ≤ 0
⇔ {[ by (4) ]}

∀p, q ∈ test(S) : ||x〉q ≤ ¬p ⇔ 〈x||q ≤ ¬p

⇔ {[ substitution p �→ ¬p, bijectivity of negation ]}
∀p, q ∈ test(S) : ||x〉q ≤ p ⇔ 〈x||q ≤ p

⇔ {[ indirect equality ]}
∀q ∈ test(S) : ||x〉q = 〈x||q ��

An immediate consequence of this lemma is the following:

Lemma 2.16. If s is symmetric and p ∈ test(S) then p · s · p is symmetric, too.

Proof. For arbitrary q, q′ ∈ test(S) we have, by associativity of multiplication,
its commutativity on tests and symmetry of s,

" · q · (p · s · p) · q′ · " = " · (q · p) · s · (p · q′) · " = " · (p · q′) · s · (p · q) · "
= " · (q′ · p) · s · (p · q) · " = " · q′ · (p · s · p) · q · " ��

This implies

Corollary 2.17. For all p ∈ test(S) the product p · " · p is symmetric; in par-
ticular, " is symmetric.

Proof. Symmetry of " is immediate from (10) and Lemma 2.15. Then symmetry
of p · " · p is a consequence of Lemma 2.16. ��
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Finally we show a consequence of the Tarski rule for diamonds.

Lemma 2.18

1. ||"〉1 = 1 = 〈"||1.
2. If p �= 0 then ||"〉p = 1 = 〈"||p.

Proof

1. This follows already without the Tarski rule by setting p = q = 1 in (6) and
using isotony of the diamonds in their first argument.

2. We only show the property for the forward diamond. We have, using (6),
Part 1, (5), the Tarski rule and Part 1 again,

||"〉p = ||"〉||p〉1 = ||"〉||p〉||"〉1 = ||" · p · "〉1 = ||"〉1 = 1 . ��

3 Equivalences

3.1 Equivalences and Fixpoints

Definition 3.1. An element x ∈ M is called reflexive if 1 ≤ x and transitive if
x ·x ≤ x. A reflexive and transitive element is called a preorder and a symmetric
preorder is an equivalence.

More liberally, one could define x to be reflexive and transitive if ||1〉 ≤ ||x〉 and
||x〉||x〉 ≤ ||x〉, resp. These conditions are equivalent to 〈1|| ≤ 〈x|| and 〈x||〈x|| ≤ 〈x||.
As an example of the difference to the above formulation, consider the modal
semiring of sets of paths in a graph under path concatenation. The element 1
there is the set of all single-node paths. The condition 1 ≤ x hence means that
the set x of paths includes all these paths, whereas ||1〉p ≤ ||x〉p means that x
must for every node from p contain a path from that node to some node in p, but
not necessarily a single-node one. However, for the current treatment we found
it more convenient to omit the diamonds.

For an equivalence x and an atomic test p the test ||x〉p (which by symmetry
of x coincides with 〈x||p) will play the role of the equivalence class of p under
x. If p is a general test then ||x〉p = 〈x||p will correspond to the union of the
equivalence classes of the elements in p. This will be made precise later.

Lemma 3.2. Let x be a preorder.
1. ||x〉 is a closure operator.
2. If p is a test then ||x〉p is a fixed point of ||x〉 and 〈x||p is a fixed point of 〈x||.
3. The sets of fixed points of ||x〉 and 〈x|| each are closed under composition · .

Proof

1. We have to show isotony, extensivity and idempotence. Isotony holds for all
diamonds. Extensivity follows from 1 ≤ x and isotony. For idempotence we
have, by transitivity of x and isotony of ||·〉, ||1〉 = id and (5), reflexivity of x
and isotony of ||·〉 again, that ||x〉||x〉 = ||x · x〉 ≤ ||x〉 = ||x〉||1〉 ≤ ||x〉||x〉.
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2. First, ||x〉(||x〉p) = ||x · x〉p ≤ ||x〉p by (5), transitivity of x and isotony of
diamonds. Second, ||x〉p = ||1〉(||x〉p) ≤ ||x〉(||x〉p) by (6), reflexivity of x and
isotony of diamonds. The statement about 〈x||p is proved symmetrically.

3. The claim follows from the two previous claims as shown in more general
context in [2]. ��

If x is an equivalence the above lemma means that unions of equivalence classes
of x are saturated w.r.t. x.

Lemma 3.3. Let r be an equivalence and p a fixed point of the function 〈r||.
Then ¬p is a fixed point of 〈r||, too. (For a similar result see [9], p. 33.)

Proof. Reflexivity of r yields 〈r||¬p ≥ ¬p. The reverse inequation follows using
(4) twice, symmetry of r and that 〈r||p = p by assumption:

〈r||¬p ≤ ¬p ⇔ ¬p · r · p ≤ 0 ⇔ ||r〉p ≤ p ⇔ 〈r||p ≤ p ⇔ true . ��

3.2 Equivalences and Partitions

Lemma 3.4. Let r be an equivalence. Assume that the set F of all fixed points
of 〈r|| is atomic and let A ⊆ F be the set of all its atoms. Then A is a partition.

Proof. First we show that
∑

A = 1. Assume
∑

A < 1. Then by Lemma 3.3
¬

∑
A is also a fixed point of f and it is different from 0. So there has to be an

atomic fixed point below ¬
∑

A, which leads to a contradiction.
For disjointness of the elements of A we consider arbitrary p, q ∈ A with

p �= q. By Lemma 3.2, p ·q is again a fixed point below p and q. Since p and q are
assumed to be two different atomic fixed points of f , this implies p · q = 0. ��

Definition 3.5. For an equivalence r we call the set of the atomic fixed points
of the function 〈r||, denoted by Pa(r), the equivalence classes of r.

Lemma 3.6. Assume the Tarski rule and let P be a partition. Then Eq(P ) =df∑
p∈P p · " · p is an equivalence. It is called the equivalence induced by P .

Proof. For transitivity we have, using distributivity, that p · p′ = 0 ⇐ p �= p′

for p, p′ ∈ P , idempotence of multiplication on tests and associativity as well as
p ∈ P ⇒ p �= 0 and the Tarski rule,∑

p∈P p · " · p · (
∑

p∈P p · " · p) =
∑

p,p′∈P p · " · p · p′ · " · p′

=
∑

p∈P p · " · p · p · " · p =
∑

p∈P p · (" · p · ") · p =
∑

p∈P p · " · p .

Reflexivity can be shown, using " ≥ 1, idempotence of multiplication on tests
and the definition of a partition, by∑

p∈P p · " · p ≥
∑

p∈P p · 1 · p =
∑

p∈P p = 1 .

Symmetry of
∑

p∈P p ·"·p follows easily from the distributivity of ||·〉 and 〈·|| over
summation and the symmetry of p · " · p for all p ∈ P (cf. Corollary 2.17). ��
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Lemma 3.7. For an equivalence r and p, q ∈ Pa(r) we have p·r ·q = 0 ⇔ p �= q.

Proof. Because of (4) the claim p · r · q = 0 is equivalent to 〈r||p ≤ ¬q. Due to
the fixed point property of p this is equivalent to p ≤ ¬q. By shunting we obtain
the equivalent statement p · q = 0. From Lemma 3.4 we know that Pa(r) is a
partition, which gives us the equivalence to p �= q. ��
Lemma 3.8. An equivalence r ∈ M respects the partition Pa(r) induced by
itself.

Proof. We have, by Pa(r) being a partition, distributivity, splitting the sum and
Lemma 3.7,

r =
( ∑

Pa(r)
)
· r ·

(∑
Pa(r)

)
=

∑
p,p′∈Pa(r) p · r · p′

=
( ∑

p∈Pa(r) p · r · p
)

+
( ∑

p,p′∈Pa(r),p�=p′ p · r · p′
)

=
∑

p∈Pa(r) p · r · p ��

Lemma 3.9. For a partition P and arbitrary test q we have

||Eq(P )〉q =
∑

p∈P ∧ p·q �=0 p .

Proof. Using the definition of Eq , additivity of the diamond, (5), (6), strictness
of the diamonds, Lemma 2.18.2 and (6) again we calculate

||Eq(P )〉q = ||
∑

p∈P p · " · p〉q =
∑

p∈P ||p · " · p〉q =
∑

p∈P ||p〉||"〉||p〉q
=

∑
p∈P ||p〉||"〉(p · q) =

∑
p∈P ∧ p·q �=0 ||p〉||"〉(p · q)

=
∑

p∈P ∧ p·q �=0 ||p〉1 =
∑

p∈P ∧ p·q �=0 p . ��

Now we can show the connection between the operations Eq and Pa.

Theorem 3.10

1. For an equivalence r we have r ≤ Eq(Pa(r)).
2. For a partition P we even obtain P = Pa(Eq(P )).

In particular, Pa and Eq form a Galois connection.

Proof

1. By Lemma 3.8 and isotony we have

r =
∑

p∈Pa(r) p · r · p ≤
∑

p∈Pa(r) p · " · p = Eq(Pa(r)) .

2. First, by Lemma 3.9 and since P is a partition, every p ∈ P is a fixpoint
of ||Eq(P )〉. Second, we show that the elements of P are atomic fixpoints of
||Eq(P )〉. To this end we consider some p ∈ P and some q �= 0 with q < p.
Then, again by Lemma 3.9, we have ||Eq(P )〉q = p �= q, i.e., q is not a
fixpoint of ||Eq(P )〉. Finally we show that every atomic fixpoint of ||Eq(P )〉
is an element of P . Let q be a fixpoint of ||Eq(P )〉. Then by Lemma 3.9

q = ||Eq(P )〉q =
∑

p∈P ∧ p·q �=0 p .

This holds, in particular, for atomic fixpoints of ||Eq(P )〉. But since atoms
are sum-irreducible, the respective sums have to be singleton sums, i.e., the
atomic fixpoints all coincide with elements of P .

The Galois property follows from these two properties via isotony. ��
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In the relational semiring Part 1 of this theorem strengthens to an equality.
In general, however, it does not. Consider a graph with a single node x only
and a looping arc on x. In the associated path semiring we have 1 = {x} is an
equivalence and P =df {1} is the only partition possible. Then Eq(Pa(1)) =
" �= 1, since " is the set of all finite constant paths xxx · · · .

3.3 Atomic Tests and Equivalence Classes

Next we want to investigate the relationship between atomic tests and equiva-
lence classes. We will see that atomic tests in a certain sense are generators of
equivalence classes.

The following lemma states that two elements in the same equivalence class
of r are connected to each other, whereas two elements in different equivalence
classes are not connected under r.

Lemma 3.11. Let r be an equivalence and p, q be atomic tests. Then

p · r · q �= 0 ⇔ ||r〉p = ||r〉q

Proof. (⇒) By atomicity of p and (7), isotony and transitivity of r,

p ≤ ||r〉q ⇒ ||r〉p ≤ ||r〉||r〉q ⇒ ||r〉p ≤ ||r〉q .

Symmetrically we obtain 〈r||q ≤ 〈r||p, which by symmetry of r is equivalent to
||r〉q ≤ ||r〉p. Now the claim follows by antisymmetry of ≤.

(⇐) By reflexivity of r we have p ≤ ||r〉p = ||r〉q and hence p · r · q by (7) and
atomicity of p. ��

This yields an important relationship between equivalences and partitions:

Theorem 3.12. Equivalence r ∈ M respects partition P iff Pa(r) refines P .

Proof. (⇒) For the sake of contradiction we assume that Pa(r) does not refine
P . According to Lemma 2.6 there are p ∈ Pa(r) and distinct elements q, q′ ∈ P
with p · q �= 0 and p · q′ �= 0. We consider now two atomic tests at1 and at2 with
at1 ≤ p · q and at2 ≤ p · q′. Because the equivalence classes of at1 and at2 under
r coincide (both are p) we can apply Lemma 3.11 and obtain at1 · r · at2 �= 0.
Isotony yields q · r · q′ �= 0. But then r cannot respect P because of Lemma 2.9.

(⇐) Lemma 3.8 states that r respects Pa(r). According to Theorem 2.11 r
respects P , too. ��

Now we are ready to prove the main result of this section:

Theorem 3.13. Let r be an equivalence and p an atomic test. Then ||r〉p is an
atom in the set of fixed points of ||r〉. It is called the equivalence class of p under
r and is denoted by [p]r.
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Proof. Suppose 0 �= ||r〉q ≤ ||r〉p for some test q. By strictness of ||r〉 we must have
q �= 0 and hence, by atomicity of test(S), there is a nonempty set Q′ ⊆ atest(S)
with q =

∑
Q′. The assumption ||r〉q ≤ ||r〉p is, by distributivity of ||r〉, equivalent

to ∀q′ ∈ Q′ : ||r〉q′ ≤ ||r〉p. Reflexivity of r implies ∀q′ ∈ Q′ : q′ ≤ ||r〉p. By (7) we
get ∀q′ ∈ Q′ : q′ · r · p �= 0 and hence by lemma 3.11 ∀q′ ∈ Q′ : ||r〉q′ = ||r〉p. But
then also ||r〉q =

∑
q′∈Q′ ||r〉q′ = ||r〉p and we are done. ��

4 Bisimulations

A simulation for a relation →⊆ X × X (such as a transition relation) in the
usual sense is a relation R ⊆ X × X such that

xR x′ ∧ x → y ⇒ ∃ y′ : y R y′ ∧ x′ → y′ .

In relation algebra this is written more compactly as R�; → ⊆ → ; R�, where ;
denotes relational composition.

A bisimulation for → is a simulation the converse of which is again a simulation
for →. Translated into relation algebra this becomes

R ; → ⊆ → ; R ∧ R�; → ⊆ → ; R� .

Using the same method as in Sect. 2.3 we can give the following converse-free
definition, where b replaces R and g replaces → :

Definition 4.1. An element b ∈ M is called a bisimulation for g ∈ M iff

||b〉||g〉 ≤ ||g〉||b〉 ∧ 〈b||||g〉 ≤ ||g〉〈b|| .

For an element g ∈ M the set of all bisimulations for g is denoted by bisimg.
Note that 0 ∈ bisimg.

Lemma 4.2. For all g ∈ M the set bisimg is closed under sum and product.
If the underlying modal semiring is a quantale then it is closed under arbitrary
sums.

Proof. The closedness under sum follows easily from the distributivity properties
of the diamonds. Closedness under product follows from Axiom (5). ��

For our further purposes it turns out that it is sufficient to require only the
existence of a pseudoconverse.

Definition 4.3. We call y ∈ M a pseudoconverse of x ∈ M iff ||x〉 = 〈y||; in this
case we write pscon(x, y).

Note that a symmetric element is a pseudoconverse of itself. We now require for
all x ∈ M the existence of a (not necessarily unique) pseudoconverse y.

Lemma 4.4. Let x, y ∈ M such that pscon(x, y). Then also pscon(y, x).
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Proof. We only show the inequality 〈x|| ≤ ||y〉; the reverse inequality is shown
analogously. We have, by (4) twice, the assumption ||x〉 ≤ 〈y||, (4) twice and
reflexivity of ≤,

〈x||p ≤ ||y〉p ⇔ p · x · (¬||y〉p) ≤ 0 ⇔ ||x〉(¬||y〉p) ≤ ¬p ⇐ 〈y||(¬||y〉p) ≤ ¬p
⇔ 〈y||(¬||y〉p) · y · p ≤ 0 ⇔ ||y〉p ≤ ||y〉p ⇔ true . ��

Lemma 4.5. The sum of an element x ∈ M and an arbitrary pseudoconverse
y ∈ M of x is symmetric.

Proof. Let x, y ∈ M be arbitrary with pscon(x, y) and let p ∈ test(S) be an
arbitrary test. Then we calculate, using distributivity of 〈·|| over +, pscon(x, y)
and Lemma 4.4, distributivity of 〈·|| over + and commutativity of +,

〈x + y||p = 〈x||p + 〈y||p = ||y〉p + ||x〉p = ||x + y〉p . ��

Lemma 4.6. Let g ∈ M be arbitrary and x ∈ bisimg and pscon(x, y). Then
y ∈ bisimg.

Proof. Immediate from the definition of bisimulation and pseudoconverse. ��

By definition of bisimg for an arbitrary g ∈ M it is obvious that in a quantale
there is a coarsest bisimulation for g, namely ĝ =df

∑
b∈bisimg

b. This element
has another interesting property:

Theorem 4.7. For all g ∈ M the coarsest bisimulation ĝ for g is an equivalence.

Proof. Reflexivity and transitivity follow quickly from Lemma 4.2. For symme-
try we observe that for every element b ∈ bisimg every pseudoconverse b′ of b
lies again in bisimg. Due to commutativity, associativity and idempotence the
equality

∑
b∈bisimg

b =
∑

b∈bisimg
(b + b′) holds. This means that ĝ can be written

as a sum of symmetric elements of M and hence is symmetric itself. ��

The equivalence classes of ĝ have an important property wrt. to g: If from a
nonempty part of an equivalence class p one can reach, via g, a second (or even
the same) equivalence class q then it is possible to get from every nonempty part
of p via g to q. This stability property is formally stated in the next theorem.

Theorem 4.8 (Stability). Let g ∈ M be arbitrary and p, q ∈ atest(S) be
atomic tests. If p ·g ·q �= 0 then for all p′ ≤ [p]ĝ with p′ �= 0 we have p′ ·g · [q]ĝ �= 0.

Proof. Due to the atomicity of test(S) it suffices to show the claim for all atomic
p′. Because ĝ is an equivalence (Theorem 4.7) we obtain p′ · ĝ · p �= 0 from
Lemma 3.11. Hence (7) shows p′ ≤ ||ĝ〉p. Similarly, the assumption p · g · q �= 0
and atomicity of p yield by (7) that p ≤ ||g〉q. Now, by isotony and since ĝ is a
symmetric bisimulation, we get

0 �= p′ ≤ ||ĝ〉p ≤ ||ĝ〉||g〉q ≤ ||g〉||ĝ〉q = ||g〉〈ĝ||q = ||g〉[q]ĝ

and hence, by (7), p′ · g · [q]ĝ �= 0 as required. ��

By this result, ĝ determines the coarsest partition that is g-stable.
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5 Generating Control Policies

We now sketch a generic method of control design and show how to handle it
algebraically. As an illustration a simple control policy for our running example
is generated.

5.1 Generic Control Synthesis Using Bisimulations

We are given a transition graph G = (V, R), where V is the set of nodes and R is
the transition relation, and a control objective C like cycle-freeness, transitivity
or various liveness properties. As a further property we request that the desired
control objective can be achieved by a suitable restriction of G. In other words,
any controlled transition graph is a subgraph of the uncontrolled one. Most
known algorithms generating control policies require that the transition graphs
are finite. These algorithms are impracticable in the case of large-scale systems.
In the case of infinite state spaces, algorithms have been developed only for a
few particular control properties. We propose to construct control policies for
large-scale systems by a generic method based on bisimulations; given a control
objective, it is assumed that an algorithm Acp generating control policies for
that objective and finite systems is available. Relationships between bisimulation
equivalence and logical equivalences (e.g. [1]) should help.

The idea is to reduce the huge given graph G = (V, R) to a small finite graph
G1 = (V1, R1), called the (bisimulation) quotient of G. The nodes in V1 are the
equivalence classes of the coarsest bisimulation for G, while the transitions in R1
are the corresponding set-level liftings of the transitions in R. The part V1 can
be constructed by an algorithm Aeq (e.g. [1]). To this, hopefully finite, graph we
apply algorithm Acp and obtain a subgraph G′

1 of G1 with the required control
property. Then a subgraph G′ of G is obtained by inverting the set-level liftings.

The crucial assumption is that the given graph G belongs to the class of
graphs for which the number of equivalence classes of its coarsest bisimulation
is finite. Then the generic synthesis algorithm looks as follows:

Input Transition Graph G = (V, R), Control Objective C.
Step 1 Use algorithm Aeq to construct the quotient graph G1 = (V1, R1),

where V1 is the set of the equivalence classes of the coarsest bisimu-
lation for G and R1 is the quotient of R w.r.t. V1.

Step 2 Use Acp to construct the subgraph G′
1 = (V ′

1 , R′
1) of G1. Hence G′

1
satisfies C.

Step 3 Generate the controlled graph G′ = (V ′, R′) by flattening V ′
1 into

V ′ (i.e., V ′ is the union of the sets in V ′
1) and R′

1 into R′ (by the
corresponding flattening of the transition relation).

Output The Controlled Transition Graph G′ = (V ′, R′), which satisfies C.

In each special case to which this generic algorithm is applied it remains to show
that the generated graph G′ satisfies the required control objective C. A generic
proof of the correctness of Step 3 depends essentially on the formalisation of a
significant family of control objectives.
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The method elaborated in [10] for optimal control basically generates equiv-
alence sets where states have an equal value. In fact, these sets are composed of
equivalence classes of a coarsest bisimulation. So, that particular method is an
instance of the proposed approach. In the present paper we illustrate the generic
method of bisimulation-based control synthesis with a simple control objective.

5.2 Application to a Simple Control Objective

Now we will demonstrate the proof of the correctness of Step 3 for a simple
control objective, namely a liveness property. We require that if a node has an
ingoing edge it has to offer an outgoing one, too. A relational formulation could
be the predicate ∀x, y : xRy ⇒ (∃ z : y R z). In other words, if the pre-image of
a node set is non-empty then its image has to be non-empty, too. This motivates
the following definition in a general modal semiring S = (M, +, 0, ·, 1):

Definition 5.1. An element g ∈ M is called live iff for all p ∈ test(S) the
implication ||g〉p �= 0 ⇒ 〈g||p �= 0 holds. For an element g ∈ M an element
g′ ∈ M is called a live part of g iff g′ is live and g′ ≤ g.

Obviously 0 is live. Moreover, due to distributivity of the diamonds over sums
the sum of arbitrary live elements is live, too. So for a g ∈ M there is a greatest
live part, denoted by glpg.

By atomicity of test(S), distributivity of the diamonds over arbitrary sums and
+-irreducibility of 0, an element g is live iff the implication ||g〉p �= 0 ⇒ 〈g||p �= 0
holds for all atomic tests p ∈ atest(S).

As an important concept we introduce a so-called marker δg(p, q) of an ele-
ment g ∈ M and tests p, q ∈ test(S). It can be understood as a sign whether g
admits a transition from p to q. In this case it is a restriction of ", otherwise it
equals 0. The precise definition is as follows:

Definition 5.2. For an element g ∈ M the marker function δg(·, ·) : test(S) ×
test(S) → M is defined by δg(p, q) = p · " · q if p · g · q �= 0, and is 0 otherwise.

We will use this construction to express the above schematic algorithm in our
algebraic setting. First we have to model the construction of the graph G1 from
the above description. The nodes correspond to equivalence classes, so a first
idea could be to set g1 =

∑
p,q∈Pa(ĝ) δg(p, q), where Pa(ĝ) is the set of equiva-

lence classes of the coarsest bisimulation for g. This models the property that
G1 admits a transition from one node to another iff there is a transition in G
between two elements of the equivalence classes corresponding to the nodes in
G1. However, it turns out to be more convenient to abstract from this construc-
tion by means of a system of representatives (analogously to the classical use)
and to reduce this quotient to a quotient witness:

Definition 5.3. A system of representatives (SOR) for an equivalence r is a
set Rep of atomic tests such that

∑
p∈Rep[p]r = 1 and p, q ∈ Rep ∧ p �= q ⇒

[p]r · [q]r = 0. For an element g ∈ M an element h ∈ M is called a quotient
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witness of g if there is a SOR Rep of ĝ such that h =
∑

p,q∈Rep p · δg([p]ĝ, [q]ĝ) · q.
Rep is called the associated SOR of h, and the elements (p, q) from Rep2 with
p · h · q �= 0 are called its edges, denoted by edgesh. The set of all quotient
witnesses of g is denoted by qw(g).

Let now h ∈ qw(g) be arbitrary. Assume we can determine the glph. Our goal
now is to construct from glph the greatest live part glpg of g. To this end we set
g′ =

∑
(p,q)∈edgesglph

[p]ĝ ·g · [q]ĝ (edgesglph
is defined analogously to Definition 5.3)

and obtain an element g′ ∈ M with the desired property:

Theorem 5.4. Let g′ be constructed as above. Then g′ = glpg.

Proof. The property g′ ≤ g follows immediately from isotony of multiplication
and p ≤ 1 for all p ∈ P for an arbitrary partition P . By atomicity of test(S),
distributivity of the diamonds over arbitrary sums and +-irreducibility of 0, it
suffices to show the second claim for all atomic tests. So let p be an arbitrary
atomic test with ||g′〉p �= 0. By q we denote the representative of [p]ĝ in Rep.
Due to the construction of g′ there has to be a pair (q, q′) ∈ edgesglph

with
q · glph · q′ �= 0. Because of glph ≤ h and the construction of h the inequality
q ·g ·q′ �= 0 holds. According to Theorem 4.8 for every atomic test p′ with p′ ≤ [q]ĝ
the inequality p′ · g · [q′]ĝ �= 0 has to hold. Because p and p′ are contained in the
same equivalence class we have also p · g · [q′]ĝ �= 0. But then by construction of
g′ also 〈g′||p �= 0 holds.

Hence g′ is a live part of g. Assume now that g′ < glpg. Then we consider the
element h̃ =

∑
p,q∈Rep p · δglpg

([p]ĝ, [q]ĝ) · q. Because of glpg ≤ g we have h̃ ≤ h.
On the other hand, due to the construction of g′ and g′ < glpg there has to
p, q ∈ Rep such that (p, q) /∈ edgesglph

and [p]ĝ · glpg · [q]ĝ �= 0. Consider now an
arbitrary p ∈ Rep with ||h̃〉p �= 0. Then by construction ||glpg〉[p]ĝ �= 0 and hence
||glpg〉[p]ĝ �= 0. But then we have also 〈h̃||p �= 0. This means that h̃ is live and
h̃ ≤ glph does not hold, which is a clear contradiction. ��

Let us now apply this construction to our running example. The coarsest bisim-
ulation is here given by [0, 2]2 ∪ [4, 6]2 ∪ (]2, 4[ ∪ ]6, 9])2, and it has three
equivalence classes, namely [0, 2], [4, 6] and ]2, 4[ ∪ ]6, 9]. As a quotient witness
we can choose the relation {(1, 4), (4, 8), (4, 1)}. The greatest live part of this
is {(1, 4), (4, 1)}. If we play this back to the original relation by means of the
above construction we obtain the infinite relation {(x, y) ∈ R2 | (x ∈ [0, 2] ∧ y =
x + 4) ∨ (x ∈ [4, 6] ∧ y = x − 4)}, which is the greatest live part of the original
relation according to Theorem 5.4.

Admittedly, the present algebraic modelling of system control is basic and
primitive. The application of the generic method for other control objectives,
e.g. optimality, may well require the use of labelled transition systems. For such
cases, the algebraic framework needs to be refined.
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6 Conclusion and Further Work

We have shown how equivalences, partitions and bisimulations can be conve-
niently described in the setting of modal semirings and quantales. With these
tools we were also able to give a generic algorithm for constructing a simple
policy for an infinite transition system.

Future work has several directions: First, we shall extend our methods to
cover also labelled transition systems. Quantales for describing them are already
known from the literature. The second focus will be to consider more signifi-
cant goals than the simple liveness property given in Sect. 5.2. So we plan to
tackle properties like acyclicity, termination or even (probabilistic) shortest path
problems. A more general challenge would be to identify the subclass of control
objectives for which the algorithm from Sect. 5.1 works correctly.
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Abstract. General correctness offers a finer semantics of programs than
partial and total correctness. We give an algebraic account continuing
and extending previous approaches. In particular, we propose axioms,
correctness statements, a correctness calculus, specification constructs
and a loop refinement rule. The Egli-Milner order is treated algebraically
and we show how to obtain least fixpoints, used to solve recursion equa-
tions, in terms of the natural order.

1 Introduction

Relational approaches to program semantics vary in their treatment of termina-
tion according to [19].

Partial correctness does not distinguish between terminating and possibly
non-terminating programs. Recursion is modelled by least fixpoints with respect
to the subset order, which leads to angelic non-determinism. If the same program
admits both a terminating and a non-terminating execution, the terminating one
is chosen. Theories of partial correctness include Hoare logic [16], weakest liberal
preconditions [9] and Kleene algebra with tests [21].

Total correctness does not distinguish between non-terminating and possi-
bly terminating programs. Recursion is modelled by greatest fixpoints with re-
spect to the subset order, which leads to demonic non-determinism. If the same
program admits both a terminating and a non-terminating execution, the non-
terminating one is chosen. Theories of total correctness include weakest pre-
conditions [9], the Unifying Theories of Programming [17], demonic refinement
algebra [26] and demonic algebra [5].

General correctness [2,4,19,3,25,10,24] distinguishes terminating and non-
terminating executions. Recursion is modelled by least fixpoints with respect
to the Egli-Milner order, which leads to erratic non-determinism.

Technically, partial correctness is the simplest approach, since there is no need
to represent non-termination. For total and general correctness, this is done by
adding a special value, predicate or variable. In total correctness, additionally,
non-termination absorbs termination. This price is paid to keep the subset order,
while in general correctness the more complicated Egli-Milner order must be used
for fixpoints. Refinement is the subset order in all three approaches.

In this paper we focus on the algebraic treatment of general correctness. It
offers a finer distinction than partial and total correctness [19,11]. We build upon
a number of works, as discussed in the following.

R. Berghammer et al. (Eds.): RelMiCS/AKA 2009, LNCS 5827, pp. 150–165, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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In [10] the Unifying Theories of Programming are adapted to general cor-
rectness using a restricted class of predicates called ‘prescriptions’. They are
generalised using matrices over semirings in [23]. While the semantics of loops is
missing for prescriptions, it is given in [24] using ‘commands’ over modal semi-
rings and the Egli-Milner order. Still missing, however, is the semantics of full
recursion. This is contributed by Section 6 of the present paper.

Another result of [24] is that weakest preconditions are actually the weakest
liberal preconditions of an appropriate modal semiring. It is used to derive a
Hoare calculus for weakest preconditions. As such, the calculus is useful for
total correctness claims. To this end, however, a total correctness semantics
of commands, such as the one given in [14], would be more appropriate and
also more simple by not having to use the Egli-Milner order. Another way to
overcome the mismatch is to devise a calculus for general correctness claims.
This is contributed by Section 4 of the present paper.

In [12] the absence of loop refinement rules is noted for general correctness,
in contrast to total correctness. They are necessary to introduce loops when
specifications are refined into programs. A general correctness loop rule is given
based on prescriptions. Section 5 of the present paper contributes an algebraic
statement and proof of that rule, using the calculus of Section 4.

As another ingredient of refinement, [26] discusses specifications given only
by preconditions and postconditions in demonic refinement algebra. Such ‘pre-
post specifications’ can conveniently be used to express rules like the one for
loop refinement. To this end, Section 5 also contributes specifications suitable
for general correctness.

All contributions are wrapped in an algebraic theory of general correctness
encompassing those of [10,24,23,12] along the lines of [15]. It is based on Kleene
algebra with a domain operator and developed in Section 2 of the present paper.
Section 3 takes it as a guide and contributes an axiomatic description of the key
constituents of general correctness, such as the Egli-Milner order. The axioms
are used to derive the results announced above.

2 Semirings and Prescriptions

Prescriptions have been introduced in [10] to model general correctness in the
Unifying Theories of Programming. An algebraic account using modal semirings
is given in [24] and, using matrices over modal semirings, in [23]. In this section,
we adapt these approaches and develop them further according to our treatment
of total correctness [15].

We first recall how to extend semirings by axioms for conditions, which rep-
resent subsets of states. Based on this structure, we algebraically define pre-
scriptions, which model programs and specifications in general correctness. To
conveniently express the semantics of loops, we then introduce the Kleene star
and omega operations. We finally impose further structure using the domain
operation, which is necessary for our axiomatic treatment of general correctness
in Section 3.
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2.1 Condition Semirings

A weak semiring is a structure (S, +, 0, ·, 1) such that (S, +, 0) is a commutative
monoid, (S, ·, 1) is a monoid, the operation · distributes over + in both arguments
and 0 is a left annihilator, that is, 0 ·x = 0. We assume 0 �= 1, otherwise S would
be trivial. A weak semiring is idempotent if + is, that is, if x + x = x. In an
idempotent weak semiring the relation x ≤ y ⇔def x + y = y is a partial order,
called the natural order on S, and · and + are isotone. A semiring is a weak
semiring in which 0 is also a right annihilator, that is, x · 0 = 0. The · operation
is extended elementwise to sets A, B ⊆ S by A · B =def {a · b | a ∈ A ∧ b ∈ B}
and A · b =def A · {b} for b ∈ S. We frequently abbreviate a · b with ab.

A structure (S, T, +, 0, ·, 1,�,", ) is a condition semiring if the following
properties hold.

– (S, +, 0, ·, 1) is an idempotent weak semiring having a greatest element ".
– (T, +, 0) is a submonoid of (S, +, 0) and T ⊆ T · ".
– The restriction operation � : T × S → S distributes over +, that is,

∗ ∀a ∈ S : ∀t, u ∈ T : (t + u) � a = (t � a) + (u � a) and
∗ ∀a, b ∈ S : ∀t ∈ T : t � (a + b) = (t � a) + (t � b).

– ∀a ∈ S : " � a = a.
– (T, +, 0,�,", ) is a Boolean algebra; in particular, 0 ∈ T and " ∈ T .

We abbreviate condition semirings with (S, T ) and call the elements of T con-
ditions. A condition semiring (S, T ) is an ideal condition semiring if S · T ⊆ T ,
hence T is a left ideal of S. An (ideal) condition semiring is strict if the un-
derlying weak semiring is a semiring, that is, if 0 is both a left and a right
annihilator.

Our notation reflects the intended, relational model (where 0, 1 and " are the
empty, identity and universal relations, respectively, and ≤ is the subset order),
so that 0 ≤ 1 ≤ " holds, for example. To avoid confusion, it should be kept
in mind that other approaches in the literature use different conventions (for
example, demonic refinement algebra [26] uses the reverse order).

In relational semantics, a condition semiring (S, T ) is used as follows. The
state transition relation or input/output behaviour of programs is represented
by elements of S. The elements of T represent subsets of states by relating
each initial state in the subset to all final states. The operations +, · and �
model non-deterministic choice, sequential composition and input-restriction,
respectively. In particular, t� a restricts the transitions permitted by a to those
starting in a state described by the condition t. The elements of T are also
used as preconditions that represent those states from which a non-terminating
execution of the program exists.

The following, basic properties are proved in [15]. In a condition semiring
(S, T ), the operation � is associative, isotone, the greatest lower bound on T ×S
and satisfies the shunting rule t�a ≤ b ⇔ a ≤ t+b as well as (t�a) ·b = t�(a ·b)
for all t ∈ T and a, b ∈ S. Reminding us that conditions represent the vectors of
relation algebra, we have t · " = t for all t ∈ T , and thus T · " = T . In an ideal
condition semiring (S, T ) this extends to S · T = S · " = T · " = T .
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2.2 Prescriptions

We continue with the matrix representation of prescriptions, generalised to the
present axiomatisation. Let (S, T ) be an ideal condition semiring. The set of
normal prescriptions over (S, T ) is

NP(S, T ) =def

{(
a b
c d

)
∈ S2×2

∣∣∣∣ a = " ∧ b = 0 ∧ c ∈ T

}
.

The components a and b are for structural purposes, making composition work as
expected. The components c and d are the precondition and transition elements
mentioned above. The adjective ‘normal’ [10] refers to the restriction c ∈ T , by
which preconditions are indeed conditions on the initial states and not arbitrary
relations between input and output states. For t ∈ T and a ∈ S, we define the
normal prescription

(t #� a) =def

(
" 0
t a

)
.

It represents the program whose execution performs transitions allowed by a and
is guaranteed to terminate when started in states described by t.

Particular normal prescriptions are skip =def (" #� 1), loop =def (0 #� 0),
fail =def (" #� 0), havoc =def (" #� ") and chaos =def (0 #� "). For example, skip
models the program which must terminate without changing the state, and loop
the one which must not terminate, see [25].

These special prescriptions are landmarks of the structure inherent to nor-
mal prescriptions as follows. Let (S, T ) be a strict ideal condition semiring,
then (NP(S, T ), +, fail, ·, skip) is an idempotent weak semiring. Using the set
C =def {(t #� t) | t ∈ T } as conditions, (NP(S, T ), C, +, fail, ·, skip,�, chaos, ) is
a condition semiring. The operations + and � act elementwise on the matrices, ·
is the matrix product, and applies to both arguments of #�. Both strictness and
the ideal property are necessary for these results, which are proved analogously
to the corresponding ones in [15] that apply to ‘normal designs’ modelling to-
tal correctness. The technical difference is that the matrices for normal designs
satisfy b = " instead of b = 0 and the additional restriction c ≤ d that lets non-
termination absorb terminating transitions (for example, c = " forces d = ").

To appreciate the different structures introduced above we note the following
distinctions. Relations form a strict ideal condition semiring. Normal designs over
relations [15], which are the basis of the Unifying Theories of Programming, form
an ideal condition semiring that is not strict. Normal prescriptions over relations,
which are the basis of general correctness semantics, form a condition semiring
that is not an ideal condition semiring. Every idempotent weak semiring with "
forms a condition semiring with 0 and " as the only conditions, but all previous
structures generally contain additional conditions.

In the remainder of this paper, we omit the adjective ‘normal’. Several con-
sequences about the natural order, sum and product of prescriptions are
– (t #� a) ≤ (u #� b) ⇔ u ≤ t ∧ a ≤ b,
– (t #� a) + (u #� b) = (t � u #� a + b) and
– (t #� a) · (u #� b) = (t � au #� ab).
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Hence prescriptions are equal just if both components are equal, fail is the least
prescription and chaos the greatest. Moreover, (t #� 0) is a left annihilator for
each t ∈ T . The vector property of prescriptions is derived by

(t #� t) · (0 #� ") = (t � t0 #� t") = (t � t" #� t) = (t � t #� t) = (t #� t) .

An intuitive interpretation of the natural order is that non-terminating execu-
tions may be refined to terminating ones that do not introduce new transitions.
This contrasts with designs, where any terminating execution can be introduced
by such a refinement.

2.3 Kleene Algebra and Omega Algebra

A (weak) Kleene algebra [20,22] is a structure (S, ∗) such that S is an idempotent
(weak) semiring and the operation star ∗ satisfies the unfold and induction laws

1 + a · a∗ ≤ a∗ b + a · c ≤ c ⇒ a∗ · b ≤ c
1 + a∗ · a ≤ a∗ b + c · a ≤ c ⇒ b · a∗ ≤ c

for a, b, c ∈ S. Hence a∗b is the least fixpoint of λx.ax+b, denoted µx.ax+b. The
star operation on prescriptions is derived using the general matrix construction
presented, for example, in [13]. Let (S, T ) be an ideal condition semiring such
that S is a Kleene algebra, then (NP(S, T ), +, fail, ·, skip, ∗) is a weak Kleene
algebra, where(

" 0
t a

)∗
=

(
(" + 0a∗t)∗ (" + 0a∗t)∗0a∗

(a + t"∗0)∗t"∗ (a + t"∗0)∗

)
=

(
"∗ 0

a∗t" a∗

)
=

(
" 0
a∗t a∗

)
,

hence (t #� a)∗ = (a∗t #� a∗).
A (weak) omega algebra [6,22] is a structure (S, ω) such that S is a (weak)

Kleene algebra and the operation omega ω satisfies the unfold and co-induction
laws

aω = a · aω c ≤ a · c + b ⇒ c ≤ aω + a∗ · b
for a, b, c ∈ S. Hence aω + a∗b is the greatest fixpoint of λx.ax + b, denoted
νx.ax+b. It follows that aω" = aω = a∗aω and c ≤ a·c ⇒ c ≤ aω. The omega op-
eration on prescriptions cannot be derived via the matrix construction since the
greatest prescription is not the matrix with four " entries. Nevertheless, a direct
argument can be used to show the following result. Let (S, T ) be an ideal condi-
tion semiring such that S is an omega algebra, then (NP(S, T ), +, fail, ·, skip, ∗, ω)
is a weak omega algebra, where (t #� a)ω = (aω + a∗t #� aω).

2.4 Tests and Domain

A test semiring [22] is an idempotent weak semiring (S, +, 0, ·, 1) with a dis-
tinguished set of elements test(S) ⊆ S called tests and a negation operation ¬
such that (test(S), +, 0, ·, 1,¬) is a Boolean algebra. By slightly generalising a
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proof of [15] we can show that any condition semiring (S, T, +, 0, ·, 1,�,", ) is
a test semiring, where test(S, T ) =def {t � 1 | t ∈ T } and ¬p =def p" � 1 for
p ∈ test(S, T ). Hence prescriptions form a test semiring with tests of the form

(t #� t) � (" #� 1) =
(
" 0
t t

)
�

(
" 0
0 1

)
=

(
" 0
0 t � 1

)
= (" #� t � 1) ,

and negation ¬(" #� t� 1) = (" #� t� 1). This allows us to represent conditional
statements by either (t� a) + (t � b) or pa +¬pb, using either the condition t or
its corresponding test p = t � 1. The use of conditions (or another set satisfying
the ideal property) in the underlying semiring is necessary if prescriptions are
to be represented by matrices; otherwise tests can be used for the termination
information as in [24].

A domain semiring [8] is a structure (S, �) such that S is a test semiring and
the domain operation � : S → test(S) satisfies the axioms

a ≤ �a · a �(p · a) ≤ p �(a · �b) ≤ �(a · b)

for a, b ∈ S and p ∈ test(S). Useful properties for a, b ∈ S and p ∈ test(S) are

�a ≤ p ⇔ a ≤ pa a ≤ b ⇒ �a ≤ �b a = �aa �p = p

a ≤ 0 ⇔ �a ≤ 0 �(a + b) = �a + �b �(pa) = p�a �(a · �b) = �(a · b)

If a greatest element " exists, another characterisation is �a ≤ p ⇔ a ≤ p" [1].
For prescriptions we obtain �(t #� a) = (" #� ¬�t+�a) this way. If the test semiring
is induced from an ideal condition semiring as above, we even have �a = a"� 1.

Domain induces the operations diamond of a given by 〈a〉p =def �(ap) and
its dual box of a given by [a]p =def ¬〈a〉¬p. For prescriptions they amount to
〈t #� a〉(" #� �u) = (" #� ¬�t + 〈a〉�u) and [t #� a](" #� �u) = (" #� �t · [a]�u).

3 Towards Axioms for General Correctness

Kleene star and omega cannot be used directly to express the general correctness
semantics of loops. This is due to the fact that star and omega are taken with
respect to the natural order ≤ that corresponds to the subset order used for
partial and total correctness, but not to the Egli-Milner order.

For example, consider the endless loop while true do skip. Its partial cor-
rectness semantics is the least fixpoint (µx.x) = 1∗ · 0 = 1 · 0 = 0. The total
correctness semantics is the greatest fixpoint (νx.x) = 1ω + 1∗ · 0 = 1ω = ".
Instantiated to prescriptions, they are fail and chaos, respectively. However, the
general correctness semantics is loop that lies properly between the least and the
greatest fixpoints with respect to the natural order.

Another difference between partial, total and general correctness is observed
about the term "·0. For partial correctness, Kleene algebra is used where "·0 =
0 (assuming " exists). For total correctness, this right annihilation axiom is
dropped to obtain weak Kleene algebra, with the freedom to impose the left
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annihilation axiom "·0 = " instead, as done by [26,5,15]. For general correctness,
we have to drop this left annihilation axiom, too. This is easily observed from
prescriptions, since the product of the greatest and the least prescription is

(0 #� ") · (" #� 0) =
(
" 0
" "

)
·
(
" 0
0 0

)
=

(
" 0
" 0

)
= (0 #� 0) ,

which is neither the greatest nor the least prescription, but again loop. Since the
term "·0 cannot be simplified in weak Kleene or omega algebra, but is important
as the intended least element of the Egli-Milner order, we call it L =def " · 0.

In the following, we work towards axiomatising the structure that underlies
prescriptions and their use in general correctness. We start by assuming a weak
omega algebra and domain semiring S, since we have seen that prescriptions
form one. Hence L = " · 0 exists and already satisfies a number of properties.

Lemma 1. "L = Lω = L �= 1 and L∗ = 1+L. Let x ∈ S, then xL ≤ �xL ≤ L = Lx
and x0 ≤ �(x0)L.

Proof. xL ≤ "L = ""0 = "0 = L, thus xL ≤ �xxL ≤ �xL ≤ L, and Lx = "0x =
"0 = L. Hence L∗ = 1 + LL∗ = 1 + L and Lω = LLω = L. Assuming L = 1 gives
the contradiction 0 = 1 · 0 = L · 0 = L = 1. Moreover, x0 = x0L ≤ �(x0)L. ��

However, other properties which we expect to hold (since they hold for prescrip-
tions) cannot be derived from the axioms of weak omega algebra. We therefore
have to introduce further axioms.

x ≤ L ⇒ x ≤ x0 (L0)
�xL ≤ xL (L1)
1 ≤ �L (L2)

Axiom (L0) is provisional and follows from axioms presented below. Its conse-
quent can equivalently be replaced by x = x0. Its backward implication holds
by x ≤ x0 ≤ "0 = L. The term x0 represents the states which may lead
to non-termination. Axioms (L1) and (L2) can equivalently be strengthened to
equalities. Consequences of these axioms are recorded in the next lemma.

Lemma 2. Let x, y ∈ S and p, q ∈ test(S). Axiom (L0) implies x ≤ L ⇒ x = xy
and L �= " and px0 ≤ 0 ∧ pxq ≤ L ⇒ pxq ≤ 0 and x0 = inf{x, L}. Axiom (L2)
implies �(xL) = �x and L �= 0. Axioms (L0) and (L2) together are equivalent
to �Lx ≤ L ⇒ x = x0. Axiom (L1) implies �(x0)L ≤ x, which is equivalent to
�(x0)L = x0 and together with (L2) conversely implies (L1).

Proof. For x ≤ L we have xy ≤ x0y = x0 ≤ x and x ≤ x0 ≤ xy by (L0).
Assuming 1 ≤ L gives the contradiction 1 ≤ 1 · 0 = 0. Let px0 ≤ 0 and pxq ≤ L,
then pxq ≤ pxq0 = px0 ≤ 0. Let z ≤ x and z ≤ L, then z ≤ z0 ≤ x0 by (L0),
and x0 is a lower bound of x and L since x0 ≤ x1 = x and x0 ≤ "0 = L.

�(xL) = �(x�L) = �(x1) = �x; assuming L = 0 gives the contradiction 1 ≤ �0 = 0.
Let �Lx ≤ L, then x ≤ L by (L2), hence x = x0 by (L0). Let �Lx ≤ L ⇒ x = x0

hold, then x ≤ L implies �Lx ≤ x ≤ L, hence x = x0, which shows (L0). Moreover,
�L¬�L = 0 ≤ L implies ¬�L = ¬�L0 = 0, and hence (L2).
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�(x0)L ≤ x0L = x0 ≤ x by (L1). This implies x0 ≤ �(x0)L = �(x0)L0 ≤ x0 by
Lemma 1. Conversely, �xL = �(xL)L = �(xL0)L ≤ xL by (L2) and Lemma 1. ��

Let us define the initial states of x ∈ S from which infinite transition paths
emerge as ∇x =def �xω, and the ‘convergent’ states ∆x =def ¬∇x. In presence
of (L1) and (L2), this complies with the axiomatisation of ∇ given in [7]. To see
this, observe that �xω = �(xxω) = 〈x〉�xω by omega unfold, and p ≤ 〈x〉p + q
implies pL ≤ �(xp)L + qL ≤ xpL + qL by (L1), hence pL ≤ xω + x∗qL by omega
co-induction, thus p = �(pL) ≤ �xω + 〈x∗〉q by Lemma 2. Particular consequences
are �(x∗0) ≤ �(x∗xω) = �xω = ∇x and xω = �xωxω = ∇xxω ≤ ∇x". By (L1) we
also obtain ∇xL = �xωL = xωL = xω"0 = xω0.

Another prescription that needs a representation is havoc. To this end, we
introduce the element H ∈ S by the following axioms that relate L and H to
represent programs as pairs of termination and state transition information.

x ≤ y + L ∧ x ≤ y + H ⇒ x ≤ y (H1)
x ≤ x0 + H (H2)

Instantiating y = x0 in (H1) gives x ≤ x0 + L ⇒ x ≤ x0 by (H2), which implies
(L0) immediately. Instantiating x = " in (H2) gives " = L + H. Instantiating
x = H in (H1) results in H ≤ y + L ⇒ H ≤ y. Together we obtain " ≤ L + y ⇔
H ≤ y, thus H is the least additive pseudo-complement of L. In particular, H is
unique if it exists. An equivalent formulation of (H1) is x + L = y + L∧ x + H =
y + H ⇒ x = y. In particular, we also obtain x ≤ L ∧ x ≤ H ⇒ x = 0.

Lemma 3. (H1) implies H0 ≤ 0 and (H2) implies x0 ≤ 0 ⇒ x ≤ H for x ∈ S.

Proof. H0 ≤ "0 = L and H0 ≤ H1 = H, hence H = 0 by (H1). Let x0 ≤ 0, then
x ≤ x0 + H ≤ H by (H2). ��

The two conditions shown in the previous lemma are the axioms of [26] for havoc,
but in a total correctness setting. Together, they are equivalent to x0 ≤ 0 ⇔
x ≤ H, thus H is the greatest strict element. The next lemma records further
consequences of our axioms.

Lemma 4. Axiom (H2) implies 1 ≤ H ≤ H2 and "H = " = H" = Hω and
HL = L. Axioms (H1) and (H2) together imply H∗ = H2 = H �= L. Axioms (H1)
and (L2) together imply H �= ".

Proof. 1 ≤ 1 · 0 + H = 0 + H = H by (H2). Hence H ≤ H2 and " ≤ "H and
" ≤ H" by isotony, thus HL = H"L = "L = L by Lemma 1, and " ≤ Hω.

H2 ≤ H follows by Lemma 3 since H20 ≤ H0 ≤ 0 by the same lemma using
(H2) and (H1), respectively. Hence 1+H2 ≤ H, which implies H∗ ≤ H. Assuming
H = L gives the contradiction 1 ≤ H = L = L0 = H0 = 0 by (H2), Lemma 1 and
Lemma 3 using (H1).

Assuming H = " gives the contradiction 0 �= L = "0 = H0 = 0 by Lemma 2
using (L2) and Lemma 3 using (H1). ��
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For prescriptions over relations we generally have H �= 1, but this cannot be
proved from the axioms since the underlying semiring may be such that 1 = "
and hence havoc is skip (the relations ≤ 1 are an example).

We are now ready to define the Egli-Milner order � based on our axioms:

x � y ⇔def x ≤ y + L ∧ y ≤ x + �(x0)H .

This definition is justified by the instance for prescriptions: We obtain the char-
acterisation expected from [25,24,12] by calculating

(t #� a) � (u #� b)
⇔ (t #� a) ≤ (u #� b) + (0 #� 0) ∧ (u #� b) ≤ (t #� a) + �((t #� a)(" #� 0))(" #� ")
⇔ (t #� a) ≤ (0 #� b) ∧ (u #� b) ≤ (t #� a + t)
⇔ a ≤ b ∧ t ≤ u ∧ b ≤ a + t ,

since (u #� b) + (0 #� 0) = (u � 0 #� b + 0) = (0 #� b) and

(t #� a) + �((t #� a)(" #� 0))(" #� ") = (t #� a) + �(t � a0 #� a0)(" #� ")
= (t #� a) + �(t #� 0)(" #� ") = (t #� a) + (" #� ¬�t)(" #� ")
= (t #� a) + (" #� ¬�t") = (t #� a + t) ,

since ¬�t" = (�t" � 1)" = �t" = (t" � 1)" = t" = t. The following lemma
shows basic properties of �.

Lemma 5. Axiom (H1) implies that � is a partial order. Axioms (L2) and (H2)
together imply that L is its least element. Axioms (H1) and (H2) together imply
that � has no greatest element.

Proof. Reflexivity follows immediately. For transitivity, let x � y and y � z.
Then x ≤ y + L and y ≤ z + L, which implies x ≤ z + L + L = z + L. Moreover
y ≤ x + �(x0)H and z ≤ y + �(y0)H, hence

z ≤ x + �(x0)H + �((x + �(x0)H)0)H = x + �(x0)H + �(�(x0)H0)H = x + �(x0)H

by Lemma 3. Together we have x � z. For antisymmetry, let x � y and y � x.
Then x ≤ y +L and y ≤ x+ �(x0)H ≤ x+H and y ≤ x+L and x ≤ y + �(y0)H ≤
y + H. Hence x ≤ y and y ≤ x by (H1).

For any x ∈ S we have x ≤ " = L + H = L + �LH = L + �(L0)H by (H2), (L2)
and Lemma 1. With L ≤ x + L we obtain L � x.

Assume that 0 � x and 1 � x, then x ≤ 0 + �(0 · 0)H = �0H = 0H = 0, and
therefore 1 ≤ x + L ≤ L. Since 1 ≤ H by Lemma 4, we obtain the contradiction
1 ≤ 0 by (H1). ��

It can furthermore be shown that · and + are isotone with respect to �. We have
thus derived a number of useful properties from our axioms. In the remainder of
this paper we assume that (L1), (L2), (H1) and (H2) hold in S.

Least fixpoints with respect to the Egli-Milner order, denoted by ξ, are used to
define the general correctness semantics of recursion. In particular, the semantics
of loops is while p do a =def ξx.pax + ¬p.
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Theorem 6. Let p ∈ test(S) and a ∈ S, then while p do a = ∇(pa)L + (pa)∗¬p.

A direct proof can be given using Lemmas 1 and 2. It is omitted since the result
follows from our treatment of full recursion in Section 6.

4 General Correctness

Consider a domain semiring D, an element a ∈ D and two tests p, q ∈ test(D).
Soundness of the Hoare triple p {a} q is defined by [24] as p ≤ [a]q, which is
equivalent to pa¬q ≤ 0 [21]. This claims partial correctness: When started in a
state satisfying p, the program a will not lead to a state satisfying ¬q. Thus [a]q
is the weakest liberal precondition of statement a and postcondition q.

The remarkable observation of [24] is that the same triple claims total cor-
rectness if it is interpreted in an appropriate semiring. In particular, [a]q then
is the weakest precondition of statement a and postcondition q. This is benefi-
cial, since statements proved in general domain semirings automatically hold in
both interpretations. For example, a calculus for weakest liberal preconditions
in domain semirings yields one for weakest preconditions.

An appropriate semiring to interpret the Hoare triple is given by prescriptions.
Let us verify that the Hoare triple indeed yields a total correctness claim:

(" #� p)(t #� a)¬(" #� q) = (pt #� pa)(" #� ¬q) = (pt #� pa¬q) ≤ (" #� 0)
⇔ pt ≤ 0 ∧ pa¬q ≤ 0 .

Hence the termination claim pt ≤ 0 is a part of the Hoare triple. It is equivalent
to p ≤ �t and expresses that the starting state must be one in which the execution
of (t #� a) is guaranteed to terminate.

Such a claim is characteristic of total correctness. Actually, the same claim is
obtained for the Hoare triple interpreted in the semiring of designs [15]. Working
with designs would then have the additional advantage of not having to deal
with the Egli-Milner order. Instead, the semantics of recursion uses the simpler
natural order of the semiring.

Another conclusion is that the Hoare triple does not express general correct-
ness adequately. To derive a more suitable correctness claim, we again look at
the concrete instance of prescriptions. The two occurrences of the precondition p
in the claim above have to be separated as in rt ≤ 0∧pa¬q ≤ 0. Now r describes
the initial states from where termination has to be guaranteed, and p describes
the initial states which do not lead to states satisfying ¬q. Partial correctness
is recovered by choosing r = 0 and total correctness by r = p, but we can now
make full use of the ‘generality’ provided by general correctness to distinguish
claims about terminating and non-terminating executions.

For prescriptions we observe that the first condition is obtained by

(" #� r)(t #� a)(" #� 0) = (rt #� ra)(" #� 0) = (rt #� 0) ≤ (" #� 0) ⇔ rt ≤ 0 ,

and the second by

(" #� p)(t #� a)¬(" #� q) = (pt #� pa¬q) ≤ (0 #� 0) ⇔ pa¬q ≤ 0 .
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Generalised to our axiomatic framework of Section 3, we thus obtain the general
correctness statement

ra0 ≤ 0 ∧ pa¬q ≤ L .

A notation analogous to Hoare triples would be a quadruple containing the pro-
gram a, the termination precondition r, the precondition p and the postcondition
q. We rather observe that the first claim ra0 ≤ 0 is equivalent to the Hoare triple
r {a} 1, which can be derived using existing Hoare calculi except for constructs
based on L or H. For these we can derive 0 {a} 1 and a ≤ H ⇒ r {a} 1 for any
a ∈ S and r ∈ test(S), thus in particular 0 {L} 1 and 1 {H} 1. For the while loop
we calculate using Theorem 6

[while p do a]1 = ¬�((∇(pa)L + (pa)∗¬p)0) = ¬(�(∇(pa)L) + �((pa)∗0)) = ¬∇(pa)

to obtain the triple ∆(pa) {while p do a} 1.
New rules are, however, necessary for the second claim pa¬q ≤ L, which we

denote by p �a� q since it amounts to ‘weak correctness’ of [26]. To see this, we
show pa¬q ≤ L ⇔ pa = paq. The forward implication follows since pa¬q ≤ L
implies pa¬q = pa0 by (L0), hence pa = paq + pa¬q = paq + pa0 = paq. The
backward implication follows since pa¬q = paq¬q = pa0 ≤ "0 = L. The rules
for weak correctness are provided by the following theorem.

Theorem 7. Let a, b ∈ S and p, q, r ∈ test(S). Then

p �0� q p �L� q q �1� q pr �1� q ⇒ p �r� q
p �a� q ∧ p �b� q ⇒ p �a + b� q p �a� q ∧ q �b� r ⇒ p �ab� r
rp �a� q ∧ ¬rp �b� q ⇒ p �ra + ¬rb� q pq �a� q ⇒ q �while p do a�¬pq

Proof. p0¬q = 0 ≤ L and pL¬q ≤ L and q1¬q = 0 ≤ L. The rule for tests is
immediate and the rule for choice follows by p(a+ b)¬q = pa¬q +pb¬q ≤ L from
its premises. Composition is calculated as

pa¬q ≤ L ∧ qb¬r ≤ L ⇒ pab¬r = paqb¬r + pa¬qb¬r ≤ paL + Lb¬r ≤ L

by Lemma 1. A consequence of the rules for 1 and tests is p �q� pq. Using this
and the rules for composition and choice we obtain the rule for the conditional.

To obtain the rule for the while loop, we first derive q �a� q ⇒ q �a∗� q. Assume
qa¬q ≤ L, then

q + (L + qa∗q)a = qq + La + qa∗qaq + qa∗qa¬q ≤ qa∗q + L + qa∗L ≤ L + qa∗q

by Lemma 1, hence qa∗ ≤ L + qa∗q by star induction, thus

qa∗¬q ≤ L¬q + qa∗q¬q = "0 + qa∗0 = "0 = L .

Second, we derive pq �a� q ⇒ q �(pa)∗¬p�¬pq. This follows by the composition
rule, since q �p� pq ⇒ q �pa� q ⇒ q �(pa)∗� q and q �¬p�¬pq. Third, we have
q �∇(pa)L�¬pq by the rules for L and composition, since q �∇(pa)� q∇(pa) holds.
Apply the choice rule to these claims and Theorem 6. ��
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5 Pre-Post Specifications

Complementary to the verification approach using correctness claims that can be
derived through a calculus is the transformation approach, where specifications
are refined into implementations. Specifications given by pre- and postconditions
are well-known in total correctness and treated algebraically in [26]. In this
section we propose specifications suitable for general correctness refinement.

Our specification (r | p � q) consists of three components. One of them is
new: The termination precondition r describes the initial states from which
execution must terminate. The other two are as usual: If the precondition p holds
in the initial state, the postcondition q must be established. We axiomatise the
specification as the greatest element of S satisfying our general correctness claim
of Section 4 for tests r, p, q ∈ test(S):

r(r | p � q)0 = 0 (G1)
p(r | p � q)¬q ≤ L (G2)
rx0 = 0 ∧ px¬q ≤ L ⇒ x ≤ (r | p � q) (G3)

The greatest element leaves the greatest amount of freedom in implementation,
since x ≤ y means that x refines y. The conjunction of (G1), (G2) and (G3)
can equivalently be stated as rx0 = 0 ∧ px¬q ≤ L ⇔ x ≤ (r | p � q), thus the
specification is unique if it exists. These axioms are stated to show the intention,
but in our algebra of Section 3 we can give an explicit characterisation.

Theorem 8. Let p, q, r ∈ test(S). Then (r | p � q) = ¬rL + ¬pH + Hq.

Proof. To show that ¬rL + ¬pH + Hq satisfies (G1) and (G2), we calculate

r(¬rL + ¬pH + Hq)0 = r¬rL0 + r¬pH0 + rHq0 = 0 + r¬p0 + rH0 = 0
p(¬rL + ¬pH + Hq)¬q = p¬rL¬q + p¬pH¬q + pHq¬q ≤ L + 0 + H0 = L

by Lemma 3. For (G3), let rx0 = 0 and px¬q ≤ L. Then rx ≤ H by Lemma 3
and px = pxq as shown in Section 4. Therefore x ≤ ¬rL+¬pH+Hq follows from
the cases

prxq ≤ rxq ≤ Hq prx¬q = prxq¬q ≤ pH0 = p0 = 0
p¬rx¬q ≤ ¬rL p¬rxq ≤ ¬r"q = ¬rLq + ¬rHq ≤ ¬rL + Hq

¬prx ≤ ¬pH ¬p¬rx ≤ ¬p¬r" = ¬p¬rL + ¬p¬rH ≤ ¬rL + ¬pH

which hold by Lemma 3. ��

Thus the total correctness pre-post specification [p, q] of [26] can be recovered as
(p | p � q), where both preconditions coincide. This again characterises general
correctness by its separated treatment of the termination precondition. Further-
more, we can recover the special elements 0 = (1 | 1 � 0), " = (0 | 0 � 0),
L = (0 | 1 � 0) and H = (1 | 1 � 1). The representation in these terms is not
necessarily unique: For example, " = (0 | 1 � 1) also holds. The following two
corollaries establish basic properties of our specification elements.
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Corollary 9. (r1 | p1 � q1) + (r2 | p2 � q2) = (r1r2 | p1p2 � q1 + q2). Hence
(· | · � ·) is antitone in its first and second arguments, and isotone in its third.
Moreover, q1 ≤ r2p2 implies (r1 | p1 � q1) · (r2 | p2 � q2) ≤ (r1p1 | p1 � q2).

Proof. Let q1 ≤ r2p2, then

(r1 | p1 � q1) · (r2 | p2 � q2)
= (¬r1L + ¬p1H + Hq1) · (¬r2L + ¬p2H + Hq2)
≤ ¬r1L + ¬p1HL + ¬p1HH + Hq1¬r2L + Hq1¬p2H + HHq2
= ¬r1L + ¬p1L + ¬p1H + H0 + H0 + Hq2
= ¬(r1p1)L + ¬p1H + Hq2
= (r1p1 | p1 � q2)

by Theorem 8 and Lemmas 1, 3 and 4. The other claims are proved similarly. ��

For prescriptions, we obtain ((" #� r) | (" #� p) � (" #� q)) = (r" #� p" + "q).
Let us furthermore mention the interpretation of (r | p � p) for r ∈ {0, p, 1}.
We call such a specification an ‘invariant’ since it guarantees that p holds after
the execution if it holds before. If r = 0 or r = 1 or r = p, termination is not
guaranteed or always guaranteed or guaranteed if p holds, respectively.

Corollary 10. 1 ≤ (r | p � p) = (r | p � p)2 for p ∈ test(S) and r ∈ {0, p, 1}.

Proof. 1 = ¬p + p ≤ ¬pH + Hp ≤ (r | p � p) by Lemma 4 and Theorem 8. Thus,

(¬pH + Hp) · (¬pH + Hp) ≤ ¬pH2 + H0 + H2p = ¬pH + Hp ≤ (¬pH + Hp)2

by Lemmas 3 and 4. Moreover, (¬pH + Hp)¬rL ≤ ¬rL by Lemma 1 if r = 0, by
Lemma 3 if r = 1, and by both lemmas if r = p. Therefore,

(r | p � p)2 = (¬rL + ¬pH + Hp) · (¬rL + ¬pH + Hp)
= ¬rL + (¬pH + Hp)¬rL + (¬pH + Hp)2 = ¬rL + ¬pH + Hp = (r | p � p)

by Theorem 8 and Lemma 1. ��

The characterisation rx0 = 0 ∧ px = pxq ⇔ x ≤ (r | p � q) can be used to
axiomatise our general correctness pre-post specifications without the use of L
and H which can be added by defining them as particular specifications. While a
number of properties, such as those shown in Lemmas 1 and 3, follow from this
axiomatisation, the axioms (L0), (L1), (L2), (H1) and (H2) cannot be derived.

We can now use the specifications to algebraically state and prove a loop
introduction rule for general correctness semantics given by [12]. Note the use
of the invariant (0 | q � q).

Theorem 11. Let a ∈ S and p, q, r ∈ test(S) such that pa ≤ (0 | q � q) and
r ≤ ∆(pa). Then while p do a ≤ (r | q � q¬p).

Proof. By (G3) it remains to show r {while p do a} 1 and q �while p do a� q¬p.
The first claim is immediate from r ≤ ∆(pa) and ∆(pa) {while p do a} 1 derived
in Section 4. The second claim follows by Theorem 7 from pq �a� q, which holds
since qpa¬q ≤ q(0 | q � q)¬q ≤ L by the assumption and (G2). ��
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6 Recursion

In this section we generalise from loops to full recursion, an open issue of [24].
In particular, we show how to calculate least fixpoints with respect to the Egli-
Milner order from fixpoints with respect to the natural order.

Throughout this section let f : S → S be isotone with respect to ≤ and �,
and assume that the least fixpoint µf and the greatest fixpoint νf of f with
respect to ≤ exist. The least fixpoint of f with respect to � is denoted by ξf .

Theorem 12. Let x ∈ S, then x = ξf ⇔ µf ≤ x ≤ νf ∧ x � µf ∧ x � νf .

Proof. The forward implication is immediate since ξf is the least fixpoint with
respect to �. For the backward implication, let µf ≤ x ≤ νf∧x � µf∧x � νf . By
isotony of f we obtain µf = f(µf) ≤ f(x) ≤ f(νf) = νf and f(x) � f(µf) = µf
and f(x) � f(νf) = νf . From these facts and the assumptions we obtain:

– x � f(x) since x ≤ µf + L ≤ f(x) + L and f(x) ≤ νf ≤ x + �(x0)H.
– f(x) � x since f(x) ≤ µf + L ≤ x + L and x ≤ νf ≤ f(x) + �(f(x)0)H.

Hence x = f(x) by Lemma 5. Let y ∈ S such that y = f(y), hence µf ≤ y ≤ νf .
Then x � y since x ≤ µf + L ≤ y + L and y ≤ νf ≤ x + �(x0)H. ��

As a consequence, we can give an explicit formula for ξf .

Corollary 13. Assume ξf exists. Then x = ξf ⇔ x+L = µf +L∧x+H = νf +H
and νf ≤ µf + �(νf0)H + L and ξf = νf0 + µf .

Proof. By Theorem 12 we obtain ξf ≤ µf + L and νf ≤ ξf + �(ξf0)H ≤ ξf + H,
hence νf ≤ µf +L+�(νf0)H using ξf ≤ νf . Let x+L = µf +L and x+H = νf +H.

– µf ≤ x since µf ≤ x + L and µf ≤ νf ≤ x + H.
– x ≤ νf since x ≤ νf + H and x ≤ µf + L ≤ νf + L.
– νf ≤ x + �(x0)H + H, and νf ≤ x + �(x0)H + L since νf0 ≤ (x + H)0 = x0.

Hence µf ≤ νf ≤ x+ �(x0)H, yielding x � µf and x � νf . The first claim follows
by Theorem 12. It implies the third claim since νf0 + µf + L = µf + νf0 +"0 =
µf + "0 = µf + L and νf + H ≤ νf0 + H ≤ νf0 + µf + H ≤ νf + H by (H2). ��

Inspection of the proof reveals that ξf exists ⇔ νf ≤ µf + �(νf0)H + L. In
particular, we prove Theorem 6 by letting f(x) = pax + q. Then

νf = (pa)ω + (pa)∗q ≤ ∇(pa)" + µf ≤ µf + ∇(pa)H + L = µf + �(νf0)H + L ,

since �(νf0) = �((pa)ω0 + (pa)∗q0) = ∇(pa) + �((pa)∗0) = ∇(pa), and the least
fixpoint is ξf = νf0 + µf = (pa)ω0 + (pa)∗q0 + (pa)∗q = ∇(pa)L + (pa)∗q.

We have thus established νf0 + µf as the appropriate solution to recursion
in general correctness. The same term is appropriate also in partial correctness,
where νf0 = 0 vanishes. It is not appropriate in total correctness, however, since
it is not equal to νf in general.

Let us finally consider the instance of prescriptions again.
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Corollary 14. Assume that ξf exists and µf = (t #� a) and νf = (u #� b). Then
u � a = u � b and ξf = (u #� a).

Proof. We have u ≤ t since µf ≤ νf , hence ξf = (u #� b)(" #� 0) + (t #� a) =
(u #� 0) + (t #� a) = (u � t #� a) = (u #� a) by Corollary 13. The remaining claim
follows since (u #� a) � (u #� b) is equivalent to a ≤ b ∧ b ≤ a + u. ��

A calculation shows that ξf exists ⇔ b ≤ a + u. It thus remains to calculate the
least and greatest fixpoints for prescriptions. This can be done by the following
result similar to those of [17,15] for total correctness. We omit its proof.

Proposition 15. Let H(t #� a) = F (t #� a) #� G(t #� a) be isotone with respect
to ≤. Then νH = (Pν(Qν) #� Qν) and µH = (Pµ(Qµ) #� Qµ), where

Pν(a) = µt.F (t #� a) Rν(a) = G(Pν(a) #� a) Qν = νRν

Pµ(a) = νt.F (t #� a) Rµ(a) = G(Pµ(a) #� a) Qµ = µRµ

7 Conclusion

Our work shows how to treat general correctness algebraically, despite its ad-
ditional complexity caused by the Egli-Milner order and the finer termination
information. We have thus extended the algebraic approach already available for
partial and total correctness semantics.

Future work shall further investigate the calculus and refinement, and pro-
vide operators particularly suitable for general correctness, such as the ‘concert’
operator of [12]. Further applications arise in the area of hybrid systems [18].
We also observe that the assumption of a weak omega algebra in Sections 3–6 is
only essential for " and the results concerning while loops.

Acknowledgement. I thank the anonymous referees for their valuable remarks
and helpful suggestions.
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Abstract. A Concurrent Kleene Algebra offers two composition opera-
tors, one that stands for sequential execution and the other for concurrent
execution [10]. In this paper we investigate the abstract background of
this law in terms of independence relations on which a concrete trace
model of the algebra is based. Moreover, we show the interdependence
of the basic properties of such relations and two further laws that are
essential in the application of the algebra to a Jones style rely/guarantee
calculus. Finally we reconstruct the trace model in a more abstract set-
ting based on the notion of atoms from lattice theory.

1 Introduction

A Concurrent Kleene Algebra (CKA) is one which offers two composition op-
erators, one that stands for sequential execution and the other for concur-
rent execution. They are related by an inequational form of the exchange law
(a ◦ b) • (c ◦ d) = (a • c) ◦ (b • d) of two-category or bicategory theory (e.g. [16]).

The applicability of the algebra to a partially-ordered trace model of program
execution semantics and to the validation familiar proof rules for sequential pro-
grams (Hoare triples) and for concurrent programming (Jones’s rely/guarantee
calculus) is shown in [10]. The mentioned trace model is based on a dependence
relation between atomic events.

In the present paper we investigate how the laws of concurrent Kleene algebra
reflect this relation; we show that two central laws are equivalent to its transi-
tivity and acyclicity, resp. The traces obeying a generalised version of the second
law are characterised in terms of convexity w.r.t the dependence relation. More-
over we introduce the notion of an event-based concurrent Kleene algebra which
is a more abstract version of the concrete trace model, based on the notions of
atoms and irreducible elements. We show that in such algebras the dependence
relation can be recovered from the operations of sequential and concurrent com-
position. Most of our reasoning has been checked by computer using the system
Prover9/Mace4 [17]. A collection of input files and proofs can be found under
http://www.dcs.shef.ac.uk/~georg/ka/

Sect. 2 summarises the definitions of the trace model and its essential opera-
tors. In Sect. 3 we develop an abstract calculus of independence relations, both
in formulas and diagrammatic rules. Sect. 4 presents quantales as a fundamental
structure and gives the axiomatisation of CKAs in terms of quantales. Sect. 5
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gives a definition of invariants as used in the mentioned rely/guarantee calculus.
In Sect. 6 we establish the equivalence of two fundamental laws with (weak)
acyclicity and transitivity of the basic dependence relation. Sect. 7 presents a
simplified rely/guarantee calculus. Finally, Sect. 8 develops the notion of event-
based CKAS and reconstructs the trace model and the dependence relation in
terms of that notion. Appendix A summarises the laws characterising the various
structures involved.

2 Operations on Traces and Programs

In this section we present a concrete model of Concurrent Kleene Algebra which
serves as a motivation of the abstract algebraic treatment in the later sections.

We assume a set EV of event occurrences together with a dependence relation
→ ⊆ EV × EV between them: e → f indicates occurrence of a data flow or
control flow from event e to event f .

Definition 2.1. A trace is a set of events; the set of all traces over EV is
TR(EV ) =df P(EV ). A program is a set of traces; the set of all programs is
PR(EV ) =df P(TR(EV )).

We deliberately keep the definition of traces and programs so liberal to accom-
modate systems with very loose coupling of events; “conventional” linear traces
can, e.g., be obtained by including time stamps into the events and defining the
dependence relation such that it respects time.

Examples of very simple programs are the following. The program skip, which
does nothing, is defined as {∅}, and the program [e], which does only e ∈ EV , is
{{e}}. The program false =df ∅ has no traces, and therefore cannot be executed
at all. It serves the rôle of the ‘miracle’ [18] in the development of programs by
stepwise refinement.

Following [11] we will define four operators on programs P and Q:

P ∗ Q fine-grain concurrent composition, allowing dependences between
P and Q;

P ; Q weak sequential composition, forbidding dependence of P on Q;
P ‖Q disjoint parallel composition, with no dependence in either direc-

tion;
P %&Q alternation – only one of P or Q is executed, if at all; details will

be given below.
To express the restrictions in this list we introduce the following independence
relation.

Definition 2.2. For traces tp, tq we define the independence relation by

tp �← tq ⇔df ¬∃ p ∈ tp, q ∈ tq : q → p .

Viewing tp as a set of events that should occur before all the ones in tq, one can
read tp �← tq as the requirement that tp must not depend on its “future” tq.
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Now, for each operator ◦ ∈ {∗, ;, ‖, ()} we define an associated binary relation
(◦) between traces such that for programs P, Q we can define generically

P ◦ Q =df {tp ∪ tq | tp ∈ P ∧ tq ∈ Q ∧ tp (◦) tq} . (1)

From this definition it is immediate that ◦ distributes through arbitrary unions
of families of programs and hence is ⊆-isotone and false-strict, i.e., false◦P =
false = P ◦ false. Moreover, skip is a neutral element for ◦, i.e.,

skip ◦ P = P = P ◦ skip . (2)

Finally, if (◦) is symmetric then ◦ is commutative.
Now the above informal descriptions are captured by the definitions

tp (∗) tq ⇔df tp ∩ tq = ∅ ,
tp (;) tq ⇔df tp (∗) tq ∧ tp �← tq ,
tp (‖) tq ⇔df tp (;) tq ∧ tq �← tp ,
tp (()) tq ⇔df tp = ∅ ∨ tq = ∅ .

It is clear that (()) ⊆ (‖) ⊆ (;) ⊆ (∗) and that (∗), (‖) and (()) are symmetric.
Another essential operator is the union operator which again is ⊆-isotone and

distributes through arbitrary unions. However, it is not false-strict.
By the Tarski-Kleene fixpoint theorems hence all recursion equations involving

only the operations mentioned have ⊆-least solutions which can be approximated
by the familiar fixpoint iteration starting from false. Use of union in such a
recursion enables non-trivial least fixpoints.

3 Independence Calculus and Exchange Laws

To prove the most essential laws about the interaction of our operators we now
give a slightly more abstract treatment. We start by observing that an equivalent
relation-algebraic formulation of the independence relation �← is tp �← tq ⇔
tp× tq ∩ →˘ = ∅, where →˘ is the converse of →. By straightforward set theory
this entails

(tp ∪ tq) �← tr ⇔ tp �← tr ∧ tq �← tr ,
tp �← (tq ∪ tr) ⇔ tp �← tq ∧ tp �← tr .

It turns out that these bilinearity properties are the essence of the characteristic
laws about the interplay of our various operators. This motivates the following
definition.

Definition 3.1. An aggregation algebra is a structure (A, +) consisting of a set
A and a binary operation + : A × A → A. An independence relation on an
aggregation algebra is a bilinear relation R ⊆ A × A, i.e.,

(p + q)R r ⇔ p R r ∧ q R r ,

p R (q + r) ⇔ p R q ∧ p R r .
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In our example of traces and programs, A would be the set of traces and +
would be trace union. For now, we will however consider an aggregation algebra
as absolutely free, i.e., + need not satisfy any laws. Later we will need aggregation
algebras that are (commutative) semigroups or monoids. The first condition on
R says that an aggregate p + q is independent of r iff both its parts p and q
are independent of r. The second condition says that p is independent of the
aggregate q + r iff it is independent of both its parts, q and r. An independence
relation on (TR(EV ),∪) is �←.

We can visualise the independence conditions by the following diagrams.

q

p

r ⇔
q

p

r

r

q

p ⇔
r

q

p

The ovals display aggregates. The letters in the ovals represent the entities that
form their parts. In the first diagram, the oval around p and q denotes the aggre-
gate p + q. The arrow-like symbols denote the independence relation R, where
the sign [ means that any flow of dependence is blocked there. In the leftmost
diagram, the arrow relates the aggregate p + q to r, hence the aggregate formed
by p and q is independent of r. In its neighbour diagram, there is no aggregate
and both p and q are related to r, hence independent of r. The equivalence be-
tween the diagrams visualises the first bilinearity law. Analogous remarks apply
to the second pair of diagrams.

An important tool for a uniform treatment of our operators from Sect. 2 is
the following lemma, whose proof is straightforward.

Lemma 3.2
1. The set of independence relations on an aggregation algebra is closed under

intersection.
2. The relations (∗), (;), (‖) and (()) are independence relations on (TR(EV ),∪).

We now consider the interplay of two independence relations R and S on an
aggregation algebra A.

Lemma 3.3. Let R and S be independence relations on an aggregation algebra
(A, +) such that R ⊆ S. Then
1. (p + q)R r ∧ p S q ⇒ p S (q + r) ∧ q R r.
2. p R (q + r) ∧ q S r ⇒ (p + q)S r ∧ p R q.

Proof.

(p + q)R r ∧ p S q ⇔ p R r ∧ q R r ∧ p S q

⇒ p S r ∧ q R r ∧ p S q

⇔ q R r ∧ p S (q + r).
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p R (q + r) ∧ q S r ⇔ p R q ∧ p R r ∧ q S r

⇒ p R q ∧ p S r ∧ q S r

⇔ p R q ∧ (p + q)S r. ��

Obviously, we now must introduce two different kinds of arrows in diagrams.
The first law can be visualised as

q rp⇒p q r

The second law looks similar. A diagrammatic proof of the first law is

q

p

r ⇔

q

p

r ⇒

r

q

p ⇔
r

q

p

A simple consequence is the following.

Corollary 3.4. Let R be an independence relation on an aggregation algebra
(A, +). Then

(p + q)R r ∧ p R q ⇔ q R r ∧ p R (q + r).

q rp⇔p q r

Proof. Set S = R in Lemma 3.3. ��

We can also prove the following exchange laws which are crucial for concurrent
Kleene algebra.

Theorem 3.5. Let R and S be independence relations on an aggregation algebra
(A, +) such that R ⊆ S and S is symmetric. Then

(p + q)R (r + s) ∧ p S q ∧ r S s ⇒ p R r ∧ q R s ∧ (p + r)S (q + s) .

Proof.

(p + q)R (r + s) ∧ p S q ∧ r S s

⇔ p R r ∧ q R r ∧ p R s ∧ q R s ∧ p S q ∧ r S s

⇒ p R r ∧ q S r ∧ p S s ∧ q R s ∧ p S q ∧ r S s

⇒ p R r ∧ q R s ∧ r S q ∧ (p + r)S (s) ∧ p S q

⇒ p R r ∧ q R s ∧ (p + r)S (q) ∧ (p + r)S (s)
⇔ p R r ∧ q R s ∧ (p + r)S (q + s) . ��
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The diagrammatic statement of the exchange law (neglecting hypotheses) is

q

p r

s

⇒
p r

q s

A diagrammatic proof is

q

p r

s

⇔
q

p

s

r

⇒
q

p

s

r

⇔
p r

q s

As immediately obvious from the diagrams, the hypotheses also entail

(p + q)R (r + s) ∧ p S q ∧ r S s ⇒ p R s ∧ q R r ∧ (p + s)S (q + r) . (3)

The proofs in this section, logical and diagrammatical, are only intended to give
a flavour of the approach. In fact, the former ones have all been automated,
hence formally verified, with Prover9 [17] and could as well have been omitted.
Proofs at this level of complexity present no obstacle to ATP systems.

We now apply our results to our special aggregation algebra (TR(EV ),∪).

Lemma 3.6. Let ◦, • ∈ {∗, ;, ‖, ()}.
1. If (•) ⊆ (◦) and (◦) is symmetric then (P ◦Q)• (R ◦S) ⊆ (P •R)◦ (Q•S).
2. If (•) ⊆ (◦) then (P ◦Q) •R ⊆ P ◦ (Q •R) and P • (Q ◦R) ⊆ (P •Q) ◦R.
3. ◦ is associative.

Proof.
1. For traces tp ∈ P, tq ∈ Q, tr ∈ R, ts ∈ S we have by (1) and Theorem 3.5

(tp ∪ tq) ∪ (tr ∪ ts) ∈ (P ◦ Q) • (R ◦ S)
⇔ tp(◦)tq ∧ tr(◦)ts ∧ (tp ∪ tq))(•)(tr ∪ ts)
⇒ tp(•)tr ∧ tq(•)ts ∧ (tp ∪ tr))(◦)(tq ∪ ts)
⇔ (tp ∪ tr) ∪ (tq ∪ ts) ∈ (P • R) ◦ (Q • S) .

Since (tp ∪ tq) ∪ (tr ∪ ts) = (tp ∪ tr) ∪ (tq ∪ ts), we are done.
2. Similar to the proof of Part 1, using Lemma 3.3.
3. Use the two previous laws with • = ◦. ��

A particularly important special case of Part 1 is the exchange law

(P ∗ Q) ; (R ∗ S) ⊆ (P ; R) ∗ (Q ; S) . (4)

In the remainder of this paper we shall no longer deal with the less interesting
operators ‖ and %& .



172 C.A.R. Hoare et al.

4 Quantales and Concurrent Kleene Algebras

We now abstract further from the concrete example of traces and programs.

Definition 4.1. A semiring is a structure (S, +, 0, ·, 1) such that (S, +, 0) is a
commutative monoid, (S, ·, 1) is a monoid, multiplication distributes over ad-
dition in both arguments and 0 is a left and right annihilator with respect to
multiplication (a · 0 = 0 = 0 · a). A semiring is idempotent if its addition is.

In an idempotent semiring, the relation ≤ defined by a ≤ b ⇔df a + b = b is a
partial ordering, in fact the only partial ordering on S for which 0 is the least
element and for which addition and multiplication are isotone in both arguments.
It is therefore called the natural ordering on S. This makes S into a semilattice
with addition as join and least element 0.

Definition 4.2. A quantale [19] or standard Kleene algebra [5] is an idempotent
semiring that is a complete lattice under the natural order and in which com-
position distributes over arbitrary suprema. The infimum and the supremum of
a subset T are denoted by � T and � T , respectively. Their binary variants are
x � y and x � y (the latter coinciding with x + y).

Let now PR(EV ) denote the set of all programs over the event set EV . From
the observations in Sect. 2 the following is immediate:

Lemma 4.3. (PR(EV ),∪, false, ∗, skip) and (PR(EV ),∪, false, ; , skip) both are
quantales.

In a quantale S, finite and infinite iteration ∗ and ω are defined by

a∗ = µx . 1 + a · x , aω = νx . a · x ,

where µ and ν denote the least and greatest fixpoint operators. The star used
here is not to be confused with the separation operator ∗ above; it should also
be noted that aω in [1] corresponds to a∗ + aω in the quantale setting.

It is well known that then (S, +, ·, 0, 1, ∗) forms a Kleene algebra [14]. From
this we obtain many useful laws for free. As instances we mention

a∗ ·a∗ = (a∗)∗ = a∗ , (a · b)∗ ·a = a · (b ·a)∗ , (a+ b)∗ = a∗ · (b ·a∗)∗ .

Since in a quantale the function defining star is continuous, Kleene’s fixpoint
theorem shows that a∗ =

⊔
i∈N ai. Moreover, we have the star induction rules

b + a · x ≤ x ⇒ a∗ · b ≤ x , b + x · a ≤ x ⇒ b · a∗ ≤ x . (5)

Hence in (PR(EV ),∪, false, ∗, skip) and (PR(EV ),∪, false, ; , skip) the program
P ∗ consists of all finite disjoint unions and all finite sequential compositions of
traces in P , resp. In the latter case P ∗ is denoted by P∞ in [11].
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If, in addition, the complete lattice (S,≤) in a quantale is completely distribu-
tive, i.e., if + distributes over arbitrary infima, then (S, +, ·, 0, 1, ∗, ω) forms an
omega algebra [4]. Again this entails many useful laws, e.g.,

(a · b)ω = a · (b · a)ω , (a + b)ω = aω + a∗ · b · (a + b)ω .

Since PR(EV ) is a power set lattice, it is completely distributive. Hence both
program quantales also admit infinite iteration with all its laws. The infinite
iteration ω in (PR(EV ),∪, false, ∗, skip) is similar to the unbounded parallel
spawning !P in the π-calculus [22]. The abstract combination of two quantales
leads to the following definition [10].

Definition 4.4. A concurrent Kleene algebra(CKA) is a structure (S, +, 0, ∗, ; , 1)
such that (S, +, ∗, 0, 1) and (S, +, ; , 0, 1) are quantales linked by the exchange
axiom

(a ∗ b) ; (c ∗ d) ≤ (b ; c) ∗ (a ; d) .

Compared with the original exchange law (4) this one has its free variables in a
different order. This does no harm, since the concrete ∗ operator on programs is
commutative and hence satisfies the above law as well. Hence we have

Corollary 4.5. (PR(EV ),∪, false, ∗, ; , skip) is a CKA.

The reason for our formulation of the exchange axiom here is that this form of
the law implies commutativity of ∗ as well as a ; b ≤ a ∗ b and hence saves two
axioms. We list some important consequences of this axiomatisation; the proofs
are given in [10].

Lemma 4.6. In a CKA the following laws hold.
1. a ∗ b = b ∗ a.
2. (a ∗ b) ; (c ∗ d) ≤ (a ; c) ∗ (b ; d).
3. a ; b ≤ a ∗ b.
4. (a ∗ b) ; c ≤ a ∗ (b ; c).
5. a ; (b ∗ c) ≤ (a ; b) ∗ c.

5 Invariants

For the further development we need to deal with the set of events a program
may use.

Definition 5.1. A power invariant is a program R of the form R = P(E) for a
set E ⊆ EV of events.

It consists of all possible traces that can be formed from events in E and hence
is the most general program using only those events. The smallest power invari-
ant is skip = P(∅). The term “invariant” expresses that often a program relies
(whence the name R) on the assumption that its environment only uses events
from a particular subset, i.e., preserves the invariant of staying in that set. We
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will now investigate the properties of power invariants and, later on, of their
abstract counterparts.

To this end we want to define a function that forms from a program the
smallest power invariant containing it. We denote, for a program P , by |P | =df⋃

P the set of all events occurring in traces of P ; when convenient, |P | can also
be considered as a trace.

It is straightforward to check that | | distributes through arbitrary unions.
Hence it has an upper adjoint F , defined by the Galois connection

P ⊆ F (X) ⇔ |P | ⊆ X .

This entails F (X) = P(X) and |P(X)| = X . Moreover, as adjoints of a Galois
connection, P( ) and | | are ⊆-isotone. Setting X = |P | we obtain P ⊆ P(|P |).
Finally, for X, Y ⊆ EV we have P(X) ⊆ P(Y ) ⇔ X ⊆ Y .

Motivated by the above remarks we now define INV(P ) =df P(|P |). Then
INV(P ) is the most general program that can be formed from the events of P .
As a composition of isotone functions, INV is isotone again.

We now prepare for our abstract notion of invariants. An invariant is a pro-
gram R with R = INV(R). In particular, every invariant in our concrete CKA
of programs is a power invariant. In general CKAs we will replace INV by a
suitable abstract operator the properties of which will be discussed below. The
definition implies that invariants are fixpoints of an isotone function and hence
form a complete lattice under the inclusion order.

The operation ∇ from [11] and INV are interrelated. To this end we set
SINGLES(P ) =df {{e} : {e} ∈ P}. Then

INV(SINGLES(Q)) = Q∇Q , Q∇R = INV(SINGLES(Q ∪ R)) .

We shall use INV, since it leads to simpler and more intuitive formulations.
We give a few useful properties of INV.

Theorem 5.2

1. INV(P ) is the smallest invariant containing P .
2. INV(INV(P )) = INV(P ); hence INV(P ) is an invariant.
3. INV is a closure operator.
4. skip ⊆ INV(P ).
5. INV(P ∗ Q) ⊆ INV(P ∪ Q).

Proof.

1. We have already seen above that P ⊆ INV(P ). Let S be another invari-
ant with P ⊆ S. Then, by isotony of INV and the definition of invariants,
INV(P ) ⊆ INV(S) = S.

2. Since, as remarked above, |P(X)| = X , we have

INV(INV(P )) = P(|P(|P |)|) = P(|P |) = INV(P ) .

3. By Part 1 INV is extensive. By the Galois connection it is isotone and by
Part 2 it is idempotent.
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4. Immediate from the definition of INV.
5. By the definition of ∗ we have |P ∗ Q| ⊆ |P ∪ Q| and the property follows

by isotony of P . ��

Since INV is a closure operator we have the following (see e.g. [3]).

Corollary 5.3. For a set R of power invariants,
⋂
R and INV(

⋃
R) are the

meet and join of R in the complete lattice of invariants, resp.

We now again abstract from the concrete case of programs and use the fact
that INV is a closure and Parts 4 and 5 of Theorem 5.2 as the characteristics of
abstract invariants, since these properties suffice to prove the results about the
rely/guarantee calculus in Section 7 we are after.

Definition 5.4. A CKA with invariants is a structure (S, +, 0, ∗, ; , 1, ι ) such
that (S, +, 0, ∗, ; , 1) is a CKA and ι : S → S is a closure operator that addi-
tionally satisfies, for all a, b ∈ S,

1 ≤ ι a , ι (a ∗ b) ≤ ι (a + b) .

An invariant is an element a ∈ S with ι a = a.

In [10] a more specific view of invariants is taken: there an invariant is an element
r with 1 ≤ r and r ∗ r ≤ r, which are the properties of invariants shown in
Theorem 5.6 below. This entails that the invariants are precisely the fixpoints of
the finite iteration operator ∗ w.r.t. concurrent composition ∗. This still allows
proving many of the above properties, but does not characterise power invariants
and hence is not adequate for all purposes. However, we have the following
connection.

Lemma 5.5. Defining in a CKA ι a =df a∗ makes it a CKA with invariants.

Proof. By standard Kleene algebra ∗ is a closure operator with 1 ≤ a∗. The
remaining axiom is shown by star induction (5) and isotony as follows:

(a ∗ b)∗ ≤ (a + b)∗ ⇐ 1 + a ∗ b ∗ (a + b)∗ ≤ (a + b)∗ ⇐
1 ≤ (a + b)∗ ∧ (a + b) ∗ (a + b) ∗ (a + b)∗ ≤ (a + b)∗ ⇔ TRUE . ��

Again it is clear that the invariants in the abstract sense form a complete lattice
with properties analogous to those of Corollary 5.3. Moreover, one has the usual
Galois connection for closures (e.g. [7]):

a ≤ ι b ⇔ ι a ≤ ι b . (6)

With this definition we can give a uniform abstract proof of idempotence of
operators on invariants.

Theorem 5.6. Consider a CKA S with invariants. Let ◦ be an isotone binary
operation on S that has 1 as neutral element and satisfies ∀ a, b : ι (a ◦ b) ⊆
ι (a + b). Then for invariant r we have r ◦ r = r.
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Proof. We first show r ◦r ≤ r. By extensivity of ι , the assumption and r+r = r
as well as invaraince of r we have r ◦ r ⊆ ι (r ◦ r) ⊆ ι r = r. The converse
inclusion is shown by r = r ◦ 1 ≤ r ◦ r, using neutrality of 1, the axiom 1 ≤ ι a
and isotony of ◦. ��

The original motivation for discussing invariants was that they should allow
guaranteeing that a program only uses events from a given admissible set. To
this end we define a guarantee relation, slightly more liberally than [11], by

a guar b ⇔df ι a ≤ ι b .

Since ι as a closure is extensive, isotone and idempotent, the right hand side is
equivalent to a ≤ ι b. If b is an invariant, i.e., b = ι b, we obtain by (6)

a guar b ⇔ ι a ≤ ι b ⇔ a ≤ ι b ⇔ a ≤ b .

We have the following properties.

Theorem 5.7

1. If g is an invariant then 1 guar g.
2. If g, g′ are invariants and ◦ is again an isotone binary operation satisfying

∀ a, b : ι (a ◦ b) ≤ ι (a + b) then

b guar g ∧ b′ guar g′ ⇒ (b ◦ b′) guar (g + g′) .

3. For the concrete case of programs, [e] guar G ⇔ e ∈ |G|.

Proof.

1. Immediate from the axioms and the above remark on guar.
2. b guar g ∧ b′ guar g′

⇔ {[ above remark on guar ]}
ι b ≤ g ∧ ι b′ ≤ g′

⇒ {[ isotony of + ]}
ι b + ι b′ ≤ g + g′

⇒ {[ isotony of ι ]}
ι (b + b′) ≤ g + g′

⇒ {[ assumption about ◦ ]}
ι (b ◦ b′) ≤ g + g′

⇔ {[ extensivity of ι ]}
ι (b ◦ b′) ≤ ι (g + g′)

⇔ {[ definition ]}
(b ◦ b′) guar (g + g′) .

3. By the definitions and the Galois connection for | |,
[e] guar G ⇔ INV([e]) ⊆ INV(G) ⇔ {e} ⊆ INV(G) ⇔ e ∈ |G| . ��
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6 Characterising Dependence

In [10] it is shown that the definitions of ∗ and ; for concrete programs in terms
of the transitive closure →+ of the dependence relation → entail two important
further laws that are essential for the rely/guarantee calculus to be presented
below:

Theorem 6.1. Let R = P(E) be a power invariant in PR(EV ).
1. If → is acyclic and e ∈ EV then

R ∗ [e] ⊆ R ; [e] ; R .

2. If → is transitive then for all P, Q ∈ PR(EV ) we have

R ∗ (P ; Q) ⊆ (R ∗ P ) ; (R ∗ Q) .

This means that the two properties of Theorem 6.1 hold if → is a strict-order.
But in fact, in a sense also the reverse implication holds. To formulate it we need
a further notion.

Definition 6.2. We call → weakly acyclic if for all events e, f ,

e →+ f →+ e ⇒ f = e ,

and weakly transitive if

e → f → g ⇒ (e = g ∨ e → g) .

Weak acyclicity means that → may at most have immediate self-loops (which
cannot be “detected” by the ; operator, since it is defined in terms of distinct
events only).

Theorem 6.3. Let [e] be again the single-event program {{e}}.

1. If R ∗ [e] ⊆ R ; [e] ; R is valid for all power invariants R and events e then
→ is weakly acyclic.

2. If R ∗ (P ; Q) ⊆ (R ∗ P ) ; (R ∗ Q) is valid for all power invariants R and
programs P, Q then → is weakly transitive.

Proof of Part 2.
Assume events p, q, r with q → r and r → p but q �→ p. This implies q �= r and
r �= p. Assume now p �= q and set P =df [p], Q =df [q] and R =df [ ]∪ [r]. Then
P ;Q = [p, q] and R∗ (P ;Q) = [p, q]∪ [r, p, q]. Moreover, R∗P = [p]∪ [r, p] and
R ∗ Q = [q] ∪ [r, q], hence (R ∗ P ) ; (R ∗ Q) = [p, q] contradicting the assumed
property. Therefore we must have p ← q. ��
We abstract this into the following

Definition 6.4. A CKA S with invariants is ∗-distributive if all invariants r
and all a, b ∈ S satisfy

r ∗ (a ; b) ≤ (r ∗ a) ; (r ∗ b) .
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We still have to prove Part 1. Rather than doing this directly we investigate a
slightly more general property which is equivalent to an interesting property of
traces more general than single-event ones.

Definition 6.5. A trace tp is convex if for all events p, q ∈ tp and arbitrary
event f we have

p →+ f →+ q ⇒ f ∈ tp .

A convex trace can be considered as “closed” under dependence.
For the following lemma we introduce the auxiliary function dep(tp) =df

{q | ∃ p ∈ tp : q →+ p} on traces tp. Hence dep(tp) consists of all events on which
some event of tp depends. Then we have

Lemma 6.6. Let tp be a trace and assume that R ∗ {tp} ⊆ R ; {tp} ; R holds
for all power invariants R.

1. Dependence between a trace and any event outside occurs at most in one
direction, i.e., for any event f �∈ tp we have

tp ∩ dep({f}) = ∅ ∨ {f} ∩ dep(tp) = ∅ .

2. As a consequence, tp is convex.

Proof.

1. Set R =df P({f}). By assumption the trace tr = {f} ∈ R can be split as
tr = tr ′ ; tr ′′ such that tr ∗ tp = tr ′ ; tp ; tr ′′.
Case 1: tr ′ = {f} ∧ tr ′′ = ∅. Hence tr ∗ tp = {f} ; tp. This implies {f} ∩
dep(tp) = ∅.
Case 2: tr ′ = ∅ ∧ tr ′′ = {f}. Hence tr ∗ tp = tp ; {f}. This implies tp ∩
dep({f}) = ∅.

2. Suppose f �∈ tp. The premise p →+ f implies p ∈ tp ∩ dep({f}) while
f →+ q implies f ∈ {f} ∩ dep(tp). In particular, both sets are non-empty,
contradicting Part 1. ��

The case of singleton traces is covered as follows:

Lemma 6.7. All traces {e} are convex iff → is weakly acyclic.

Proof. (⇒ ) Assume e →+ f →+ e. Then by the assumed convexity of {e} we
get f ∈ {e}, i.e., f = e.

(⇐ ) Assume p →+ f →+ q for p, q ∈ {e}, i.e., e →+ f →+ e. Then by the
assumed weak acyclicity f = e, i.e., f ∈ {e}. ��

We now want to show that also the reverse of Lemma 6.6 holds.

Lemma 6.8. Let tp be convex. Then for all power invariants R the formula
R ∗ {tp} ⊆ R ; {tp} ; R is valid.
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Proof. Consider some tr ∈ R. We need to show {tr} ∗ {tp} ⊆ R ; {tp} ; R. The
claim holds vacuously if tp ∩ tr �= ∅. Hence assume that tp ∩ tr = ∅ and set

tr ′ =df tr ∩ dep(tp) , tr ′′ =df tr − dep(tp) .

In particular, tp ∩ tr ′ = ∅. From Lemma 6.3 of [10] we know

tr ′′ ∩ dep(tp) = tr ′′ ∩ dep(tr ′) = ∅ .

If we can show that also tp∩dep(tr ′) = ∅ we have {tr}∗{tp} = {tr ′} ;{tp} ;{tr ′′}
and are done. Therefore, suppose p ∈ tp ∩ dep(tr ′), say p →+ r for some r ∈ tr ′.
By definition of tr ′ there is a q ∈ tp with r →+ q. Since tp is assumed to be
convex, this implies r ∈ tp, a contradiction to r ∈ tr ′ and tp ∩ tr ′ = ∅. ��

Next, we consider general programs.

Definition 6.9. A program is convex if all its traces are.

Lemma 6.10. P is convex iff it satisfies for all power invariants R

R ∗ P ⊆ R ; P ; R .

Proof. (⇒ ) Immediate from the definition and Lemma 6.8.

(⇐ ) Consider traces tp ∈ P and tr ∈ R. We need to show {tr}∗{tp} ⊆ R;{tp};R.
The claim holds vacuously if tp∩tr �= ∅. Hence let tp∩tr = ∅. By the assumption
there are traces tp′ ∈ P and tr ′, tr ′′ ∈ tr with tp′∩ tr ′ = tp′∩ tr ′′ = tr ′∩ tr ′′ = ∅
and tr ′ �← tp′ ∧ tp′ �← tr ′′ ∧ tr ′ �← tr ′′ such that tp ∪ tr = tr ′ ∪ tp′ ∪ tr ′′. But by
disjointness this implies tp′ = tp and we are done. ��

These results motivate the following abstraction.

Definition 6.11. An element a of a CKA with invariants is called convex iff
for all invariants r we have r ∗ a ≤ r ; a ; r.

By b ; c ≤ b∗ c, commutativity of ∗ and idempotence of invariants (Theorem 5.6)
this inequation strengthens to an equality. This means that convex elements
behave like “atoms” w.r.t. sequentialisation. Convexity will be important for
one of the rules presented in the next section.

7 A Simplified Rely/Guarantee-Calculus

In [13] Jones has presented a calculus that considers properties of the environ-
ment on which a program wants to rely and the ones it, in turn, guarantees for the
environment. The basis of this calculus are quintuples of the form P R {{Q}}S G
which express that after a pre-history modelled by program P the program Q
when run in concurrent composition with a program satisfying the invariant R
will achieve overall history S and guarantee invariant G. In general CKAs these
quintuples can be formalised by

a r {{b}} s g ⇔df a {{r ∗ b}} s ∧ b guar g
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when r and g are invariants. They are based on the following Hoare triples:

c {{d}} e ⇔df c ; d ≤ e .

In [10] it is shown that all the standard rules for Hoare triples also hold for this
abstract version.

However, in the setting of the present paper the following type of quadruples
with an invariant r works just as well:

a r {{b}} s ⇔df a {{r ∗ b}} s .

If information about the events of a program b is needed (the rôle of g in the
original quintuples of the Jones calculus is, to a certain extent, to carry this
information), one can use the smallest invariant ι b containing b, since b guar ι b.

We give the simplified versions of the original rely/guarantee-properties; the
proofs result in a straightforward way from the ones shown in [10] by omitting
the guarantee parts.

For concurrent composition we obtain

Theorem 7.1. For invariants r, r′,

a r {{b}} s ∧ a′ r′ {{b′}} s′ ∧ b′ ≤ r ∧ b ≤ r′ ⇒
(a � a′) (r � r′) {{b ∗ b′}} (s � s′) .

For sequential composition one has

Theorem 7.2. Let, for CKA elements a, b, denote a�b their meet (which exists,
since CKAs are quantales). For invariants r, r′,

a r {{b}} s ∧ s r′ {{b′}} s′ ⇒ a (r � r′) {{b ; b′}} s′

provided b ; b′ is protected from r � r′, i.e.,

(r � r′) ∗ (b ; b′) ≤ (r ∗ b) ; (r′ ∗ b′) .

The protectedness assumption holds in particular if the underlying CKA is ∗-
distributive, since r � r′ is again an invariant and hence

(r � r′) ∗ (b ; b′) ≤ ((r � r′) ∗ b) ; (r � r′) ∗ b′) ≤ (r ∗ b) ; (r′ ∗ b′) .

Next we give rules for 1, union and convex programs.

Theorem 7.3

1. a r {{1}} s ⇔ a {{r}} s.
2. a r {{b + b′}} s ⇔ a r {{b}} s ∧ a r {{b′}} s.
3. If b is convex then a r {{b}} s ⇔ a {{r ; b ; r}} s.

Part 3 has only been given for concrete single-event programs in [10]; therefore
we give a quick proof for the abstract form here:

a r {{b}} s ⇔ a ; (r ∗ b) ⊆ s ⇔ a ; (r ; b ; r) ⊆ s ⇔ a {{r ; b ; r}} s . ��
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8 Event-Based Algebras

The definition of a CKA does not mention the dependence relation anymore.
However, in the next section, when we establish a sufficient condition for pro-
tectedness, we shall need it, even at the level of single events. Therefore we now
give algebraic characterisations of traces and events.

Throughout this section we assume a CKA S with 1 �= 0. A subatom is an
element a such that b ≤ a ⇒ b = 0 ∨ b = a. A subatom different from 0 is
called an atom.

Definition 8.1. An element t ∈ S is called a trace if it is a subatom and join-
prime, i.e., if

∀ a ∈ S : a ≤ t ⇒ a = 0 ∨ a = t ,
∀T ⊆ S : T �= ∅ ∧ t ≤ � T ⇒ ∃ a ∈ T : t ≤ a .

The set of all traces is denoted by TR(S). For b in S the set of traces of b is

TR(b) =df {a ∈ TR(S) | a ≤ b} .

By this definition 0 is a trace. The traces different from 0 would be called atoms
in lattice theory (e.g. [3]). Admitting also 0 as a trace saves a number of case
distinctions. It is immediate that every trace a is +-irreducible, i.e.,

a = b + c ⇒ b = a ∨ c = a .

Moreover, if a is a trace and b ≤ a then b is a trace again. In particular, if a ∗ b
is a trace then by Lemma 4.6(3) also a ; b is a trace.

In our concrete model the abstract traces different from 0 correspond to sin-
gleton programs.

Definition 8.2. In a CKA S we define a relation � by

a � b ⇔df ∃ c : b = a ∗ c .

To investigate its properties we need

Definition 8.3. A subset E ⊆ S is well behaved if the following conditions hold
(for a, b, c ∈ E):
(a) 1 ∈ E.
(b) E ∗ E ⊆ E.
(c) ∗ is cancellative on E, i.e., a ∗ b �= 0 ∧ a ∗ b = a ∗ c ⇒ b = c.
(d) 1 is ∗-irreducible in E, i.e., 1 = a ∗ b ⇒ a = 1 ∨ b = 1.

Lemma 8.4
1. � is a preorder, i.e., reflexive and transitive.

Assume now that E ⊆ S is well behaved. Then we have the following additional
properties.
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2. � is antisymmetric on E.
3. 1 is the �-least element of E.
4. If 0 ∈ E then it is the �-greatest element of E.

Proof.

1. Reflexivity follows by choosing c = 1 in the definition of �.
For transitivity assume a � b and b � c, say b = a ∗ d and c = b ∗ e. Then
c = (a ∗ d) ∗ e = a ∗ (d ∗ e).

2. Assume a � b and b � a. If a = 0 then b = 0 follows form the definition of
a � b, since 0 is an annihilator for ∗ . Otherwise let b = a ∗ c and a = b ∗ d.
Then a ∗ 1 = a = b ∗ d = a ∗ c ∗ d, hence 1 = c ∗ d by cancellativity. Now,
irreducibility of 1 implies c = 1 ∨ d = 1 and hence c = 1 = d, showing a = b.

3. and (4) are straightforward from the definition of �, neutrality of 1 and
annihilation of 0. ��

In our concrete model, the set E of singleton programs is well behaved and the
relation � is isomorphic to the subset relation on concrete traces.

Assume now that E is well behaved and hence � is a partial order on E. The
supremum of a subset D ⊆ E w.r.t. �, if existent, is denoted by ©∗ D.

Lemma 8.5. If 0 ∈ D ⊆ E then 0 = ©∗ D.

This is immediate from the definition of � and suprema.

Definition 8.6. Assume that E is well behaved. Then e ∈ E is called an E-
event if it is subatomic and join-prime w.r.t. �, i.e., if

∀ d ∈ E : d � e ⇒ d = 1 ∨ d = e ,
∀D ⊆ E : D �= ∅ ∧ ©∗ D exists ⇒ (t � ©∗ D ⇒ ∃ d ∈ D : t � d) .

By this definition 1 is an E-event, as is 0 if 0 ∈ E. The E-events different from
0, 1 are atoms w.r.t. � in E. Clearly, every E-event a is ∗-irreducible in E:

a = b ∗ c ⇒ b = a ∨ c = a .

To put things into perspective, we note that the order � corresponds to the well-
known divisibility order on the natural numbers and E-events play the same rôle
as the prime numbers.

Definition 8.7. A CKA S is event-based if the following properties hold:

(a) 1 is a trace.
(b) Every element is the supremum of its traces, i.e., for all a ∈ S we have

a = �TR(a).
(c) The set TR(S) of traces is well behaved. By EV (S) we denote the set of

TR(S)-events and call them the events of S. The set of events of trace t is

EV (t) =df {e ∈ EV (S) | e � t} .
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(d) The set TR(S) of traces is a complete lattice w.r.t. � and every trace is
the supremum of its events, i.e., for all t ∈ TR(S) we have t = ©∗ EV (t).

(e) For all events e we have e ∗ e = 0 and hence e ; e = 0.

For an arbitrary a ∈ S we then set EV (a) =df

⋃
t∈TR(a) EV (t).

Hence our concrete model of programs forms an event-based CKA. Event-based
CKAs are quite similar to the feature algebras developed in [12] for the descrip-
tion of product families.

The definition of an event-based CKA S immediately yields

Lemma 8.8

1. EV (0) = EV (S).
2. EV (1) = {1}.
3. For traces a, b with a ∗ b �= 0 we have EV (a ∗ b) = EV (a)∪EV (b) and hence

a ∗ b = ©∗ {a, b}.

8.1 Abstract Dependence and Protection

In this section we define an abstract counterpart to the dependence relation and
use it to give an intuitive sufficient criterion for protectedness. For it we need an
abstract formulation of the dependence relation.

Definition 8.9. We call element a sequentially independent of element b, in
signs a �← b, if a ∗ b ≤ a ; b.

The following properties are shown by straightforward calculation and, in the
last case, by Theorem 5.6:

Lemma 8.10
1. 0 �← a and a �← 0.
2. 1 �← a and a �← 1.
3. a �← c ∧ b �← c ⇒ (a + b) �← c.
4. a �← b ∧ a �← c ⇒ a �← (b + c).
5. If r is an invariant then r �← r.

Part 5 shows that for general programs this notion behaves in an unexpected
way. However, in our concrete model it works fine for singleton programs:

{tp} �← {tq} ⇔ ∀ p ∈ tp, q ∈ tq : ¬(p ← q) .

In particular, [p] �← [q] ⇔ ¬(p ← q). This motivates the following

Definition 8.11. In an event-based CKA we define the dependence relation
between events e, f by

e → f ⇔df ¬(f �← e) ⇔ f ; e �= f ∗ e .

We denote the converse of → by ← . We say that the algebra respects dependence
if e ← f ⇒ e ; f = 0.
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Lemma 8.12. Consider traces tp, tq of an event-based CKA that respects de-
pendence.
1. If p → q for some p ∈ EV (tp) and q ∈ EV (tq) then tp ; tq = 0.
2. If tp ∗ tq �= 0 then

tp �← tq ⇔ ∀ p ∈ EV (tp), q ∈ EV (tq) : p �← q .

Proof.

1. By additivity of ; we have tp ; tq = ©∗ {u ; v |u ∈ EV (tp), v ∈ EV (tq)} and
the claim follows from Lemma 8.5.

2. (⇐ ) Immediate from event-basedness and additivity of ∗ and ; .
(⇒ ) By Part 1 we have p ; q �= 0 for all p ∈ EV (tp) and q ∈ EV (tq).
Since TR(S) is assumed to be well behaved, also p ∗ q is a trace, and from
p ; q ≤ p ∗ q it follows that p ; q = p ∗ q. ��

With these prerequisites it is now possible to completely replay the proof of
Theorem 6.1 in the abstract setting of event-based CKAs; we omit the details.

9 Related Work and Outlook

Our basic model and its algebraic abstraction by CKAs reflect a non-interleaving
view of concurrency and hence rather falls into the class of partial-order models
for true concurrency, which is also shown by the discussion after Theorem 6.1.
Nevertheless, as detailed in [10], there are certain connections to interleaving-
based process algebras such as ACP, CCS, CSP, mCRL2 and the π-calculus.
Moreover, [10] provides a discussion of the relation of our approach to some to
the more prominent representatives of partial order-semantics.

Recently, Prisacariu has proposed synchronous Kleene algebra (SKA) [21].
Conceptually, it seems to be an interesting special case of ours, useful when com-
munication between threads is synchronised. Semantically, Prisacariu’s model is
based on languages formed by strings of sets of letters; e.g., a, b, cad, eb is a string.
The letters in each set model actions that are executed in parallel. Besides the
usual regular operations, an operation of synchronous parallel composition on
strings is defined similarly to a zip in functional programming, and lifted to a
complex product at the language level. It is shown that the language models
are the free algebras in the class of SKAs. At the axiomatic level, parallel com-
position interacts with sequential composition via an equational strengthening
of the exchange law (4). Our model cannot satisfy such an equational form of
the exchange law, because our sequential and concurrent compositions have the
same unit, and the exchange equation would make the compositions identical.
CKAs are more general also in that they cover also asynchronous models and
interleaving semantics. An additional minor difference is that the axiomatisation
of SKAs is purely based on Kozen’s first-order axiomatisation[14,15], and not on
quantales. Hence it can be fully treated with first-order theorem provers.

Although CKA is not a direct abstraction of the familiar concurrency calculi,
we envisage that many of them can be mapped into our basic model of programs
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and its abstraction CKA. A first experiment along these lines is a trace model
of a core subset of the π-calculus in [11]. Moreover, the study [9] shows how
to apply the trace model in a unified description of the various phenomena
arising in concurrent programs operating on shared/private and weakly/strongly
consistent memory, communicating in a synchronised or buffered way, and using
dynamic/nested and disposed/collected resources. Further studies will concern
the elaboration of these ideas.
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A Axiom Systems

For ease of reference we summarise the algebraic structures employed in the
paper.

1. A semiring is a structure (S, +, 0, ·, 1) such that (S, +, 0) is a commutative
monoid, (S, ·, 1) is a monoid, multiplication distributes over addition in both
arguments and 0 is a left and right annihilator with respect to multiplication
(a · 0 = 0 = 0 · a). A semiring is idempotent if its addition is.

2. A quantale [19] or standard Kleene algebra [5] is an idempotent semiring
that is a complete lattice under the natural order and in which composition
distributes over arbitrary suprema. The infimum and the supremum of a
subset T are denoted by � T and � T , respectively. Their binary variants
are x � y and x � y (the latter coinciding with x + y).

3. A concurrent Kleene algebra (CKA) is a structure (S,+, 0,∗, ; , 1) such that
(S, +, 0, ∗, 1) and (S, +, 0, ; , 1) are quantales linked by the exchange axiom

(a ∗ b) ; (c ∗ d) ≤ (b ; c) ∗ (a ; d) .

4. A CKA with invariants (S, +, 0, ∗, ; , 1, ι ) consists of a CKA (S, +, 0, ∗, ; , 1)
and a closure operator ι : S → S that additionally satisfies, for all a, b ∈ S,

1 ≤ ι a , ι (a ∗ b) ≤ ι (a + b) .

An invariant is an element a ∈ S with ι a = a.
5. A rely/guarantee-CKA [10] is a pair (S, I) such that S is a CKA and I ⊆ I(S)

is a set of invariants, i.e. of elements r satisfying r = r∗, such that 1 ∈ I and
for all r, r′ ∈ I also r � r′ ∈ I and r ∗ r′ ∈ I. Moreover, all r ∈ I and a, b ∈ S
have to satisfy

r ∗ (a ; b) ≤ (r ∗ a) ; (r ∗ b) .

http://www.prover9.org/
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Abstract. It is well-known that Armstrong’s inference rules are sound
and complete for functional dependencies of relational data bases and for
implication in the theory of formal concepts by Wille and Ganter. In this
paper the authors treat Armstrong’s inference rules and the implication
as (binary) relations in an upper semi lattice in a Dedekind category,
and give a relation algebraic proof of the completeness theorem for Arm-
strong’s inference rules in a Schröder category.

1 Introduction

Functional dependency, initiated by Codd[1], is the best known class of depen-
dencies, related to logical constraints, on relational databases. It is well-known
[2] that Armstrong’s inference rules [3] are sound and complete for functional
dependencies (Cf. [4]). On the other hand Wille and Ganter [5] introduced a no-
tion of implication for formal contexts (i.e. boolean valued functional data bases),
slightly different from functional dependency, and they showed that Armstrong’s
inference rules are sound and complete for implication, too.

This paper attempts to extend Armstrong’s inference rules and the implication
into appropriate relations in a Dedekind category, and to give a unified proof of
the completeness theorem for Armstrong’s inference rules in a Schröder category.

This paper is organized as follows. In section 2 we will review some basic facts
on Armstrong’s inference rules, which are main subject of the paper. In section
3 we review the definitions and basic properties of Dedekind category [6] and
Schröder category [7][8]. In section 4 an inference relation in a Dedekind category
is defined as an extension of dependency relations satisfying Armstrong’s infer-
ence rules on an upper semi-lattice. In section 5 we construct a closure system in
the sense of [9] from an arbitrary relation on a complete upper semi-lattice in a
Dedekind category. In section 6 we define two relations: the first one is an impli-
cation relation which extends Wille and Ganter’s implication relation, and the
second one is a closure operation generalizing usual closure operations used in
defining formal concepts. Moreover we show a basic relationship between them.
In the final section we give a relation algebraic proof of the completeness theo-
rem for Armstrong’s inference rules in a Schröder category with unit satisfying
the point axiom.
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2 Armstrong’s Inference Rules

Armstrong’s inference rules give a basic framework to treat the logical structure
of dependencies in an attribute set. Let A and B be subsets of an attribute set
Y . A formal expression A → B, i.e. an ordered pair of subsets A and B of Y , is
called a dependency on Y .

Armstrong’s Inference Rules:

[A1]
A ⊇ B

A → B
[A2]

A → B B → C

A → C
[A3]

A → B A → C

A → B ∪ C

Let L be a set of dependencies. A derivation from L is a nonempty sequence

{A0 → B0, A1 → B1, . . . , An → Bn}

of dependencies such that, for all k = 0, 1, . . . , n, one of the following holds:

(i) Ak ⊇ Bk ([A1]) or Ak → Bk is in L (assumption) ([A0]),
(ii) ∃i, j < k such that

[A2]
Ai → Bi Aj → Bj

Ak → Bk
, (Bi = Aj , Ak = Ai, Bk = Bj)

(iii) ∃i, j < k such that

[A3]
Ai → Bi Aj → Bj

Ak → Bk
. (Ai = Aj , Bk = Bi ∪ Bj)

A dependency A → B is provable from L, written L # A → B, if there is a
derivation {A0 → B0, A1 → B1, . . . , An → Bn} from L such that A = An and
B = Bn.

For a set L of dependencies we define for every A ⊆ Y a subset AL of Y by
AL = {y ∈ Y | L # A → y}.

Lemma 1. Let B be a finite subset of Y . Then L # A → B iff B ⊆ AL.

Proof. (→) Assume that L # A → B and let y ∈ B. Then # B → y by [A1] and
so L # A → y by [A2]. Hence y ∈ AL.

(←) Assume that B ⊆ AL. Then, for all y ∈ B, we have L # A → y by the
definition of AL and hence L # A → B by the union rule [A3], because B is
finite. �

3 Dedekind Category, Schröder Category

In this section, we recall the definition of a kind of relation category which we will
call Dedekind categories following Olivier and Serrato [6]. Dedekind categories
are equivalent to locally complete division allegories introduced in Freyd and
Scedrov [7].
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Throughout this paper, a morphism α from an object X into an object Y
in a Dedekind category (which will be defined below) will be denoted by a half
arrow, and the composite of a morphism α : X ⇁ Y followed by a morphism
β : Y ⇁ Z will be written as αβ : X ⇁ Z. Also we will denote the identity
morphism on X as idX .

Definition 1. A Dedekind category D is a category satisfying the following:

D1. [Complete Heyting Algebra]: For all pairs of objects X and Y the hom-
set D(X, Y ) consisting of all morphisms of X into Y is a complete Heyting
algebra (namely, a complete distributive lattice) with the least morphism
0XY and the greatest morphism ∇XY . Its algebraic structure will be denoted
by

D(X, Y ) = (D(X, Y ),�,�,⇒,�, 0XY ,∇XY ).

D2. [Converse]: There is given a converse operation  : D(X, Y ) → D(Y, X).
That is, for all morphisms α, α′ : X ⇁ Y , β : Y ⇁ Z, the following converse
laws hold:

(a) (αβ) = βα,
(b) (α) = α,
(c) α � α′, then α � α′.

D3. [Dedekind Formula]: For all morphisms α : X ⇁ Y , β : Y ⇁ Z and
γ : X ⇁ Z, the Dedekind formula αβ � γ � α(β � αγ) holds.

D4. [Residual Composition]: For all morphisms α : X ⇁ Y and β : Y ⇁ Z,
the residual composite α,β : X ⇁ Z is a morphism such that γ � α,β ⇐⇒
αγ � β for all morphisms γ : X ⇁ Z. �

For all morphisms α, β and γ, the following hold.

Proposition 1. If αα � idY then α(β � γ) = αβ � αγ. �

For a set of relation {αj : X ⇁ Y |j ∈ J}, we define two relations �j∈Jαj and
�j∈Jαj as follows:

�j∈Jαj = {(a, b) ∈ X × Y |∃j ∈ J, (a, b) ∈ αj},

�j∈Jαj = {(a, b) ∈ X × Y |∀j ∈ J, (a, b) ∈ αj}.

A morphism f : X ⇁ Y such that f f � idY (univalent) and idX � ff  (total)
is called a function and may be introduced as f : X → Y . In what follows, the
word relation is a synonym for morphism of a Dedekind category.

A function f : X → Y is called a surjection if f f = idY , and f is called a
injection if ff  = idX .

Next, we review some fundamental properties of residual composition [10] [11].

Proposition 2. Let α, α′ : A ⇁ B, β, β′ : B ⇁ C, γ : C ⇁ D, µ : V ⇁ B and
ρ, ρ′, ρj : V ⇁ A(j ∈ J) be relations in D. Then the following hold:
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(1) If α′ � α and β � β′ then α , β � α′ , β′.
(2) idA � α , α.
(3) α , (β , γ) = αβ , γ.
(4) If α is a function then α , β = αβ.
(5) If µ � ρ , α then ρ � µ , α. (Galois connection)
(6) ρ � (ρ , α) , α.
(7) ((ρ , α) , α) , α = ρ , α.
(8) If α and α′ are functions such that α � α′, then α = α′. �

We define four relations max(ρ; ζ), min(ρ; ζ), sup(ρ; ζ) and inf(ρ; ζ) : V ⇁ X for
two relations ρ : V ⇁ X and ζ : X ⇁ X as following:

maximum max(ρ; ζ) = ρ � (ρ , ζ),
minimum min(ρ; ζ) = ρ � (ρ , ζ),
supremum sup(ρ; ζ) = (ρ , ζ) � ((ρ , ζ) , ζ),
infimum inf(ρ; ζ) = (ρ , ζ) � ((ρ , ζ) , ζ).

The relations satisfy the following proposition.

Proposition 3. Let α : X → Y be a function, and β : X ⇁ Y and ζ : Y ⇁ Y
relations. Then the following holds.

(a) max(αβ; ζ) = α max(β; ζ) and min(αβ; ζ) = α min(β; ζ),function
(b) sup(αβ; ζ) = α sup(β; ζ) and inf(αβ; ζ) = α inf(β; ζ). �

A relation ζ : X ⇁ X is called an order if idX � ζ(reflexive), ζζ � ζ(transitive)
and ζ � ζ � idX(antisymmetric). A relation ζ : X ⇁ X is complete if sup(ρ; ζ)
is a function for any relation ρ : V ⇁ X .

A Schröder category are a particular Dedekind category whose hom-set are
complete Boolean algebras.

Definition 2. A Schröder category S is a category satisfying the following two
conditions SC1 and SC2 in addition to D2 and D3 in definition 1:

SC1.[Complete Boolean Algebra ]: For all pairs of objects X and Y the
hom-set S(X, Y ) consisting of all relations of X into Y is a complete Boolean
algebra with the least relation 0XY and the greatest relation ∇XY . Its alge-
braic structure will be denoted by

S(X, Y ) = (S(X, Y ),�,�,�,− , 0XY ,∇XY ),

where �, �, � and− denote the inclusion order, the join, the meet and the
complement of relations, respectively.

SC2.[Zero Relation]: The least relation 0XY is a zero relation, that is,
α0Y Z = 0XZ .
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4 Inference Relation

In this section, we introduce inference relations in a Dedekind category [6][11],
correspond to Armstrong’s inference rules.

Definition 3. Let ξ : X ⇁ X be a complete order and γ : X ⇁ X a relation in
a Dedekind category D. Define a relation λ = λγ : X ⇁ X as the least relation
satisfying the following four conditions:

(A0) γ � λ,
(A1) ξ � λ,
(A2) λλ � λ,
(A3) sup(λ; ξ) � λ. (union rule)

Define an ascending chain of relations

λ0 � λ1 � λ2 � · · · : X ⇁ X

by
λ0 = γ � ξ, λn+1 = λn � λnλn � sup(λn; ξ) (n ≥ 0).

Suppose that the hom-set D(X, X) satisfies the ascending chain condition. Then
there exists a natural number N such that

λN+1 = λN .

It is trivial that λ = λN satisfies (A0) - (A3).

Proposition 4. λ = λN is the least relation which satisfies (A0) - (A3).

Proof. Assume that λ′ : X ⇁ X is another relation satisfying (A0) - (A3). By
induction we will prove that λn � λ′ for all natural numbers n. It is trivial that
λ0 = γ � ξ � λ′ by (A0) and (A1). Assume λn � λ′. Then we have λnλn � λ′

by (A2), and

sup(λn; ξ) � (λn � ξ) � ξ { Def of sup }
� (λ′ � ξ) � ξ { λn � λ′ }
= sup(λ′; ξ)ξ � ξ

= sup(λ′; ξ)(ξ � ξ) { sup(λ′; ξ) : function }
= sup(λ′; ξ)ξ { ξ � ξ = ξ }
� λ′λ′ { (A3) and (A1) }
� λ′. { (A2) }

This proves λn+1 � λ′ and consequently λ � λ′. �

Proposition 5. sup(λ; ξ) � ξ, sup(λ; ξ) = max(λ; ξ) and λ = sup(λ; ξ)ξ.
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Proof

sup(λ; ξ) � λ � ξ { Def of sup }
� idX � ξ { (A1) ξ � λ }
= ξ,

sup(λ; ξ) � λ � (λ � ξ) { (A3) sup(λ; ξ) � λ (union rule) }
= max(λ; ξ) { Def of max }
� sup(λ; ξ), { λ � (λ , ξ) , ξ }

λ � sup(λ; ξ)ξ { Prop 2 }
� λλ { (A3), (A1) }
� λ. { (A2) } �

5 Closure System

In this section, we define a relation ν and prove the relation is a closure system [9].

Definition 4. Define a relation ν = νγ : I ⇁ X by

ν = ∇IX [idX � (ξγ � ξ)].

For this relation the following propositions hold. In the following proofs, we
abbreviate the expression ”Dedekind formula” by the symbol “DF”.

Proposition 6. Let α : X ⇁ Y and β : Y ⇁ X be relations. Then the identity

∇IX [idX � (α � β)] = ∇IY � (α ⇒ β)

holds.

Proof
(1) ρ � ∇IX [idX � (α � β)] → ρ � ∇IY � (α ⇒ β):
Assume ρ � ∇IX [idX � (α � β)]. Then

α �∇Y Iρ � α �∇Y I∇IX [idX � (α � β)]
= α[idX � (α � β)] { DF }
� α(α � β) { idX � (α , β) � α , β }
� β { D4 }.

Hence ρ � ∇IY � (α ⇒ β).
(2) ρ � ∇IY � (α ⇒ β) → ρ � ∇IX [idX � (α � β)]:

ρ � ∇IY � (α ⇒ β) ↔ α �∇Y Iρ � β { D4 and Prop of ⇒ }
↔ α �∇Y X(idX � ρρ) � β { ∇Y Iρ = ∇Y I(idX � ρρ) }
↔ α(idX � ρρ) � β
↔ idX � ρρ � α � β { D4 }
→ ρ = ρ(idX � ρρ) � ∇IX [idX � (α � β)]. �
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Corollary 1. If γ = pq for a pair of functions p, q : R → X, then

ν = ∇RI � (pξ ⇒ qξ).

Proof
ν = ∇IX [idX � (ξγ � ξ)] { Def of ν }

= ∇IX [idX � (ξpq � ξ)] { γ = pq }
= ∇IX [idX � (ξp � qξ)] { q : function }
= ∇IX � (pξ ⇒ qξ). { Prop 6 } �

Proposition 7. ν is a closure system.

Proof. For all relations ρ � ν we will show inf(ρ; ξ) � ν. Assume ρ � ν and set
a = inf(ρ; ξ). Then we have idX�ρρ � ξγ�ξ by Proposition 6, and aξ = ρ�ξ

and ρ � aξ since ξ is a complete order.

aρ = aρ(idX � ρρ) { ρ = ρ(idX � ρρ) }
� aaξ(ξγ � ξ) { ρ � aξ, ρ � ν }
� ξ(ξξγ � ξ) { a : function, ξ = ξξ }
= ξ[ξ � (ξγ � ξ)] { Prop 2 }
� ξγ � ξ,

idX � aa = aa { a : function }
� (aa � ξ) � ξ { Prop 2 }
= (a � aξ) � ξ { a : function }
= [a � (ρ � ξ)] � ξ { aξ = ρ � ξ }
= (aρ � ξ) � ξ { Prop 2 }
� [(ξγ � ξ) � ξ] � ξ { aρ � ξγ � ξ }
= ξγ � ξ.

Hence, this proves a � ν by Proposition 6. �

6 Closure Operation

In this section, we define a closure operation and show some propositions.

Definition 5. We define a function f : X → X by

f = inf(ξ �∇XIν; ξ).

Then f is called a closure operation [9].

For this closure operation the following propositions hold.
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Proposition 8. Let p, q : R → X be functions. Then

pq � fξ ↔ ∇RIν � pξ ⇒ qξ.

Proof

pq � fξ ↔ q � pfξ { p : function }
↔ q � (pξ � p∇XIν) � ξ { fξ = (ξ �∇XIν) � ξ }
↔ q � (pξ �∇RIν) � ξ { p∇XI = ∇RI }
↔ pξ �∇RIν � qξ { Galois connection }
↔ ∇RIν � pξ ⇒ qξ. { Prop of ⇒ } �

Lemma 2. λ � fξ.

Proof. By Proposition 4 we will show that fξ satisfies (A0) - (A3).
(A0)

ξ �∇XIν = ξ �∇XI∇IX [idX � (ξγ � ξ)] { Def of ν }
� ξ[idX � (ξγ � ξ)] { DF }
� ξ(ξγ � ξ)
� γ � ξ, { Prop 2 and D4 }

γ � (γ � ξ) � ξ { Prop 2 }
� (ξ �∇XIν) � ξ { ξ �∇XIν � γ � ξ }
= fξ. { f = inf(ξ �∇XIν; ξ) }

(A1) ξ = ξ � ξ � (ξ �∇XIν) � ξ = fξ.
(A2) As f is a closure operation, the monotonic law ξ � fξf  holds. Then we
have

ξ � fξf  ↔ f ξ � ξf  { f : function }
↔ ξf � fξ,

fξfξ � ffξξ { ξf � fξ }
� fξ. { ff = f, ξξ � ξ }

(A3) sup(fξ; ξ) = f sup(ξ; ξ) = f idX � fξ. �

Proposition 9. sup(λ; ξ) � ∇XIν.

Proof. Set s = sup(λ; ξ). Then sλ � ξ holds because of λ � sξ. Also recall
that (A0) γ � λ, (A1) ξ � λ and (A3) s � λ.

γξss � λλλs { γ � λ, ξ � λ, s � λ }
� λs { λλ � λ }
� ξ. { sλ � ξ }

Hence it follows that

s = sss
� ∇XX [idX � (ξγ � ξ)] { s � ∇XX , γξss � ξ }
� ∇XIν. { ∇XX = ∇IX∇IX } �
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Lemma 3. fξ � λ.

Proof
fξ = (ξ �∇XIν) � ξ { f : function }

� sup(λ; ξ) � ξ { Prop 5 and prop 9 }
= sup(λ; ξ)ξ { sup(λ; ξ) : function }
� λλ { (A3), (A1) }
� λ. { (A2) } �

Therefore λ = fξ and sup(λ; ξ) = f hold. Hence, the supremum of the inference
relation, introduced by Armstrong’s inference rules, and the closure operation f
are equivalent.

Next, we introduce an implication relation, and show the following proposi-
tions.

Definition 6. Let τ : I ⇁ X be a relation and uτ = idX � τ τ . Define an
implication relation δτ : X ⇁ X and a closure operation fτ : X → X by

δτ = ξuτ � ξ and fτ = inf(ξ �∇XIτ ; ξ).

For this implication relation and closure operation the following propositions
hold.

Proposition 10. δτ = fτξ and fτ = max(δτ ; ξ).

Proof
fτξ = (ξ �∇XIτ) � ξ

= ξuτ � ξ { ξ �∇XIτ = ξuτ }
= δτ , { Def of δτ }

and
max(δτ ; ξ) = max(fτξ; ξ) { δτ = fτξ }

= fτ max(ξ; ξ) { fτ : function }
= fτ . { max(ξ; ξ) = idX } �

Proposition 11. Let 0, 1, a : I → X be I-points and δa : X ⇁ X an implication
relation.

(a) If 0ξ = ∇IX , then 0δa = aξ,
(b) If 1ξ = ∇IX and a � 1 = 0IX , then 1δ

a = aξ−.

Proof
(a)

0δa = 0(ξaa � ξ) { ua = aa by a : function }
= 0ξaa � ξ { 0 : function }
= ∇IXaa � ξ { 0ξ = ∇IX }
= a � ξ { a∇XI = idI }
= aξ. { a : function }



196 T. Ishida, K. Honda, and Y. Kawahara

(b)
1δ

a = 1(ξaa � ξ)

= (ξaa � ξ1)

1ξ = 1ξ �∇IX = 1ξ � 1ξ { 1ξ = ∇IX }
= 1(ξ � ξ)

By idX � ξ and ξ � ξ � idX , 1ξ = 1.
Therefore

1δ
a = (ξaa � 1) { 1ξ = 1 by 1ξ = ∇IX }

= (ξaa1−) − { Schröder category }
= (ξa)− { a1− = idI by a � 1 = 0IX }
= (aξ)−

= aξ −. { a : I-point } �

7 Completeness Theorem for Armstrong’s Inference
Rules

In this section, we give a relation algebraic proof of the completeness theorem
for Armstrong’s inference rules in a Schröder category with unit satisfying the
point axiom.

Theorem 1 (Completeness). Assume that there exist I-points 0, 1 : I → X
such that 0ξ = ∇IX and 1ξ = 1. Then the identity

λ = �γ�δτ δτ

holds.

Proof. First note that δτ satisfies (A1) - (A3) for all relations τ .
(A1) ξ = ξ � ξ � ξuτ � ξ = δτ .
(A2)

δτ δτ = fτξfτξ { Prop 10 }
� fτfτξξ { ξ � fτξf 

τ }
= fτξ

= δτ . { Prop 10 }

(A3) sup(δτ ; ξ) = sup(fτξ; ξ) = fτ sup(ξ; ξ) = fτ idX � fτξ = δτ .

Thus for all relations τ such that (A0) γ � δτ the inclusion λ � δτ holds by
Proposition 4 and consequently we have λ � �γ�δτ δτ holds. Next we will see
the converse �γ�δτ δτ � λ.

By using the point axiom idX = �x∈Xxx we show

x(�γ�δτ δτ ) � xλ
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for all I-points x : I → X . (Set x̂ = x sup(λ; ξ). Obviously x̂ is an I-point.)
(I) x̂ = x sup(λ; ξ) = 1:

xλ = x sup(λ; ξ)ξ { Prop 5 }
= 1ξ { xsup(λ; ξ) = 1 }
= ∇IX { 1ξ = ∇IX }
- x(�γ�δτ δτ ).

(II) x̂ = x sup(λ; ξ) �= 1:
We now assume the totality condition: All nonzero relations ρ : I ⇁ X are total.
Then x̂ � 1 = 0IX holds. First we will prove γ � δx̂.

γ = (idX �∇XI∇IX)γ { ∇XX = ∇XI∇IX }
= (idX �∇XI x̂∇XX)γ { x̂ : function }
= (idX �∇XI x̂ξ)γ � (idX �∇XI x̂ξ−)γ { ∇XX = ξ � ξ − }
� δx̂. { (ii) and (iii) }

(i) xλ = 0δx̂

xλ = x sup(λ; ξ)ξ = x̂ξ = 0δx̂ by Proposition 5 and Proposition 11.
(ii)

∇XI x̂ξγ = ∇XIxλγ { sup(λ; ξ)ξ = λ }
� ∇XIxλ { γ � λ, λλ � λ }
= ∇XI0δx̂ { (i) }
� ∇XI(∇IX � ξ)δx̂ { 0 � ∇IX � ξ by ∇IX = 0ξ }
� ξδx̂ { ∇XI(∇IX , ξ) � ξ }
� δx̂. { ξ � δx̂, δx̂δx̂ � δx̂ }

(iii)

(idX �∇XI x̂ξ−)γ
= (idX �∇XI1δ

x̂)γ �∇XI∇IX { Prop 11 }
� (idX �∇XI1δ

x̂)γ �∇XI1δx̂ { ∇IX = 1ξ � 1δx̂ }
� (idX �∇XI1δ

x̂)(γ � δx̂1∇IX∇XI1δx̂) { DF }
� δx̂δx̂ { ∇XI1 : function }
� δx̂.

Hence
x(�γ�δτ δτ ) � xδx̂ { γ � δx̂ }

� xλδx̂ { idX � ξ � λ }
= 0δx̂δx̂ { (i) }
� 0δx̂ { δx̂δx̂ � δx̂ }
= xλ. { (i) } �

8 Conclusion

We present relational formulations for Armstrong’s inference rules and implica-
tion in a Dedekind category. We treat Armstrong’s inference rules and the im-
plication as (binary) relations in an upper semi lattice in a Dedekind category,
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and give a relation algebraic proof of the completeness theorem for Armstrong’s
inference rules in a Schröder category. In the future, relation calculus might
demonstrate more definitions and theorems of formal concepts. Really, it could
completely represent an algorithm of the analytic method.
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Abstract. Association rules extraction from a binary relation as well
as reasoning and information retrieval are generally based on the ini-
tial representation of the binary relation as an adjacency matrix. This
presents some inconvenience in terms of space memory and knowledge
organization. A coverage of a binary relation by a minimal number of
non enlargeable rectangles generally reduces memory space consumption
without any loss of information. It also has the advantage of organizing
objects and attributes contained in the binary relation into a concep-
tual representation. In this paper, we propose new algorithms to extract
association rules (i.e. data mining), conclusions from initial attributes
(i.e. reasoning), as well as retrieving the total objects satisfying some
initial attributes, by using only the minimal coverage. Finally we pro-
pose an incremental approximate algorithm to update a binary relation
organized as a set of non enlargeable rectangles. Two main operations are
mostly used during the organization process: First, separation of existing
rectangles when we delete some pairs. Second, join of rectangles when
common properties are discovered, after addition or removal of elements
from a binary context. The objective is the minimization of the number
of rectangles and the maximization of their structure. The article also
raises the problems of equational modeling of the minimization criteria,
as well as incrementally providing equations to maintain them.

Keywords: Formal Concept Analysis, Minimal representation, Galois
Connection.

1 Introduction

Decomposition of binary relations into non enlargeable rectangles emerges in
several contexts, including formal concept analysis, relational algebra and graph
theory [1]. However, relational algebra offers more accurate relational equations
to describe optimal decompositions. A binary relation is also central in the defi-
nition of a formal concept analysis [2,3], where the triplet (D, R, T ), built from
a set of objects D, a set of attributes T , and a relation R linking objects to
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attributes, is very useful for data analysis and classification. For several years,
studies of minimal decomposition with non enlargeable rectangles have been
done concurrently with minimal knowledge representation of a binary context
done in the field of formal concept analysis. These two views are first related in
the papers of Belohlavek and Vychodil [4], and Kcherif et. al. [5]. Minimal rect-
angular representation of a binary relation R has several advantages. First, it
offers the possibility of representing a binary relation R with less memory space.
Second, each non enlargeable rectangle represents a class of maximal number
of objects (i.e. the domain of the rectangle) sharing a maximal number of at-
tributes (i.e. the range of the rectangle), all together these rectangles represent
a pyramidal classification of the relation R. Third, the minimal representation
represents a coverage of the initial binary relation, therefore it is always possi-
ble to generate any other non enlargeable rectangle from the minimal coverage
without reusing the initial relation. In this paper, we propose an exact algo-
rithm to map a Galois Connection [6] through any representation of a binary
relation with non enlargeable rectangles. We also propose an exact algorithm
to find additional attributes starting from initial subset of attributes, and to
find all objects satisfying some query through the minimal rectangular decom-
position [7,8,9]. Finally, we propose an incremental approximate algorithm for
restructuring the minimal representation when we add or remove some pairs,
attributes or objects. Working on a rectangular representation is also useful for
experimenting a new model for information representation, similar to semantic
and neural networks, but original because here, we will try to minimize the num-
ber of non enlargeable rectangles. We show that two operations are necessary
to maintain the equilibrium of the rectangular system: separation, and join of
rectangles. These operations allow us to maintain approximately some minimal
representation by non enlargeable rectangles.

In the next section, we define some relational algebraic background; after-
wards, we present the definition of minimal rectangular decomposition of a bi-
nary relation. In section 5, we make the link between information retrieval and
knowledge engineering through maximal rectangular representation. We then
develop an algorithm implementing Galois connection through a minimal rect-
angular coverage, later, in section 6, we derive an approximate algorithm for
incremental organization of the rectangular coverage.

2 Preliminary Concepts

2.1 Binary Relations

A binary relation R between two finite sets D and T is a subset of the Cartesian
product D × T . An element in R is denoted by (e, e′), where e′ denotes an image
of e by R. For a binary relation, we associate the following subsets [10]:

– The set of images of e is defined by : e.R = {e′|(e, e′) ∈ R},
– The set of antecedents of e′ is defined by : R.e′ = {e|(e, e′) ∈ R},
– The domain of R is defined by: Dom(R) = {e|∃e′ : (e, e′) ∈ R},
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– The range of R is defined by: Ran(R) = {e′|∃e : (e, e′) ∈ R},
– The cardinality of R (Card( R)) is the number of pairs belonging to R.

Let R and R′ be two binary relations. We define the composition of R and R′

as the relation given by: R;R′={(e, e′)|∃ t : (e, t) ∈ R ∧ (t, e′) ∈ R′}.

– The inverse of a relation is: RT ={(e, e′)|(e′, e) ∈ R}
– The complement of a relation is: R={(e, e′)|(e, e′) /∈ R}
– The relation I, identity over a set A, is given by : I(A)= {(e, e)|e ∈ A}.

Relations on finite sets can be represented by tables or matrices, as shown in
Figure 1 for the relation x congruent y modulo 3 on the set {1, 2, 3, 4, 5, 6, 7}.

1 2 3 4 5 6 7
1 1 0 0 1 0 0 1
2 0 1 0 0 1 0 0
3 0 0 1 0 0 1 0
4 1 0 0 1 0 0 1
5 0 1 0 0 1 0 0
6 0 0 0 0 0 1 0
7 1 0 0 1 0 1 1

Fig. 1. A relation represented by a Boolean Matrix

Notion of Rectangle and Non Enlargeable Rectangle (or Maximal
Rectangle)

Let R be a binary relation defined between D and T : A rectangle of R is a
Cartesian product of two non empty sets A ⊆ D and B ⊆ T and A × B ⊆ R
where A is the domain (also called objects), and B is the range (also called
attributes) of the rectangle. The rectangular closure of a binary relation is: R∗=
Dom(R) × Cod(R).

A Rectangle A × B ⊆ R is called non enlargeable if:
A × B ⊆ A′ × B′ ⊆ R → (A = A′)∧(B = B′).

In terms of formal concept analysis a non enlargeable rectangle is called a formal
concept, but it is defined as a pair (A, B) , enabling us to include (φ, B) and
(A, φ), where φ represents the empty set.

3 Formal Concept Analysis

Here, we recall some basic notions from Formal Concept Analysis (FCA) [2,11,12].
Let D and T be sets, called the set of objects and attributes, respectively, and let
R be a relation included in D × T : for g belonging to D; m belonging to T , gRm
holds if the object g has the attribute m. The triple K = (D; T ; R) is called a
formal context.
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3.1 Definitions

The operators u and v, from 2T → 2D (respectively, from 2D → 2T ) where
u(A) = {m ∈ T |gRm, ∀g ∈ A}, and v(B) = {g ∈ D|gRm, ∀m ∈ B}, represent a
specific Galois connection [1,2,8].

We notice that u(A) represents the set of all attributes shared by all objects
in A, and that v(B) represents the set of all objects sharing all properties in B.

By definition we call v(u(A)) the closure of A, and u(v(B)) the closure of B.
The pair (A; B), where A is included in D, B is included in T , u(A) = B,

and v(B) = A is called a formal concept of the context K with extent A and
intent B (in this case we have also v(u(A)) = A and u(v(B)) = B ).

u(v(B)) − B is by definition the set of associated attributes to the set B.
u(v(B))−B contains all attributes shared by all objects satisfying all attributes
in the set B. We may also conclude the association rule: B → u(v(B)) − B.

3.2 Association Rules Extraction

If B and C are subsets of T , the implication B → C holds if v(B) is included in
v(C). We can also say that A → u(v(A)) for any subset A of T .

In the context of this paper, T is the set of attributes (or propositions). In
Table 1, we find a representation of a context K = (D; T ;R), where D =
{o1, o2, o3}, T = {p, q} and R = {(o1, p), (o1, q), (o2, q)}.

Example 1. We associate to each implication: p → q the relation R(p, q) in
Table 1. Notice that p and q are attributes (or propositions).

Table 1. Binary relation R(p, q) associated to implication p → q

p q

o1 1 1
o2 0 1
o3 0 0

u(v({p})) = {p, q}. This means that the closure of set {p} equals the set
{p, q}. Using the definition given in the previous subsection,we can represent the
closure of set {p} by the association rule p → q. We also may conclude that
p → q because v({p}) = {o1} is included in v({q}) = {o1, o2}.

4 Minimal Coverage of a Binary Relation by Non
Enlargeable Rectangles

It is proved in the theory of formal concept analysis that the set of non enlarge-
able rectangles (i.e. concepts) in a binary relation R has a structure of lattice
with respect to two operators (join and meet). However, the number of concepts
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in the lattice is generally exponential in terms of the size of the binary relation
R, while we are able to have different possible coverages of R with a minimal
number of non enlargeable rectangles.

Example 2. Let R be the binary relation given in Table 2, relating four objects
{o1, o2, o3, o4} to five attributes {a1, a2, a3, a4, a5}.

Table 2. Binary relation

R a1 a2 a3 a4 a5

o1 1 1 0 0 0
o2 1 1 0 0 1
o3 1 1 1 1 0
o4 1 0 0 0 1

We can extract three non enlargeable rectangles, covering R:
ρ1={o1, o2, o3} × {a1, a2}.
ρ2={o3} × {a1, a2, a3, a4}.
ρ3={o2, o4} × {a1, a5}.

R = ρ1 ∪ ρ2 ∪ ρ3

Remark 1. In this paper, we don’t discuss the different algorithms and heuristics
to find the minimum coverage of R. These questions are discussed in several
papers [13,14]. However, it is easy to prove that from any binary relation coverage
with minimal number of rectangles, we can associate the rectangular coverage of
each rectangle of the coverage, and therefore find an equivalent minimal coverage
with non enlargeable rectangles.

In the following section, starting from a minimal coverage of R, we propose an al-
gorithm to extract additional knowledge starting from initial facts or attributes.
It is also a way to extract association rules.

5 Reasoning and Object Retrieval through a Minimal
Coverage by Non Enlargeable Rectangles

Instead of searching through an initial binary relation, we can often profit from
searching through non enlargeable rectangles. This is the case for reasoning (i.e.
searching for conclusions starting from some initial attributes), finding associ-
ation rules, as well as retrieving information (i.e. objects satisfying some at-
tributes).

Here, we first explain the idea of the algorithm using Table 2 as the running
example. Assume that you want to derive all associated attributes corresponding
to a1 with respect to the relation R. If we use the closure of {a1} applied on R
we obtain {a1} only. If we apply it to {a2} we obtain {a1, a2} which means that
a2 → a1.
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5.1 An Exact Algorithm for Reasoning, Information Retrieval, and
Association Rules Extraction

Let ρ1, ρ2, ρ3,. . . ,ρn be n non enlargeable rectangles covering some binary rela-
tion R with a minimal way, then R = ρ1 ∪ ρ2 ∪ ρ3 ∪ . . . ∪ ρn.

The set of all objects satisfying simultaneously some subset of attributes A =
{a1, a2, . . . , ap} is by definition equal to v(A), where v is the second operator of
the Galois connection:

v(A) = a1.R
T ∩ a2.R

T ∩ . . . ∩ ap.R
T

= (a1.ρ1
T ∪ . . .∪ a1.ρn

T )∩ (a2.ρ1
T ∪ . . .∪ a2.ρn

T )∩ . . .∩ (ap.ρ1
T ∪ . . .∪ ap.ρn

T )

Using a similar procedure but from a set of objects O = {o1, o2, . . . , oq}, we may
in a similar way find all attributes satisfying simultaneously all objects in O, (i.e
u(O)).

u(O) = o1.R ∩ o2.R ∩ . . . ∩ oq.R
= (o1.ρ1 ∪ . . . ∪ o1.ρn) ∩ (o2.ρ1 ∪ . . . ∪ o2.ρn) ∩ . . . ∩ (oq.ρ1 ∪ . . . ∪ oq.ρn)

If we use the coverage with three rectangles ρ1, ρ2, ρ3, extracted from the binary
relation given in Table 2, as a base for reasoning instead of the initial context,
we first find all antecedents of a1 (i.e.v({a1})), through the three rectangles to
obtain O = {o1, o2, o3, o4}, as retrieved objects through the different existing
rectangles, then through the same rectangles we look for all images of elements
of O separately with respect to each non enlargeable rectangle, consecutively the
images of O are:

S1 = o1.ρ1
={a1, a2},

S2 = o2.ρ1 ∪ o2.ρ3
={a1, a2, a5},

S3 = o3.ρ1 ∪ o3.ρ2
={a1, a2, a3, a4},

S4 = o4.ρ3
={a1, a5}.

Therefore, we find u(O) = S1 ∩ S2 ∩ S3 ∩ S4 equal to {a1} which means that
{a1} is a closed set. If we do the same for {a2} we obtain {a1, a2}, which means
that a2 → a1. We may of course repeat the same process for as any attribute,
that we can generalize to any subset of attributes.

By using these new relational expressions, of v(A), u(O) and u(v(A)) we
now get respectively the set of objects v(A) satisfying attributes A, the set of
attributes u(O) satisfying objects O, and association rules: A → (u(v(A)) −A).
The advantage of the algorithm is that it runs on the base of the rectangles
instead of the original relation. In Algorithm 1 of the appendix, a represents
only one attribute, C is the set of all non enlargeable rectangles represented as
an array of n records, where each element C[i] is itself composed of two fields
C[i].antecedents as the set of objects, and C[i].images as the set of attributes of
the rectangle shared by all objects belonging to C[i].antecedents. The function
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Association-attributes in algorithm 1, implements u(v(a)). A generalization of
the algorithm to several attributes is straightforward.

Association-attributes(Coverage of R: C[], Initial attribute: a)
//Algorithm calculating u(v(A)) through the coverage C
//where A is only composed of one attribute
//C[i] is the ith non enlargeable rectangle
//n is the number of non enlargeable rectangles.
begin

int n = C.length();
Sequence_of_objects Antecedents = {};
// First we build the set of all objects (i.e. antecedents of a) satisfying
attribute a.
for (i=1; i<n;i++) do

//n is the number of non enlargeable rectangles.
if (a belongs to C[i].images) then

Antecedents= Antecedents ∪ C[i].antecedents;

// Then we calculate the images of each object OB belonging to
Antecedents,
//into Attributes[OB],
//we obtain all associated attributes in Conclusions as the conjunction
of all
//Attributes[OB] .
Conclusions={}; // initially empty
foreach (object OB ∈ Antecedents) do

Attributes[OB]= {};
for (i=1; i<n; i++) do

if (OB ∈ (C[i].antecedents)) then
Attributes[OB]=Attributes[OB] ∪ C[i].Images;

//Initialize by the set of all attributes of the first object OB0
//belonging to Antecedents. Conclusion = Attributes[OB0] ;
foreach (object OB ∈ Antecedents ) do

Conclusions= Conclusions ∩ Attributes[OB];

end

Algorithm 1. Algorithm for extracting conclusions from initial facts through a
rectangular structure

The time complexity of the algorithm depends on the number of rectangles,
and their size.

6 Approximate Incremental Non Enlargeable
Rectangular Re-organization

In order to update the minimal rectangular coverage, after each addition of a new
pair (ob, at), we analyze the following different cases: if ob , or at is new then, we
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necessarily need to create a new non enlargeable rectangle only containing the
new pair. Otherwise, if ob and at are both already used in a current rectangle
ρ, the new link (ob,at) is added to ρ only if the Dom(ρ) contains only ob, or
Ran(ρ) contains only at, else we need to create the closure of ob with respect to
each rectangle (i.e. separating pairs into two non enlargeable rectangles). Using
regularly join operation, we guaranty the maximality of the rectangles and we
minimize their number.

In case we delete an object, we only remove it from the domain of all existing
non enlargeable rectangles. If we remove an attribute (at) for a specific object
(ob) then we remove it from the ranges of all non enlargeable rectangles such that
object ob belongs to their domain. A rectangle may become enlargeable if and
only if its domain or (its range) is equal to the domain or (the range) of another
rectangle; in that case by merging the two rectangles, we obtain a new one.
The process should be continued until no new updated rectangles have the same
domain or same range as any other one. By calling function join we maintain the
maximality of the rectangles, and decrease their number. As a matter of fact,
maintaining the minimum number of non enlargeable rectangle is still an open
problem, for which we should find efficient algorithms.

Example 3. In order to explain the reorganization process, we use the binary
relation R of example 2, including its minimal rectangular coverage with the
three non enlargeable rectangles: ρ1, ρ2, ρ3 :
where:
ρ1 = {o1, o2, o3} × {a1, a2}.
ρ2 = {o3} × {a1, a2, a3, a4}.
ρ3 = {o2, o4} × {a1, a5}.

R = ρ1 ∪ ρ2 ∪ ρ3.

If we add the pair (o1, a4) then a new non enlargeable rectangle ρ4 is created
(i.e. we call it separation action): ρ4 = {o1} × {a1, a2, a4}.

If we still add the pair (o2, a4) then a new non enlargeable rectangle ρ5 is
created: ρ5 = {o2} × {a1, a2, a4, a5}.

If we add the pair (o3, a4) then no new non enlargeable rectangle is created,
because the pair already belongs to ρ2. By applying the Galois connection on
each one of the rectangles, we make them non enlargeable. By this way, ρ1
is updated to: ρ1 = {o1, o2, o3} × {a1, a2, a4} , and ρ4 becomes equal to ρ1.
If we add {o5, a1}, {o5, a5}, {o5, a2}, {o5, a4} to R then ρ1 is update to: ρ1 =
{o1, o2, o3, o5} × {a1, a2, a4}, and ρ3 is updated to ρ3 = {o2, o4, o5} × {a1, a5}.

In case we add a new pair (o6, a7) then a new non enlargeable rectangle
ρ4 = {o6} × {a7} is created.

In case we add the new pair (o6, a4) we create the new non enlargeable rect-
angle containing all objects chairing attribute a4: ρ5 = {o3, o6} × {a4}.

If we remove the following pair: (o3, a4), then initial non enlargeable rectangle
ρ1 is split into two non enlargeable ones:

ρ5 = {o1, o2, o3, o5} × {a1, a2}; and ρ6 = {o1, o2, o5} × {a4}.
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function adding-a-pair(Coverage of R: C[], attribute: at, object: ob)
//C[i] is the ith non enlargeable rectangle
// n is the current number of non enlargeable rectangles
begin

int n = C.length();
for (i=1 to n) do

add (at,ob,i) // where i mentions non enlargeable rectangle C[i].

end

function delete-a-pair(Coverage of R: C[], attribute: at, object: ob, int: n)
//C[i] is the ith non enlargeable rectangle.
// n is the number of non enlargeable rectangles.
begin

for (i=1 to n) do
remove (at,ob,i); //Remove the pair (ob,at) from rectangle C[i].
if (C[i] is empty) then

// the rectangle i becomes empty.
swap (i,n); // swap rectangle i with rectangle n.
n=n-1;//decrement the number of rectangles.

end

function add(attribute: at, object: ob, int: i)
begin

if ((ob is new) or (at is new)) then
(ob,at) belongs to only one new non enlargeable rectangle (n+1);
that we can build by applying Galois Connection on object ob if not
new, else if attribute at is not new then we apply Galois Connection
on attribute at , else we create the new rectangle containing only the
new pair (ob,at)

else if ((cardinal(C[i].domain)==1)and(ob ∈ C[i].domain)) then
add (at) to C[i].attribute;

else if ((cardinal(C[i].range==1))and(at ∈ C[i].range)) then
add ob to C[i].domain;

else if ((ob ∈ C[i].domain)and(cardinal(C[i].range)==1)) then
// Creation of a new non enlargeable rectangle (n+1).
C[n+1].domain=ob; C[n+1].range= at;
for (j=1 to n) do

if (at ∈ C[j].range) then
C[n+1].domain =C[n+1].domain C[j].domain;

for (j=1 to n) do
Join (C[j], C[n+1]);

else
n=n+1;
// Create a new rectangle containing only the new pair (ob,at).
C[n].attribute=at; C[n].object=ob;
for (i=1 to n) do

Join(C[i], C[n]);

end

Algorithm2. Approximate Incremental reorganization of a rectangular structure
(Part I)
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function remove(attribute: at, object: ob, int: i)
// i is a non enlargeable rectangle number.
begin

if ( (cardinal(C[i])==1)and(ob ∈ C[i].domain)and(at ∈ C[i].range))
then

// rectangle i becomes empty.
C[i].attribute=;
C[i].Object=;

else if (ob ∈ C[i].domain) then
// Separation of concept i into two concepts (updated i, and (n+1)).
C[i].range=C[i].range-at;
Create (C[n+1]);
C[n+1].domain=C[i].domain - ob;
C[n+1].range=C[i].range ∪ at;
n=n+1;
// joining new obtained rectangles with others for (j=1 to (n-1))
do

Join(C[j], C[ n]);
for (j=1 to n) do

Join (C[i], C[j]);

end

function join (Concepts C[i], C[j])
// i and j are two non enlargeable rectangle numbers.
begin

if ( C[i].domain==C[j].domain) then
merge rectangles i and j into a new rectangle k;
C[k].domain=C[i].domain;
C[k].range= C[i].range ∪ C[j].range;
remove the two rectangles i and j;
Use operations u and v to make rectangle k non enlargeable;

else if (C[i].range==C[j].range) then
merge rectangles i and j into a new rectangle k;
C[k].range=C[i].range;
C[k].domain= C[i].domain ∪ C[j].domain;
remove the two rectangles i and j;
Use operations u and v to make rectangle k non enlargeable;

end

Algorithm3. Approximate Incremental reorganization of a rectangular structure
(Part II)

Finally, in the appendix, we may find approximate algorithms 2 and 3, for up-
dating a set of non enlargeable rectangles, by adding or removing different kinds
of pairs, adding or removing objects or attributes. The idea is to maintain as
much as possible a minimal representation. However, here we propose a method
suitable to be a starting point for more accurate ones.
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The function Join, after transforming the two rectangles to their closure,
merges them into only one, if they have either the same domain or the same
range. If the two rectangles have the same domain, and different ranges, then
the function join merges them to only one rectangle with the same domain, and
as a range the union of the ranges of the two rectangles. If the two rectangles
have the same range, the function merges them into only one with the same
range, and as a domain the union of the domains of the two rectangles. In future
research work, we will try to improve its efficiency. We will also try to minimize
the number of join operations.

The complexity of the algorithm in terms of n (i.e. the number of rectangles)
is quadratic, where we mainly count the number of times basic operation join is
executed.

7 Conclusion

In this paper, we investigate the main incremental functions we need to maintain
a rectangular decomposition of a binary relation. We discover that two important
operations are the most frequently done, join and separation of non enlargeable
rectangles. The present work should be the base for rectangular database, or
documentary database or internet space. It should open the door for a uniform
structuring approach, suitable to be generalized and improved. Even if the ob-
jective is the minimization of the number of rectangles and the maximization of
their structure, open problems are raised in this paper, on how to put in equa-
tion minimization criteria in general, and how to find the incremental equations
to maintain it.
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Abstract. We define collagories essentially as “distributive allegories
without zero morphisms”, and show that they are sufficient for accom-
modating the relation-algebraic approach to graph transformation. Col-
lagories closely correspond to the adhesive categories important for the
categorical DPO approach to graph transformation. but thanks to their
relation-algebraic flavour provide a more accessible and more flexible
setting.

1 Introduction

One of the hallmarks of the relation-algebraic approach to graph transformation
[Kaw90, Kah01, Kah04] is that it allows an abstract characterisation of the
gluing condition for the double pushout approach. Nevertheless, the categorical
approach to graph transformation has continued to use the node-and-edge-based
formulation of the gluing condition even in the handbook chapter [CMR+97].
Recently, the literature of the categorical approach, starting essentially with
[EPPH06] has adopted the “adhesive categories” of Lack and Sobociński [LS04],
where however the details of the gluing condition are completely sidestepped.

The relational categories used in the relational approach so far arise from the
toposes of graph structures, which are adhesive categories by virtue of being
toposes. However, adhesive categories also include, for example, categories of
pointed sets, which do not give rise to distributive allegories due to the failure
of the zero law.

In this paper we show that dropping the zero law still produces a relational
formalism that can accommodate the necessary tools for graph transformation,
and furthermore relates nicely with adhesive categories.

We first re-develop, in sections 2–4, the fundamentals of the relation-algebraic
approach to graph transformation using our new bi-tabular collagories, and show
in Sect. 5 that these provide adhesive categories. Sections 6–8 are then devoted
to constructing concrete bi-tabular collagories of semi-unary algebras.

2 Categories, Allegories

This section only serves to fix notation and terminology for standard concepts,
see [FS90, SS93, Kah04]. Like Freyd and Scedrov and a slowly increasing num-
ber of categorists, we use denote composition in “diagram order” not only in
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relation-algebraic contexts, where this is customary, but also in the context of
categories. We will always use the infix operator “.,” to make composition explicit:
R ., S = A R�B S�C.

Definition 2.1. A category C is a tuple (ObjC, MorC, src, trg, I, .,) where
– ObjC is a collection of objects.
– MorC is a collection of arrows or morphisms.
– src (resp. trg) maps each morphism to its source (resp. target) object.

Instead of src(f ) = A ∧ trg(f ) = B we write f : A → B.
The collection of all morphisms f with f : A → B is denoted as MorC[A,B]
and also called a homset.

– “.,” is the binary composition operator, and composition of two morphisms
f : A → B and g : B′ → C is defined iff B = B′, and then (f ., g) : A → C;
composition is associative.

– I associates with every object A a morphism IA which is both a right and left
unit for composition.

Definition 2.2. An ordered category is a category C such that
– for each two objects A and B, the relation �A,B is a partial order on MorC[A,B]

(the indices will usually be omitted), and
– composition is monotonic with respect to � in both arguments.

Definition 2.3. An upper-semilattice category is an ordered category where
– each homset is a distributive lattice with binary join �,
– composition distributes over binary joins from both sides.

For homsets that have least or greatest elements, we introduce corresponding
notation:

Definition 2.4. In an ordered category, for each two objects A and B we intro-
duce the following notions:
– If the homset MorC[A,B] contains a greatest element, this is denoted ""A,B.
– If the homset MorC[A,B] contains a least element, this is denoted ⊥⊥A,B.

For these extremal morphisms and for identities we frequently omit indices where
these can be induced from the context.

Definition 2.5. An allegory is an ordered category such that
– each morphism R : A → B has a converse R� : B → A,
– the involution equations hold for all R : A → B and S : B → C:

(R�)� = R I�
A = IA (R ., S )� = S� ., R�

– conversion is monotonic with respect to �.
– each homset is a lower semilattice with binary meet �.
– for all Q : A → B, R : B → C, and S : A → C, the modal rule holds:

Q ., R � S � (Q � S ., R�) ., R .
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Many standard properties of relations can be characterised in the context of
allegories:

Definition 2.6. A morphism R : A → B in an allegory is called:
– univalent iff R� ., R � IB,
– total iff IA � R ., R�,
– injective iff R ., R� � IA,
– surjective iff IB � R� ., R,
– a mapping iff it is univalent and total,
– bijective iff it is injective and surjective,
– difunctional iff R.,R�.,R � R. (See [SS93, 4.4] for more about difunctionality).

For an allegory A, we write MapA for the sub-category of A that contains only
the mappings as arrows.

Definition 2.7. For a morphism R : A → B in an allegory, we define its difunc-
tional closure R ∗� : A → B as the least difunctional morphism containing R (if
this exists), and we further define R∗� : A → A and R ∗� : B → B as:

R∗� := I � R ∗� ., (R ∗�)� and R ∗� := I � (R ∗�)� ., R ∗� .

For endomorphisms, there are a few additional properties of interest:

Definition 2.8. A morphism R : A → A in an allegory is called:
– reflexive iff I � R,
– transitive iff R ., R � R,
– co-reflexive or a sub-identity iff R � IA,
– symmetric iff R� � R,
– an equivalence iff it is symmetric, reflexive and transitive.

Definition 2.9. [FS90, 2.15] An object U in an allegory is a partial unit if
IU = ""U ,U . The object U is a unit if, further, every object is the source of
a total morphism targeted at U . An allegory is said to be unitary if it has a
unit.

We use the symbol “1l” for an arbitrary but fixed unit object.

3 Collagories
κóλλα: glue

In Freyd and Scedrov’s treatment, although allegories do not require zero-ary
meets, distributive allegories do require zero-ary joins (least elements) together
with distributivity of composition over them, that is, the zero law ⊥⊥ .,R = ⊥⊥. We
define an intermediate concept that does not assume anything about zero-ary
joins:



214 W. Kahl

Definition 3.1. A collagory is an allegory that is also an upper-semilattice cat-
egory.

For Kleene star, we use Kozen’s axioms [Koz94]:

Definition 3.2. A Kleene collagory is a collagory where, on homsets of endo-
morphisms, there is an additional unary operation ∗ which satisfies the following
axioms for all R : A → A, Q : B → A, and S : A → C:

R∗ = IA � R � R∗ ., R∗ recursive star definition
Q ., R � Q ⇒ Q ., R∗ � Q right induction
R ., S � S ⇒ R∗ ., S � S left induction

Proposition 3.3. In a Kleene collagory, all difunctional closures exist, and:

R∗� = (R ., R�)∗ , R ∗� = (R� ., R)∗ , R ∗� = R∗� ., R = R ., R ∗� .

Alternatively, we also can fore-go the Kleene star and directly axiomatise di-
functional closure:

Definition 3.4. A difunctionally closed collagory is a collagory where, there is
an additional unary operation ∗� which satisfies the following axioms for all
R : A → B, Q : C → A, and S : A → C: Q ′ : C → B, and S ′ : B → C:

R ∗� = R � R ∗� ., (R ∗�)� ., R ∗� recursive definition
Q ., R � Q ′ ∧ Q ′ ., R� ., R � Q ′ ⇒ Q ., R ∗� � Q ′ right induction
R ., S � S ′ ∧ R ., R� ., S ′ � S ′ ⇒ R ∗� ., S � S ′ left induction

Proposition 3.5. In a difunctionally closed collagory, the operation ∗� pro-
duces difunctional closures.

Proof: Containment R � R ∗� and difunctionality R ∗� ., (R ∗�)� ., R ∗� � R ∗� follow
directly from the recursive definition.

For minimality, assume that C is difunctional with R � C . Then we have
I ., R � C and C .,R� ., R � C ., C� ., C � C and therefore, with the right induction
rule, R ∗� = I ., R ∗� � C .

4 Tabulations and Co-tabulations

Central to the connection between pullbacks and pushouts in categories of map-
pings on the one hand and constructions in relational theories on the other hand
is the fact that a square of mappings commutes iff the
“relation” induced by the source span is contained in
that induced by the target co-span. The proof of this
does not need the modal rule.

Lemma 4.1. [FS90, 2.146] Given a square of mappings
in an allegory as drawn to the right, we have P .,R = Q .,S
iff P� ., Q � R ., S�.

A
�

�
��
P �

�
��

Q

B C
�

�
��

R �
�

��
S

D
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This provides a first hint that in the relational setting, the identity of the
two mappings P and Q does not matter when looking for a pushout of the span
B P� A Q�C — we only need to consider the diagonal P� ., Q . Dually, when
looking for a pullback of the co-span B R�D S� C, only R ., S� needs to be
considered. The gap between the two ways of calculating the horizontal diagonal
can be significant since R ., S� is always difunctional.

Producing the result span of a pullback (respectively the result co-span of a
pushout) from the horizontal diagonal alone is, in some sense, a generalisation of
Freyd and Scedrov’s splitting of idempotents; [Kah04] contains more discussion
of this aspect.

Definition 4.2. [FS90, 2.14] In an allegory, let a morphism V : B → C be given.

The span B P� A Q�C of mappings P and Q is called a tabulation of V iff
P� ., Q = V and P ., P� � Q ., Q� = IA.

The following equivalent characterisation provided by [Kah04] has the advantage
that it is fully equational, without the implicit inclusion conditions in the re-
quirement that P and Q are mappings. This frequently facilitates calculations.
Notice that I � V ., V � = domV ; we use the expanded form to emphasise the
duality with Proposition 4.6 below.

Proposition 4.3. In an allegory, the span B P� A Q�C is a tabulation of
V : B → C if and only if the following equations hold:

P� ., Q = V
P� ., P = I � V ., V �

Q� ., Q = I � V � ., V
P ., P� � Q ., Q� = IA .

Tabulations in an allegory are unique up to isomorphism (this uses the modal
rule), and include the following special cases:
– In a tabulation of a sub-identity, both tabulation morphisms are the induced

sub-object injection [FS90, 2.145].
– We can define a direct product of A and B to be a tabulation of a ""A,B,

provided that greatest morphism exists.
– If a co-span B R�D S� C of mappings is given, then its pullback in MapA

is obtained as a tabulation of R ., S� [FS90, 2.147].
If an allegory in known to have all direct products and subobjects, then these
can be used to construct a tabulation for each morphism.

Lemma 4.4. If a co-span B R�D S� C of mappings is given with R injective,
and B P� A Q�C is a tabulation for R ., S�, then Q is injective, too.

Proof: First we use Proposition 4.3 to show Q ., Q� � P ., P�:

Q ., Q� = Q ., Q� ., Q ., Q� = Q ., (I � (R ., S�)� ., R ., S�) ., Q�

� Q ., S ., R� ., R ., S� ., Q� = P ., R ., R� ., R ., R� ., P� = P ., P�
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Together with the tabulation condition, this implies Q .,Q� = P .,P��Q .,Q� = IA,
that is, injectivity of Q .

While a tabulation can be seen as a certain kind of decomposition of an arbitrary
morphism in an allegory into a span, the dual of a tabulation is then a certain
kind of decomposition of a difunctional morphism in a collagory into a co-span.
Although the formal material here is dual to that above, we still spell it out in
full detail for reference and better intuition.

Definition 4.5. [Kah04] In a collagory, let a morphism W : B → C be given.
The co-span B R�D S� C of mappings R and S is called a co-tabulation of
W iff R ., S� = W and R� ., R � S� ., S = ID.

The first equation implies W ., W � ., W = R ., S� ., S ., R� ., R ., S� � R ., S� (using
univalence of R and S ), so if W has a co-tabulation, it has to be difunctional.

This also has an equivalent characterisation that is perfectly “bi-dual” to the
one in Proposition 4.3:

Proposition 4.6. In a collagory, the span B R�D S� C is a co-tabulation of
W : B → C iff the following equations hold:

R ., S� = W
R ., R� = I � W ., W �

S ., S� = I � W � ., W
R� ., R � S� ., S = ID .

In a collagory, co-tabulations are unique up to isomorphism [SS93, 4.4.10], and
we have the following special cases:
– In a co-tabulation of an equivalence, both R and S are the induced quotient

projections.
– We can define a direct sum of A and B to be a co-tabulation of ⊥⊥A,B, if that

least morphism exists.
If direct sums and quotients are available, then a co-tabulation can be con-
structed for each difunctional morphism.

Central to applications to graph transformation is the following:

Proposition 4.7. In a collagory C, if a span B P� A Q�C of mappings is
given, then a co-tabulation for (P� ., Q) ∗� is a pushout for that span in MapC.

Proof: The proof of [Kah01, Theorem 5.3.5] is easily adapted.

A co-tabulation for U ∗� satisfies the following equations:

R ., S� = U ∗� R ., R� = U ∗� S ., S� = U ∗� R� ., R � S� ., S = ID .

This was introduced as a gluing for U in [Kah01]. Kawahara is the first to have
characterised pushouts relation-algebraically in essentially this way [Kaw90].

For pushouts along injective mappings, the co-tabulated morphism already is
difunctional:
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Lemma 4.8. If a span B P� A Q�C of mappings is given with Q injective,
then P� ., Q is difunctional (and therefore (P� ., Q) ∗� = P� ., Q).

Proof: Since P , as a mapping, is difunctional, we have

P� ., Q ., Q� ., P ., P� ., Q = P� ., P ., P� ., Q = P� ., Q .

Furthermore, co-tabulations preserve injectivity:

Lemma 4.9. If a span B P� A Q�C of mappings is given with Q injective,
and B R�D S� C is a co-tabulation for P� ., Q , then R is injective, too.

Proof: Using injectivity of Q and univalence of P in one of the equations from
Proposition 4.6 gives us injectivity of R:

R ., R� = I � P� ., Q ., (P� ., Q)� = I � P� ., Q ., Q� ., P = I � P� ., P = I .

With that, we can show that, essentially, a pushout over an injective mapping
is also a pullback:

Lemma 4.10. If a span B P� A Q�C of mappings is given with Q injective,
and B R�D S� C is a co-tabulation for P� ., Q , then B P� A Q�C is also a
tabulation for R ., S�.

Proof: Cross-commutativity R ., S� = P� ., Q is already contained in the co-
tabulation conditions. Since Q is injective and P is total, we also obtain

P ., P� � Q ., Q� = P ., P� � IA = IA .

Definition 4.11. If a collagory has a tabulation for each morphism and a co-
tabulation for each difunctional morphism, then we call it bi-tabular.

5 Maps in Collagories form Adhesive Categories

Adhesive categories as a more specific setting for double-pushout graph rewriting
have been introduced by Lack and Sobociński [LS04, LS05]; the following two
definitions are taken from there:

Definition 5.1. A van Kampen square (i) is a pushout which satisfies the fol-
lowing condition: given a commutative cube (ii) of which (i) forms the bottom
face and the back faces are pullbacks (where C is considered to be in the back),
the front faces are pullbacks if and only if the top face is a pushout.
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�

�
��
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�
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��

F
A B
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��
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��
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(i)
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�
��
m �

��
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A′ g �

c
�

D′

�

b

a

�

C �
F

�

d

B
�

��� M
�

��� N
A �

G D

(ii)

Definition 5.2. A category C is said to be adhesive if
1. C has pushouts along monomorphisms;
2. C has pullbacks;
3. pushouts along monomorphisms are van Kampen squares.

For more concise formulations, we define:

Definition 5.3. A van Kampen setup in a category C for a square as in Def.
5.1(i) is a commuting cube in C as in Def. 5.1(ii) where the bottom square is a
pushout and the two back squares are pullbacks.

For reference, we expand this into the collagory setting:

Lemma 5.4. In a collagory C, a van Kampen setup in MapC means that the
following hold:
Bottom pushout:

G ., N� = (M� ., F ) ∗� G� ., G � N� ., N = ID G ., G� = (M� ., F )∗�
N ., N� = (M� ., F ) ∗�

Back pullbacks:
c� ., m = M ., a� c ., c� � m ., m� = IC′ c� ., c = IC � M ., a� ., a ., M�

m� ., m = IA′ � a ., M� ., M ., a�

c� ., f = F ., b� c ., c� � f ., f � = IC′ c� ., c = IC � F ., b� ., b ., F�

f � ., f = IB′ � b ., F� ., F ., b�

Remaining commutative squares:
m ., g = f ., n g ., d = a ., G n ., d = b ., N

These equations are used in the long version of this paper [Kah09] to prove the
following:

Theorem 5.5. In the category of maps MapC over a collagory C, pushouts
along injective maps are van Kampen squares.

The main result of this section is an immediate consequence of this theorem —
note that, because of Lemma 4.8, we do not need difunctional (or transitive)
closure for this:
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Corollary 5.6. For a bi-tabular collagory C where all monos in MapC are in-
jective in C, the mapping category MapC is adhesive.

(The restriction on monic mappings is necessary since there might, for example,
be an object A in C for which the only mapping with target A is IA; in that
case, all mappings f : A → B would automatically be monos in MapC regardless
whether they are injective in C. Note that f (together with identities) itself forms
a tabulation and a co-tabulation for f .)

This result immediately makes the rewriting concepts and results introduced
for adhesive categories in [LS04], including the local Church-Rosser theorem and
the concurrency theorem, available for DPO rewriting defined via tabulations
and co-tabulations in the context of collagories.

6 Collagories of Semi-unary Algebras and Bisimulations

In [Kah01, Kah04], relational homomorphisms between unary algebras have been
shown to form a distributive allegory. In this section we generalise this result
to collagories by allowing constant symbols and in turn dropping the zero law
requirement.

Most of the mathematical content of this section has been presented and
proven in more detail in [Kah01, Kah04]. Besides the proof of Theorem 6.6,
also the reformulation using the sort-indexed product category and the forgetful
functor UΣ is new.

Definition 6.1. A signature is a tuple (S,F , src, trg) consisting of
– a set S of sorts ,
– a set F of function symbols ,
– a mapping src : F → S∗ associating with every function symbol the list of its

source sorts, and
– a mapping trg : F → S associating with every function symbol its target sort.
Such a signature is called semi-unary if length(src(f )) ≤ 1 for each f : F , and
unary if length(src(f )) = 1 for each f : F .

For a function symbol f : F , we usually employ the shorthand “f : s1×· · ·×sn →
t” instead of the rather verbose “src(f ) = 〈s1, . . . , sn〉 and trg(f ) = t”. For a
zero-ary function symbol, also called constant symbol, we write “f : 1l → t”.

The following example signatures will be used for discussion and results in
sections 7 and 8:

sigGraph := 〈 sorts: V, E

ops: s, t : E → V

〉

sigPointedSet := 〈 sorts: S

ops: point : 1l → S

〉
sigPoint := 〈 sorts: P

ops:
〉

sigPointed := 〈 sorts: P, O

ops: p : P → O

〉
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sigType := 〈 sorts: T

ops:
〉

sigTyped := 〈 sorts: O, T

ops: t : O → T

〉
sigNELabels := 〈 sorts: NL, EL

ops:
〉

sigLGraph := 〈 sorts: N, E, NL, EL

ops: s, t : E → N,

n : N → NL,

e : E → EL

〉

Definition 6.2. For a set S (of sorts) and a category C, we define CS , the
S-indexed product category of C, as follows:
– an object A of CS consists of C-objects sA for every s : S;
– a morphism Φ : A → B of CS is an S-indexed family of C-morphisms Φ =

(Φs )s:S such that Φs : sA → sB for every sort s : S.
– composition .,S and identities IS are defined component-wise;
– if C is an allegory, then inclusion �S , meet �S and converse are defined

component-wise;
– if C is collagory, then join �S is defined component-wise.

One easily verifies that the resulting S-indexed product categories, allegories,
and collagories all satisfy the respective axioms.

When defining Σ-algebras in the presence of binary function symbols, we
need several technical conditions on direct products [Kah01, Def. 3.1.12]; for the
current study, we can do without direct products (at the cost of some duplication
of formalisation for unary and zero-ary function symbols), but we still need
allegories for the characterisation of mappings:

Definition 6.3. Given a signature Σ = (S,F, src, trg) and an allegory C, which
has to have a unit 1l if Σ contains constant symbols, an abstract Σ-algebra over
C consists of the following items:
– an object A of CS ,
– for each function symbol f : F with f : s → t a mapping f A : sA → tA in C.
– for each constant symbol c : F with c : 1l → t a mapping cA : 1l → tA in C.

It is important to note that, where we use sets as carriers, we have no restriction
to non-empty sets — unlike most of the universal algebra literature.

Since we use this definition to construct an allegory with abstract Σ-algebras
as objects, the generality of discussing abstract Σ-algebras over allegories allows
us to stack this construction at no cost at all, with possibly different signa-
tures at every level, building for example graphs where the nodes and edges are
hypergraphs and hypergraph morphisms.

The morphisms in allegories of Σ-algebras have to behave “essentially like
relations”, and so it is only natural that we consider a relational generalisation
of conventional (functional) Σ-homomorphisms. For arbitrary signatures, this
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has been presented in [Kah01]. For unary signatures, one naturally starts with
defining L-simulations satisfying Φ�

s
., f A � f B ., Φ�

t according to de Roever and
Engelhardt [dRE98], and then proceeds to L-simulations for which their converse
is an L-simulation, too; these are called “bisimulations” in [Kah04].

Definition 6.4. Let a signature Σ = (S,F, src, trg), an allegory C, and two
abstract Σ-algebras A and B over C be given.

A Σ-bisimulation from A to B is a CS-morphisms from A to B such that for
every function symbol f ∈ F with f : s → t and every constant symbol c ∈ F
with c : 1l → t the following inclusions hold:

Φs
., f B � f A ., Φt , and cB � cA ., Φt .

Using Σ-algebras over C as objects and Σ-bisimulations as morphisms defines
a category CΣ with an obvious “underlying” functor UΣ : CΣ → CS .

This “forgetful” functor UΣ is faithful. If C is an allegory, then UΣ reflects
inclusion, meets and converse in the sense that these can be defined for CΣ via
their UΣ images. Therefore, CΣ is an allegory, too [Kah01, Thm. 3.2.6].

Conventional Σ-algebra homomorphisms are just mappings in the allegory
RelΣ of concrete Σ-algebras over the allegory Rel of sets and concrete relations.

If Σ contains a constant symbol, then even if the allegory C has least mor-
phisms, then least homomorphisms in CS are not generally in the range of UΣ ,
and even if CΣ does have least morphisms, the zero law will in general not hold
for them, no matter whether it holds in C.

If Σ contains a function symbol of arity at least 2, then even if C is an
upper-semilattice category, then UΣ does not reflect joins, in the sense that
UΣ(Φ) �S UΣ(Ψ) is not necessarily in the range of UΣ. Furthermore, even if CΣ

has joins, composition will, in presence of function symbols of arity at least 2, in
general not distribute over these joins (since non-empty joins do not distribute
over the product × occurring in the homomorphism condition) so CΣ will not
be an upper-semilattice category.

For semi-unary signatures, however, UΣ does reflect joins:

Lemma 6.5. If C is an upper-semilattice category, Σ is a semi-unary signature,
and Φ, Ψ : A → B are two Σ-bisimulations, then Φ �S Ψ is a Σ-bisimulation,
too, and is the join in CΣ of Φ and Ψ , that is, Φ �Σ Ψ = Φ �S Ψ .

Proof: We need to check the bisimulation conditions for unary function symbols
f : s → t and for constant symbols c : 1l → t :

(Φ �S Ψ)s ., f B = (Φs � Ψs) ., f B = Φs
., f B � Ψs

., f B

� f A ., Φt � f A ., Ψt = f A ., (Φt � Ψt) = f A ., (Φ �S Ψ)t
cB � cA ., Φt � cA ., Ψt = cA ., (Φt � Ψt ) = cA ., (Φ �S Ψ)t

The equation Φ �Σ Ψ = Φ�S Ψ follows from the reflection of inclusion by UΣ .

Given the closure of Σ-bisimulations under the converse, meet, and join oper-
ations in CS , properties of C-morphisms for these operations are inherited by
Σ-bisimulations because of the component-wise definitions, and we obtain:



222 W. Kahl

Theorem 6.6. If Σ is a semi-unary signature and C is a collagory, then CΣ is
a collagory, too.

If C has tabulations (respectively co-tabulations), the sort-indexed product cat-
egory CS obviously has tabulations (respectively co-tabulations), too, and they
can be calculated component-wise. Perhaps surprisingly, these can be extended
to the collagory CΣ of bisimulations between Σ-algebras without problems; we
just need to provide definitions for the function symbols of the “new” objects,
and verify all relevant conditions (proofs in [Kah09]):

Theorem 6.7. If Σ = (S,F, src, trg) is a semi-unary signature and C is an
allegory, and B P� A Q�C is a tabulation in CS of the Σ-bisimulation V :
B → C, i.e., for each sort s : S, B Ps� A Qs�C is a tabulation of Vs : sB → sC ,
then we define for each function symbol f : s → t and each constant symbol
c : 1l → t in Σ:

f A := Ps
., f B ., P�

t � Qs
., f C ., Q�

t

cA := cB ., P�
t � cC ., Q�

t

Then A turns into a Σ-algebra and P and Q are Σ-bisimulations, too, so
B P� A Q�C is a tabulation in CΣ .

Theorem 6.8. If Σ = (S,F, src, trg) is a semi-unary signature and C is a col-
lagory, and B R�D S� C is a co-tabulation in CS of the Σ-bisimulation W :
B → C, i.e., for each sort s : S, B Rs�D Ss� C is a tabulation of Ws : sB → sC ,
then we define for each function symbol f : s → t and each constant symbol
c : 1l → t in Σ:

f D := R�
s

., f B ., Rt � S�
s

., f C ., St

cD := cB ., Rt � cC ., St

Then D turns into a Σ-algebra and R and S are Σ-bisimulations, too, so
B R�D S� C is a co-tabulation in CΣ .

7 Reducts along Signature Homomorphisms

While the concept of Σ-algebra is sufficient to capture, for example, unlabelled
graphs as sigGraph-algebras, categories of labelled graphs are frequently consid-
ered as having fixed label sets, which means that only certain sub-categories of
Set sigLGraph are considered.

We use the concept of reducts to formalise this in a general way. In the ex-
ample, we consider the reduct of Set sigLGraph to the sub-signature sigNELabels.
The fixed label sets under consideration form a one-object sub-category K of
Set sigNELabels, and in order to obtain graphs labelled over these label sets, we
restrict attention to objects in Set sigLGraph for which the reduct lies in that sub-
category K.

The current section introduces and studies the reduct relator. This is em-
ployed in Sect. 8 to implement the restriction of Σ-algebra collagories via
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reduct-side sub-categories. This single construction principle for generating con-
crete bi-tabular collagories corresponds, as shown in Corollary 8.7, to several
categorical constructions that are known for adhesive categories.

Definition 7.1. Let Σ = (S,F , src, trg) and ΣR = (SR,FR, srcR, trgR) be two
signatures, and let σ : ΣR → Σ be a signature homomorphism.

For any Σ-algebra A, such a signature homomorphism σ : ΣR → Σ induces
a ΣR-algebra A	σ, the σ-reduct of A, in the following way:

– For every sort r : SR, its carrier is rA�σ = (σ r)A;
– for every function symbol f ∈ FR, its interpretation is f A�σ = (σ f )A.

It is easy to verify that A	σ is indeed a ΣR-algebra.
If σ : ΣR → Σ is a sub-signature embedding, then we also call A	σ the

ΣR-reduct of A and write also A	ΣR.
Since our signatures are a special case of sketches [BW99, Chapters 4,7,8,10],

	σ is a special case of what Barr and Wells call “model category functor”. We
complete the definition and show that is is a relator:

Definition 7.2. For a signature homomorphism σ : ΣR → Σ, the σ-reduct of
a CS-morphism Φ = (Φs )s:S is the CSR-morphism Φ	σ = ((Φ	σ)r )r :SR with
(Φ	σ)r := Φσ r for every r : SR.

The straight-forward proof of the following is elaborated in [Kah09]:

Proposition 7.3. For a signature homomorphism σ : ΣR → Σ, the σ-reduct of
a Σ-bisimulation is a ΣR-bisimulation.

Furthermore, the reduct operation 	σ is an allegory relator from CΣ to CΣR

and therefore also a functor from Map (CΣ) to Map (CΣR).

Obviously, the reduct relator is in general not full if σ is not injective on sorts. If
σ is injective, we can “replace in A its reduct part along a morphism to A	σ”;
this will be used to show the main theorems of the next section (proof in [Kah09]):

Theorem 7.4. If σ : ΣR → Σ is an injective signature homomorphism, then
the reduct functor 	σ is a fibration [BW99, 12.1].

8 Reduct-Restricted Σ-Algebra Categories

In the following, let σ : ΣR → Σ be an arbitrary but fixed signature homomor-
phism, and K a sub-category of CΣR . We will further assume that K is contained
in the image of 	σ — this restriction is not essential, but frequently allows more
concise formulations.

Definition 8.1. The σ,K-restriction of CΣ contains exactly those objects and
morphisms for which the image under 	σ is in K.

We denote this restriction as Cσ|K .

Because relators preserve identities and composition, and K is a category, the
restriction Cσ|K is a category again.
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The technical importance of the assumption on K is that it provides surjec-
tivity on homsets for the reduct relator:

Proposition 8.2. If K is contained in the image of 	σ, then the restriction of
	σ to Cσ|K is a full relator.

If σ is a sub-signature embedding, we also write CΣ|K instead of Cσ|K . If, in
addition, the restriction category K contains only one object L and its identity,
we also write CΣ|L . This latter case covers in particular the situation where
ΣR contains only label sorts and L fixes the label interpretations, producing for
example a category of labelled graphs with fixed label sets.

Note that every one-object-one-morphism category has all limits and colimits
and is not only an allegory, but even a (trivial) relation algebra, and also a bi-
tabular collagory. This therefore provides an important special case for many of
the properties in the remainder of this paper.

Proposition 8.3. If K is a sub-allegory of CΣR , then Cσ|K is an allegory.

Proof: Assume that Φ	σ and Ψ	σ are in K. Since K is closed under converse
and meets, Φ�	σ = (Φ	σ)� and (Φ � Ψ)	σ = (Φ	σ) � (Ψ	σ) are in K, too.

Therefore, Cσ|K is closed under converse and meets, too, and therefore is a
sub-allegory of CΣ.

Proposition 8.4. For semi-unary Σ, if K is a sub-collagory of CΣR , then Cσ|K
is a collagory.

Proof: Assume that Φ	σ and Ψ	σ are in K. With Lemma 6.5 and since K is
closed under joins, the join (Φ �Σ Ψ)	σ = (Φ	σ) �ΣR (Ψ	σ) is in K, too.

So Cσ|K is closed under joins, too, and therefore is a sub-collagory of CΣ.
This join preservation works in particular in the case where K is a one-object-
one-morphism category, since in that case, non-empty joins in K are still inher-
ited (trivially) from CΣR .

Empty joins, i.e., least morphisms, however, are generally not inherited in
the one-object-one-morphism category, since identity morphisms are rarely least
morphisms in CΣR . Therefore the zero law does in general not hold in Cσ|K .
A simple example for this arises in Set sigPointed|{•} , i.e., the allegory of relational
homomorphisms between pointed sets: The presence of the point induces exactly
the same counterexamples as the presence of a zero-ary function symbol, for
example if OA = {0, 1}, and the point (respectively the value of the constant)
in A is 1, then ⊥⊥OA,OA = {(1, 1)} is a non-trivial closure of the non-inherited
least element of K, and with R := {(0, 1), (1, 1)} we have R ., ⊥⊥ = R �= ⊥⊥.

Since the reduct relator 	σ distributes over all relevant operations, it also
preserves (co-)tabulations, i.e.:

– If the span B P� A Q�C is a tabulation for V : B → C in CΣ, then the span
B	σ P�σ� A	σ Q�σ�C	σ is a tabulation for V 	σ in CΣR .

– If the co-span B R�D S� C is a co-tabulation for W : B → C in CΣ , then
the co-span B	σ R�σ�D	σ S�σ� C	σ is a co-tabulation for W 	σ in CΣR .
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Theorem 8.5. For semi-unary Σ, injective σ : ΣR → Σ, and K a sub-collagory
of CΣR , if V : B → C has a tabulation B P� A Q�C in CΣ , and V 	σ has a
tabulation B	σ P0� A0

Q0�C	σ in K, then V also has a tabulation in Cσ|K .

Proof: Since tabulations in CΣR are unique up to isomorphism, there must be
an isomorphism φ : A0 → A	σ. According to Theorem 7.4, we obtain a cartesian
morphism ψ : A1 → A for φ and A, and since this is also an isomorphism,
B ψ

.,P� A1
ψ
.,Q�C is a tabulation for V in Cσ|K .

The corresponding statement for co-tabulations is shown in the same way, so we
obtain as result:

Theorem 8.6. For semi-unary Σ and an injective signature homomorphism σ :
ΣR → Σ, if C is a bi-tabular collagory and if K is bi-tabular sub-collagory of
CΣR , then Cσ|K is a bi-tabular collagory, too.

This includes all the systematically constructed examples for adhesive categories
provided by Lack and Sobociński [LS04], in particular the following uses of a
one-object-one-morphism collagory K:

Corollary 8.7. If C is a bi-tabular collagory, then the following are bi-tabular
collagories, too:
– CsigPointed|C for any object C (conflating C in C with the sigPoint-algebra that

assigns C to the sort P) — this is equivalent to the co-slice category C/C,
– CsigTyped|C for any object — this is equivalent to the slice category C/C,
– node- and edge-labelled graphs considered as sigLGraph-algebras with fixed

node and edge label sets.

9 Conclusion

We have streamlined the axiomatic basis of the relation-algebraic approach to
graph structure transformation by introducing collagories, which, in compari-
son to earlier approaches, remove consideration of the zero-law and, to a certain
extent, of difunctional closure defined via the Kleene star. We showed that the
concepts of tabulation and co-tabulation, which are essential for the relation-
algebraic rewriting approach, can be formalised in collagories, and that the cat-
egory of mappings in a bi-tabular collagory forms an adhesive category, thus
establishing a powerful connection to the categorical approach to graph struc-
ture transformation. We showed that all the important examples of adhesive
categories can also be obtained as special cases of powerful collagory construc-
tions; future work will investigate whether (respectively when) the category of
relations [FS90, 1.412] in an adhesive category forms a collagory. Another in-
teresting goal would be to identify a nicer collagory-level formulation of the
van Kampen property, and establish connections with the characterisation as
bicolimits in the bicategory of spans given by Heindel and Sobociński [HS09].

Further investigations will explore different variations of adhesive categories
in a collagory setting, including the quasiadhesive categories of [LS05], and their
applications.
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Abstract. In this paper we want to extend the abstract approach to
the size of a relation based on a cardinality function. Assuming suitable
extra structure on the underlying distributive allegory we are going to
define addition on cardinalities and investigate its basic properties.

1 Introduction

The calculus of binary relations has been investigated since the middle of the
nineteenth century. It plays an important rôle in the development of logic and
algebra. In recent years it has become clear that this calculus, and its categorical
versions in particular, is a fundamental conceptual and methodological tool in
computer science just as much as in logic. In addition to its usage in modeling
programming languages, classical and non-classical logics and different meth-
ods of data mining, relations have been a fundamental tool in formal program
development [1,3,4,11,12].

A solution of a given problem, in particular an optimal solution, is often
characterized as a minimal element among a set of candidates. In this context,
minimality may refer to some underlying ordering or to the size of the solution,
i.e. its cardinality. For example, one might be interested in a minimum vertex
cover of a graph G, i.e. a subset C of vertices of minimum cardinality so that ev-
ery edge of G is incident to some element in C. Instead of computing an optimal
solution one is often satisfied with a good approximation. The previous example
is an NP-hard problem so that finding optimal solutions is not always feasible.
There exists a simple greedy approximation algorithm for this problem indepen-
dently discovered by Fanica Gavril and Mihalis Yannakakis [10] computing a
vertex cover with at most twice the minimum number of vertices. In [2] relations
were used to formally develop a relational version of this algorithm. The correct-
ness of the algorithm, excluding size considerations, was specified and verified
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using relation algebra. Since a formal introduction of a notion of cardinality of
a relation was not available, the additional size property was shown outside the
theory.

The current paper is a continuation of [8,9]. Those papers introduced three
different notions of the cardinality of a relation based on three different preorders
on objects. In this paper we use the most general version. Given such an allegory
with a cardinality function and some suitable extra structure we are going to
define addition and study its basic properties. In the example mentioned above
our theory of the cardinality of a relation and cardinal addition could be used
to specify and verify all aspects of the algorithm within that unified framework.

2 Categories of Relations

Throughout this paper we assume that the reader is familiar with the basic
notions from category and lattice theory. For notions not defined here we refer
to [5,6].

We denote by MorC the collection of morphisms of a category C. If a morphism
f has source A and target B we usually write f : A → B. The collection of all
morphisms between A and B is denoted by C[A, B]. We use ; for composition
with the convention that it has to be read from left to right, i.e. f ; g means first
f then g. The identity morphism on the object A is written as IA.

Definition 1. An allegory R is a category satisfying the following:

1. For all objects A and B the class R[A, B] is a lower semi-lattice. Meet and the
induced ordering are denoted by �,�,respectively. The elements in R[A, B]
are called relations.

2. There is a monotone operation � (called the converse operation) such that
for all relations Q, R : A → B and S : B → C the following holds

(Q; S)� = S�; Q� and (Q�)
�

= Q.

3. For all relations Q : A → B, R, S : B → C we have Q; (R�S) � Q; R�Q; S.
4. For all relations Q : A → B, R : B → C and S : A → C the following

modular law holds Q; R � S � Q; (R � Q�; S).

Within an allegory functions are of particular interest. Therefore, we call a re-
lation R : A → B univalent (or a partial function) iff R�; R � IB and total iff
IA � R; R�. Functions are total and univalent relations and are usually denoted
by lowercase letters. Furthermore, R is called injective iff R� is univalent and
surjective iff R� is total. Among all the properties valid for relations in an al-
legory we have summarized those used in this paper in the following lemma. A
proof can be found in [5,11,12].

Lemma 1. Let R be an allegory. Then we have:

1. Q; R�S � (Q�S; R�); (R�Q�; S) for all relations Q : A → B, R : B → C
and S : A → C (Dedekind formula);
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2. If Q : A → B is univalent, then Q; (R � S) = Q; R � Q; S for all relations
R, S : B → C;

3. If R : B → C is univalent, then Q; R � S = (Q � S; R�); R for all relations
Q : A → B and S : A → C.

Two functions f : C → A and g : C → B with common source are said to
tabulate a relation R : A → B iff R = f�; g and f ; f� � g; g� = IC . If for all
relations of an allegory R there is tabulation, then R is called tabular. If R[A, B]
has a greatest element ""AB, the tabulation of ""AB is called a relational product
[4,11,12]. In this case the the object and the two functions tabulating ""AB are
denoted by A × B, π : A × B → A and ρ : A × B → B, respectively.

Later we will need the following technical lemma which relates tabulations of
different relations. A proof was already given in [8,9].

Lemma 2. Let R be an allegory, and R : A → B a relation that is tabulated
by f : C → A and g : C → B. Furthermore, let h : D → A and k : D → B be
functions with h�; k � R, and define l := h; f� � k; g� : D → C. Then we have
the following:

1. l is the unique function with h = l; f and k = l; g.
2. If h�; k = R, then l is surjective.
3. If h : D → A and k : D → B is a tabulation, i.e. h; h� � k; k� = ID, then l

is injective.
4. If R is a partial identity, i.e. A = B and R � IA, then f (or g) is a tabulation

of R, i.e. R = f�; f and f ; f� = IC .

Definition 2. An allegory R is called distributive if:

1. For every pair of objects A and B the class R[A, B] is a distributive lattice
with smallest element ⊥⊥AB. Union is denoted by �.

2. For all relations Q : A → B, R, S : B → C we have Q;⊥⊥BC = ⊥⊥AC and
Q; (R � S) = Q; R � Q; S).

Since the dual of a distributive allegory is again a distributive allegory one might
be interested in dual notions. For example, the dual notion of a relation product
is given by relational sums.

Definition 3. Let R be a distributive allegory and A and B be objects of R.
Then an object A+B together with two relations ι : A → A+B and κ : B → A+B
is called a relational sum if it satisfies the following:

ι; ι� = IA, κ; κ� = IB, ι; κ� = ⊥⊥AB, ι�; ι � κ�; κ = IA+B.

The next lemma is a particular interest if R and S are the injections ι and κ of
a relational sum.

Lemma 3. Let R be an allegory, R : A → C and S : B → C with R; S� = ⊥⊥AB.
The we have for all Q1 : D → A, Q2 : D → B and T1 : A → E, T2 : B → E:
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1. Q1; R � Q2; S = ⊥⊥DC,
2. (Q1; R � Q2; S); (R�; T1 � S�; T2) = Q1; T1 � Q2; T2.

Proof

1. follows immediately from Q1; R � Q2; S � (Q1; R; S� � Q2); S = ⊥⊥CD.
2. was already shown several times, e.g. [11]. ��

A subset M of a set N may be described by the canonical injection f : M → N .
Furthermore, the set of equivalence classes of an equivalence relation is fully
determined by the function mapping each element to its equivalence class. Com-
bining both concept we aim at the notion of a splitting.

Definition 4. Let Q : A → A be a symmetric idempotent relation, i.e. Q� = Q
and Q; Q = Q. An object B together with a relation R : B → A is called a
splitting of Q (or R splits Q) iff R; R� = IB and R�; R = Q.

A splitting is unique up to isomorphism. If Q is a partial identity, the object B
of the splitting corresponds to the subset given by Q. Analogously, if Q is an
equivalence relation, B corresponds to the set of equivalence classes.

Some properties of cardinal numbers and their operations in the context of
set theory rely on the axiom of choice. One of the possible versions of this axiom
in the context of allegories is as follows:

(AC) For all total relations R : A → B there is a function f : A → B with
f � R.

3 Cardinality Function

In [8,9] three different notions of a cardinality function on an allegory based on
three preorders on objects were introduced. The first notion was based on the
existence of an injective function from the smaller to the bigger object, and the
second notion was based on the existence of a surjective function from the bigger
to the smaller object. The third notion generalized both versions and was based
on the existence of a total and injective relation from the smaller to the bigger
object. The relational version of the axiom of choice introduced above relates
the three different notions. In this paper we want to use the most general version
of a cardinality function. For a detailed motivation of axioms below we refer to
[8,9].

Definition 5. Let R be an allegory. A cardinality structure (C, |.|,≤) on R con-
sists of a (partially) ordered class (C,≤) and a function |.| : MorR → C satisfying

C0: |R�| = |R| for all relations R;
C1: |.| is monotonic, i.e. R � S implies |R| ≤ |S| for all relations R, S : A → B;
C2: If Q; Q� �S; S� � IB for relations Q : A → B and S : A → C, then for all

R : B → C
|Q; R � S| ≤ |R � Q�; S|.
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The structure is called strong iff |.| is surjective as a function and |IA| ≤ |IB |
implies that there is a total and injective relation R : A → B.

Throughout this paper we will always assume that a cardinality function is
surjective (whether it is strong or not). This is not a restriction since we can
always restrict the class C to the image of |.|.

In [9] it was shown that a cardinal structure is strong iff it is initial with
respect to all cardinal structure. Therefore strong cardinal structures are unique
up to isomorphism.

The next lemma was already given in [8,9].

Lemma 4. Let (C, |.|, 
) be a cardinal structure on the allegory R. Then:

1. If R : A → B is total and injective, then |IA| ≤ |IB|.
2. If U : C → A and V : C → B are univalent with U ; U� � V ; V � � IC , then

|U�; V | = |U ; U� � V ; V �|.

3. If R : A → B has a tabulation f : C → A and g : C → B, then |R| = |IC |.

Property (1) and (3) of the previous lemma provide a hint how to define a
cardinality structure if the underlying allegory is tabular.

Definition 6. Let R be an allegory. Then the canonical cardinality structure
(OB, |.|∗, 
) is defined by

1. 
 is a preordering on the class of objects of R defined by A 
 B iff there is
a total and injective relation R : A → B,

2. OB is the class of equivalence classes [A] of objects from R with respect to
the equivalence relation induced by 
,

3. |.|∗ is defined by |R|∗ := [C] where R : A → B has a tabulation f : C → A
and g : C → B.

In [9] it was shown that the canonical cardinality structure is a strong cardinality
function.

Lemma 5. Let (C, |.|, 
) be a cardinal structure on the allegory R, and be Q :
A → B. Then:

1. If Q is injective, then |Q; R| ≤ |R| for all R : B → C.
2. If Q is surjective and Q�; Q � R; R� � IB, then |R| ≤ |Q; R|.
3. If i : C → A and j : D → B are injections, then |Q| = |i�; Q; j|.

Proof

1. We immediately conclude

|Q; R| = |Q; R � Q; R|
≤ |R � Q�; Q; R| C2 since Q; Q� � Q; R; (Q; R)� � Q; Q� � IA

≤ |R|. C1
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2. We have

|R| = |R � R|
≤ |Q�; Q; R � R| Q surjective

≤ |Q; R � Q; R| C2 since Q�; Q � R; R� � IB

= |Q; R|.

3. Consider the following computation

|Q| = |i�; Q| by (1) and (2) since i is an injection

= |Q�; i| C0

= |j�; Q�; i| by (1) and (2) since j is an injection

= |i�; Q; j|. C0

This completes the proof. ��

A distributive allegory adds an additional operation to the theory of allegories.
It can be expected that a suitable notion of a cardinal structure on such an
allegory has to satisfy additional axioms.

Definition 7. Let R be a distributive allegory. An admissible cardinality struc-
ture (C, |.|,≤) on R is a cardinal structure satisfying

1. If |Q| ≤ |Q′| and (Q � Q′) � R = ⊥⊥AB, then |Q � R| ≤ |Q′ � R|.

We want to provide an example of a non-admissible cardinal structure.

Example 1. It is easy to verify that every lower semi-lattice with a greatest
element constitutes an one object allegory by defining R� := R and Q; R :=
Q � R. On such an allegory axioms C0 and C2 become trivial so that every
monotone function |.| from the allegory to an arbitrary ordering is a cardinality
function. Notice that |.| is strong if it is surjective since the allegory has just one
object, and hence just one identity function.

Consider the example provided in Figure 1. The Boolean lattice on the left-
hand side with the definitions above constitutes an allegory. The function |.| is
monotone so that it is a strong cardinality function on that allegory. The three
relations Q, Q′ and R are a counterexample to the admissibility property of |.|.

Considering sets and their cardinality one might expect that the assumption
(Q � Q′) � R = ⊥⊥AB of an admissible cardinal structure can be weakened to
Q′ � R = ⊥⊥AB, i.e. that we can strengthen the admissibility property to

(∗) |Q| ≤ |Q′| and Q′ � R = ⊥⊥AB implies |Q � R| ≤ |Q′ � R|.

The next example shows that this presumption is wrong.
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Fig. 1. A strong cardinality structure that is not admissible

Example 2. As in the previous example we are going to work with an one-object
distributive allegory that is based on a lattice. Consider the example provided in
Figure 2. The function |.| is monotone so that it is a strong cardinality function
on the allegory given on the left-hand side. Furthermore, it is easy to verify that
this structure is also admissible since Q′ and R are the only distinct non-zero
relations with Q′ � R = ⊥⊥ . On the other hand, the three relations Q, Q′ and R
are a counterexample to the stronger property (∗).

•
|.|

��������������
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R

�������

������� ������������� •

•

�������

������� ����������������� •

Fig. 2. A strong and admissible cardinality structure that does not satisfy (∗)

In the next lemma we want to show that the canonical cardinal structure is
admissible. Notice that the proof of the lemma requires the stronger assumption
(Q � Q′) � R = ⊥⊥AB.

Lemma 6. Let R be a tabular distributive allegory. Then the canonical cardinal
structure (OB, |.|∗, 
) is admissible.

Proof. Suppose Qi : A → B (i = 1, 2, 3) are relations with |Q1|∗ ≤ |Q2|∗ and
(Q1 � Q2) � Q3 = ⊥⊥AB, i.e. Q1 � Q3 = ⊥⊥AB and Q2 � Q3 = ⊥⊥AB. Furthermore,
assume that fi : Ci → A and gi : Ci → B tabulates Qi, and that hi : Di → A
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and ki : Di → B tabulates Qi � Q3 for i = 1, 2. From Lemma 2 we obtain
injections l1 = f1; h

�
1 � g1; k

�
1 : C1 → D1, l3 = f3; h

�
1 � g3; k

�
1 : C3 → D1,

m2 = f2; h
�
2 � g2; k

�
2 : C2 → D2 and m3 = f3; h

�
2 � g3; k

�
2 : C3 → D2 with the

following properties:

l1; h1 = f1, l1; k1 = g1, l3; h1 = f3, l3; k1 = g3,
m2; h2 = f2, m2; k2 = g2, m3; h2 = f3, m3; k2 = g3.

From Lemma 4(3) we get |IC1 |∗ = |Q1|∗ ≤ |Q2|∗ = |IC2 |∗. Since the canonical

A
Q1 �� B A

Q2 �� B A
Q3 �� B

C1

f1

������� g1

����������

l1 ���
��

��
��

�
R �� C2

f2

�������� g2

��        

m2

��!!
!!!

!!!
!!!

!!!
C3

f3

��"""""""" g3

��        

l3

��������
������

������
������

������
������

�

m3��##
##
##
##

D1

h1

����
��
��
�� k1

���
��

��
��

� S=l
�
1 ;R;m2�l

�
3 ;m3

�� D2

h2

��  
  
  
  k2

��"
""

""
""

"

A
Q1�Q3

�� B A
Q2�Q3

�� B

cardinal structure is strong by definition we obtain a total and injective relation
R : C1 → C2. Now, define S = l�1 ; R; m2 � l�3 ; m3 : D1 → D2. We want to show
that S is total and injective since this implies |Q1 � Q3|∗ = |ID1 |∗ ≤ |ID2 |∗ =
|Q2 � Q3|∗ using Lemma 4(1). To this end consider the following computation

⊥⊥C2C3 = f2; (Q2 � Q3); g
�
3 Q2 � Q3 = ⊥⊥AB

= f2; (f
�
2 ; g2 � f�

3 ; g3); g
�
3

= f2; f
�
2 ; g2; g

�
3 � f2; f

�
3 ; g3; g

�
3 Lemma 1(2)

= g2; g
�
3 � f2; f

�
3 f2, g3 injections

= m2; k2; g
�
3 � m2; h2; f

�
3 Properties above

= m2; (k2; g
�
3 � h2; f

�
3 ) Lemma 1(2)

= m2; m
�
3 . Definition m3

Analogously, we get l1; l
�
3 = ⊥⊥C1C3 using Q1 � Q3 = ⊥⊥AB and the definition of

l3. We conclude

S; S� = (l�1 ; R; m2 � l�3 ; m3); (m
�
2 ; R�; l1 � m�

3 ; l3)

= l�1 ; R; m2; m
�
2 ; R�; l1 � l�1 ; R; m2; m

�
3 ; l3

� l�3 ; m3; m
�
2 ; R�; l1 � l�3 ; m3; m

�
3 ; l3
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= l�1 ; R; m2; m
�
2 ; R�; l1 � l�3 ; m3; m

�
3 ; l3 Property above

= l�1 ; R; R�; l1 � l�3 ; l3 m2, m3 injections

= l�1 ; l1 � l�3 ; l3 R injective

so that it remains to show that l�1 ; l1 � l�3 ; l3 = ID1 . Therefore, consider the
following computation

l�1 ; f1 � l�3 ; f3 = (h1; f
�
1 � k1; g

�
1 ); f1 � (h1; f

�
3 � k1; g

�
3 ); f3

= (h1 � k1; g
�
1 ; f1) � (h1 � k1; g

�
3 ; f3) Lemma 1(3)

= h1 � (k1; g
�
1 ; f1 � k1; g

�
3 ; f3)

= h1 � k1; (g
�
1 ; f1 � g�

3 ; f3) Lemma 1(2)

= h1 � k1; (Q
�
1 � Q�

3 )

= h1 � k1; (Q1 � Q3)
�

= h1 � k1; k
�
1 ; h1

= h1.

Analogously, we get l�1 ; g1 � l�3 ; g3 = k1. We obtain

ID1 = h1; h
�
1 � k1; k

�
1 h1, k1 tabulation

= (l�1 ; f1 � l�3 ; f3); h
�
1 � (l�1 ; g1 � l�3 ; g3); k

�
1 Properties above

= (l�1 ; f1; h
�
1 � l�3 ; f3; h

�
1 ) � (l�1 ; g1; k

�
1 � l�3 ; g3; k

�
1 ) Lemma 1(2)

= (l�1 ; f1; h
�
1 � l�1 ; g1; k

�
1 ) � (l�1 ; f1; h

�
1 � l�3 ; g3; k

�
1 )

� (l�3 ; f3; h
�
1 � l�1 ; g1; k

�
1 ) � (l�3 ; f3; h

�
1 � l�3 ; g3; k

�
1 )

= (l�1 ; f1; h
�
1 � l�1 ; g1; k

�
1 ) � (l�3 ; f3; h

�
1 � l�3 ; g3; k

�
1 ) Lemma 3

= l�1 ; (f1; h
�
1 � g1; k

�
1 ) � l�3 ; (f3; h

�
1 � g3; k

�
1 ) l1, l3 injective

= l�1 ; l1 � l�3 ; l3.

This completes the proof. ��

4 Cardinal Addition

Cardinal addition will be based on the cardinality of the disjoint union. The first
lemma shows that this will establish a monotone operation.

Lemma 7. Let R be a distributive allegory with relational sums, and (C, |.|,≤)
be an admissible cardinal structure on R. For Q : A → B, Q′ : C → D with
|Q| ≤ |Q′| we have |ι�; Q; ι � κ�; R; κ| ≤ |ι�; Q′; ι � κ�; R; κ|.
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(A + C) + E
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Proof. From Lemma 5(3) we conclude |ι�; ι�; Q; ι; ι| = |ι�; Q; ι| = |Q| ≤ |Q′| =
|κ�; Q′; κ| = |κ�; κ�; Q′; κ; κ|. Furthermore, we have

(ι�; ι�; Q; ι; ι � ι�; κ�; Q′; κ; ι) � κ�; R; κ

= ι�; (ι�; Q; ι; ι � κ�; Q′; κ); ι � κ�; R; κ Lemma 1(2)
= ⊥⊥(A+C)+E (B+D)+F Lemma 3(1)

Since the cardinal structure is admissible we obtain |ι�; ι�; Q; ι; ι � κ�; R; κ| ≤
|ι�; κ�; Q′; κ; ι � κ�; R; κ|. Consider the following computation

(ι�; ι; ι � κ�; κ); (ι�; ι; ι � κ�; κ)
�

= (ι�; ι; ι � κ�; κ); (ι�; ι�; ι � κ�; κ)

= ι�; ι; ι�; ι � κ�; κ Lemma 3(2)

= ι�; ι � κ�; κ ι injection
= IA+E ,

(ι�; ι; ι � κ�; κ)
�

; (ι�; ι; ι � κ�; κ)

= (ι�; ι�; ι � κ�; κ); (ι�; ι; ι � κ�; κ)
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= ι�; ι�; ι; ι � κ�; κ Lemma 3(2)

� ι�; ι � κ�; κ
= I(A+C)+E ,

which shows that ι�; ι; ι � κ�; κ is an injection. Analogously it follows that
ι�; κ; ι � κ�; κ is an injection. We conclude

|ι�; Q; ι � κ�; R; κ|

= |(ι�; ι; ι � κ�; κ)
�

; (ι�; Q; ι � κ�; R; κ); (ι�; ι; ι � κ�; κ)| Lemma 5(3)

= |(ι�; ι�; ι � κ�; κ); (ι�; Q; ι � κ�; R; κ); (ι�; ι; ι � κ�; κ)|
= |ι�; ι�; Q; ι; ι � κ�; R; κ| Lemma 3(2)

≤ |ι�; κ�; Q′; κ; ι � κ�; R; κ| see above

= |(ι�; κ�; ι � κ�; κ); (ι�; Q′; ι � κ�; R; κ); (ι�; κ; ι � κ�; κ)| Lemma 3(2)

= |(ι�; κ; ι � κ�; κ)
�

; (ι�; Q′; ι � κ�; R; κ); (ι�; κ; ι � κ�; κ)|
= |ι�; Q′; ι � κ�; R; κ|. Lemma 5(3)

This completes the proof. ��

We are now ready to define addition for the cardinality of relations.

Definition 8. Let R be a distributive allegory with relational sums, and (C, |.|,
≤) be an admissible cardinal structure on R. For x, y ∈ C with x = |Q| and
y = |R| we define x + y := |ι�; Q; ι � κ�; R; κ|.

Lemma 7 also shows that + is well-defined, i.e. that the definition is independent
of the choice of a relation Q with |Q| = x.

Lemma 8. Let be Q, R : A → B. Then:

1. |Q � R| ≤ |Q| + |R|.
2. If Q � R = ⊥⊥AB, then |Q| + |R| = |Q � R|.
3. If Q (or R) has a complement, then |Q| + |R| = |Q � R| + |Q � R|.

Proof

1. First of all, we have

(ι � κ); (ι � κ)� = (ι � κ); (ι� � κ�)

= ι; ι� � κ; κ� Lemma 3(2)
= IA+A

showing that ι � κ is injective. We conclude

|Q � R| = |(ι � κ); (ι�; Q; ι � κ�; R; κ); (ι� � κ�)| Lemma 3(2)

≤ |ι�; Q; ι � κ�; R; κ| Lemma 5(1)
= |Q| + |R|.
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2. Consider the following computation

ι�; κ � (ι�; Q�; Q; ι � κ�; R�; R; κ)

= (ι�; κ � ι�; Q�; Q; ι) � (ι�; κ � κ�; R�; R; κ)
= ⊥⊥B+B,B+B Lemma 3(1)

Analogously, we get κ�; ι � (ι�; Q�; Q; ι � κ�; R�; R; κ) = ⊥⊥B+B,B+B. This
implies

(ι � κ)�; (ι � κ) � (ι�; Q; ι � κ�; R; κ)
�

; (ι�; Q; ι � κ�; R; κ)

= (ι � κ)�; (ι � κ) � (ι�; Q�; Q; ι � κ�; R�; R; κ) Lemma 3(2)

= (ι�; ι � ι�; κ � κ�; ι � κ�; κ) � (ι�; Q�; Q; ι � κ�; R�; R; κ)

= (IB+B � ι�; κ � κ�; ι) � (ι�; Q�; Q; ι � κ�; R�; R; κ)

= (IB+B � (ι�; Q�; Q; ι � κ�; R�; R; κ))

� (ι�; κ � (ι�; Q�; Q; ι � κ�; R�; R; κ))

� (κ�; ι � (ι�; Q�; Q; ι � κ�; R�; R; κ))

= IB+B � (ι�; Q�; Q; ι � κ�; R�; R; κ)) see above
� IB+B

and

(ι � κ)�; (ι � κ) � (ι�; Q; ι � κ�; R; κ); (ι � κ)�; (ι � κ); (ι�; Q; ι � κ�; R; κ)
�

= (ι � κ)�; (ι � κ) � (ι�; Q � κ�; R); (Q�; ι � R�; κ) Lemma 3(2)

= (ι�; ι � ι�; κ � κ�; ι � κ�; κ) � (ι�; Q � κ�; R); (Q�; ι � R�; κ)

= (IA+A � ι�; κ � κ�; ι) � (ι�; Q � κ�; R); (Q�; ι � R�; κ)

= (IA+A � (ι�; Q � κ�; R); (Q�; ι � R�; κ))

� (ι�; κ � (ι�; Q � κ�; R); (Q�; ι � R�; κ))

� (κ�; ι � (ι�; Q � κ�; R); (Q�; ι � R�; κ))

= IA+A � (ι�; Q � κ�; R); (Q�; ι � R�; κ) see above
� IA+A.

Using the two properties above together with Lemma 5(2) we conclude

|Q| + |R| = |ι�; Q; ι � κ�; R; κ|
= |ι�; Q�; ι � κ�; R�; κ| C0

≤ |(ι � κ); (ι�; Q�; ι � κ�; R�; κ)| Lemma 5(2)

= |(ι�; Q; ι � κ�; R; κ); (ι � κ)�| C0

≤ |(ι � κ); (ι�; Q; ι � κ�; R; κ); (ι � κ)�| Lemma 5(2)
= |Q � R|. Lemma 3(2)
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3. We will denote the complement of Q by Q and compute

|Q| + |R| = |Q| + |(Q � R) � (Q � R)|
= |Q| + |Q � R| + |Q � R| by (2)

= |Q � (Q � R)| + |Q � R| by (2)
= |Q � R| + |Q � R|.

This completes the proof. ��

The following computation

| ⊥⊥AB| = | ⊥⊥AC ; R;⊥⊥DB|
≤ |R| Lemma 5(1) since ⊥⊥ is injective

shows that | ⊥⊥AB| ≤ |R| for every relation R : C → D. In particular, we have
| ⊥⊥AB| = | ⊥⊥CD| for all objects A, B, C and D. Therefore, we use the notation
0 := | ⊥⊥AB|.

The next theorem establishes the main result about cardinal addition.

Theorem 1. Let R be a distributive allegory with relational sums, and (C, |.|,≤)
be an admissible cardinal structure on R. Then (C,≤, +, 0) is an ordered com-
mutative monoid, i.e. + is monotonic, associative and commutative with 0 as
neutral element.

Proof. Monotonicity follows immediately from Lemma 7. The relation ι�; κ �
κ�; ι is a bijective function from A + B to B + A so that we conclude

|Q| + |R| = |ι�; Q; ι � κ�; R; κ|
= |(ι�; κ � κ�; ι); (ι�; Q; ι � κ�; R; κ); (ι�; κ � κ�; ι)| Lemma 5(3)

= |ι�; R; ι � κ�; Q; κ| Lemma 3(2)
= |R| + |Q|.

Associativity follows analogously using the bijective function ι�; ι�; ι�(ι�; κ�; ι�
κ�; κ); κ : (A + B) + C → A + (B + C). Finally, we have

|Q| + 0 = |Q| + | ⊥⊥AB|
= |ι�; Q; ι � κ�;⊥⊥AB; κ|
= |ι�; Q; ι|
= |Q|. Lemma 5(3)

This completes the proof. ��

Finally, we want to concentrate on the well-known equivalence of cardinal num-
bers based on set theory

∃y : x + y = z ⇐⇒ x ≤ z.

Notice that even in set theory the implication ⇐ requires the axiom of choice.
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Lemma 9. Let R be a distributive allegory with relational sums, and (C, |.|,≤)
be an admissible cardinal structure on R. Then we have:

1. If |Q| + |R| = |S|, then |Q| ≤ |S|.
2. If R is Boolean, tabular, has splittings and satisfies (AC) and |.| is strong,

then |Q| ≤ |S| implies that there is a relation R with |Q| + |R| = |S|.

Proof

1. This follows immediately from |Q| = |Q| + 0 ≤ |Q| + |R| = |S|.
2. Assume Q : A → B and S : C → D are tabulated by f : E → A, g : E → B

and h : F → C, k : F → D, respectively. Then we have |IE | = |Q| ≤ |S| =
|IF | by Lemma 4(3). Since |.| is strong there is a total and injective relation
T : E → F . By (AC) we obtain an injection i � T . Suppose u : G → F splits
the symmetric and idempotent relation IF � i�; i. Then u is an injection and
we have

|Q| + |u| = |Q| + |u�; u| Lemma 5(3)

= |Q| + |IF � i�; i|
= |IE | + |IF � i�; i| Lemma 4(3)

= |i�; i| + |IF � i�; i| Lemma 5(3)

= |i�; i � (IF � i�; i)| Lemma 8(2)
= |IF |
= |S|. Lemma 4(3)

This completes the proof. ��

Notice that the assumption that R is Boolean from 2. of the previous lemma is
redundant since this follows the remaining properties [13].

5 Conclusion and Outlook

In this paper we extended the notion of a cardinal function to distributive al-
legories, and we defined a suitable notion of addition of cardinal numbers. The
next step in the development of this theory will be an abstract treatment of mul-
tiplication. This notion will be based on relational products, of course. Therefore,
multiplication can just be defined in allegories that permit relational products.
It is well known that such an allegory is representable, i.e. multiplication, unlike
addition, can just be defined in representable allegories.

Another area of further study will be the application of this theory to the-
orems including cardinality statements and the development of algorithms. As
already mentioned in the introduction certain algorithm are formulated and/or
developed within the relational framework using cardinality properties. Even
though the correctness of the core algorithm is shown using relation algebra,
any cardinality consideration is usually treated separately. Our theory provides
the theoretical background for both tasks within one framework.
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Abstract. Despite much progress in the design of programming lan-
guages, the vast majority of software being written and deployed nowa-
days remains written in languages where iteration is the main inductive
construct, and the main source of algorithmic complexity. For the past
four decades, the analysis of iterative constructs has been dominated, not
undeservedly, by the concept of invariant assertions. In this paper we sub-
mit relation-based alternatives, namely invariant relations and invariant
functions, and show how these can provide complementary perspectives,
and can enrich the analysis of iterations. Whereas loop invariants can be
used to establish the correctness of iterative programs in Hoare logics,
invariant relations and invariant functions are used to derive program
functions in Mills’ logic. In keeping with the conference format, we do
not delve too much into theoretical results, and focus instead on the
applied aspects of our relation-theoretic approach.

Keywords: Function extraction, loop functions, invariant assertions, in-
variant relations, invariant functions, relational calculus, refinement cal-
culus, computing loop behavior.

1 Deriving Loop Functions

Despite several decades of evolution, most programming languages in use today
are Pascal-like languages, whose most important construct is the loop. Also, de-
spite several decades of research, the analysis of programs for the purpose of
understanding them, verifying their correctness or maintaining them remains an
unfulfilled challenge. Few methods in existence today scale up to industrial size
software products, and most support tools require extensive human intervention,
which makes them both less effective and less dependable. This combination has
led to a renewed interest in the analysis of while loops, dominated to a large
extent by the concept of invariant assertions [1,2,3,4,5,6,7,8,9,10] (to cite only a
few). In this paper we explore relation-based concepts that offer alternative per-
spectives to invariant assertions, namely invariant relations [11] and invariant
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functions [12]. Our focus in this paper is not on theoretical results, but rather on
exploring practical applications of these concepts to the analysis of loops. Also,
we are not interested to compare and contrast the merits of invariant assertions
versus invariant relations and invariant functions as much as we are interested
to show how these two families of approaches (logic-based, relation-based) offer
complementary perspectives and insights. As usual, the law of diminishing re-
turns advocates the use of a diverse set of methods and tools, to maximize the
impact of our effort.

In the following section we briefly present some mathematical background,
which we use in section 3 to define and illustrate the concepts of invariant rela-
tions and invariant functions. In section 4 we present a number of theorems that
form the basis of our approach to the analysis of loops. In section 4.2 we briefly
discuss the design and implementation of the tool, and in section 5 we show
examples of application of the proposed method and tool. Finally, in section
6 we briefly summarize our results and assess them with respect to competing
approaches and tools.

2 Mathematical Background

2.1 Programs and Specifications

Adopting Mills’ logic [13,14], we use functions to represent program semantics
and relations to represent program specifications. Given a program P on vari-
ables x, y, z (for example), we let the set S defined by these variables be the
space of the program, and we define the function of program P as

[P ] = {(s, s′)| if P starts execution in state s then it terminates in state s′}.

From this definition, we infer:

dom([P ]) = {s| if P starts execution in state s then it terminates}.

Given a space S, we represent program specifications by binary relations on
S. A specification R on S represents all acceptable input/output pairs, in the
following sense: the domain of R represents all the initial states that the user
may submit to the program; given an element s in dom(R), the image set of s
by R represents all the final states that are considered correct for s.

2.2 Refinement Ordering

We define an ordering relation on relational specifications under the name re-
finement ordering:

Definition 1. A relation R is said to refine a relation R′ if and only if

RL ∩ R′L ∩ (R ∪ R′) = R′.
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In set theoretic terms, this equation means that the domain of R is a superset
of (or equal to) the domain of R′, and that for any element s in the domain of
R′, the image set of s by R is a subset of (or equal to) the image set of s by R′.
This is similar to, but different from, refining a pre/postcondition specification
by weakening its precondition and/or strengthening its postcondition [15,16].
We abbreviate this property by R - R′ or R′ � R. We admit that, modulo
traditional definitions of total correctness [17,15,18], the following propositions
hold.

– A program P is correct with respect to a specification R if and only if
[P ] - R.

– R - R′ if and only if any program correct with respect to R is correct with
respect to R′.

Intuitively, R refines R′ if and only if R represents a stronger requirement than
R′.

2.3 Refinement Lattice

We admit without proof that the refinement relation is a partial ordering. In
[19] Boudriga et al. analyze the lattice properties of this ordering and find the
following results:

– Any two relations R and R′ have a greatest lower bound, which we refer to
as the meet, denote by �, and define by:

R � R′ = RL ∩ R′L ∩ (R ∪ R′).

– Two relations R and R′ have a least upper bound if and only if they satisfy
the following condition:

RL ∩ R′L = (R ∩ R′)L.

Under this condition, their least upper bound is referred to as the join,
denoted by �, and defined by:

R � R′ = RL ∩ R′ ∪ R′L ∩ R ∪ (R ∩ R′).

– Two relations R and R′ have a least upper bound if and only if they have
an upper bound; this property holds in general for lattices, but because
the refinement ordering is not a lattice (since the existence of the join is
conditional), it bears checking for this ordering specifically.

– The lattice of refinement admits a universal lower bound, which is the empty
relation.

– The lattice of refinement admits no universal upper bound.
– Maximal elements of this lattice are total deterministic relations.
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3 Relational Invariants

In this section, we briefly define, discuss and illustrate these concepts, in prepa-
ration for our subsequent discussions. We consider a while statement of the form
w = while t do B on some space S, and we assume that w terminates normally
for any initial state s in S. For the sake of illustration, we consider the following
while loop on array variables a and b, real variables x and y, and index variables
i and j:

while (i �= N + 1){x := x + a[i]; y := y + b[j]; i := i + 1; j := j − 1; }.

We submit that the following predicate is an invariant assertion:

x =
i−1∑
k=1

a[k].

3.1 Invariant Relations

Invariant relations are relations that contain pairs of states (s, s′) such that s′

follows from s by application of an arbitrary number of iterations. We define
them as follows.

Definition 2. Given a while loop of the form w = while t do B on some space
S, and given a relation R on S, we say that R is an invariant relation for w if
and only if R is reflexive, transitive, and satisfies the following conditions (where
T is the vector defined by predicate t:

– The Invariance Condition:
T ∩ [B] ⊆ R.

– The Convergence Condition:

R ◦ T = L.

It is possible to interpret the invariant condition in many ways, of which we
choose the following:

– The function of the while loop is given by the following expression [20]:

[w] = (I(t) ◦ [B])∗ ◦ I(¬t),

where (I(t) ◦ [B])∗ is the reflexive transitive closure of (I(t) ◦ [B]) (which
can, in turn, be written as (T ∩ [B])., where T is the vector defined by t)

– The reflexive transitive closure of a relation is the smallest reflexive transitive
superset of the relation.

– As an arbitrary (not necessarily smallest) reflexive transitive superset of
(I(t) ◦ [B]), an invariant relation is an approximation of the the reflexive
transitive closure of (I(t) ◦ [B]), hence can be used to approximate the func-
tion of the loop. This will be confirmed, and formalized, in section 4, by
Theorem 3.
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As for the convergence condition, it provides that any state in S can be mapped
by an invariant relation R onto a state in S that satisfies ¬t. Given that R
represents the effect of applying the loop body an arbitrary number of times,
this condition ensures that these applications eventually produce a final state,
i.e. a state that causes the loop to terminate.

To illustrate this concept, we consider the example of the array sum, presented
above, and propose the following invariant relation for it, inviting the reader to
compare it with (contrast it to) the invariant assertion presented above.

R = {(s, s′)|x +
N∑

k=i

a[k] = x′ +
N∑

k=i′
a′[k] ∧ i ≤ i′}.

This relation is clearly reflexive and transitive; we leave it to the reader to check
that it satisfies the invariance condition and the convergence condition.

3.2 Invariant Functions

Whereas invariant relations are used to approximate loop functions, invariant
functions are used to generate a broad class of invariant relations, namely those
that are symmetric (in addition to being reflexive and transitive).

Definition 3. Let w be a while statement of the form while t do B that ter-
minates normally for all initial states in S. We say that a function F on S is
an invariant function if and only if it is total and

T ∩ [B] ◦ F = T ∩ F.

Invariant functions are due to [12]. They are relevant to our work because if F

is an invariant function then its nucleus FF̂ is an invariant relation; we have
further shown in [11] that if R is a symmetric invariant relation then it is the
nucleus of some invariant function.

To illustrate the concept of invariant function, we consider the array program,
and submit the following function:

F

⎛⎜⎜⎜⎜⎜⎜⎝
a
x
i
b
y
j

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝

a

x +
∑N

k=i a[k]
N + 1

a

x +
∑N

k=i a[k]
N + 1

⎞⎟⎟⎟⎟⎟⎟⎠ .

We briefly verify that this function is invariant with respect to application of
the loop body (assuming s satisfies condition t).

F

⎛⎜⎜⎜⎜⎜⎜⎝[B]

⎛⎜⎜⎜⎜⎜⎜⎝
a
x
i
b
y
j

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠ = F

⎛⎜⎜⎜⎜⎜⎜⎝
a

x + a[i]
i + 1

b
y + b[j]
j − 1

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝

a

x + a[i] +
∑N

k=i+1 a[k]
N + 1

a

x + a[i] +
∑N

k=i+1 a[k]
N + 1

⎞⎟⎟⎟⎟⎟⎟⎠ = F

⎛⎜⎜⎜⎜⎜⎜⎝
a
x
i
b
y
j

⎞⎟⎟⎟⎟⎟⎟⎠ .
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4 Successive Approximations

We now discuss how invariant relations and invariant functions are used in our
effort to derive loop functions automatically. As a discipline of separation of
concerns, we resolve to derive the function of the loop by successive approxima-
tions. To this effect, we resolve to use the lattice of refinement, and we formulate
approximations as inequalties that involve the function of the loop. Because the
loops we are considering are deterministic, and because we are assuming that
they terminate for all states in S, the loops define total, deterministic relations.
According to the lattice structure we have found for the refinement ordering, to-
tal deterministic relations are maximal; hence the only meaningful inequalities
we can write with loop functions are of the form

[w] - T,

for some relation T , to which we refer as a lower bound of the loop function. The
central idea of our approach is that we derive the function of the loop ([w]) from
a collection of statements of the form [w] - Ti, for a number of lower bunds Ti.
If we can analyze the loop and derive lower bounds T1, T2, ... Tk of [w], we write

[w] - T1 ∧ [w] - T2 ∧ ... ∧ [w] - Tk,

from which we infer (by lattice theory)

[w] - T1 � T2 � ... � Tk.

If T1 � T2 � ... � Tk is total and deterministic, then (according to the lattice
structure) it is maximal in the lattice, hence we infer

[w] = T1 � T2 � ... � Tk.

If not, then the join of lower bounds forms a comprehensive lower bound (ap-
proximation) of the loop function. In the next section we present a number of
theorems that provide lower bounds for the loop function; proofs of these theo-
rems are given in [20].

4.1 Lower Bound Theorems

We distinguish between two types of theorems: Theorems that provide con-
structive lower bounds, i.e. lower bounds that are explicit expression of loop
parameters (t, B); and theorems that provide creative lower bounds, i.e. lower
bounds that must be derived creatively, then checked against specific conditions.
Our algorithm for deriving loop functions uses these classes of lower bounds dif-
ferently: constructive lower bounds are generated systematically for all loops;
whereas creative lower bounds are generated by pattern matching against pre-
catalogued code patterns.

4.1.1 Constructive Lower Bounds
The following theorem provides that the final state of an execution satisfies ¬t,
and that it has a antecedent by the loop body that satisfies t; in other words,
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the final state is the first state in the sequence of iterants that fails to satisfy t.
This is useful in many cases in practice, for example when the loop condition is
an inequality (≥, ≤, <, >).

Theorem 1. Let w be a while loop defined by while t do B. If t �≡ false then
the following relation T is a lower bound of [B]:

T = I(t) ◦ L ◦ I(t) ◦ [B] ◦ I(¬t) ∪ I(¬t).

The following theorem provides that if the loop body is executed at least once,
then the final state will be in the range of [B]. This is useful in cases when the
function of the loop body is not surjective.

Theorem 2. Given a while statement w of the form while t do B on space S,
such that w terminates for all initial states in S, and that t �≡ false . Then the
following specification is a lower bound of the function of the loop:

T = (L ◦ [B] ∪ I) ◦ I(¬t).

4.1.2 Creative Lower Bounds
The following theorems provide lower bounds that require a creative step; these
lower bounds are not expressed exclusively in terms of the loop parameters, but
also in terms of quantities that must be derived creatively. Our algorithm will
generate them by means of a pattern matching step, which we discuss in the
next section.

Theorem 3. We consider a while loop w on space S, defined by w = while t
do B. If R is an invariant relation for w then T is a lower bound for [w], where

T = R ◦ I(¬t).

This theorem allows us to derive a lower bound of [w] from any invariant relation
we may know about the loop. Because invariant relations are supersets of the loop
body’s function, it may be advantageous to structure the function of the loop body
as an intersection, so as to facilitate deriving its supersets: If the function B of the
loop body is written as an intersection, say

B = B0 ∩ B1 ∩ B2 ∩ ... ∩ Bk,

then any superset of B0 is a seuperset of B, any superset of B0∩B1 is a superset
of B, any superset of B0 ∩B1 ∩B2 is a seuperset of B, etc; this property can be
used as a basis for a separation of concerns discipline, whereby we derive lower
bounds of the loop function ([w]) by considering arbitrarily few terms of the
intersection. But we do not always get to choose how to structure the function
of the loop body: if the loop body has an if-then-else, or nested if-then-else’s, or
sequenced if-then-else’s, then the outermost structure of its function is a union,
not an intersection. The following theorem provides a tentative solution for such
cases.
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Theorem 4. We consider a while statement of the form while t do B where
the function of B can be written as the union of two relations, say P and Q. If
R and R′ are reflexive transitive relations such that

P ⊆ R,

Q ◦ R ⊆ R′

and
R ◦ R′ ◦ I(¬t) ◦ L = L

then T is a lower bound of [w], where

T = R ◦ R′ ◦ I(¬t).

In the next section we briefly discuss how these theorems are deployed in practice
to build a tool that computes the function of a loop from an analysis of its source
code in a variety of common programming languages (C, C++, Java).

4.2 A Tool for Loop Analysis

We use the theorems of the previous section as a basis in the design of an
automated tool that derives the function of a while loop by analyzing its source
code. The tool proceeds in three steps:

– From Source Code to Internal Notation. We map source code from the rel-
evant languages to a unified language-independent notation. This allows us
to keep the subsequent steps language-independent, and also to prepare the
loop for application of theorems 3 and 4. To accomodate Theorem 3, we aim
to structure the function of the loop body as an intersection; if the outermost
structure of this function is a union, we structure it as a union of intersec-
tions. The notation we use to this effect is that of Conditional Concurrent
Assignments, or CCA for short; files that contain the representation of the
loop in this notation will have the extention .cca.

– From Internal Notation to Mathematica Equations. We analyze the CCA
notation for the purpose of applying the lower bound theorems; the lower
bounds we generate take the form of equations involving initial values and
final values of the program variables. For constructive lower bounds, we
generate systematically all the equations that stem from Theorems 1 and
2. For creative lower bounds, we proceed by matching CCA statements or
combinations of statements against a library of code patterns and inferring
appropriate lower bounds.

– From Mathematica Equations to Loop Functions. Solve the equations gen-
erated above in the final values of the program variables, as a function of
the initial values; this gives, in effect, the function of the loop. This step
is carried out by a combination of a computer algebra system (Mathemat-
ica, c©Wolfram Research) with a theorem prover (Otter is currently under
consideration).
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The success of our approach depends critically on the second step, hence we
discuss it in some detail in this section. We generate creative lower bounds by
matching CCA statements or combinations of statements against pre-catalogued
code patterns for which we have predefined lower bounds. To this effect we define
a database of patterns called recognizers, where each recognizer is defined by the
following items:

– A space declaration, given in terms of variables and constants; unlike other
approaches that work exclusively on executable code, our approach can be
applied to constants whose value is left unspecified. If the function of the loop
takes different forms depending on the value of the constants, our approach
will highlight them.

– A code pattern that includes one, two or three CCA statements. In order
to keep combinatorics under control, we have resolved to limit our pattern
matching to no more than three statements; depending on the number of
CCA statements in the pattern, we talk about 1-recognizers, 2-recognizers,
or 3-recognizers.

– An invariant relation that is known to be maintained by the relevant state-
ments.

– The lower bound that stems from the invariant relation (by post-restricting
it to ¬t).

When a CCA statement or combination of statements matches the code pattern
of a recognizer, we instantiate the lower bound given by the recognizer in the
form of a Mathematica equation involving primed variables (referring to final
values) and unprimed variables (referring to initial values of state variables).
Solving the combination of these equations in the primed variables using the
unprimed variables as parameters yields an explicit expression of the function of
the loop.

5 Examples of Application

To illustrate our relational approach, we present below a few simple examples
for which our tool generates the loop function. Along with each example, we
present a sampling of the recognizers that are used to analyze it.

5.1 Numeric Example

The first example involves numeric computations. We consider the following
while loop on a number of integer constants a, b and c, and integer variables x,
y, z, t and i:

while (i �= 0){t := t + a ∗ y; z := z + b ∗ x; x := x + a; y =: y ∗ c; i := i − 1; }.

We are interested in deriving the function that this loop defines between its
initial states (values of x, y, z, t and i prior to the execution of the loop) and its
final states (values of these variables when execution terminates). Some of the
recognizers that we use to analyse this loop include the following:
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ID State Space Code Pattern Invariant Relation Lower Bound
R = T =

1R1 x: int x=x+c {(s, s′)|x mod c = {(s, s′)|x mod c =
const c: x′ mod c} x′ mod c ∧ ¬t(s′)}
int >0

2R1: x, y: int x = x+a {(s, s′)|ay − bx = {(s, s′)|ay − bx =
const y = y+b ay′ − bx′} ay′ − bx′ ∧ ¬t(s′)}
a, b: int

2R2: x, y: int x = x*a {(s, s′)|y(1 − a) + x = {(s, s′)|y(1 − a) + x =
const y = y+x y′(1 − a) + x′} y′(1 − a) + x′ ∧ ¬t(s′)}
a: int

2R3: x, y: int x = x+a {(s, s′)| y
bx/a = {(s, s′)| y

bx/a =
const y = y*b y′

bx′/a } y′

bx′/a ∧ ¬t(s′)}
a, b: int

The pattern matching step produces the following Mathematica equations:

Reduce[
{Reduce[

{t+a*y/(1-c) == tP+a*yP/(1-c),
z-b*x*(x-a)/(2*a) == zP-b*xP*(xP-a)/(2*a),
y/c^(x/a) == yP/c^(xP/a),
a*x+1*i == a*xP+1*iP,
y/c^(i/-1) == yP/c^(iP/-1),
Reduce[

{(iP == 0),
Exists [

{iPP, tPP, xPP, yPP, zPP},
(iPP == 0) && tP == tPP+a*yPP &&
zP == zPP+b*xPP && xP == xPP+a &&
yP == yPP*c && iP == iPP-1] } ]

} ],
i >= iP} {iP, tP, xP, yP, zP},
Backsubstitution -> True]

We make multiple nested calls to Reduce in order to sequentialize the resolution of
these equations; the inner call stems from application of Theorem 2, and specifies
that the final state has an antecedent by the loop body that satisfies the loop
condition. Mathematica solves the equations in xP , yP , zP , tP and iP using x,
y, z, t, and i as variables and a, b and c as constants. Because (1 − c), c and a
appear in the denominator in the Mathematica expression above, Mathematica
assumes that a×c×(c−1) is non-zero. Singular values of these constants produce
simpler expressions of the loop function, which we do not discuss here.
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a × (c2 − c) �= 0 ∧ y �= 0 ⇒

⎛⎜⎜⎜⎜⎝
iP = 0

tP = −t+ct−ay+aciy
c−1

xP = a × i + x
yP = ciy

zP = −abi+abi2+2bix+2z
2

⎞⎟⎟⎟⎟⎠
∧

a × (c2 − c) �= 0 ∧ y = 0 ⇒

⎛⎜⎜⎜⎜⎝
iP = 0
tP = t

xP = a × i + x
yP = 0

zP = −abi+abi2+2bix+2z
2

⎞⎟⎟⎟⎟⎠
To enhance our confidence in the correctness of the generated function, we deploy
a test driver that produces randomly generated test data (varying the variables
and the constants, subject to the cited condition), and tests the loop against an
oracle derived from the loop function; all the tests we ran were successful.

Interest of this example: This example shows how we can process numeric
examples of arbitrary size, with fairly little overhead, provided we have the ap-
propriate recognizers. This example also highlights that we can handle symbolic
constants, since we deal with source code, whereas systems that deal with pro-
gram execution (e.g. Daikon [5]) can only handle instantiated constants.

5.2 Array Manipulations

We consider the following while loop on array variables a and b, integer variables
x and y, integer constant N and index variables i and j:

while (i < N){x := x + a[i]; y := y + b[j]; i := i + 1; j := j − 1; }

We are interested in deriving the function of this loop; we are also interested
to determine how this function is affected by minor changes to the source code,
such as: changing the condition to (i ≤ N); to (i �= N); to (j > 0); to (j ≥ 0);
if we permute the index updates and the sum updates. Table 1 summarizes
the outcomes of various combinations of the proposed modifications, with the
associated functions. The table below presents two of the recognizers that we
needed to analyze the example at hand.

ID State Space Code Pattern Invariant Relation Lower Bound
R = T =

3R1 x: int i=i+1, {(s, s′)|a′ = a {(s, s′)|a′ = a

a[N]: int x = x+a[i] ∧x +
∑N

k=i a[k] = ∧x +
∑N

k=i a[k] =
i: int a=a x′ +

∑N
k=i′ a′[k]} x′ +

∑N
k=i′ a′[k] ∧ ¬t(s′)}

3R2 x: int i=i-1, {(s, s′)|a′ = a {(s, s′)|a′ = a

a[N]: int x = x+a[i] ∧x +
∑i

k=1 a[k] = ∧x +
∑i

k=1 a[k] =
i: int a=a x′ +

∑i′

k=1 a′[k]} x′ +
∑i′

k=1 a′[k] ∧ ¬t(s′)}
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Table 1. Array Loops and their Functions

Program Function
while (i<N) { x=x+a[i]; I(i ≥ N) ∪ {(s, s′)|i ≤ N ∧ i′ = N ∧ j′ = i − N + j∧
y=y+b[j]; i=i+1; j=j-1;} x′ = x +

∑N−1
k=i a[k] ∧ y′ = y +

∑j
k=i−N+j+1 b[k]

∧a′ = a ∧ b′ = b}
while (i<N) { j=j-1; I(i ≥ N) ∪ {(s, s′)|i ≤ N ∧ i′ = N ∧ j′ = i − N + j∧
x=x+a[i]; y=y+b[j]; i=i+1;} x′ = x +

∑N−1
k=i a[k] ∧ y′ = y +

∑j−1
k=i−N+j b[k]

∧a′ = a ∧ b′ = b}
while (i<N) { i=i+1; I(i ≥ N) ∪ {(s, s′)|i ≤ N ∧ i′ = N ∧ j′ = i − N + j∧
x=x+a[i]; y=y+b[j]; j=j-1;} x′ = x +

∑N
k=i+1 a[k] ∧ y′ = y +

∑j
k=i−N+j+1 b[k]

∧a′ = a ∧ b′ = b}
while (i<N) { i=i+1; I(i ≥ N) ∪ {(s, s′)|i ≤ N ∧ i′ = N ∧ j′ = i − N + j∧
j=j-1; x=x+a[i]; y=y+b[j];} x′ = x +

∑N
k=i+1 a[k] ∧ y′ = y +

∑j−1
k=i−N+j b[k]

∧a′ = a ∧ b′ = b}
while (i!=N) { i=i+1; {(s, s′)|i ≤ N ∧ i′ = N ∧ j′ = i − N + j∧
j=j-1; x=x+a[i]; y=y+b[j];} x′ = x +

∑N
k=i+1 a[k] ∧ y′ = y +

∑j−1
k=i−N+j b[k]

∧a′ = a ∧ b′ = b}
while (i<=N) { x=x+a[i]; I(i > N) ∪ {(s, s′)|i ≤ N ∧ i′ = N + 1∧
y=y+b[j]; i=i+1; j=j-1; } x′ = x +

∑N
k=i a[k] ∧ y′ = y +

∑j
k=i−N+j b[k]

∧j′ = i − N + j − 1 ∧ a′ = a ∧ b′ = b}
while (i<=N) { j=j-1; I(i > N) ∪ {(s, s′)|i ≤ N ∧ i′ = N + 1∧
x=x+a[i]; y=y+b[j]; i=i+1; } x′ = x +

∑N
k=i a[k] ∧ y′ = y +

∑j−1
k=i−N+j−1 b[k]

∧j′ = i − N + j − 1 ∧ a′ = a ∧ b′ = b}
while (i<=N) { i=i+1; I(i > N) ∪ {(s, s′)|i ≤ N ∧ i′ = N + 1∧
x=x+a[i]; y=y+b[j]; j=j-1; } x′ = x +

∑N+1
k=i+1 a[k] ∧ y′ = y +

∑j
k=i−N+j b[k]

∧j′ = i − N + j − 1 ∧ a′ = a ∧ b′ = b}
while (i<=N) { i=i+1; I(i > N) ∪ {(s, s′)|i ≤ N ∧ i′ = N + 1∧
j=j-1; x=x+a[i]; y=y+b[j]; } x′ = x +

∑N+1
k=i+1 a[k] ∧ y′ = y +

∑j−1
k=i−N+j−1 b[k]

∧j′ = i − N + j − 1 ∧ a′ = a ∧ b′ = b}
while (j>0) { x=x+a[i]; I(j ≤ 0) ∪ {(s, s′)|i ≤ N ∧ i′ = i + j ∧ j′ = 0∧
y=y+b[j]; i=i+1; j=j-1;} x′ = x +

∑i+j−1
k=i a[k] ∧ y′ = y +

∑j
k=1 b[k]

∧a′ = a ∧ b′ = b}
while (j>0) { j=j-1; I(j ≤ 0) ∪ {(s, s′)|i ≤ N ∧ i′ = i + j ∧ j′ = 0∧
x=x+a[i]; y=y+b[j]; i=i+1;} x′ = x +

∑i+j−1
k=i a[k] ∧ y′ = y +

∑j−1
k=0 b[k]

∧a′ = a ∧ b′ = b}
while (j>0) { i=i+1; I(j ≤ 0) ∪ {(s, s′)|i ≤ N ∧ i′ = i + j ∧ j′ = 0∧
x=x+a[i]; y=y+b[j]; j=j-1;} x′ = x +

∑i+j
k=i+1 a[k] ∧ y′ = y +

∑j
k=1 b[k]

∧a′ = a ∧ b′ = b}
while (j>0) { i=i+1; I(j ≤ 0) ∪ {(s, s′)|j > 0 ∧ i′ = i + j ∧ j′ = 0∧
j=j-1; x=x+a[i]; y=y+b[j];} x′ = x +

∑i+j
k=i+1 a[k] ∧ y′ = y +

∑j−1
k=0 b[k]

∧a′ = a ∧ b′ = b}
while (j>=0) { x=x+a[i]; I(j < 0) ∪ {(s, s′)|j ≥ 0 ∧ i′ = i + j + 1 ∧ j′ = −1∧
y=y+b[j]; i=i+1; j=j-1; } x′ = x +

∑i+j
k=i a[k] ∧ y′ = y +

∑j
k=0 b[k]

∧a′ = a ∧ b′ = b}
while (j>=0) { j=j-1; I(j < 0) ∪ {(s, s′)|j ≥ 0 ∧ i′ = i + j + 1 ∧ j′ = −1∧
x=x+a[i]; y=y+b[j]; i=i+1; } x′ = x +

∑i+j
k=i a[k] ∧ y′ = y +

∑j−1
k=−1 b[k]

∧a′ = a ∧ b′ = b}
while (j>=0) { i=i+1; I(j < 0) ∪ {(s, s′)|j ≥ 0 ∧ i′ = i + j + 1 ∧ j′ = −1∧
x=x+a[i]; y=y+b[j]; j=j-1; } x′ = x +

∑i+j+1
k=i+1 a[k] ∧ y′ = y +

∑j
k=0 b[k]

∧a′ = a ∧ b′ = b}
while (j>=0) { i=i+1; I(j < 0) ∪ {(s, s′)|j ≥ 0 ∧ i′ = i + j + 1 ∧ j′ = −1∧
j=j-1; x=x+a[i]; y=y+b[j]; } x′ = x +

∑i+j+1
k=i+1 a[k] ∧ y′ = y +

∑j−1
k=−1 b[k]

∧a′ = a ∧ b′ = b}
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Each loop has been tested using randomly generated test data and using the
associated function as an oracle; all of them have returned successful tests, as
long as array indices are maintained within range.

Interest of this example: This example shows how our simple tool enables us to
analyze, to a great level of precision, the impact that minor changes in the source
code can have on the function of the loop. This example also illustrates that we can
deal with array data structures without having to axiomatize arrays; rather, the
array recognizers capture all the information we need for our purposes. Of course,
these recognizers, while they are adequate for the current example, do not cover all
array operations; in particular they do not cover statements that alter the array.

5.3 A Fixpoint Iteration

We consider the following loop on variables x and y of type real:

while (|x − y| > ε){y := x; x := 1 + a/x; }

where ε is a small real value and a is a variable of type real. We are interested
to determine the function of this loop. This example is special for many reasons:

– Because it handles real numbers, this loop is prone to roundoff errors; now,
roundoff errors are virtually impossible to model in the context of deriving
a loop function because their behavior does not lend itself to an inductive
argument.

– Even though the loop may be written to model a precise function (in the
example above, the solution to an equation), we know that, due to roundoff
errors, the program will produce an approximation of the target function.

– When we seek to compute the function of the loop, we do not necessarily
seek to derive the exact function that the computer defines (given its specific
arithmetic, its word size, its roundoff policies, etc); rather we are typically
interested in an acceptable approximation of the target function.

– As a provision for roundoff errors, programs that handle real numbers specify
the output only partially, producing non-deterministic results. For example,
the condition of the loop is not x = y but instead |x − y| < ε, introducing a
measure of non-determinacy. Our algorithm overrides this non-determinacy
by selecting an arbitrary value within the interval of acceptable approxima-
tions; this is illustrated subsequently.

– This loop can be analyzed using only constructive lower bounds; in fact we
would be hard pressed to derive a non-trivial invariant assertion (different from
true ) for this program (which is what creative lower bounds are useful for).

Theorem 2 provides the following lower bound:
T

= { Theorem 2 }
(L ◦ [B] ∪ I) ◦ I(¬t)

= { Expansion, simplification }
{(s, s′)|x′ = 1 + a

y′ ∧ |x′ − y′| ≤ ε∧} ∪ I(¬t)
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Mathematica cannot solve the equations in x′ and y′ that stem from this lower
bound:

x′ = 1 +
a

y′ ∧ |x′ − y′| ≤ ε.

We simplify them by means of alternative interpretations of the clause |x′−y′| ≤
ε. For example, if we interpret this clause as x′ = y′, then Mathematica produces
the following outcome (two solutions):

x′ =
1 −

√
1 + 4a

2
∧ y′ =

1 −
√

1 + 4a

2
.

x′ =
1 +

√
1 + 4a

2
∧ y′ =

1 +
√

1 + 4a

2
.

In practice, the loop converges to one of these solutions depending on the initial
value of variable x. Other interpretations of the clause |x′−y′| < ε produce other
approximations of the actual function of the loop.

Interest of this example: Though it is simple, this examples enables us to
showcase many attributes of our approach. First, that we can handle loops whose
function is not defined precisely, but approximately. Second, that we can handle
loops that have no inductive variables. Third, that we can handle loops that
have no meaningful invariant assertion. Fourth, that we can handle loops with
real variables (hence are prone to roundoff errors). Fifth, that we can handle
(correctly predict the behavior of) loops that have more than one possible out-
come.

5.4 Non Sequential Code

We consider the following loop on integer variables x, y, z and t:

while (x �= 1)
{ if (x%4 == 0){x := x div 4; y := y + 2; t := t ∗ 4; }
else if (x%2 == 0){x = x div 2; y = y + 1; t = t ∗ 2; }

else {x := x − 1; z := z + t; }}.

When we transform this loop into CCA notation, we find the following code:

while (x �= 1)
{(x mod 4 = 0) → {x := x/4, y := y + 2, t := t ∗ 4, z := z}[]
(x mod 4 �= 0 ∧ x mod 2 = 0) →

{x := x/2, y := y + 1, t := t ∗ 2, z := z}[]
(x mod 2 = 1) → {x := x − 1, y := y, t := t, z := z + t}}
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As it is written, the loop body is structured as a union, hence is a candidate
for Theorem 4. This theorem calls for finding a reflexive transitive superset R
of one term of the union (P ) then using it to compute the product QR (where
Q is the other term). Because we do not know how to compute and simplify
the product of two relations, we resolve to find a common reflexive transitive
superset of P and Q (whose product by itself is idempotent, since it is reflexive
and transitive). But finding a common reflexive transitive superset of P and Q
means having to analyze large portions of the code at the same time, which is
contrary to the premise of separation of concerns. We resolve instead to find
individual lower bounds for each branch of the loop body, then computing the
meet of the lower bounds. To this effect, we use a new type of recognizers, which
match not only the space declarations and source code, but also the condition
under which each branch is applied; we call these conditional recognizers. Of
course, all the traditional recognizers can be recast as conditional recognizers,
with the default condition true. A sample of conditional recognizers (used in
this example) is given below:

ID State Space Condition Code Pattern Lower Bound
T =

1R5 x: int (x mod 2 = 1) x=x-1 {(s, s′)|(log2(x)& = (log2(x
′)&

∧¬t(s′)}
2R1: x, y: int true x = x+a {(s, s′)|ay − bx =

const y = y+b ay′ − bx′ ∧ ¬t(s′)}
a, b: int

2R11 x, y: int (x mod 2 = 0)
x:=x/2,
y:=y+1

{(s, s′)|y + log2(x) =
y′ + log2(x′) ∧ ¬t(s′)}

2R12 x, y: int (x mod 2 = 0)
x:=x/2,
y:=2*y {(s, s′)|xy = x′y′ ∧ ¬t(s′)}

2R13 x, y: int (x mod 4 = 0)
x:=x/4,
y:=y+2

{(s, s′)|y + log2(x) =
y′ + log2(x′) ∧ ¬t(s′)}

2R14 x, y: int (x mod 4 = 0)
x:=x/4,
y:=4*y {(s, s′)|xy = x′y′ ∧ ¬t(s′)}

3R2

x,y,z: int
const
a, b: int (x mod 2 = 0)

x=x-a,
y=y+b*z,
z=z

{(s, s′)|ay + bxz =
ay′ + bx′z′ ∧ ¬t(s′)}

Using these recognizers, we find the following lower bounds for the three branches
of the loop body:

T1 = {(s, s′)|y + log2(x) = y′ + log2(x
′) ∧ xt = x′t′ ∧ t

4y/2 =
t′

4y′/2

∧y mod 2 = y′ mod 2 ∧ z′ = z},

T2 = {(s, s′)|y + log2(x) = y′ + log2(x
′)∧xt = x′t′ ∧ t

2y
=

t′

2y′ ∧ y ≤ y′ ∧ z′ = z},

T3 = {(s, s′)|y′ = y∧(log2(x)& = (log2(x
′)&∧ t′ = t∧ z + tx = z′ + t′x′ ∧x ≥ x′}.
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Taking the meet of these three relations (a non-trivial step, which we are trying
to automate using theorem prover Otter), we find the following lower bound for
the loop:

T = {(s, s′)|x′ = 1∧y+(log2(x)& = y′+(log2(x
′)&∧z+tx = z′+t′x′∧ t

2y
=

t′

2y′ }.

When we run Mathematica to solve the equations that define T in unknowns x′,
y′, z′ and t′, it returns: ⎛⎜⎜⎝

x′ = 1
y′ = y + (log2(x)&

z′ = z + tx − t × 2�log2(x)�

t′ = t × 2�log2(x)�

⎞⎟⎟⎠ .

We have tested this loop against an oracle formed from this function definition,
using more than twelve million test cases; all were successful.

Interest of this example: The interest of this example is of course that it show-
cases the ability of our approach to deal with loops whose loop body involves
conditional statements. In this example, the generation of the individual lower
bounds for the various branches of the loop’s CCA notation is fairly straight-
forward, given that we have the right recognizers in the database. The hardest
step in the derivation of this loop function was the generation of the meet of the
individual lower bounds (T1, T2, T3). We are exploring ways to automate this
step using theorem proving technology.

6 Conclusion: Summary, Assessment, Prospects

Summary. In this paper we discuss a method for deriving the function of a loop
by successive approximations in a lattice. We have presented four theorems that
form the basis of our approach then we have outlined the algorithm that we are
using to derive loop functions by application of the proposed theorems. Then we
have illustrated the application of our algorithm on four diverse examples and
have discussed for each example what attribute of our approach it showcases.

Assessment and Comparison. The derivation of loop functions using invariant
relations and invariant functions is related to, but very distinct from the massive
literature that exists today on generating loop invariants [2,5,4,3,1,6,7,8,9,10]. Our
work is closer, in terms of its goals, to that of Dunlop and Basili [22], which seeks
to derive the function of a loop by generalization from multiple special cases. It is
also closer, in terms of its algebraic approach, to the work of Desharnais, Moeller
and Tchier [21].

Prospects of Further research. Practical extensions of our work include,
obviously, expanding its scope by finding and deploying more recognizers, to
deal with more general data structures and control structures. Another focus
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of our future research is the resolution of the equations that stem from lower
bounds; we are considering a combination of a computer algebra system (e.g.
Mathematica) and a theorem prover (e.g. Otter).

The most critical theoretical extension that we must envision is to generalize
the algorithm to deal with arbitrary (or more general) structures of the loop
body. Another important theoretical extension consists in lifting the hypothesis
of termination; this is likely to make matters much more complicated, but also
to produce sounder results. One of the most crucial benefits that we are now
gaining from this hypothesis is that loop functions are maximal in the lattice
of refinement, hence all aproximations of the loop function are done with lower
bounds. When this hypothesis is lifted, loop functions are going to lie anywhere
in the lattice, and approximations may then use lower bounds as well as upper
bounds; this is likely to be very interesting, though we expect it to make our job
much harder.

Acknowledgement. The authors are very grateful to the anonymous reviewers
for their valuable, insightful feedback, which has greatly improved the contents
and presentation of this paper.
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A Relational Interpretation of Learning Approaches

Martin Eric Müller

Dept. Computer Science, University of Applied Sciences Bonn-Rhein-Sieg
martin.mueller@h-brs.de

Abstract. While the popularity of statistical, probabilistic and exhaus-
tive machine learning techniques still increases, relational and logic ap-
proaches are still a niche market in research. While the former approaches
focus on predictive accuracy, the latter ones prove to be indispensable in
knowledge discovery.

In this paper we present a relational description of machine learning
problems. We demonstrate how common ensemble learning methods as
used in classifier learning can be reformulated in a relational setting. It is
shown that multimodal logics and relational data analysis with rough sets
are closely related. Finally, we give an interpretation of logic programs
as approximations of hypotheses.

It is demonstrated that at a certain level of abstraction all these meth-
ods unify into one and the same formalisation which nicely connects to
multimodal operators.

1 Introduction

During the last decades, Machine Learning evolved from theories of reasoning
in Artificial Intelligence to an essential component of software systems. Statisti-
cal methods outperform logic based approaches in most application domains—
and with increasing computational power it became possible to generate-and-
test classifiers. As a more sophisticated approach ensemble learning implements
divide-and-conquer strategies on the learning problem. With the further increase
of data collections (e.g. data warehouses), the problem we are facing is not con-
cerned with how we can induce a classifier that supports our model assumptions
on the data but rather to understand what kind of information there actually is.
In Machine Learning, this approach is known as knowledge discovery. Its most
successful approach is inductive logic programming (Ilp). Another well-known
method is rough set data analysis. It has been applied to a variety of machine
learning problems and it has been studied in connection with multi-valued and
multi-modal logics ([1,2,3]) and formal concept analysis, [4,5].

This motivates a deeper analysis of the relations between two different ensem-
ble learning methods on the one hand and rough set data analysis and inductive
logic programming on the other hand. This paper presents a uniform descrip-
tion framework borrowed from rough set data analysis, multi modal logics and
relational calculus. It concludes with a list of open questions for future work.

R. Berghammer et al. (Eds.): RelMiCS/AKA 2009, LNCS 5827, pp. 260–275, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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2 Machine Learning

Machine learning is concerned with the problem of inducing a general principle
from a limited set of observations in order to predict properties of new, unknown
cases.

2.1 Learning Hypotheses from Samples

By U , we denote the base set or universe that consists of all objects of a domain.
Learning means that we try to acquire a certain capability, usually formulated as
classification problem. More formally, learning is the process of approximating a
target function

t : U → C (1)

where C is the set of target values.1 In order to be able to approximate t, we
need a set of support points (“examples”). A sampling function

S : (N × CU ) → 2U×C (2)

draws m objects from U and labels each with its target value. This set is called
a sample s = {〈x1, t(x1)〉, . . . , 〈xm, t(xm)〉}. An equivalent definition is s := t|s
where R|s is short for R ∩ s. Complex domains build structures on U which
contain more information than just a set. One way of formalising this is to
assume a probability measure µ on U . The distribution µ affects S in a way
that some objects are more likely to occur in a sample than others. So if S(m, t)
preserves µ, it holds that

µ({〈x, t(x)〉} ∩ s) = µ({x}). (3)

For two independent sampling procedures, S(m, t) = s �= s′ = S(m, t).2 The
problem is that µ usually is unknown. So, especially with small size samples, we
always might end up with a collection that does not properly represent U—but
we can’t tell since we do not know µ. The fundamental inductive assumption is
that for large m, the likeliness of an event e = {x0, . . . , xn−1} is the same as its
probability:

lim
m→|U|

µ({〈xi, txi〉 : i ∈ n} ∩ S(m, t)) = µ(e) (4)

A learning algorithm A takes a sample s and computes a hypothesis h such that

A(S(m, t)) = A(s) = h ≈ t. (5)

1 In a binary context, C = {c,−c} and t is the characteristic function χ(c) of c.
2 This is due to the fact that S draws x’s from U with replacement. This results in a

non-deterministic behaviour which is why it is more appropriate to think of S as a
procedure rather than a function.
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2.2 Properties of h

Whether the demand for h ≈ t is fulfilled or not depends on the type of similarity
or quality measure we define. Let s = S(m, t) with m ≤ |U |. If h|s = t|s for
some s ⊆ U , we say that h agrees with t on s. The set

errsett(h, s) = {x ∈ s : h(x) �= t(x)} (6)

is called the error set (of h on s w.r.t. t). Based on the notion of error sets one
can define a large number of error measures, the simplest being errort(h, s) =
|errsett(h, s)|/|s|. The most important thing is to keep in mind that the true
error of h is h’s error with respect to µ:

errorµ
t (h, s) = µ(errsett(h, s)) = µ(

⋃
x∈s

{x : h(x) �= t(x)}) (7)

=
∑
x∈s

µ({x} ∩ errsett(h, s)) (8)

2.3 Learning Targets and Learnability

Good learning requires an algorithm which is good at quickly picking the best
hypothesis. However, no one ever knows, which one actually is best (both the
hypothesis and the algorithm). But in an allusion to the No-Free-Lunch-Theorem
[6] we can safely state that what we are looking for is an algorithm whose average
error is minimal :

Aopt = arg min E(errorµt (A(S(m, t)), s)) (9)

for arbitrary s and m and an unknown µ where E is the expected value. The
No-Free-Lunch-Theorem also states that in general there is no such optimum.
For finite domains and hypothesis spaces the case is clear; a simple enumeration
guarantees an optimal solution. But in most cases, we are faced with infinite do-
mains and hypothesis spaces. This leads to the notion of probably approximately
correct hypotheses: A problem t is called probably approximately correctly (PAC)
learnable, if there is an algorithm satisfying

∀m > m0 : µm{s ∈ S(m, t) : errorµt (A(s), U) ≤ ε} ≤ δ (10)

for 0 < ε, δ < 1 and for any µ and t where the value of m0 only depends on ε
and δ. In other words: an algorithm is PAC, if we can determine the number of
minimal examples it requires to learn a hypothesis that is at most ε-bad with a
probability of at least δ.

Since µ is unknown, the Free-Lunch-Theorem formulates another crucial point:
The smaller errsett(h, s) (and the smaller s), the more likely it becomes that on
another set s′, errsett(h, s′) increases. As soon as minimization of errort(h, s)
implies an increase of errort(h, s′), further “optimisation” is called over-fitting.

Accordingly, good learning means to quickly pick a hypothesis that we expect
to perform with a smaller than average error on the subset of objects which we
expect to occur most frequently.
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2.4 Algorithms

Since most interesting learning problems are not PAC, we need to search for
sufficiently accurate hypotheses. Hypotheses can be arranged to form a hypoth-
esis space which can be searched more efficiently. Important ordering relations
are generality or entailment, but these relations cannot always be efficiently
computed. Let, for example, K denote a set of first order formulas (called the
background knowledge). Usually h entails h′, if h |= h′. But with respect to our
learning target, a weaker formulation suffices: h is more general than h′ with
respect to s, if from K ∪ {h} |= s it follows that K ∪ {h′} |= s. To show this,
we have to prove entailment—which might become very expensive. A popular
workaround is to introduce an efficiently computable (syntactical) order relation
��=≤. The problem is that in most cases � is not complete or correct (or both)
w.r.t. ≤.3

01 PROC learn ()
02 { h := init();
03 WHILE (not good enough(h))
04 { 〈ConsiderNow ,ConsiderLater 〉 := select(h);
05 h := refine(ConsiderNow ) ∪ ConsiderLater ;
06 h := filter(h);
07 }
08 RETURN(h);
09 }

Fig. 1. A biased Learning Algorithm

Fig. 1 shows an abstract pseudo–code learning algorithm. It illustrates that
learning is refinement (l. 05) and that it is assumed that repeated refinement
leads to a better result (l. 03). From this and the fact that the overall behaviour
of the algorithm entirely depends on the underlined functions, it follows that
nearly any implementation must be heavily biased. As a rule of thumb it holds
that the more efficient the algorithm, the heavier the bias, and the higher the
probability of losing effectivity.

3 Ensemble Learning

Learning complex hypotheses from very large or very small data sets may run
into two different problems: First, it could be that no hypothesis of satisfactory
3 For example, consider first order formulas ϕ and ψ and a substitution ϑ. Then,

setting ϕ � ψ :⇐⇒ ϕϑ = ψ we have ϕ � ψ =⇒ ϕ |= ψ ⇐⇒ ϕ ≤ ψ, but not vice
versa.
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accuracy can be learned at all. Second, if there is an accurate hypothesis, it is
likely to overfit the learning set. Ensemble learning offers methods to avoid ei-
ther case. One fundamental method is to split s into three disjoint subsets strain,
stest and sval (where at least strain �= ∅). The training set strain is used to learn
h, and stest is used by A to estimate h’s error on U . sval is used to evaluate h
once A has finished refinement. For the algorithm described in Fig. 1 this means
that selection is implemented by considering errorµt (h, stest) and the termina-
tion criterion good enough by errorµt (h, sval). To increase accuracy further, s is
repeatedly divided into different subsets strain and stest (cross-validation).

3.1 Bagging

Bagging is a “bootstrapping and aggregation”method, [7]. The idea is as follows.
Instead of learning h = A(s), we divide s into a set {si ⊆ s : i ∈ k ∧ |si| = M}
of k subsamples, each of size M .4 We then learn A(si) = hi : U → C and define
an aggregation function

agg : Ck → C (11)

which takes all k classifiers’ outputs and computes one single outcome h (voting
or average; depending on the structure of C). An abstract Bagging algorithm is
shown in Fig. 2. Bagging works quite well under the condition of instability. An
algorithm is called unstable, if for two nearly equal samples the hypotheses differ
significantly, [8]. As a consequence, we obtain a set of k (different, over-fit) classi-
fiers with high predictive accuracy on a small set but a rather poor performance on

01 s := Sµ(m, t); µ0({x}) = 1
m

; k := NumberOfBags; M := BagSize;
02
03 PROC Bootstrap (s, k, M, µ0)
04 { FOR i ∈ k
05 { si := select(s, M, µ0); % selects a random subset
06 hi := A(si);
07 }
08 RETURN(〈h0, . . . , hk−1〉);
09 }
10 PROC hagg(�h, x)
11 {
12 RETURN 1

�(�h)

∑
i∈�(�h) hi(x);

13 }

Fig. 2. Bagging (with arithmetic average aggregation)

4 Note that s depends on µ but when building si examples are drawn by random
(iid) and with replacement. This way, the set of all si preserves µ while within each
subsample this needs not to be the case.
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sval (or U). The higher µ({x}), the higher the probability that 〈x, t(x)〉 ∈ si. As
a consequence, more probable x are more likely to be classified correctly—even
if A is just a weak learner. Roughly speaking, most hi cover the most probable
examples (correctly) and every hi also covers an additional small set of less prob-
able examples with an accuracy (much) better than average. This means that the
aggregated result hagg(〈A(s0),A(s1), . . . ,A(sk−1)〉) cannot perform worse on U
than A(s) but probably even better. For stable learning algorithms, subsampling
and aggregation infuse additional noise which may not only not improve the re-
sult but even lead to a worse result. A more formal description is out of scope
of this paper; for a proof we refer to [7].

3.2 Boosting

Boosting takes a slightly different approach than Bagging. In order to refine h
and to quickly decrease the error, it is a reasonable approach to focus on first
learning those cases that cause most error. There are several methods to obtain
such a behaviour; the simplest is the first version of the Ada-Boost-Algorithm
which is shown in Fig. 3. Boosting basically is a three-step learning process:

01 µ({x}) = 1
m

; k := BoostingRounds;
02
03 PROC adaBoost (µ, k)
04 { FOR i ∈ k
05 { hi := A(S(m, t));
06 µ({x}) := 1

ν
· µ({x})−α(i)·hi(x)·t(x);

07 }
08 RETURN(〈h0, . . . , hk−1〉);
09 }
10 PROChboost(x)
11 {
12 RETURN sgn

(∑
i∈k α(i)hi(x)

)
;

13 }

ν is a normalization factor to
ensure µ is a probability distri-
bution and α(t) is a weighting
factor which determines the
error gradient along which the
hypothesis has to be refined,
e.g.

α(i) =
ln

(
1−error

µ
t (hi,s)

error
µ
t (hi,s)

)
2

Fig. 3. Boosting

1. Generate a sample s = S(m, t) w.r.t. µ and learn h = A(s) such that h is
better than random.

2. Modify µ such that h becomes random by flipping a coin: On heads, S
draws some x for which h(x) = t(x), otherwise S draws some x̄, for which
h(x̄) �= t(x̄). This results in a set srandom, on which h’s error is 0.5. Now,
learn h′ on srandom = {〈x, t(x)〉 : x ∈ srandom}.5

5 Note that this sample consists of 50 per cent objects misclassified by h but assigned
with their true target value.
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3. Modify µ such that for all x drawn by S, h(x) �= h′(x). This results in a set s̄
that consists of objects on which h and h′ disagree; i.e. where the probability
that h′ is correct is higher than the probability that h is correct. On this set,
learn h̄ which specialises the “difference” between h and h′.

Then, given an object x, the prediction is sgn(h(x) + h′(x) + h̄(x)). Hence, its
predictive accuracy is always better than that of each single hypothesis. It can
be shown that boosting allows reducing the error of any weak learner (which is
only slightly better than random guesses) to arbitrarily low bounds [9,10].

The Ada-Boost algorithm (Fig. 3, [11]) performs an iterative gradient descent
method to modify µ: Each time, µ is changed in a way that increases the prob-
ability of x being considered as an example in the next training cycle if it has
been misclassified by the current hypothesis.

4 Relational and Logic Learning

There are many representation paradigms and corresponding algorithms for ma-
chine learning. Two of them are of special interest for us: Relational and logic
learning. We assume U to be structured by a set of features F forming an in-
formation system. Each feature f ∈ F maps an element x ∈ U to a value
f(x) ∈ Vf . Features f ∈ F induce equivalence relations Rf ⊆ U × U where
xRfy :⇐⇒ f(x) = f(y) with x and y being elements of the base set U . For
or very large Vf , one usually applies quantisation in order to make the quo-
tient set U/Rf not consist of singletons only. The set of all such relations is
F = {Rf : f ∈ F}.

4.1 Sets, Classes and Rough Concepts

For any subset P ⊆ F we call
⋂

P the indiscernability relation over P, [12]. Two
objects x and y are P–indiscernible on s iff

∀x, y ∈ s : x
⋂

Py (12)

for any s ⊆ U ; it means that xRy for all R ∈ P. It holds that

P ⊆ R =⇒
⋂

R ⊆
⋂

P ⇐⇒ [x]⋂ R ⊆ [x]⋂ P (13)

where [x] is the equivalence class of x. A relation R ∈ P is dispensable on s, iff

(
⋂

P− {R})|s×s = (
⋂

P)|s×s. (14)

Removing dispensable relations yields the set Reds(R) of reducts (w.r.t. s):

R ∈ Reds(P) :⇐⇒ R ⊆ P ∧
⋂

R|s =
⋂

P|s

∧∀Q ⊂ R :
⋂

Q|s �=
⋂

P|s (15)
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The intersection of all reducts is called a core: Cors(P) =
⋂

Reds(P). For every
set s there exist a maximal subset and a minimal superset called the lower and
upper P-approximation of s:

[[P]]s :⇐⇒ {x ∈ U : [x]⋂ P ⊆ s} (16)
〈|P|〉s :⇐⇒ {x ∈ U : [x]⋂ P ∩ s �= ∅}. (17)

It holds that [[P]]s ⊆ s ⊆ 〈|P|〉s. A set s is called P–definable, iff 〈|P|〉s =
[[P]]s. Non-definable or rough sets are pairs of respective approximations: sP :=
〈[[P]]s, 〈|P|〉s〉. Even more interesting are propositions about the relationships be-
tween sets of relations. For any s ⊆ U it holds that

P ⊆ R =⇒ [[P]]s ⊆ [[R]]s and P ⊆ R =⇒ 〈|R|〉s ⊆ 〈|P|〉s.

It simply means that the more knowledge we add, the bigger becomes the lower
approximation and the smaller the upper approximation. What we are looking
for in machine learning is a minimal hypothesis that describes the target concept;
here, a smallest set P such that for any relation R ∈ F− P it holds that

[[P]]s = [[P ∪ {R}]]s and 〈|P|〉c = 〈|P ∪ {R}|〉s. (18)

To find a suitable P, one would start with ∅ and add relations until the upper
approximation cannot be reduced (e.g. [13]) or delete relations from F until the
lower approximation becomes smaller (e.g. [14,15]). The characteristic function
of sP takes three values

χ(sP)(x) =

⎧⎨⎩
1, if x ∈ [[P]]c
, if x ∈ ¬[[P]] ∩ 〈|P|〉s

0, if x ∈ ¬〈|P|〉s

The quality of P can be measured in several ways:

roughness(sP) :=
|〈|P|〉s| − |[[P]]s|

|〈|P|〉s| (19)

errsett(sP, s′) := errsett([[P]]s, s′) ∪ errsett(〈|P|〉s, s′) (20)

where s′ �= s is a test set used to estimate the error of sP on U . This allows to
reformulate the learning goal in terms of rough sets: The hypothesis h = P should
be chosen such that its roughness and error on the validation set is minimal.

4.2 Inductive Logic Programming

In this section, we give a further interpretation of box- and diamond operators
in terms of logic programs. Roughly speaking, we will define [[P]]s as the set of
all elements in s that can be derived by SLD-resolution.

Inductive Logic Programming (Ilp) is an approach to machine learning with
a strong focus on logic representations [16,17]. It is based on the general idea of
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inverting the resolution calculus [18] on Horn clauses [19]. A first definition of
refinement operators by inverting resolution was given in [20], based on earlier
works on generalisation operators in [21,22,23]. Simple Ilp learning problems are
PAC-learnable [24]; see Eq. (10). The sample consists of a set of Horn clauses
with a label describing whether they are consistent with the target concept Γ
or not: t(ϕ) = 1 iff Γ ∪ {ϕ} is satisfiable A hypothesis for t is a set Ξ of Horn
clauses satisfying

∀〈ϕ, t(ϕ)〉 ∈ strain : Ξ |= ϕ iff t(ϕ) = 1 (21)

The restriction to Horn clauses allows using resolution proofs to model entail-
ment:

Ξ ∪ {¬ϕ} #RES { } =⇒ Ξ |= ϕ (22)

i.e. if Ξ ∪{¬ϕ} has no model, ϕ follows from Ξ. In order to widen the deductive
closure so as to cover more positive cases, we need to generalise Ξ, and in
order to exclude wrong conclusions, we have to specialise Ξ. The least general
generalisation of two Horn clauses can be defined syntactically in terms of θ-
subsumption:

lgg({ϕ1, . . . , ϕk}) = ϕ iff ∃θ ∀1 ≤ i ≤ k : ϕθ ⊆ ϕi (23)

and if there are substitutions σi satisfying ϕσi ⊆ ϕi, then there are substitutions
ξi with σi = θξi. Generalisation is truth preserving with respect to a given theory
K, which gives rise to a definition of a relative least generalisation:

rlgg({ϕ1, . . . , ϕk}) = lgg({ϕ0 ← K, . . . , ϕ1 ← K})

Logically, it either holds that Ξ |= ϕ or Ξ �|= ϕ, but things are a bit different
with logic programs: SLD-resolution is correct, but it is in general not complete.
It turns out that this property actually defines some kind of upper and lower
approximations, too: everything that cannot be proven to be either true or false
belongs to the boundary region. This region is the hypothesis space that has
to be searched in order to find a suitable Ξ describing Γ . The incompleteness
makes resolution a refutation calculus where negation is modelled by failure.
This already suggests a strong connection to intuitionistic logic. We will discuss
methods for refining logic programs along the upper and lower approximations
of target concepts in Sect. 5.3.

5 Relational Machine Learning

In this section, we reformulate the different techniques described in the last
section in a more unified, relational way.

5.1 Relational Bagging

Bagging means to learn classifiers that specialise on subsets of the sample. In a
relational setting, this means that for a set of k subsamples si of size M ≤ m, A
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computes k hypotheses Pi approximating ci := si ∩ c, si := {x : 〈x, t(x)〉 ∈ si}.
Then, there exist reducts Pi ∈ Redci(F) that define ci and it holds that

P =
k⋃

i=1

Pi (24)

The problem here is that reducts are not unique and, even though a smaller
set speeds up the process of finding reducts, it may be that some reducts are
disjoint which leaves the core empty. Since the core Corci(F) can be empty,
we define a table T (i, j) = |{R ∈ Redcj (F) : Ri ∈ P}| with 1 ≤ j ≤ k and
1 ≤ i ≤ |Redcj (F)|. If T (i, j) = |Redcj(F)|, then Ri must be an element of
Corc(F). Computing this table is computationally infeasible. Accordingly, there
is no canonical efficient bottom-up implementation to determine a core from
reducts using a bagging-like method.

If, on the other hand, we try to construct reducts from cores (i.e. top-down),
we can apply a very simple method (since cores are unique): For a set s of
objects, the discernability matrix DP(i, j) contains the names of all relations by
which xi and xj can be discriminated: R ∈ DR(i, j) :⇐⇒ xiRxj . If for some
i, j it holds that D(i, j) = {R}, then R must be an element of Cors(F). The
runtime complexity of computing the core this way is O(nm2), where the worst
case is Corc(F) = F. Using the same method in bagging with k bags of size M ,
we obtain O(knM2). Furthermore, the algorithm in Fig. 4 benefits from parallel
computations of smaller discernability matrices.

01 PROC relBag (F, s, k, M)
02 { H := F; C = {}
03 FOREACH(i ∈ k)
04 { si := randomselect(M, s);
05 Ci := core(si,H);
06 H := H − Ci; C := H + Ci; % + denotes concatenation
07 };
08 H := sortby(β,H);
09 WHILE (errort(C, s) ≥ ε ∨ H = {})
10 { R := first(H); R := tail(H);
11 IF (errort(C, s) > errort(C ∪ {R}, s)) THEN {C := C + {R} };
12 H := R;
13 }
14 return (C);
15 }

Fig. 4. Relational Bagging
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01 PROC relBoost (H, s)
02 { IF (good enough(H)) THEN return(H);
03 C := sortby(β, F− H);
04 WHILE (errort(H, s) ≥ ε)
05 { C=: [C|R];
06 IF(errort(H ∪ C, s) < errort(H, s)) THEN
07 { relBoost(H ∪ C, errsett(H ∪ C, s)); }
08 ELSE

09 { return(H ∪ relBoost(R, errsett(H ∪ C, s)); }
10 }
11 return(⊥);
12 }

Fig. 5. Relational “Boosting” by Re-learning Errors Only

5.2 Relational Boosting

In a relational boosting approach we do not have a probability distribution which
we could adjust in order to focus on learning error sets.

Instead of boosting the probability of those examples that are misclassified
by a hypothesis hi, we only remove the set of already correctly classified objects
from the set of entities to be taken into consideration; i.e. we restrict the search
for a hypothesis to the boundary region. Given a hypothesis H, the problem is
to find a relation R which is a good candidate to rule out as many elements from
the boundary region as possible by adding or removing it from H.

This can be done only heuristically and, as such, is a source of bias. The
algorithm shown in Fig. 3 uses a function sortby to pick the “best” relation
(determined by the heuristic function β). One possible heuristics could be infor-
mation gain (see Sect. 5.3) or many other, computationally even cheaper meth-
ods (for example, choosing R whose index has a certain property). Another,
though more expensive method, is to validate R against a test sample stest
and choose β(R) = errort(R, stest)

−1. To learn c from F we chose R ∈ F with
R = arg max{β(R) : R ∈ F}, hoping that it generates a fine grained partition
that has a minimal boundary region on the target concept. We then iterate this
process on the boundary region only.

Note that—in contrast to standard boosting—we do not keep a sequence of
hypotheses, but we iteratively build a reduct starting from the empty set. As
such, it is a bottom-up learning algorithm.

5.3 Relational Logic Learning

In Sect. 4.2 we already motivated a connection between learning logic programs
and refining upper and lower approximations of target concepts. If there is a set
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C of propositions that we wish to describe, we want to learn a program Ξ for
which ∀ϕ ∈ C : Ξ # ϕ.

Let t ⊆ U be our target concept—the set of all objects in U that satisfy
a certain property. Then, χ(t) = t. At the same time, t can be described by a
predicate t(x) whose interpretation is defined as mng(t(x)) = t(x). The problem
is that we need to define t in terms of other predicates. To find such a definition
means to find a suitable hypothesis Ξ such that (given knowledge K),

K ∪ Ξ |= t(x) and K ∪ Ξ �|= ¬t(x) (25)

Horn Theories Ξ as Approximations
Motivation. Understanding Horn theories as approximations is not a new idea,
[25], but there were only few contributions from the inductive logic programming
community which is mostly due to the generally rather negative results, e.g. [26].

Every R ∈ F also defines a binary predicate r(x, fR(x)).6 The satisfaction set
of r is the set of all instantiations of x for which r holds and whose meaning
equals the corresponding R-equivalence class:

[x]R = {y ∈ U : r(y, fR(x))}.

In order to derive r(x, v) from a given set of clauses Ξ, that is, K∪Ξ # r(x, v),
one needs to show that there is a correct answer substitution θ such that (K ∪
Ξ ∪ {¬r(x, v)})θ # �. An optimal hypothesis Ξ guarantees that

∀θ : r(X, fR(X))θ ⇐⇒ (K ∪ Ξ{¬r(X, V )})θ # � (26)

Since # is correct but not complete, we are able to give a lower approximation
of r where [[Ξ]]r describes a subset of the satisfaction set of r:

[[Ξ]]r :⇐⇒ {y : (K ∪ Ξ ∪ {¬r(X, V )})θ # �} (27)

Example. Let K = {}, Ξ = {(p(X, 1) ← q(X)), q(a), q(b)}. Furthermore, let
fR(a) = fR(c) = 1 and fR(b) = 0. Then, Ξ # p(a, 1) but Ξ # p(b, 1) and
Ξ �# p(c, 1). The set of wrong predictions is errsetR(Ξ, {a, b, c}) = {b, c}. This
shows the two different types of errors: b is a false positive by sound derivation,
and c is a false negative by negation as failure.

Binary Classification Problems. As already motivated by the example above we
now describe a binary classification problem: Let fR = t : U → {0, 1}. Then,
t = {x ∈ U : fR(x) = 1} and t = χ(t). It holds that

x ∈ [[Ξ]]t ⇐⇒ K ∪ Ξ # t(x, 1) =⇒ t(x) = 1 (28)
x /∈ [[Ξ]]t ⇐⇒ K ∪ Ξ �# t(x, 1) (29)

6 R ∈ F is an equivalence relation induced by fR ∈ F , whereas r ⊆ U denotes a
concept. r finally is a predicate, whose definition is unknown and needs to be learned
such that its satisfaction set approximates r.
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and

x ∈ [[Ξ]](−t) ⇐⇒ K ∪ Ξ # t(x, 0) ⇐⇒ x /∈ 〈|Ξ|〉t =⇒ t(x) = 0 (30)
x /∈ [[Ξ]](−t) ⇐⇒ K ∪ Ξ �# t(x, 0) ⇐⇒ x ∈ 〈|Ξ|〉t (31)

This shows that the definition of upper and lower approximations on sets carries
over to Horn resolution and satisfaction sets defined by correct answer substitu-
tions.

Refinement of Ξ. Learning means to refine Ξ in order to increase its predictive
accuracy with respect to t. This means that refinement decreases the error set.
The error set of a logic program is the set of wrong conclusions and the set of
non-derivable propositions:

errsett(Ξ, s) := {x ∈ U : K ∪ Ξ # t(x, V ) ∧ V �= t(x)} ∪
{x ∈ U : K ∪ Ξ �# t(x, t(x))} ∪
{x ∈ U : K ∪ Ξ �# ¬t(x, t(x))} (32)

In order to minimise the error one needs to generalise Ξ, otherwise the error
set can be minimised by specialising Ξ—this defines the learning problem in
inductive logic programming.

Generalisation Operators. The simplest method to generalise a Horn theory is
to replace a set of formulas by their least general generalisation. This means that
from a set of facts p(xi, fp(xi)) with fp(xi) = fp(xj), we generalise p(x, fp(xi))
where x = lgg({x0, . . . , xn}).7 Assuming that all xi are atoms, generalisation
by least general generalisation means that the according equivalence relation
becomes to U × U or that fp(x) = ⊥ for all x ∈ U .

Dropping literals via subsumption (cf. Eq. (23)) is also a very common method
to generalise Horn theories:

p(X, V ) ← q(X, Wq), r(X, Wr) |= p(X, V ) ← q(X, Wq)

Because of the soundness of Horn resolution it holds that any correct answer
substitution for the second clause is also a correct answer substitution for the
first clause which corresponds to the intended inclusion of satisfaction sets. The
last method to generalise a theory is to add the clauses that are not covered or
adding generalisations thereof. For all three methods it holds that refining Ξ to
a more general theory Ξ ′ means [[Ξ]]t ⊆ [[Ξ ′]]t.

Specialisation Operators. Accordingly, Ξ ′ is a specialisation of Ξ, 〈|Ξ ′|〉t ⊆ 〈|Ξ|〉t.
Specialisation means to remove theorems from the deductive closure of the the-
ory. According operators correspond to the dual operations described for gener-
alisation: Variable instantiations limit the set of possible assignments, unification
7 Note that lgg is defined for terms, i.e. xi can be complex expressions with free

variables.
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of two (valid) predicates leads to one single but much more special predicate,
and deleting entire clauses from Ξ results in a smaller deductive closure.

Now, the Ilp-problem can be reformulated as follows: Given Ξ, the hypothesis
we are searching for is a program Ξ ′ and a (possibly empty) set K of facts for
which

[[K ∪ Ξ]]t ⊆ [[K ∪ Ξ ′ ∪ Ξ]]t ⊆ 〈|K ∪ Ξ ′ ∪ Ξ|〉t ⊆ 〈|K ∪ Ξ|〉t (33)

Reducts of Logic Programs. As in Sec. 5.3, one can encode each feature f
into a predicate symbol f. Then a Horn theory K ∪ Ξ models an information
system, if:

∀x ∈ U ∀f ∈ F : K ∪ Ξ # f(x, y) ⇐⇒ f(x) = y

A Horn reduct Ξ ′ of Ξ is a set of clauses where for each clause ϕ ∈ Ξ ′ there is
a clause ψ ∈ Ξ and a substitution θ such that ϕ ⊆ ψθ and Ξ and Ξ ′ induce the
same theory. Translating the original definition of a reduct (see Eq. (15)), Ξ ′ ∈
Reds(Ξ), if Ξ ′ ∈ Reds(Ξ) and the satisfaction set of Ξ ′ equals the satisfaction
set of Ξ on s.

As an example, let us consider the case of literal dropping and its relationship
to building reducts. Let there be two clauses,

t(x, 1) ← p1(x, f1(x)) ∧ · · · ∧ pk(x, fk(x)) ∧ pk+1(x, fk+1(x)) and
t(x, 1) ← p1(x, f1(x)) ∧ · · · ∧ pk(x, fk(x)).

Obviously, the former implies the latter. If the satisfaction sets of both are the
same, then the second clause is a reduct of the first one by dropping one literal,
or, equivalently, by dropping one feature or equivalence relation. If

t(x, 1) ← p1(x, a) ∧ p2(x, b)
t(x, 1) ← p1(x, a) ∧ p2(x, c)

one can induce t(x, 1) ← p1(x, a)∧p2(x, y) or even t(x, 1) ← p1(x, a). Now that
we can translate Ilp into a relational learning framework, we can estimate the
quality of each of these hypotheses by the error measures as defined in Sect. 4.1.

Efficient Refinement. Refinement approaches usually are very expensive. The
best hypothesis we are looking for is hidden somewhere in the structure defined
by [[·]] and 〈|·|〉. Therefore, it is infeasible to search through the entire space of
hypotheses. Instead, there are several measures to guide this search. One of the
most popular measures is information gain as used in decision tree induction [27]
and also in the induction of logic programs [28]. There exist many other measures
(for example, minimum description length was used in Progol [29]) but all of them
always infuse a bias into the learning process. Ensemble learning methods allow
us to focus on small parts of the learning problem only—hoping that solving all
the subproblems and aggregating the resulting hypotheses does not only perform
better but also is quicker. All of these search heuristics can be applied in any of
the approaches described here, since we have established a connection between
the ordering relations on hypotheses in the different paradigms.
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6 Conclusion

This paper does not contribute to the knowledge of the scientific community in
a sense that we added analytic knowledge. It is rather the other way around:
We showed that at a certain level of abstraction, all those different approaches
in machine learning can be reformulated and unified in a relational framework.
Besides the contribution of a descriptive formalism, a second focus of our current
work is in implementing an efficient system based on the ideas presented in this
paper. Presently, we develop an Rsda toolkit which makes use of the improved
efficiency in relational database systems [13]. There remains a lot of work to
be done: Boosting and Bagging algorithms are based on error measures which
in turn are multi-valued. This means that we need to extend our formalism to
probably approximately correct hypotheses. One perspective is then to extend
Ilp by several different logic reasoning approaches [2,5].

Similarly, ensemble learning methods have been applied to increase a weak
learner’s predictive accuracy. Our reformulations delivered heuristically guided
algorithms for extraction reducts from information systems that do not perform
better, but quicker. Here, a deeper analysis of runtime complexity is required.

Throughout the paper, we motivated a strong connection between multi-
modal logics, relational learning and their algebraic counterparts. It remains
to analyse whether inductive logic programming as theory refinement can be
expressed algebraically (Heyting, Lindenbaum-Tarski).

Acknowledgements. The author wishes to thank Peter Höfner, Bernhard Möl-
ler and all anonymous reviewers for many helpful comments and discussions.
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Abstract. We refine and extend the known results that the set of
ordinary binary relations forms a Kleene algebra, the set of up-closed
multirelations forms a lazy Kleene algebra, the set of up-closed finite
multirelations forms a monodic tree Kleene algebra, and the set of to-
tal up-closed finite multirelations forms a probabilistic Kleene algebra.
For the refinement, we introduce a notion of type of multirelations. For
each of eight classes of relaxation of Kleene algebra, we give a sufficient
condition on type T so that the set of up-closed multirelations of T be-
longs to the class. Some of the conditions are not only sufficient, but also
necessary.

1 Introduction

A notion of Kleene algebras is introduced by Kozen [1] in order to handle regular
languages algebraically. Recently, some relaxations of Kleene algebras have been
introduced in order to treat various systems algebraically. For example, lazy
Kleene algebras are introduced by Möller [2] to treat both finite and infinite
streams. Monodic tree Kleene algebras are introduced by Takai and Furusawa [3]
to develop Kleene-like algebras for some class of tree languages. Probabilistic
Kleene algebras are introduced by McIver and Weber [4] to analyze probabilistic
distributive systems without numerical calculations. The notion of lazy Kleene
algebra is a generalization of monodic tree Kleene algebra, the notion of monodic
tree Kleene algebra is a relaxation of probabilistic Kleene algebra, and the notion
of probabilistic Kleene algebra is a relaxation of Kleene algebra.

On the other hand, multirelations are studied as a semantic domain of pro-
grams. Up-closed multirelations provide models of game logic introduced by
Parikh [5,6]. Operations of game logic have been studied from an algebraic point
of view by Goranko [7] and Venema [8]. They have given a complete axiomati-
zation of iteration-free game logic.

We study the relationship between the two different research topics. It is
known that the set of ordinary binary relations on a set forms a Kleene al-
gebra. However, it does not seem that there are enough results about what

R. Berghammer et al. (Eds.): RelMiCS/AKA 2009, LNCS 5827, pp. 276–290, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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class of multirelations forms what relaxation of Kleene algebras. In recent pa-
pers [9,10,11,12], the authors show that the set of up-closed multirelations forms
a lazy Kleene algebra, that the set of finitary up-closed multirelations forms a
monodic tree Kleene algebra, and that the set of total finitary up-closed multire-
lations forms a probabilistic Kleene algebra. This paper extends these results as
follows.

First, we define a cube consisting of eight classes of lazy Kleene algebras, by
introducing three axioms (the 0-axiom, the +-axiom, and the D-axiom) on a
lazy Kleene algebra. A lazy Kleene algebra satisfies all of the three axioms if
and only if it is a Kleene algebra. We define a cube consisting of eight classes
of complete IL-semirings, by introducing three conditions (preservation of the
right 0, the right +, and all right directed joins) on a complete IL-semiring. A
complete IL-semiring satisfies all of the three conditions if and only if it is a
complete I-semiring (or quantale). And we obtain a mapping from the second
cube to the first cube, by proving that a complete IL-semiring forms a lazy
Kleene algebra and that preservation of the right 0, the right +, and all right
directed joins on a complete IL-semiring imply the 0-axiom, the +-axiom, and
the D-axiom on a lazy Kleene algebra, respectively. This is a new explanation
of the fact that a complete I-semiring forms a Kleene algebra.

Second, we focus on a notion of multirelations. While a multirelation over
a set A is defined to be a subset of A × ℘(A), this paper extends this notion.
We call a subfunctor T of the covariant powerset functor ℘ : Set → Set a type
and call a subset of A × T (A) a multirelation of type T over A. And we give a
sufficient condition on T such that the set of up-closed multirelations of T forms
a complete IL-semiring. We call a type satisfying this condition a closed type.
We also define a cube consisting of eight classes of closed types, by introducing
three conditions (total, affine and finite) on a closed type. The cube is actually a
triangular prism, since affineness implies finiteness. We show that a closed type
T is total, affine, and finite if and only if the set of up-closed multirelations of
type T over an arbitrary set A forms a complete IL-semiring preserving the right
0, the right +, and all right directed joins, respectively.

Combining the above results, we show which type of up-closed multirelations
forms a lazy Kleene algebra satisfying which axiom. The result includes the
results for ordinary binary relations, up-closed multirelations, finitary up-closed
multirelations, and total finitary up-closed multirelations.

This paper is organized as follows. Section 2 shows that the set of up-closed
multirelations forms a complete IL-semiring. In Section 3, we show that the set of
up-closed multirelations forms a lazy Kleene algebra. Section 4 defines the cube
consisting of eight classes of lazy Kleene algebras. In Section 5, we define the
cube consisting of eight classes of complete IL-semirings and define a mapping
from it to the cube of lazy Kleene algebras. Section 6 defines a notion of types,
a triangular prism consisting of six classes of types, and a mapping from it to
the cube of complete IL-semirings. Section 7 summarizes this work and future
work.
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2 Multirelational Model of Complete IL-Semiring

In this section, we show that the set of up-closed multirelations forms a complete
IL-semiring.

Complete IL-semirings are relaxations of complete I-semirings (or quantales).

Definition 1 (IL-semiring). An idempotent left semiring (IL-semiring) [2] is
a tuple (K, +, 0, ·, 1) with the following properties:

1. (K, +, 0) is an idempotent commutative monoid, or a partially ordered set
(K,≤) with the binary join (least upper bound) + and the least element 0.

2. (K, ·, 1) is a monoid.
3. a ≤ a′ and b ≤ b′ imply a · b ≤ a′ · b′.
4. (a + b) · c = a · c + b · c and 0 · a = 0.

Definition 2 (Complete IL-semiring). A complete IL-semiring is a tuple
(K, +, 0, ·, 1,

∨
) with the following properties:

1. (K, +, 0, ·, 1) is an IL-semiring.
2. (K,≤) has the join

∨
S for each subset S of K.

3. (
∨

S) · a =
∨
{x · a|x ∈ S}.

A complete IL-semiring also has the meet (greatest lower bound) for each subset.
We write

∧
S for the meet of subset S.

Example 1. For a set A, a tuple (K, +, 0, ·, 1,
∨

) forms a complete IL-semiring
where

– K is the set of all ordinary binary relations over A,
– R + Q is the binary union of R and Q,
– 0 is the empty relation,
– R · Q is the composition of R and Q,
– 1 is the identity (diagonal) relation on A, and
–

∨
is the union operator.

The leading example of complete IL-semirings in this paper is formed by up-
closed multirelations. Multirelations are relaxations of ordinary binary relations.

Definition 3 (Multirelation). A multirelation over a set A is a subset of
A × ℘(A) where ℘(A) is the power set of A.

Definition 4 (Up-closed multirelation). A multirelation R over A is called
up-closed if (a, X) ∈ R and X ⊆ Y imply (a, Y ) ∈ R for each a ∈ A, X, Y ∈
℘(A).

Example 2. The empty set and A × ℘(A) are up-closed multirelations over A.
The set {(a, X)|a ∈ X, X ⊆ A} is also an up-closed multirelation. The set
{(a, {b}) | a, b ∈ A} is a multirelation, but not always up-closed.
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The following proposition is proved in paper [9].

Proposition 1. For a set A, a tuple UMR(A) = (K, +, 0, ·, 1,
∨

) forms a com-
plete IL-semiring where

– K is the set of all up-closed multirelations over A,
– R + Q is the binary union of R and Q,
– 0 is the empty set,
– (a, X) ∈ R · Q ⇐⇒ ∃Y.(a, Y ) ∈ R and ∀y ∈ Y.(y, X) ∈ Q,
– 1 = {(a, X)|a ∈ X, X ⊆ A}, and
–

∨
is the union operator.

Up-closed multirelations can not be composed in the same way as ordinary bi-
nary relations. The above operation R ·Q is called the composition of up-closed
multirelations R, Q.

3 Multirelational Model of Lazy Kleene Algebra

In this section, we show that the set of up-closed multirelations forms a lazy
Kleene algebra. It is proved as a corollary of the theorem that a complete IL-
semiring forms a lazy Kleene algebra.

Definition 5 (Lazy Kleene algebra). A lazy Kleene algebra [2] is a tuple
(K, +, 0, ·, 1, ∗) with the following properties:

1. (K, +, 0, ·, 1) is an IL-semiring.
2. 1 + a · a∗ ≤ a∗.
3. b + a · c ≤ c implies a∗ · b ≤ c.

Every complete IL-semiring (K, +, 0, ·, 1,
∨

) satisfies a · b ≤ c ⇐⇒ a ≤ c/b
where c/b =

∨
{x ∈ K |x · b ≤ c} (left residual). Note that (c/b) · b ≤ c holds,

since (c/b) · b ≤ c ⇐⇒ c/b ≤ c/b.

Theorem 1. Every complete IL-semiring forms a lazy Kleene algebra. More-
over, every homomorphism between complete IL-semirings is also a homomor-
phism between the induced lazy Kleene algebras.

Proof. Consider a complete IL-semiring (K, +, 0, ·, 1,
∨

). For each a ∈ K, the
function f(x) = 1 + a · x is monotone, since + and · are monotone. By Tarski’s
fixed point theorem, we have

– 1 + a · a∗ ≤ a∗ and
– 1 + a · b ≤ b implies a∗ ≤ b

where a∗ =
∧
{x|1 + a · x ≤ x}. Therefore, the second property of Definition 5 is

satisfied. The third property is satisfied, since

a∗ · b ≤ c ⇐⇒ a∗ ≤ c/b
⇐= 1 + a · (c/b) ≤ c/b
⇐⇒ (1 + a · (c/b)) · b ≤ c
⇐⇒ 1 · b + a · (c/b) · b ≤ c
⇐= b + a · c ≤ c.

Therefore, it is proved that (K, +, 0, ·, 1, ∗) forms a lazy Kleene algebra.
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Next, we prove the property about homomorphisms. Let (K, +, 0, ·, 1,
∨

) and
(L, +, 0, ·, 1,

∨
) be complete IL-semirings. Let (K, +, 0, ·, 1, ∗) and (L, +, 0, ·, 1, ∗)

be the induced lazy Kleene algebras. Let f be a function f : K → L preserving
+, 0, ·, 1, and

∨
. The following g : L → K is called the right adjoint to f and

it satisfies f(x) ≤ y ⇐⇒ x ≤ g(y).

g(y) =
∨

{x ∈ K | f(x) ≤ y}

Now, f preserves ∗ as follows.

(f(a))∗ ≤ f(a∗) ⇐= 1 + f(a) · f(a∗) ≤ f(a∗)
⇐⇒ f(1 + a · a∗) ≤ f(a∗)
⇐= 1 + a · a∗ ≤ a∗

f(a∗) ≤ (f(a))∗ ⇐⇒ a∗ ≤ g((f(a))∗)
⇐= 1 + a · g((f(a))∗) ≤ g((f(a))∗)
⇐⇒ f(1 + a · g((f(a))∗)) ≤ (f(a))∗

⇐⇒ 1 + f(a) · f(g((f(a))∗)) ≤ (f(a))∗

⇐= 1 + f(a) · (f(a))∗ ≤ (f(a))∗ ��

Corollary 1. The set of up-closed multirelations over a fixed set forms a lazy
Kleene algebra.

4 Cube of Kleene Algebras

In this section, we define a cube consisting of eight classes of lazy Kleene algebras,
by defining three independent axioms. A lazy Kleene algebra satisfying all of the
three axioms is a Kleene algebra. Therefore, the cube consists of eight classes
between lazy Kleene algebras and Kleene algebras.

Definition 6 (Cube of lazy Kleene algebra). A tuple (K, +, 0, ·, 1, ∗) is
called a lazy Kleene algebra satisfying

– the 0-axiom if a · 0 = 0 for each a ∈ K,
– the +-axiom if a · (b + c) = a · b + a · c for each a, b, c ∈ K, and
– the D-axiom if a · (b + 1) ≤ a implies a · b∗ ≤ a for each a, b ∈ K,

respectively.

The reason why we call the third axiom the D-axiom is that this axiom has a
relationship with directed sets (explained in the next section).

We write LKA for the category whose objects are lazy Kleene algebras and
whose arrows are homomorphisms between them. We write LKA0 for the full
subcategory of LKA whose objects are lazy Kleene algebras satisfying the 0-
axiom. Similarly, we define LKA0,+,D, LKA0,+, and so on. The eight categories
and forgetful functors between them form the cube of Fig. 1.

Objects of LKAD, LKA0,D, and LKA0,+,D are known as monodic tree
Kleene algebras, probabilistic Kleene algebras, and Kleene algebras, respectively.
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�
� LKA
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Fig. 1. The cube of lazy Kleene algebras

Proposition 2. A lazy Kleene algebra satisfies the D-axiom if and only if it is
a monodic tree Kleene algebra [3]. A lazy Kleene algebra satisfies the 0-axiom
and the D-axiom if and only if it is a probabilistic Kleene algebra [4]. A lazy
Kleene algebra satisfies the 0-axiom, the +-axiom, and the D-axiom if and only
if it is a Kleene algebra [1].

5 Cube of Complete IL-Semirings

In this section, we define a cube consisting of eight classes of complete IL-
semirings, by introducing three independent axioms on a complete IL-semiring.
We also obtain a mapping from it to the cube of the previous section, by us-
ing Theorem 1 and proving that the three conditions on a complete IL-semiring
imply the three axioms on a lazy Kleene algebra, respectively.

Definition 7 (Directed set). A subset S of a lattice is called directed if each
finite subset of S has an upper bound in S.

A directed set always has an element, since a directed set must have an upper
bound of the empty subset.

Definition 8 (Cube of complete IL-semiring). A tuple (K, +, 0, ·, 1,
∨

) is
called a complete IL-semiring preserving

– the right 0 if a · 0 = 0 for each a ∈ K,
– the right + if a · (b + c) = a · b + a · c for each a, b, c ∈ K, and
– all right directed joins if a ·

∨
S =

∨
{a · x|x ∈ S} for each a ∈ K and each

directed S ⊆ K,

respectively.

We write CILS for the category whose objects are complete IL-semirings and
whose arrows are homomorphisms between them. We write CILSD for the full
subcategory of CILS whose objects are complete IL-semirings preserving all
right directed joins. Similarly, we define CILS0,+,D, CILS0,+, and so on. The
eight categories and forgetful functors between them form the cube of Fig. 2.
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CILS0,+,D
� CILS0,+

�
��

�
��

CILS0,D
� CILS0

CILS+,D

�
� CILS+

�

�
��

�
��

CILSD

�
� CILS

�

Fig. 2. The cube of complete IL-semirings

Proposition 3. A tuple (K, +, 0, ·, 1,
∨

) is a complete I-semiring [2] (or, quan-
tale) if and only if it is a complete IL-semiring preserving the right 0, the right
+, and all right directed joins.

Proof. A complete I-semiring is defined to be a complete IL-semiring satisfy-
ing a · (

∨
S) =

∨
{a · x|x ∈ S}. Trivially, a complete I-semiring is a complete

IL-semiring preserving the right 0, the right +, and all right directed joins. Con-
versely, let K be a complete IL-semiring preserving the right 0, the right +, and
all right directed joins. For an arbitrary subset S of K,

∨
S =

∨
{
∨

X |X ⊆
S, X is finite} and the set {

∨
X |X ⊆ S, X is finite} is directed. Therefore,

a · (
∨

S) = a · (
∨
{
∨

X |X ⊆ S, X is finite})
=

∨
{a · (

∨
X) |X ⊆ S, X is finite}

=
∨
{
∨
{a · x |x ∈ X} |X ⊆ S, X is finite}

=
∨
{a · x |x ∈ S}. ��

Theorem 2. Every complete IL-semiring C forms a lazy Kleene algebra L.
Moreover, the following hold.

1. L satisfies the 0-axiom if and only if C preserves the right 0.
2. L satisfies the +-axiom if and only if C preserves the right +.
3. L satisfies the D-axiom if C preserves all right directed joins.

Proof. Similarly to the proof of Theorem 1, we construct L from C. By the
construction, the case 1 and the case 2 trivially hold. We show the case 3.
Assume that C preserves all right directed joins. Each function fb(x) = 1 + b · x
preserves the join of an arbitrary directed subset. Therefore, by the fixed point
theorem, the least fixed point b∗ of fb is equal to

∨
{fn

b (0)|n ∈ Nat}. Assume
a · (b + 1) ≤ a. We show that a · fn

b (0) ≤ a holds for each n ∈ Nat by induction
on n.

(n = 0) a · f0
b (0) = a · 0 ≤ a · 1 = a.

(n = 1) a · f1
b (0) = a · (1 + b · 0) ≤ a · (1 + b · 1) ≤ a.

(n ≥ 2) Note that 1 ≤ 1 + b · fn−2
b (0) = fn−1

b (0). Assume a · fn−1
b (0) ≤ a.

Then, we have
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a · fn
b (0) = a · (1 + b · fn−1

b (0))
≤ a · (fn−1

b (0) + b · fn−1
b (0))

≤ a · (1 + b) · fn−1
b (0)

≤ a · fn−1
b (0)

≤ a.

Therefore, we have
∨
{a · fn

b (0)|n ∈ Nat} ≤ a. Since the set {fn
b (0)|n ∈ Nat} is

directed and C preserves all right directed joins, we have

a · b∗ = a ·
∨

{fn
b (0)|n ∈ Nat} =

∨
{a · fn

b (0)|n ∈ Nat} ≤ a. ��

In the above theorem, 1 and 2 give necessary and sufficient conditions respec-
tively, but 3 does not. In fact, all authors do not know whether if L satisfies the
D-axiom then C preserves all right directed joins.
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Fig. 3. The maps from the cube of CILS to the cube of LKA
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This theorem can be represented by Fig. 3. The functor F from CILS to LKA
is given by Theorem 1. The other seven functors from the cube of complete IL-
semirings to the cube of lazy Kleene algebras are given by Theorem 2. By 1 of
Theorem 2, the square consisting of CILS, CILS0, LKA, and LKA0 is not
only a commutative square, but also a pullback square in Cat, that is, an object
C of CILS belongs to CILS0 if and only if F (C) belongs to LKA0. Similarly,
every square in Fig. 3 is a pullback square, except for squares consisting of three
solid arrows and one dotted arrow.

6 Triangular Prism of Multirelations

In recent papers [9,10,11,12], the authors show that the set of up-closed multire-
lations forms a lazy Kleene algebra, that the set of finitary up-closed multire-
lations forms a monodic tree Kleene algebra, and that the set of total finitary
up-closed multirelations forms a probabilistic Kleene algebra. To extend these
results, in this section, we define a triangular prism consisting of six classes of
multirelations and obtain a mapping from it to the cube of lazy Kleene algebras.

First, we extend the notion of multirelations.

Definition 9 (Typed multirelation). A type T of multirelation is a subfunc-
tor of the powerset functor ℘ : Set → Set (i.e., T (A) ⊆ ℘(A) for each set A).
A multirelation of type T over A is a subset of A × T (A). A multirelation R of
type T over A is called up-closed if (a, X) ∈ R and X ⊆ Y imply (a, Y ) ∈ R for
each a ∈ A, X, Y ∈ T (A).

We give a sufficient condition on a type T such that the set of up-closed mul-
tirelations of type T over an arbitrary set A forms a complete IL-semiring. We
call a type satisfying this condition closed.

Definition 10 (Closed type). A type T is called closed if for each set A,

1. ∀a ∈ A.{a} ∈ T (A), and
2. if a family {Xi}i∈I of subsets of A satisfies I ∈ T (A) and ∀i ∈ I.Xi ∈ T (A),

then
⋃

i∈I Xi ∈ T (A).

Example 3. Every submonad of the powerset monad forms a closed type. In fact,
all closed types mentioned in this section are submonads of the powerset monad.

Proposition 4. For an arbitrary set A, a tuple T -UMR(A) = (K, +, 0, ·, 1,
∨

)
forms a complete IL-semiring where

– K is the set of all up-closed multirelations of type T over A,
– R + Q is the binary union of R and Q,
– 0 is the empty set,
– (a, X) ∈ R · Q ⇐⇒ ∃Y ∈ T (A).(a, Y ) ∈ R and ∀y ∈ Y.(y, X) ∈ Q,
– 1 = {(a, X)|a ∈ X, X ∈ T (A)}, and
–

∨
is the union operator,

if and only if T is a closed type or the constant functor to the empty set.
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Proof
(⇐=) If T is the constant functor to the empty set, then T -UMR(A) is the
trivial complete IL-semiring.

On the other hand, let T be a closed type. We show R ⊆ 1·R. If T (A) = ∅,
then R = 0 ⊆ 1 ·R. Assume T (A) �= ∅ and (a, X) ∈ R. By the first condition
of Definition 10, we have {a} ∈ T (A). Therefore, (a, X) ∈ 1 · R. Therefore,
R ⊆ 1 · R.

Next, we show R · (Q ·P ) ⊆ (R ·Q) ·P . Assume (a, X) ∈ R · (Q ·P ). Then,
there exists Y ∈ T (A) such that (a, Y ) ∈ R and ∀y ∈ Y.∃Zy ∈ T (A).(y, Zy) ∈
Q and ∀z ∈ Zy.(z, X) ∈ P . By the second condition of Definition 10, we
have

⋃
y∈Y Zy ∈ T (A). It satisfies (a,

⋃
y∈Y Zy) ∈ R · Q, since (a, Y ) ∈ R

and ∀y ∈ Y.(y,
⋃

y∈Y Zy) ∈ Q. Since ∀z ∈
⋃

y∈Y Zy.(z, X) ∈ P , we have
(a, X) ∈ (R · Q) · P . Therefore, R · (Q · P ) ⊆ (R · Q) · P .

The other conditions for complete IL-semirings are easy to prove.
(=⇒) Assume that T is neither a closed type nor the constant functor to the
empty set. There exists a set A which does not satisfy 1 of Definition 10 or
which does not satisfy 2 of Definition 10. We show that T -UMR(A) does
not form a complete IL-semiring.
• Assume that 1 of Definition 10 does not hold. We can take a ∈ A sat-

isfying {a} �∈ T (A). Since T is a functor on Set, if T (A) is empty, then
T (X) is empty for each set X , that is, T is the constant functor to
the empty set. Therefore, T (A) is not empty. We can take X ∈ T (A).
Let R = {(a, Y )|Y ∈ T (A)}. We have (a, X) ∈ R but (a, X) �∈ 1 · R.
Therefore, R �⊆ 1 · R.

• Assume that 2 of Definition 10 does not hold. We can take {Xi}i∈I

satisfying I ∈ T (A), ∀i ∈ I.Xi ∈ T (A), and
⋃

i∈I Xi �∈ T (A). If A = ∅
then every T (A) ⊆ ℘(A) (i.e., T (A) = ∅ or T (A) = {∅}) satisfies the
second condition of Definition 10. Therefore, A is not empty. We can
take a ∈ A. Let R = {(a, X)|X ∈ T (A), I ⊆ X}, Q = {(i, X)|i ∈
I, X ∈ T (A), Xi ⊆ X}, and P = {(x, X)|x ∈

⋃
i∈I Xi, X ∈ T (A)}.

Then, we have (a, I) ∈ R · (Q · P ), since (a, I) ∈ R, ∀i ∈ I.(i, Xi) ∈ Q,
and ∀i ∈ I.∀x ∈ Xi.(x, I) ∈ P . But we have (a, I) �∈ (R · Q) · P , since
(a, I) ∈ (R · Q) · P implies

⋃
i∈I Xi ∈ T (A). Therefore, R · (Q · P ) �⊆

(R · Q) · P . ��
By the above proposition, T is not always closed, even if T -UMR(A) forms a
complete IL-semiring for an arbitrary set A. However, this is not a problem,
since the trivial complete IL-semiring is not such an important counterexample.

We write |X | for the number of elements of X .

Definition 11 (Cube of type of multirelation). A closed type T of multire-
lations is called

– total if for an arbitrary set A, A �= ∅ implies ∅ �∈ T (A),
– affine if for an arbitrary set A, ∀X ∈ T (A).|X | ≤ 1, and
– finite if for an arbitrary set A, ∀X ∈ T (A).X is finite,

respectively.
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We write UMR for the category whose objects are complete IL-semirings
T -UMR(A) for some closed type T and some set A and whose arrows are homo-
morphisms between them. We write UMRt for the full subcategory of UMR
whose object is a complete IL-semiring T -UMR(A) for some total closed type
T and some set A. Similarly, we write UMRa for the case of affine closed types
and UMRf for the case of finite closed types. The eight categories and forgetful
functors between them form the cube of Fig. 4. Note that UMRa,f = UMRa

and UMRt,a,f = UMRt,a since affineness implies finiteness. Therefore, this
cube is actually a triangular prism.

UMRt,a,f =============== UMRt,a

�
��

�
��

UMRt,f
� UMRt

UMRa,f

�
======= ======= UMRa

�

�
��

�
��

UMRf

�
� UMR

�

Fig. 4. The cube of complete IL-semirings of multirelations

Example 4. T (A) = ℘(A) is a closed type. In this case, T -UMR(A) is equal to
the complete IL-semiring UMR(A) consisting of all up-closed multirelations on
A (defined in Proposition 1).

Example 5. T (A) = {{a}|a ∈ A} is a closed, total, and affine (and finite) type.
In this case, T -UMR(A) is isomorphic to the complete IL-semiring consisting
of all ordinary binary relations on A (defined in Example 1).

We obtain the correspondence between the cube of Fig. 4 and the cube of com-
plete IL-semirings.

Theorem 3. Let T be a closed type. T -UMR(A) forms a complete IL-semiring
for each A. Moreover, the following hold.

1. T -UMR(A) preserves the right 0 for each A if and only if T is total,
2. T -UMR(A) preserves the right + for each A if and only if T is affine, and
3. T -UMR(A) preserves all right directed joins for each A if and only if T is

finite.

Proof
1. (⇐=) Assume that T is total. If A = ∅, then R · 0 = 0 · 0 = 0. If A �= ∅, then

R · 0 = {(a, X) |X ∈ T (A), (a, ∅) ∈ R} = 0.
(=⇒) Conversely, assume that T is not total. Let R be A × T (A). There
exists a set A satisfying A �= ∅ and ∅ ∈ T (A). There exists a ∈ A such that
(a, ∅) ∈ R. Therefore, R · 0 = {(a, X) |X ∈ T (A), (a, ∅) ∈ R} �= 0.
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2. (⇐=) Assume that T is affine. R ·Q+R ·P ⊆ R · (Q+P ) holds trivially. We
show R · (Q + P ) ⊆ R · Q + R · P . Let (a, X) be an element of R · (Q + P ).
We can take Y ∈ T (A) such that (a, Y ) ∈ R and ∀y ∈ Y.(y, X) ∈ Q + P .
If |Y | = 0, then (a, ∅) ∈ R. Therefore, (a, X) ∈ R · Q ⊆ R · Q + R · P . If
|Y | = 1, then Y = {y} and (y, X) ∈ Q + P . Moreover, if (y, X) ∈ Q, then
(a, X) ∈ R·Q ⊆ R·Q+R·P . If (y, X) ∈ P , then (a, X) ∈ R·P ⊆ R·Q+R·P .
(=⇒) Conversely, assume that T is not affine. Take a set A and X ∈ T (A)
satisfying 2 ≤ |X |, and take a ∈ X . Let R = {(a, Y )|X ⊆ Y, Y ∈ T (A)},
Q = {(a, Y )|a ∈ Y, Y ∈ T (A)}, and P =

⋃
y∈X\{a}{(y, Y )|y ∈ Y, Y ∈ T (A)}.

Then, (a, X) ∈ R ·(Q+P ) but (a, X) �∈ R ·Q+R ·P . Therefore, R ·(Q+P ) �⊆
R · Q + R · P .

3. (⇐=) Assume that T is finite. Let D be a directed subset of T -UMR(A). For
each R ∈ T -UMR(A),

∨
{R ·Q |Q ∈ D} ⊆ R ·

∨
D holds trivially. We show

R ·
∨

D ⊆
∨
{R · Q |Q ∈ D}. Let (a, X) be an element of R ·

∨
D. We can

take Y ∈ T (A) such that (a, Y ) ∈ R and ∀y ∈ Y.∃Qy ∈ D.(y, X) ∈ Qy. Since
Y is finite and D is directed, there exists P ∈ D such that ∀y ∈ Y.Qy ⊆ P .
Therefore, (a, X) ∈ R · P ⊆

∨
{R · Q |Q ∈ D}.

(=⇒) Conversely, assume that T is not finite. There exist a set A and an
infinite set X satisfying X ∈ T (A). Let Rx = {(x, Y )|X ⊆ Y, Y ∈ T (A)}
for each x ∈ X . Let D = {

⋃
x∈I Rx | I ⊆ X, I is finite}. Then, D is directed.

Take a ∈ X . We have (a, X) ∈ Ra ·
∨

D but (a, X) �∈
∨
{Ra · Q|Q ∈ D}.

Therefore, Ra ·
∨

D �⊆
∨
{Ra · Q|Q ∈ D}. ��

This theorem can be represented by Fig. 5. The functor G from UMR to CILS
is given by Proposition 4. The other seven functors are given by Theorem 3.
Every square in Fig. 5 is a pullback square.

As a corollary of Theorem 2 and Theorem 3, we get the mapping from the
cube of complete IL-semirings consisting of up-closed typed multirelations to the
cube of lazy Kleene algebras. The case 1 and the case 2 of this corollary give
necessary and sufficient conditions, since the case 1 and the case 2 of Theorem 2
do so.

Corollary 2. Let T be a closed type. T -UMR(A) forms a lazy Kleene algebra
for each A. Moreover, the following hold.

1. T -UMR(A) satisfies the 0-axiom for each A if and only if T is total,
2. T -UMR(A) satisfies the +-axiom for each A if and only if T is affine, and
3. T -UMR(A) satisfies the D-axiom for each A if T is finite.

This corollary includes many results about multirelational models of lazy Kleene
algebras.

Example 6. T (A) = ℘(A) is a closed type. In this case, T -UMR(A) is a lazy
Kleene algebra. Therefore, the set of up-closed multirelations over A forms a
lazy Kleene algebra.

Example 7. T (A) = {X ⊆ A |X is finite} is a closed type. Since this type T is
finite, T -UMR(A) is a monodic tree Kleene algebra.



288 K. Nishizawa, N. Tsumagari, and H. Furusawa

UMRt,a,f =============== UMRt,a

	
































 �

�
��

	
































 �

�
��

UMRt,f
� UMRt

	


































	


































UMRa,f

�
======= ======= UMRa

�

	
































 �

�
��

	
































 �

�
��

UMRf

�
� UMR

�

	


































	


































G

CILS0,+,D
� CILS0,+

�
�

��

�
�

��
CILS0,D

� CILS0

CILS+,D

�
� CILS+

�

�
�

��

�
�

��
CILSD

�
� CILS

�

Fig. 5. The maps from the cube of UMR to the cube of CILS

Example 8. T (A) = {X ⊆ A |X is finite and non-empty} is a closed type. Since
this type T is total and finite, T -UMR(A) is a probabilistic Kleene algebra.

Example 9. T (A) = {{a} | a ∈ A} is a closed type. Since this type T is total,
affine, and finite, T -UMR(A) is a Kleene algebra, Therefore, the set of ordinary
binary relations over A forms a Kleene algebra.

Example 10. In paper [9], a multirelation R ⊆ A × ℘(A) is called finitary up-
closed if it satisfies the following.

1. ∀(a, X) ∈ R.∀Y ∈ ℘(A).X ⊆ Y implies (a, Y ) ∈ R.
2. ∀(a, X) ∈ R.∃Y ∈ ℘(A). such that Y is a finite subset of X and (a, Y ) ∈ R.

We compare this notion with the notion of up-closed multirelations of type
T (A) = {X ⊆ A |X is finite}. A finitary up-closed multirelation is not always an
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up-closed multirelation of this type T over A, since the former may include (a, X)
for an infinite X , but the latter must not. Conversely, an up-closed multirelation
of type T over A is not always a finitary up-closed multirelation. However, the
set of finitary up-closed multirelations forms a complete IL-semiring and it is iso-
morphic to T -UMR(A) as a complete IL-semiring [11]. The isomorphism maps a
finitary up-closed multirelation R to {(a, X) ∈ R |X is finite} and an up-closed
multirelation R of type T over A to {(a, X) ∈ A × ℘(A) | ∃Y ⊆ X.(a, Y ) ∈ R}.
Therefore, the set of finitary up-closed multirelations also forms a lazy Kleene
algebra satisfying the D-axiom.

Example 11. T (A) = {X ⊆ A |X is non-empty} is a closed type. Since this type
T is total, T -UMR(A) is a lazy Kleene algebra satisfying the 0-axiom.

Example 12. T (A) = {∅} ∪ {{a} | a ∈ A} is a closed type. Since this type T is
affine, T -UMR(A) is a lazy Kleene algebra satisfying the +-axiom.

7 Conclusion

We studied the relationship between relaxations of Kleene algebras and classes
of multirelations.

We extended the notion of multirelations by introducing types of multirela-
tions. For each of eight classes of relaxation of Kleene algebra, we gave a suffi-
cient condition on type T such that the set of up-closed multirelations of type
T belongs to the class. In particular, the affineness condition and the totality
condition of a type are not only sufficient, but also necessary.

This paper includes the result that the set of ordinary binary relations forms
a Kleene algebra, the set of up-closed multirelations forms a lazy Kleene algebra,
the set of up-closed finite multirelations forms a monodic tree Kleene algebra,
and the set of total up-closed finite multirelations forms a probabilistic Kleene al-
gebra. The cube consisting of eight conditions of type of multirelation is actually
a triangular prism. It is strange but interesting.

The paper [2] extends the notion of lazy Kleene algebras to treat both finite
and infinite streams, by adding the notion of meets and greatest fixed points.
We are also going to extend our cube by adding conditions about meets and
greatest fixed points.

We showed that if a complete IL-semiring preserves all right directed joins,
then it forms a lazy Kleene algebra satisfying the D-axiom. However, the converse
direction has not been proved yet. It is future work.
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Abstract. Following the representation theorems for relation algebras
and cylindric algebras presented in [5] and [7] we develop discrete duality
for relation algebras and relation frames, and for cylindric algebras and
cylindric frames.

1 Introduction

Duality theory emerged from the work by Marshall Stone [29] on Boolean al-
gebras and distributive lattices in the 1930s. Jónsson and Tarski [10] extended
the Stone’s results to Boolean algebras with operators which are also known as
polymodal algebras with possibility operators. Later in the early 1970s Larisa
Maksimova [16,17] and Hilary Priestley [27] developed the analogous results for
Heyting algebras, topological Boolean algebras, and distributive lattices. Since
then establishing a duality has become an important methodological problem
both in algebra and in logic. All the above mentioned classical duality results
are developed using topological spaces as dual spaces of algebras.

Discrete duality is a duality where a class of abstract relational systems is
a dual counterpart to a class of algebras. These relational systems are referred
to as frames following the terminology of non-classical logics. A topology is not
involved in the construction of these frames and hence they may be thought of
as having a discrete topology. Establishing discrete duality involves the following
steps. Given a class Alg of algebras (resp. a class Frm of frames) we define a
class Frm of frames (resp. a class Alg of algebras). Next, for an algebra L ∈ Alg
we define its canonical frame X (L) and for each frame X ∈ Frm we define its
complex algebra C(X). Then we prove that X (L) ∈ Frm and C(X) ∈ Alg. A
duality between Alg and Frm holds provided that the following facts are proved:

(D1) Every algebra L ∈ Alg is embeddable into the complex algebra of its
canonical frame, i.e., C(X (L)).

(D2) Every frame X ∈ Frm is embeddable in the canonical frame of its
complex algebra, i.e., X (C(X)).
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Our terminology follows that used in modal logic and it is well suited to the study
of discrete duality in case of signature extensions of not-necessarily Boolean al-
gebras, where the complex algebras need not be the powerset algebras of all the
subsets of the universes of the frames. As indicated in [19], the complex algebra
of the canonical frame of a Boolean algebra with operators in the sense of [10] is
the canonical extension (or a perfect extension or a canonical embedding alge-
bra). Also, in that case canonical frames are sometimes referred to as ultrafilter
extensions.

A distinguishing feature of this framework for establishing a discrete duality
is that the algebraic and the logical notions involved in the proofs are defined
in an autonomous way, we do not mix the algebraic and logical methodologies.
The separation of logical and algebraic constructs enables us to view classes of
algebras and frames as two types of semantic structures of a formal language.
As a consequence we easily obtain what we call duality via truth [22]. Given
a formal language Lan, a class of frames Frm which determines a relational
semantics for Lan and a class Alg of algebras which determines its algebraic
semantics, a duality via truth theorem says that these two kinds of semantics
are equivalent in the following sense:

(DvT) A formula φ ∈ Lan is true in every algebra of Alg iff it is true in
every frame of Frm.

In this paper we develop discrete duality for relation algebras and cylindric
algebras of finite dimension. The basis of our work are the developments in
[8,10,11,12,13]. The notions of relation frame, cylindric frame, and complex al-
gebras of such frames presented in the present paper are derived from the devel-
opments there. In the representation theorems for relation algebras and cylindric
algebras presented in [8] the representation algebras are the complex algebras of
the atom structures of the given algebras. In [13] a representation theorem for
relation algebras and cylindric algebras is announced without a proof showing
that the representation algebra is the complex algebra of the canonical frame of
the given algebra, as it is usual in the discrete duality framework. In this paper
we prove both the representation theorems for relation algebras and cylindric al-
gebras and the representation theorems for relation frames and cylindric frames
following the methodology of discrete duality. Holding of the theorem of the form
(D1) is guaranteed by the Sahlqvist theorem [28] adapted to Boolean algebras
with operators in the sense of [10] in [3].

From the foundational perspectives, discrete duality and duality via truth con-
tribute to a formal explanation of the interaction between logics and algebras.
On the application side, discrete duality results have a number of applications in
computer science in the development of relational dual tableaux deduction sys-
tems. Given a theory presented as a class of algebras, having a discrete duality
for that class we may present the theory as a logic with a Kripke-style relational
semantics. Once a relational semantics is provided the methods of construction
of dual tableaux can be applied. Relational dual tableaux have been constructed
for a great variety of theories, ranging from well established non-classical logics
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such as intuitionistic, modal, relevant, and multiple-valued logics, to important
applied theories such as, among others, temporal, in particular interval tempo-
ral logics, various logics of programs, fuzzy logics, logics of rough sets, theories
of spatial reasoning including region connection calculus, theories of order of
magnitude reasoning, and formal concept analysis. Relational dual tableaux are
powerful tools which perform not only verification of validity (i.e., verification
of truth of the statements in all the models of a theory) but often they can also
be used for proving entailment (i.e., verification that truth of a finite number of
statements implies truth of some other statement), model checking (i.e., verifi-
cation of truth of a statement in a particular fixed model), and satisfaction (i.e.,
verification that a statement is satisfied by some fixed objects of a model). An
exhaustive presentation of these applications can be found in [18].

2 Relation Algebra

Many properties of relations discussed already in [2] and [26] are captured in
terms of an abstract algebraic structure defined as a Boolean algebra with op-
erators as follows (see e.g., [30,15]).

Definition 1. A relation algebra (L,∨,∧,−, 0, 1, ; ,� , 1′) is such that, for any
a, b, c ∈ L,

(RA1) (L,∨,∧,−, 0, 1) is a Boolean algebra
(RA2) (L, ; , 1′) is a monoid
(RA3) (a ∨ b); c = a; c ∨ b; c
(RA4) a�� = a
(RA5) (a ∨ b)� = a� ∨ b�

(RA6) (a; b)� = b�; a�

(RA7) a�; (−(a; b)) ≤ −b.

The proofs for the following properties of relations can be found in [1].

Lemma 2. For any a, b, c, d ∈ L,

(a) c; (a ∨ b) = c; a ∨ c; b.
(b) 1′; a = a = a; 1′.
(c) (a ∧ b)� = a� ∧ b�.
(d) a ≤ b iff a� ≤ b�.
(e) If a ≤ b and c ≤ d then a; c ≤ b; d.
(f) (De Morgan Theorem K, see [2])

(a; b) ∧ c = 0 iff (a�; c) ∧ b = 0 iff (c; b�) ∧ a = 0.

For the representation results we need the following definition and variation of
the Prime Filter Theorem for Boolean algebras, as proved by Urquhart [31].

For any subsets F and G of L, F ; G = {c ∈ L | ∃a ∈ F, ∃b ∈ G, a; b ≤ c}.
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Lemma 3. Let (L,∨,∧,−, 0, 1, ; ,� , 1′) be a relation algebra.

(a) If F and G are filters of L then so is F ; G.
(b) Let F and G be filters and let P be a prime filter of L. If F ; G ⊆ P then there

exist prime filters F ′ and G′ such that F ⊆ F ′ and G ⊆ G′ and F ′; G′ ⊆ P .

Following [8,10,11,14] the notion of relation frame is defined as follows. How-
ever, as mentioned in the introduction, here the frames are abstract relational
structures whose universes are not necessarily sets of atoms of algebras.

Definition 4. A relation frame (X, C, f, I) is a non-empty set X endowed with
a ternary relation C ⊆ X3, a unary operation f : X → X , and a designated set
I ⊆ X such that

(RF1) f(f(x)) = x
(RF2) C(x, y, z) ⇒ C(f(x), z, y)
(RF3) C(x, y, z) ⇒ C(z, f(y), x)
(RF4) x = y iff ∃z ∈ I, C(x, z, y)
(RF5) C(x, y, z) ∧ C(z, v, w) ⇒ ∃u, C(x, u, w) ∧ C(y, v, u)
(RF6) C(x, y, z) ∧ C(v, z, w) ⇒ ∃u, C(u, y, w) ∧ C(v, x, u).

Lemma 5. For any x, y, z ∈ X,

(a) C(x, y, z) iff C(f(x), z, y).
(b) C(x, y, z) iff C(z, f(y), x)).

Proof. For (a) note that, by (RF1) and (RF2), for any x, y, z ∈ X ,

C(x, y, z) ⇒ C(f(x), z, y) ⇒ C(f(f(x)), y, z) ⇔ C(x, y, z).

Similarly, (b) follows using (RF1) and (RF3). ��
Given a relation frame (X, C, f, I), its complex algebra is

(2X ,∪,∩,−, ∅, X, ;c ,�c , 1′c),

where (2X ,∪,∩,−, ∅, X) is the powerset Boolean algebra of X and, for any
A, B ⊆ X ,

A;c B = {z ∈ X | ∃x ∈ A, ∃y ∈ B, C(x, y, z)}
A�c = {f(x) | x ∈ A}
1′c = I.

Theorem 6. The complex algebra of a relation frame is a relation algebra.

Proof. By definition the power set algebra of the non-empty set X is a Boolean
algebra.

For (RA2), we use (RF5) (A;c B1);c B2 ⊆ A;c (B1;c B2) as follows. Assume
z ∈ (A;c B1);c B2. Then, for some w ∈ A;c B1 and some v ∈ B2, C(w, v, z). So,
expanding further, for some x ∈ A, some y ∈ B1 and some v ∈ B2, C(x, y, w)
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and C(w, v, z). Thus, by (RF5), for some u ∈ L, C(x, u, z) and C(y, v, u). Hence,
for some x ∈ A and some u ∈ L, C(x, u, z) and u ∈ B1;c B2. Therefore, z ∈
A;c (B1;c B2), as required. Similarly, using (RF6), A;c (B1;c B2) ⊆ (A;c B1);c B2.
Using (RF4), we have

z ∈ A;c 1′c ⇔ ∃x ∈ A, ∃y ∈ I, C(x, y, z) ⇔ ∃x ∈ A, x = z ⇔ z ∈ A.

Similarly, using (RF1) to (RF4), we have

z ∈ 1′c;c A ⇔ ∃x ∈ I, ∃y ∈ A, C(x, y, z)
⇔ ∃x ∈ I, ∃y ∈ A, C(z, f(y), x)
⇔ ∃x ∈ I, ∃y ∈ A, C(f(z), x, f(y))
⇔ ∃y ∈ A, f(y) = f(z)
⇔ ∃y ∈ A, f(f(y)) = f(f(z))
⇔ ∃y ∈ A, y = z

⇔ z ∈ A.

For (RA3), by definition of union, it follows that ;c distributes over ∪.
For (RA4), using (RF1) we have

z ∈ (A�c)�c ⇔ ∃y ∈ A�c, z = f(y)
⇔ ∃x ∈ A, z = f(f(x))
⇔ ∃x ∈ A, z = x

⇔ z ∈ A.

(RA5) holds since, for any z ∈ X ,

∃x ∈ A ∪ B, z = f(x) ⇔ ∃x ∈ A, z = f(x) or ∃x ∈ B, z = f(x).

For (RA6), we have that for any z ∈ X ,

z ∈ (A;c B)�c ⇔ ∃u ∈ A;c B, z = f(u)
⇔ ∃u, ∃x ∈ A, ∃y ∈ B, C(x, y, u) ∧ z = f(u)
⇔ ∃x ∈ A, ∃y ∈ B, C(x, y, f(z))

since z = f(u) iff u = f(z). Also,

z ∈ B�c;c A�c ⇔ ∃w ∈ A�c, ∃v ∈ B�c, C(v, w, z)
⇔ ∃x ∈ A, ∃y ∈ B, C(f(y), f(x), z)

Now, by Lemma 5(a) and (b) and (RF1),

C(x, y, f(z)) ⇔ C(f(x), f(z), y) ⇔ C(y, z, f(x)) ⇔ C(f(y), f(x), z).

Hence, the result follows.
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For (RA7), assume z ∈ (A�c) ;c (−(A;c B)). Then, there is some x ∈ A and
there is some v ∈ X such that

(∀u, ∀y, u ∈ A ∧ C(u, y, v) ⇒ y �∈ B) ∧ C(f(x), v, z).

Suppose z ∈ B. Take u to be x and y to be z. Then, since x ∈ A, C(x, z, v)
does not hold. Thus, by Lemma 5(a), not C(f(x), v, z) which gives the required
contradiction. ��
Given a relation algebra (L,∨,∧,−, 0, 1, ; ,� , 1′), its canonical frame

(X (L), Cc, f c, Ic)

is the set X (L) of all prime filters of the Boolean algebra (L,∨,∧,−, 0, 1) endowed
with a ternary relation Cc, a unary operation f c and a designated set Ic where,
for any F, G, H ∈ X (L),

Cc(F, G, H) iff F ; G ⊆ H where F ; G = {c ∈ L | ∃a ∈ F, ∃b ∈ G, a; b ≤ c}
f c(F ) = {a� | a ∈ F}

Ic = {F | 1′ ∈ F}.

Note that, since (L,∨,∧,−, 0, 1) is a Boolean algebra, f c is well-defined, that is,
f c(F ) ∈ X (L) for F ∈ X (L).

Theorem 7. The canonical frame of a relation algebra is a relation frame.

Proof. For (RF1), by definition and using (RA4),

f c(f c(F )) = {a� | a ∈ f c(F )} = {a� | ∃b ∈ F, a = b�} = {b�� | b ∈ F},

hence f c(f c(F )) = F .
For (RF2), assume Cc(F, G, H), that is, F ; G ⊆ H . Take any z ∈ L such that

z ∈ f c(F ); H and z �∈ G. Then, for some a ∈ F and some b ∈ H , a�; b ≤ z and
z �∈ G, and hence a�; b �∈ G. Now a ∈ F and −(a�; b) ∈ G imply a; (−(a�; b)) ∈
F ; G ⊆ H . Thus, by (RA7), −b ∈ H , which gives the required contradiction.

For (RF3), assume Cc(F, G, H), that is, F ; G ⊆ H . Take any z ∈ L such that
z ∈ H ; f c(G) and z �∈ F . Then, for some a ∈ G and some b ∈ H , b; a� ≤ z
and z �∈ F , and hence b; a� �∈ F . Now −(b; a�); a ∈ F ; G ⊆ H . Now b; a� =
(b; a�)�� = (a; b�)�. By (RA7), a�; (−(a; b�)) ≤ −b� and, by Lemma 2(d),
(a�; (−(a; b�)))� ≤ (−b�)�, that is, −(a; b�)�; a ≤ −b. Since −(a; b�)�; a ∈ H ,
−b ∈ H which gives the contradiction.

For (RF4), assume F = G. Let ↑1′ be the principal filter generated by 1′.
Then F ; ↑1′ ⊆ G. Hence, by Lemma 3(b), there is some H ∈ X (L) such that
1′ ∈ ↑1′ ⊆ H and F ; H ⊆ G. On the other hand, assume that for some H ∈
X (L), 1′ ∈ H and F ; H ⊆ G. Take any a ∈ F . Then a = a; 1′ ∈ F ; H ⊆ G. So
F ⊆ G. Now take any a �∈ F . Then, since (L,∨,∧,−, 0, 1) is a Boolean algebra,
−a ∈ F and hence −a = −a; 1′ ∈ F ; H ⊆ G. Thus a �∈ G and hence G ⊆ F .

For (RF5), assume Cc(F, G, H) and Cc(H, K, M), that is, F ; G ⊆ H and
H ; K ⊆ M . Then F ; (G; K) ⊆ M where, by Lemma 3(a), G; K is a filter.
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Therefore, by Lemma 3(b), there is a prime filter U ∈ X (W ) such that G; K ⊆ U
and F ; U ⊆ M . Hence Cc(G, K, U) and Cc(F, U, M), as required.

The proof of (RF6) is similar to that for (RF5). ��
We establish the representation theorem for relation frames using the mapping
k : X → X (2X), defined, for any x ∈ X , by

k(x) = {A ∈ 2X | x ∈ A}.

This mapping is an embedding [10] of X into X (2X). All that remains is to show
that k preserves the relation C, function f and special set I on X .

Theorem 8. For any x, y, z ∈ X,

(a) C(x, y, z) iff Cc(k(x), k(y), k(z))
(b) k(f(x)) = f c(k(x))
(c) k(I) = Ic

Proof

(a) For any x, y, z ∈ X ,

Cc(k(x), k(y), k(z))
⇔ k(x);c k(y) ⊆ k(z)
⇔ ∀A ∈ 2X , (∃B1 ∈ k(x), ∃B2 ∈ k(y), B1;c B2 ⊆ A) ⇒ A ∈ k(z)
⇔ ∀A ∈ 2X , (∃B1, B2 ∈ 2X , x ∈ B1 ∧ y ∈ B2 ∧

{t ∈ X | ∃p ∈ B1, ∃q ∈ B2, C(p, q, t)} ⊆ A)
⇒ z ∈ A.

Take any x, y, z ∈ X such that C(x, y, z), and take any A ∈ 2X such that for
some B1, B2 ∈ 2X , x ∈ B1, y ∈ B2, B1;c B2 ⊆ A. Now, since x ∈ B1, y ∈ B2
and C(x, y, z), z ∈ B1;c B2 and hence z ∈ A, as required.

On the other hand, take any x, y, z ∈ X such that Cc(k(x), k(y), k(z)).
Consider B1 = {x} and B2 = {y}. Then B1;c B2 = {t ∈ X | C(x, y, t)}.
Take A = {t ∈ X | C(x, y, t)}. Then, since Cc(k(x), k(y), k(z)), z ∈ A.
Hence C(x, y, z).

(b) For any B ⊆ X ,

B ∈ f c(k(x)) ⇔ ∃A, A ∈ k(x) ∧ B = A�c

⇔ ∃A, x ∈ A ∧ B = {f(x) | x ∈ A}
⇔ f(x) ∈ B

⇔ B ∈ k(f(x)).

(c) For any F ∈ X (2X),

F ∈ Ic ⇔ I ∈ F ∧ ∃x ∈ X, F = k(x)
⇔ ∃x ∈ X, F = k(x) ∧ x ∈ I

⇔ ∃x ∈ I, F = k(x)
⇔ F ∈ k(I). ��
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We establish the representation theorem for relation algebras using the Stone
mapping h : L → 2(X (L)), defined, for any a ∈ L, by

h(a) = {F ∈ X (L) | a ∈ F}.

This is an embedding [10] between the Boolean algebras underlying the relation
algebras. To show that h is an embedding of the relation algebras, it suffices to
show that h preserves ; ,� and 1′, that is,

Theorem 9. For any a, b ∈ L,

(a) h(a; b) = h(a);c h(b)
(b) h(a�) = h(a)�c

(c) h(1′) = 1′c.

Proof

(a) We need to show that, for any H ∈ X (L) and any a, b ∈ L,

a; b ∈ H iff ∃F, G ∈ X (L), a ∈ F, b ∈ G and F ; G ⊆ H.

Assume for some F, G ∈ X (L), a ∈ F, b ∈ G and F ; G ⊆ H . Take c = a; b.
Then c ∈ F ; G and hence c = a; b ∈ H . On the other hand, assume a; b ∈ H .
Then ↑ a; ↑ b ⊆ H where ↑ a and ↑ b are principal filters generated by a and b
respectively. So, by Lemma 3, there is a prime filter F such that a ∈ ↑ a ⊆ F
and F ; ↑ b ⊆ H . Hence, by another application of Lemma 3, there is a prime
filter G such that b ∈ ↑ b ⊆ G and F ; G ⊆ H .

(b) For any H ∈ X (L) and any a ∈ L,

H ∈ h(a�) ⇔ a� ∈ H ⇔ a = a�� ∈ f c(H) ⇔ H = f c(f c(H)) ∈ h(a)�c.

(c) For any H ∈ X (L), H ∈ h(1′) ⇔ 1′ ∈ H ⇔ H ∈ Ic ⇔ H ∈ 1′c. ��

3 Cylindric Algebras of Finite Dimension

The notion of cylindric algebra, invented by Alfred Tarski and presented in
[8], plays a role comparable for first-order logic as Boolean algebras play for
propositional logic. In this section we consider cylindric algebras of dimension n
where 3 ≤ n < ω. They enable us to study relations of arbitrary finite rank n > 2
in an analogous way as relation algebras for binary relations. These are Boolean
algebras with additional (cylindrification) operators that model quantification.

Definition 10. A cylindric algebra of dimension n where 3 ≤ n < ω,

(L,∨,∧,−, 0, 1, {dij ∈ L | i, j ≤ n}, {ci : L → L | i ≤ n})

is such that, for any a, b ∈ L,
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(CA1) (L,∨,∧,−, 0, 1) is a Boolean algebra.
(CA2) ci(0) = 0
(CA3) a ≤ ci(a)
(CA4) ci(a ∧ ci(b)) = ci(a) ∧ ci(b)
(CA5) ci(cj(a)) = cj(ci(a))
(CA6) dii = 1
(CA7) k �= i, j implies dij = ck(dik ∧ dkj)
(CA8) i �= j implies ci(dij ∧ a) ∧ ci(dij ∧ −a) = 0.

The proofs of the following properties of the cylindrification can be found in [8].

Lemma 11. For any a, b ∈ L and for every i ≤ n,

(a) ci(ci(a)) = ci(a)
(b) a ≤ b implies ci(a) ≤ ci(b)
(c) ci(a ∨ b) = ci(a) ∨ ci(b)
(d) ci(1) = 1
(e) ci(a) ∧ b = 0 iff a ∧ ci(b) = 0
(f) ci(−ci(a)) = −ci(a).

Following [8] and [11] the notion of cylindric frame is defined as follows.

Definition 12. A cylindric frame is

(X, {Dij ⊆ X | i, j ≤ n}, {Ei ⊆ X2 | i ≤ n})

where X is a non-empty set and

(CF1) Ei (i ≤ n) is an equivalence relation on X
(CF2) Ei; Ej = Ej ; Ei

(CF3) Dii = X
(CF4) Dij = {y ∈ X | ∀k �= i, j, ∃x ∈ Dik ∩ Dkj , xEky}
(CF5) i �= j, x, y ∈ Dij and xEiy imply x = y.

Given a cylindric frame (X, {Dij ⊆ X | i, j ≤ n}, {Ei ⊆ X2 | i ≤ n}), its
complex algebra is

(2X ,∪,∩,−, ∅, X, {dc
ij ∈ 2X | i, j ≤ n}, {cc

i : 2X → 2X | i ≤ n})

where (2X ,∪,∩,−, ∅, X) is the powerset Boolean algebra of X , dc
ij = Dij and,

for any A ⊆ X ,
cc
i (A) = {y ∈ X | ∃x ∈ A, xEiy}.

Theorem 13. The complex algebra of a cylindric frame is a cylindric algebra.

Proof. By definition the power set algebra of the non-empty set X is a Boolean
algebra.

For (CA2), cc
i (∅) = {y ∈ X | ∃x, x ∈ ∅ ∧ xEiy} = ∅.

For (CA3), note that for any y ∈ A, yEiy since Ei is reflexive. Hence y ∈ cc
i (A).
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For (CA4), by transitivity of Ei (i ≤ n), for any A, B ⊆ X and any y ∈ X ,

y ∈ cc
i (A ∩ cc

i (B)) ⇔ ∃x ∈ A ∩ cc
i (B), xEiy

⇔ ∃x, x ∈ A ∧ ∃z, z ∈ B ∧ zEix ∧ xEiy

⇒ (∃x, x ∈ A ∧ xEiy) ∧ (∃z, z ∈ B ∧ zEiy)
⇔ y ∈ cc

i (A) and y ∈ cc
i(B).

On the other hand, assume that for some x ∈ A xEiy and for some z ∈ B zEiy.
Since Ei is symmetric and transitive, xEiz. Suppose y �∈ cc

i (A ∩ cc
i (B)). Then,

for all t ∈ X , t ∈ A ∩ cc
i(B) implies tEiy does not hold, that is,

∀t, t ∈ A ∧ ∃p, p ∈ B ∧ pEit ⇒ not tEiy.

Taking t to be x and p to be z we get that xEiz does not hold, which gives the
required contradiction.

For (CA5), using (CF2) we have that for any A ⊆ X and any y ∈ X ,

y ∈ cc
i(c

c
j(A)) ⇔ ∃x, x ∈ cc

j(A) ∧ xEiy

⇔ ∃x, z, z ∈ A ∧ zEjx ∧ xEiy

⇔ ∃z, z ∈ A ∧ zEj ; Eiy

⇔ ∃z, z ∈ A ∧ zEi; Ejy

⇔ ∃z, x, z ∈ A ∧ zEix ∧ xEjy

⇔ ∃x, x ∈ cc
i (A) ∧ xEjy

⇔ y ∈ cc
j(c

c
i (A)).

For (CA6), by (CF3), dc
ii = Dii = X .

For (CA7), assume k �= i, j. Then, by (CF4), for any y ∈ X ,

y ∈ dc
ij = Dij ⇔ ∃x ∈ Dik ∩ Dkj , xEky ⇔ y ∈ cc

k(Dik ∩ Dkj).

For (CA8), assume i �= j. Take any y ∈ cc
i (d

c
ij ∩A). Then, for some x ∈ dc

ij ∩A,
xEiy. Suppose y ∈ cc

i(d
c
ij ∩ −A). Then, for some z ∈ dc

ij ∩ −A, zEiy. Thus
x, z ∈ dc

ij and by symmetry and transitivity of Ei, xEiz. So, by (CF5), z = x.
Then z ∈ A and x �∈ A, which give the required contradiction. ��
Given a cylindric algebra (L,∨,∧,−, 0, 1, {dij ∈L | i, j ≤ n}, {ci : L → L | i ≤
n}), its canonical frame is

(X (L), {Dc
ij ⊆ X (L) | i, j ≤ n}, {Ec

i ⊆ X (L)2 | i ≤ n}),

where X (L) is the set of all prime filters of the Boolean algebra (L,∨,∧,−, 0, 1),
Dc

ij = {F ∈ X (L) | dij ∈ F} and, for any F, G ∈ X (L),

FEc
i G iff ci(F ) ⊆ G, where ci(F ) = {ci(a) | a ∈ F}.

Theorem 14. The canonical frame of a cylindric algebra is a cylindric frame.
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Proof. For (CF1), for any F ∈ X (L) and b ∈ L,

b ∈ ci(F ) ⇔ ∃a, a ∈ F ∧ b = ci(a) ⇒ ∃a, ci(a) ∈ F ∧ b = ci(a) ⇒ b ∈ F.

Assume Ec
i is not symmetric. Then, for some F, G ∈ X (L), FEc

i G and not GEc
i F ,

that is, ci(F ) ⊆ G and ci(G) ∩ −F �= ∅. Then, for some a ∈ X , a ∈ −F and
a ∈ ci(G). Hence, −a ∈ F and, for some b ∈ G, a = ci(b). Now, by Lemma 11(f),
−ci(b) = ci(−ci(b)) = ci(−a). Also ci(−a) ∈ ci(F ). Thus −ci(b) ∈ ci(F ) ⊆ G,
and hence ci(b) �∈ G. Also, since b ∈ G we have by (CA3) that ci(b) ∈ G which
gives the required contradiction. Therefore, Ec

i is symmetric.
For transitivity, assume that ci(F ) ⊆ G and ci(G) ⊆ H . Take any b ∈ L such

that b ∈ F . Then ci(b) ∈ G and hence ci(ci(b)) ∈ H . Now, by Lemma 11(a),
ci(b) ∈ H , as required.

For (CF2), by (CA5) we have that, for any F, G ∈ X (L),

F (Ei; Ej)G ⇔ ∃H, FEiH ∧ HEjG

⇔ ∃H, ci(F ) ⊆ H ∧ cj(H) ⊆ G

⇔ cj(ci(F )) ⊆ G

⇔ ci(cj(F )) ⊆ G

⇔ ∃H, cj(F ) ⊆ H ∧ ci(H) ⊆ G

⇔ ∃H, FEjH ∧ HEiG

⇔ F (Ej ; Ei)G.

For (CF3), using (CA6) it follows that Dc
ii = {F ∈ X (L) | 1 = dii ∈ F} = X (L).

For (CF4), we need to show, for any G ∈ X (L), that

G ∈ Dc
ij iff ∀k �= i, j, ∃F ∈ X (L), dik ∧ dkj ∈ F ∧ FEc

kG.

Assume G ∈ Dc
ij and k �= i, j. Then, by definition of Dc

ij and (CA7), ck(dik ∧
dkj) ∈ G. Then dik ∧ dkj ∈ c−1

k (G) and, since c−1
k (G) is an upset, ↑(dik ∧ dkj) ⊆

c−1
k (G). Also −c−1

k (G) is an ideal disjoint from the principal filter ↑(dik ∧ dkj).
Therefore, by the Prime Filter Theorem, there is a prime filter F ∈ X (L) such
that ↑(dik ∧ dkj) ⊆ F and F ⊆ c−1

k (G). Hence, dik ∧ dkj ∈ F and ck(F ) ⊆
ck(c−1

k (G)) ⊆ G. On the other hand, take any G ∈ X (L) such that, for k �= i, j,
there is some F ∈ X (L) such that dik ∧ dkj ∈ F and ck(F ) ⊆ G. Hence,
ck(dik ∧dkj) ∈ ck(F ) and ck(F ) ⊆ G. Thus, by (CA7), dij ∈ G, that is, G ∈ Dc

ij .
For (CF5), assume i �= j, F, G ∈ Dc

ij and ci(F ) ⊆ G. Take any a ∈ G. Then
a ∧ dij ∈ G so, by (CA3), ci(a ∧ dij) ∈ G. Hence, by (CA8), −ci(−a ∧ dij) ∈ G
and so ci(−a ∧ dij) �∈ G. Thus −a ∧ dij �∈ F , that is, −a �∈ F (since dij ∈ F ).
Therefore, a ∈ F . Thus G ⊆ F . On the other hand, take any a ∈ F . Then
ci(a ∧ dij) ∈ ci(F ) ⊆ G, so ci(a ∧ dij) ∈ G. Hence, by (CA8), ci(−a ∧ dij) �∈ G
and hence, by (CA3), −a ∧ dij �∈ G, that is, −a �∈ G. Therefore, a ∈ G. Thus
F ⊆ G. ��
We establish the representation theorem for cylindric frames using the mapping
k : X → X (2X), defined, for any x ∈ X , by

k(x) = {A ∈ 2X | x ∈ A}.
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It is an embedding of X into X (2X). All that remains is to show that:

Theorem 15
(a) k(Dij) = Dc

ij

(b) For any x, y ∈ X, xEiy iff k(x)Ec
i k(y).

Proof

(a) Take any F ∈ X (2X). Then

F ∈ Dc
ij ⇔ ∃x ∈ X, F = k(x) ∧ dc

ij ∈ k(x)
⇔ ∃x ∈ X, F = k(x) ∧ x ∈ dc

ij = Dij

⇔ ∃x ∈ X, F = k(x) ∧ k(x) ∈ k(Dij)
⇔ F ∈ k(Dij).

(b) Note that for any x, y ∈ X ,

k(x)Ec
i k(y) ⇔ cc

i (k(x)) ⊆ k(y)
⇔ {cc

i(A) | x ∈ A} ⊆ k(y)
⇔ ∀A ⊆ X, x ∈ A ⇒ cc

i(A) ∈ k(y)
⇔ ∀A ⊆ X, x ∈ A ⇒ y ∈ cc

i (A)
⇔ ∀A ⊆ X, x ∈ A ⇒ ∃u ∈ A, uEiy.

Assume xEiy. Take any A ⊆ X such that x ∈ A. Then, for some u ∈ A,
uEiy. In particular, take u to be x, uEiy. On the other hand, assume xEiy
does not hold. Let A = {x} ⊆ X . Then x ∈ A and, for every u ∈ A, uEiy
does not hold. Hence k(x)Ec

i k(y) does not hold. ��

We establish the representation theorem for cylindric algebras using the mapping
h : L → 2X (L), defined, for any a ∈ L, by

h(a) = {F ∈ X (L) | a ∈ F}.

It is an embedding between the underlying Boolean algebras of the relation
algebras. It remains to show that:

Theorem 16
(a) h(dij) = dc

ij

(b) For any a ∈ L, h(ci(a)) = cc
i (h(a)) .

Proof

(a) By definition, for any F ∈ X (L),

F ∈ h(dij) ⇔ dij ∈ F ⇔ F ∈ dc
ij .
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(b) We need to show, for any G ∈ X (L) and any a ∈ L,

ci(a) ∈ G ⇔ ∃F ∈ h(a), FEc
i G ⇔ ∃F ∈ X (L), a ∈ F ∧ ci(F ) ⊆ G.

The right-to-left direction is trivial. For the left-to-right direction, assume
that ci(a) ∈ G. We need to show that there is some F ∈ X (L) such that a ∈
F and ci(F ) ⊆ G. Then a ∈ c−1

i (G). Now c−1
i (G) is an upset containing the

principle filter ↑ a and −(c−1
i (G)) is an ideal. By the Prime Filter Theorem,

there is a prime filter F ∈ X (L) such that ↑ a ⊆ F and F ⊆ c−1
i (G). Hence,

for some F ∈ X (L), a ∈ F and ci(F ) ⊆ ci(c−1
i (G)) ⊆ G. ��

4 Conclusion

In this paper we established discrete dualities between relation algebras and re-
lation frames and between cylindric algebras and cylindric frames. This work
is part of a broader project aimed at providing systematically discrete dualities
for lattice structures with operators. The results of this paper are meaningful
not only from a theoretical perspective, but also for the various theories in com-
puter science based on relation algebras or cylindric algebras, in particular for
automated theorem proving in such theories, as mentioned in Section 1.

Discrete dualites for Boolean algebras with operators in the sense of [10] and
also for Boolean algebras with some other kinds of operators can be found in
[19,23,24]. Discrete dualites for distributive lattices with operators are studied in
[25] and [4,24] Discrete representation theorems of the form (D1) for not neces-
sarily distributive lattices can be found in [5,6,7,20,21,32]. Some correspondence
theory results studied from the perspective of discrete duality can be found in
[9]. Our next goal is to develop discrete duality for Kleene algebras and for rough
relation algebras, that is, the relation algebras based on double regular Stone
algebras.
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References

1. Chin, L., Tarski, A.: Distributive and modular laws in the arithmetic of relation
algebras. University of California Publications (1951)

2. De Morgan, A.: On the syllogism: IV, and on the logic of relations. Transactions
of the Cambridge Philosophical Society 10, 331–358 (1864)

3. De Rijke, M., Venema, Y.: Salqvists theorem for Boolean algebras with operators
with applications to cylindric algebras. Studia Logica 54, 61–78 (1995)

4. Düntsch, I., Or�lowska, E.: A discrete duality between the apartness algebras and
apartness frames. Journal of Applied Non-classical Logics 18(2-3), 209–223 (2008)

5. Düntsch, I., Or�lowska, E., Radzikowska, A.: Lattice-based relation algebras II. In:
de Swart, H., Or�lowska, E., Schmidt, G., Roubens, M. (eds.) TARSKI 2006. LNCS
(LNAI), vol. 4342, pp. 267–289. Springer, Heidelberg (2006)



304 E. Or�lowska and I. Rewitzky

6. Dzik, W., Or�lowska, E., van Alten, C.: Relational representation theorems for gen-
eral lattices with negations. In: Schmidt, R.A. (ed.) RelMiCS/AKA 2006. LNCS,
vol. 4136, pp. 162–176. Springer, Heidelberg (2006)

7. Düntsch, I., Or�lowska, E., Radzikowska, A., Vakarelov, D.: Relational representa-
tion theorems for some lattice-based structures. Journal of Relational Methods in
Computer Science 1, 132–160 (2005)

8. Henkin, L., Monk, J.D., Tarski, A.: Cylindric Algebras. Part I, Part II. North
Holland, Amsterdam (1971/1985)

9. Järvinen, J., Or�lowska, E.: Relational correspondences for lattices with operators.
In: MacCaull, W., Winter, M., Düntsch, I. (eds.) RelMiCS 2005. LNCS, vol. 3929,
pp. 134–146. Springer, Heidelberg (2006)

10. Jónsson, B., Tarski, A.: Boolean algebras with operators. Part I: American Journal
of Mathematics 73, 891–939 (1951), Part II: ibidem 74, 127–162 (1952)

11. Maddux, R.: Some varieties containing relation algebras. Transactions of the Amer-
ican Mathematical Society 272, 501–526 (1982)

12. Maddux, R.: Finite Integral Relation Algebras. Lecture Notes in Mathematics,
vol. 1149, pp. 175–197 (1985)

13. Maddux, R.: Introductory course on relation algebras, finite-dimensional cylindric
algebras, and their interconnections. In: Andreka, H., Monk, J.D., Nemeti, I. (eds.)
Algebraic Logic (Proc. Conf. Budapest 1988). Colloq. Math. Soc. J. Bolyai, vol. 54,
pp. 361–392. North-Holland, Amsterdam (1991)

14. Maddux, R.: Relation algebras. In: Abramsky, S., Artemov, S., Gabbay, D.M., et
al. (eds.). Studies in Logic and the Foundations of Mathematics, vol. 150. Elsevier,
Amsterdam (1996)

15. Maddux, R.: Relation algebras. In: Brink, C., Kahland, W., Schmidt, G. (eds.) Re-
lational Methods in Computer Sciences. Advances in Computer Science. Springer,
New York (1997)

16. Maksimova, L.L.: Pretabular superintuitionistic logics. Algebra and Logic 11(5),
558–570 (1972)

17. Maksimova, L.L.: Pretabular extensions of the Lewis’ logic S4. Algebra and
Logic 14(1), 28–55 (1975)

18. Or�lowska, E., Golinska-Pilarek, J.: Dual Tableaux: Foundations, Methodolody,
Case Studies, Draft of the book (2009)

19. Or�lowska, E., Rewitzky, I., Düntsch, I.: Relational semantics through duality. In:
MacCaull, W., Winter, M., Düntsch, I. (eds.) RelMiCS 2005. LNCS, vol. 3929, pp.
17–32. Springer, Heidelberg (2006)

20. Or�lowska, E., Radzikowska, A.: Relational representability for algebras of substruc-
tural logics. In: MacCaull, W., Winter, M., Düntsch, I. (eds.) RelMiCS 2005. LNCS,
vol. 3929, pp. 212–224. Springer, Heidelberg (2006)

21. Or�lowska, E., Radzikowska, A.: Representation theorems for some fuzzy logics
based on residuated non-distributive lattices. Fuzzy Sets and Systems 159, 1247–
1259 (2008)

22. Or�lowska, E., Rewitzky, I.: Duality via Truth: Semantic frameworks for lattice-
based logics. Logic Journal of the IGPL 13(4), 467–490 (2005)

23. Or�lowska, E., Rewitzky, I.: Context algebras, context frames and their discrete
duality. In: Peters, J.F., Skowron, A., Rybiński, H. (eds.) Transactions on Rough
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A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 51–56. Springer, Heidelberg
(2007)

25. Or�lowska, E., Rewitzky, I.: Algebras for Galois-style connections and their discrete
duality (submitted, 2008)

26. Peirce, C.S.: Note B: the logic of relatives. In: Peirce, C.S. (ed.) Studies in Logic
by Members of the Johns Hopkins University, pp. 187–203. Little, Brown, and Co.,
Boston (1883)

27. Priestley, H.A.: Representation of distributive lattices by means of ordered Stone
spaces. Bulletin of the London Mathematical Society 2, 186–190 (1970)

28. Sahlqvist, H.: Completeness and correspondence in the first and second order se-
mantics for modal logics. In: Kanger, S. (ed.) 3rd Skandinavian Logic Symposium,
Uppsala, Sweden, 1973, pp. 110–143. North-Holland, Amsterdam (1975)

29. Stone, M.H.: The theory of representations for Boolean algebras. Transactions of
the American Mathematical Society 40, 37–111 (1936)

30. Tarski, A.: On the calculus of relations. Journal of Symbolic Logic 6, 73–89 (1941)
31. Urquhart, A.: Duality for algebras of relevant logics. Studia Logica 56, 263–276

(1996)
32. Vakarelov, D., Or�lowska, E.: Lattice-based modal algebras and modal logics. In:

Hajek, P., Valds-Villanueva, L.M., Westerstahl, D. (eds.) Logic, Methodology and
Philosophy of Science. Proceedings of the 12th International Congress, pp. 147–170.
Kings College London Publications (2005)



Contact Relations with Applications

Gunther Schmidt1 and Rudolf Berghammer2

1 Fakultät für Informatik, Universität der Bundeswehr München
85577 Neubiberg, Germany
gunther.schmidt@unibw.de

2 Institut für Informatik, Christian-Albrechts-Universität Kiel
Olshausenstraße 40, 24098 Kiel, Germany

rub@informatik.uni-kiel.de

Abstract. Using relation algebra, we generalize Aumann’s notion of a
contact relation and that of a closure operation from powersets to general
membership relations and their induced partial orders. We also investi-
gate the relationship between contacts and closures in this general setting
and use contacts to establish a one-to-one correspondence between the
column space and the row space of a relation.

1 Introduction

Forming closures of subsets of a set X is a very basic technique in various disci-
plines. Typically this is combined with some predicate that holds for X and is
∩-hereditary, like “being transitive” or “being convex”. Such predicates lead to
closure systems, i.e., subsets C of the powerset 2X of X that contain X and any
intersection of subsets collected in C. It is well known that there is a one-to-one
correspondence between the set of closure systems of 2X and the set of extensive,
monotone, and idempotent functions on 2X (the closure operations on 2X).

According to G. Aumann, [1], closures always come with a relation, namely
a contact. When introducing this concept, one intention was to formalize the
essential properties of a contact between objects and sets of objects, mainly to
obtain for beginners a more suggestive access to topology than “traditional”
axiom systems provide. In the introduction of his paper, Aumann also men-
tions sociological applications as motivation, but in fact all examples of [1] are
from mathematics. A main result of [1] is that, like closure systems and clo-
sure operations, also closure operations and contact relations are cryptomorphic
mathematical structures in the sense of [6].

In this paper, we generalize Aumann’s concept of a contact between sets and
their powersets to contacts given by an (almost) arbitrary relation M , that may
be interpreted as “individual is a member of a group of individuals”. Such an
approach allows to treat also examples from sociology, political science and so
forth. As we will show, each group membership relation M induces a partial
order ΩM on the groups of individuals. With respect to ΩM , we consider a no-
tion of closure operation that directly arises out of the original one by replacing
set inclusion by ΩM . In this very general setting, we investigate contacts, their

R. Berghammer et al. (Eds.): RelMiCS/AKA 2009, LNCS 5827, pp. 306–321, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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properties, and a construction similar to the lower/upper-derivative construction
of formal concept analysis. The latter leads to a fixed point description of the
set of contacts. Guided by Aumann’s main result, we also study the relationship
between general M -contacts and ΩM -closures. Finally, we use contacts to estab-
lish a one-to-one correspondence between the column space and the row space
of a relation (or a Boolean matrix).

To carry out our investigations, we use abstract relation algebra in the sense of
[13,12]. This allows very concise and precise specifications and algebraic proofs
that drastically reduce the danger of making mistakes. To give an example,
when constructing closures from contacts, a subtle definedness condition plays a
decisive role that easily can be overlooked when using the customary approach
with closures being functions. Relation-algebraic specifications also allow to use
tool support. For obtaining the results of this paper, the use of the RelView tool
(see [3]) for computing contacts and closures, testing properties, experimenting
with concepts etc. was very helpful.

2 Relation-Algebraic Preliminaries

We denote the set (or type) of relations with domain X and range Y by [X ↔Y ]
and write R : X ↔Y instead of R ∈ [X ↔Y ]. If the sets X and Y are finite,
we may consider R as a Boolean matrix. Since this interpretation is well suited
for many purposes, we will often use matrix notation and terminology in this
paper. In particular, we talk about rows, columns and entries of relations, and
write Rx,y instead of 〈x, y〉 ∈ R or xR y.

We assume the reader to be familiar with the basic operations on relations,
viz. RT (transposition), R (complement), R∪S (join), R∩S (meet), R; S (com-
position), the predicate indicating R ⊆ S (inclusion), and the special relations
O (empty relation), L (universal relation) and I (identity relation). Each type
[X ↔Y ] with the operations , ∪, ∩, the ordering ⊆ and the constants O and L

forms a complete Boolean lattice. Further well-known rules are, e.g., RTT = R,
RT = R

T
and that R ⊆ S implies RT ⊆ ST. The theoretical framework for

these rules and many others to hold is that of an (axiomatic) relation algebra.
The axioms of a relation algebra are those of a complete Boolean lattice for the
Boolean part, the associativity and neutrality of identity relations for compo-
sition, the equivalence of Q; R ⊆ S, QT; S ⊆ R , and S ; RT ⊆ Q (Schröder
rule), and that R �= O implies L; R; L = L (Tarski rule).

Furthermore, we assume the reader to be familiar with relation-algebraic
specifications of the most fundamental properties of relations, like univalence
RT; R ⊆ I, totality R; L = L, transitivity R; R ⊆ R, and the symmetric quotient

construction syq(R, S) := RT; S ∩ R
T
; S together with its main properties like

the following ones.

syq(R, S) = syq(R , S ) [syq(R, S)]T = syq(S, R) (1)

R; syq(R, R) = R syq(Q, R); syq(R, S)] ⊆ syq(Q, S) (2)

Otherwise, he may consult e.g., [12], Sections 3.1, 4.2, and 4.4.
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The set-theoretic symbol ∈ gives rise to powerset relations ε : X ↔ 2X that
relate x ∈ X and Y ∈ 2X iff x ∈ Y . In [4,5] it is shown that for ε the formulae of
(3) hold and these even characterize the powerset relation ε up to isomorphism.

syq(ε, ε) = I ∀R : L; syq(ε, R) = L (3)

Based on (3), a lot of further set-theoretic constructions can be formalized in
terms of relation algebra. In this paper, we need the following.

ı := syq(I, ε) : X ↔ 2X Ω := εT; ε : 2X ↔ 2X (4)

The relation ı is called singleton-set former, since it associates x ∈ X with
Y ∈ 2X iff Y = {x}. The relation Ω specifies the inclusion order on sets. Based
on (3) and (4), the following properties are shown in [4]:

Lemma 2.1. If ε : X ↔ 2X is a powerset relation, then ı : X ↔ 2X is an injec-
tive mapping1, Ω : 2X ↔ 2X is a partial order, and ı; Ω = ε = ε; Ω. �

The construction used in the definition of Ω can be generalized to arbitrary
relations R : X ↔Y . Then ΩR := RT; R : Y ↔Y is reflexive and transitive
due to the Schröder rule; it shows the “column-is-contained-preorder”. In case
of syq(R, R) = I, i.e., without multiple columns, it is even antisymmetric and,
thus, a partial order. Besides these partial order properties, we will apply the
following fact.

Lemma 2.2. For all relations R : X ↔Y we have R; ΩR = R.

Proof. The inclusion R ⊆ R; ΩR follows from the reflexivity of ΩR, and with the
help of the Schröder rule R; ΩR ⊆ R is shown by

RT; R ⊆ RT; R ⇐⇒ R; RT; R ⊆ R. �

As a last construction, we need the canonical epimorphism ηE : X ↔X/E in-
duced by an equivalence relation E : X ↔X . It relates each element x ∈ X to
the equivalence class c ∈ X/E it belongs to. The following properties are imme-
diate consequences of this component-wise specification; it can even be shown
that they characterize canonical epimorphisms up to isomorphism.

ηE ; ηE
T = E ηE

T; ηE = I (5)

In Sections 3 and 5 we will apply canonical epimorphisms induced by the two
equivalence relations ΨR := syq(R, R) and ΦR := syq(RT, RT), respectively. In
this context, the following additional property will be used.

Lemma 2.3. For all R : X ↔Y , the canonical epimorphism ηΨR : Y ↔ Y/ΨR

induced by ΨR fulfils R; ηΨR = R ; ηΨR .

1 . . . in the relational sense of Def. 4.2.1 of [12].
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Proof. We abbreviate ηΨR by η. Then, inclusion “⊆” follows from

ηT total =⇒ ηT; RT ⊆ ηT; RT ⇐⇒ R; η ⊆ R ; η

using Prop. 4.2.4.i of [12], and inclusion “⊇” from

R ⊆ R ⇐⇒ R; syq(R, R) ⊆ R ⇐⇒ R; η; ηT ⊆ R ⇐⇒ R ; η ⊆ R; η

using the first rule of (2), the first axiom of (5), and the Schröder rule. �

3 Contact Relations

If we formulate Aumann’s original definition of a contact relation given in [1] in
our notation, then a relation A : X ↔ 2X is an (Aumann) contact relation if the
following conditions hold.

(A1) ∀x : Ax,{x}
(A2) ∀x, Y, Z : Ax,Y ∧ Y ⊆ Z → Ax,Z

(A3) ∀x, Y, Z : Ax,Y ∧ (∀ y : y ∈ Y → Ay,Z) → Ax,Z

Our aim is to investigate contact relations by relation-algebraic means and
supporting tools (like the manipulation system RelView [3]), thereby gener-
alizing Aumann’s original approach by replacing the powerset by a set G (of
groups of individuals, political parties, alliances, organizations, . . . ) and the set-
theoretic membership relation ε : X ↔ 2X by a generalized membership relation
M : X ↔G with regard to G. The latter point not only allows to treat math-
ematical examples for contact relationships as [1] does, but also examples from
sociology, political science and so forth. In the following theorem, we present
relation-algebraic versions of the above axioms. The proof of their correspon-
dence consists of step-wise transformations of (A1) to (A3) into point-free ver-
sions using well-known correspondences between logical and relation-algebraic
constructions. Doing so, (A1) leads to a singleton-former ı and (A2) to an inclu-
sion order Ω as specified in (4).

Theorem 3.1. A relation A : X ↔ 2X is an Aumann contact relation iff ı ⊆ A,
A; Ω ⊆ A, and A; εT; A ⊆ A.

Proof. We only show the equivalence of (A3) and A; εT; A ⊆ A; the other
equivalences are calculated in quite a similar way.

∀x, Y, Z : Ax,Y ∧ (∀ y : y ∈ Y → Ay,Z) → Ax,Z

⇐⇒ ∀x, Y, Z : Ax,Y ∧ ¬(∃ y : y ∈ Y ∧ A y,Z) → Ax,Z

⇐⇒ ∀x, Y, Z : Ax,Y ∧ εT; A Y,Z → Ax,Z

⇐⇒ ∀x, Z : (∃Y : Ax,Y ∧ εT; A Y,Z) → Ax,Z

⇐⇒ ∀x, Z : (A; εT; A )x,Z → Ax,Z

⇐⇒ A; εT; A ⊆ A �
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The relation-algebraic characterization of contacts just developed does not yet
allow the generalization intended. We still have to remove the singleton-former,
since such a construct need not exist in the general case of membership we want
to deal with. The next theorem shows how this is possible.

Theorem 3.2. A relation A : X ↔ 2X is an Aumann contact relation iff ε ⊆ A
and AT; A ⊆ εT; A .

Proof. We show that the relation-algebraic specification of an Aumann contact
relation of Theorem 3.1 is equivalent to ε ⊆ A and AT; A ⊆ εT; A . Starting
with “=⇒”, we use Lemma 2.1 to show ε ⊆ A by

ı ⊆ A =⇒ ı; Ω ⊆ A; Ω ⇐⇒ ε ⊆ A; Ω =⇒ ε ⊆ A.

Because of the Schröder rule, AT; A ⊆ εT; A is equivalent with A; εT; A ⊆ A.
In the case “⇐=”, property ı ⊆ A follows from ı ⊆ ε and ε ⊆ A. Using the
Schröder rule, we obtain A; Ω ⊆ A from

AT; A ⊆ εT; A ⊆ εT; ε = Ω .

For the last property, cf. the proof of “=⇒”. �

Hence, we have that membership implies contact and for all Y, Z ∈ 2X from the
existence of an element that is in contact with Y but not in contact with Z it
follows that even a member of Y is not in contact with Z. In the literature such
relations are also known as dependence or entailment relations and in particu-
lar considered in combination with so-called exchange properties. See [7,6] for
example. And here is our generalization of Aumann’s concept of a contact.

Definition 3.1. A relation K : X ↔G is called an (Aumann) contact relation
with respect to the relation M : X ↔G — in short: an M -contact — if the
following properties hold:

(K1) M ⊆ K (K2) KT; K ⊆ MT; K

Axiom (K2) is called the infectivity of a contact. We have chosen this form
since it proved to be particularly suitable for relation-algebraic reasoning. For
concrete sociological or similar applications, frequently the equivalent version
K; MT; K ⊆ K is more appropriate. E.g., in the case of persons and syndicates
it says that if a person x is in contact to a syndicate Y1 all of whose members
are in contact to a syndicate Y2, then also x is in contact to Y2.

In real life, contacts are frequently established by common interests. As an ex-
ample, we consider a protesters scene of non-governmental organizations. There
exist persons willing to protest against several topics t ∈ T . Then typically a
person x ∈ X will get in touch with an activist group g ∈ G iff for all topics he
is in opposition to, there is at least one supporter for it in the group g. If we for-
malize the situation in predicate logic and afterwards translate this version into
a relation-algebraic expression, we arrive at miJ(maJ (M))x,g, where M : X ↔G
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denotes activist group membership, the complement of the relation J : X ↔T
specifies the relationship “is in opposition to”, and the functions miJ and maJ

are defined as follows:

miJ(R) = J ; R maJ (S) = J
T
; S (6)

If J is a partial order, then miJ and maJ column-wise compute lower bounds and
upper bounds, respectively; in the general case, they column-wise compute lower
derivatives and upper derivatives, respectively, in the sense of formal concept
analysis (see [9]). The next theorem shows that the above construction based on
interest-relations J always leads to M -contacts.

Theorem 3.3. For all relations M : X ↔G and J : X ↔ T , we obtain an M -
contact K if we define K := miJ(maJ(M)).

Proof. Property (K1) follows from

J
T
; M ⊆ J

T
; M ⇐⇒ J ; J

T
; M ⊆ M Schröder rule

⇐⇒ M ⊆ J ; J
T
; M

⇐⇒ M ⊆ miJ(maJ (M)) by (6)
⇐⇒ M ⊆ K,

and property (K2) from

MT; J ; J
T ⊆ MT; J ; J

T

⇐⇒ MT; J ; J
T ⊆

(
J ; J

T
; M

)T

⇐⇒ J ; J
T
; M

T

; J ⊆ MT; J Schröder rule
⇐⇒

[
miJ (maJ(M))

]T; J ⊆ MT; J by (6)
⇐⇒ KT; J ⊆ MT; J

=⇒ KT; J ; J
T
; M ⊆ MT; J ; J

T
; M

⇐⇒ KT; miJ (maJ(M)) ⊆ MT; miJ(maJ (M)) by (6)
⇐⇒ KT; K ⊆ MT; K . �

Next, we give a concrete application of the construction of Theorem 3.3. We
assume four persons, denoted by the natural numbers 1 to 4, three groups g1, g2
and g3, and six topics A, B, C, D, E and F . If group membership is described by
the left-most of the following three RelView-matrices and the persons’ interests
by the RelView-matrix in the middle, then these relations lead to the contact
specified by the right RelView-matrix.

M = J = K =
1
2
3
4

g1 g2 g3
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In these pictures, a black square means 1 and a white square means 0 so that,
e.g., the first person is a member of g1 and g3. By definition, M ⊆ K. In addition,
(4, g1) ∈ K, because wherever all persons of the group g1 are jointly J-interested
in a couple of topics (here {1, 2}×{A}), then also person 4 is J-interested in these
topics. Also (2, g3) ∈ K: the rectangle {1, 4} × {A} indicates that all members
of the group are jointly J-interested in topic set {A} and so is person 2.

We even can prove completeness of the construction of Theorem 3.3, i.e., that
every M -contact K can be represented as an expression miJ(maJ (M)). As the
next theorem shows, we only have to take the groups as topics and K itself as
interest relation J .

Theorem 3.4. For all relations M : X ↔G and all M -contacts K : X ↔G the
equation K = miK(maK(M)) holds.

Proof. “⊆”: This inclusion is equivalent to property (K2), since

K ⊆ miK(maK(M)) ⇐⇒ K ⊆ K ; K
T
; M by (6)

⇐⇒ K ; K
T
; M ⊆ K

⇐⇒ K
T
; K ⊆ K

T
; M Schröder rule

⇐⇒ KT; K ⊆ MT; K .

“⊇”: Starting with (K1), we get the result by

M ⊆ K ⇐⇒ K ; I ⊆ M

⇐⇒ K
T
; M ⊆ I Schröder rule

⇐⇒ I ⊆ K
T
; M

=⇒ K ⊆ K ; K
T
; M

⇐⇒ K ; K
T
; M ⊆ K

⇐⇒ miK(maK(M)) ⊆ K by (6). �

From the Theorems 3.3 and 3.4, we immediately obtain a fixed point character-
ization of the set of M -contacts.

Theorem 3.5. Assume a generalized membership relation M : X ↔G to be
given and consider all relations R : X ↔T for some set T . Then the function

τM : [X ↔T ] → [X ↔G] τM (R) = miR(maR(M)),

will always produce an M -contact. The set KM of all M -contacts equals the set
of fixed points of τM in case T = G. �

Using relational fixed point enumeration techniques (cf. [2]), this property can be
used to compute for small relations M all M -contacts by a tool like RelView.

Since the underlying relation M is contained in each M -contact K, normally in
K a lot of columns coincide. The column equivalence relation ΨK = syq(K, K)
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relates two groups iff the corresponding columns of K are equal. Hence, we
can remove duplicates of columns of K by multiplying it with the canonical
epimorphism ηΨK induced by ΨK from the right. In the next theorem we prove
that in the construction miK(maK(M)), instead of K also its revised form can
be used.

Theorem 3.6. For all relations M : X ↔G and all M -contacts K : X ↔G we
have that K = miK;ηΨK

(maK;ηΨK
(M)).

Proof. In the following calculation we abbreviate ηΨK by η.

miK;η(maK;η(M)) = K; η ; K; η
T
; M by (6)

= K ; η; (K ; η)
T
; M Lemma 2.3

= K ; η; ηT; K
T
; M

= K ; η; ηT; K
T
; M [12] Prop. 4.2.4.ii

= K ; syq(K, K); K
T
; M by (5)

= K ;
[
K ; syq(K , K )

]T
; M by (1)

= K ; K
T
; M by (2)

= K Theorem 3.4 �

4 Contacts and Closures

Closure operations appear in many fields in computer science and mathematics.
Usually, they are defined as extensive, monotone, and idempotent functions on
powersets, i.e., functions h : 2X → 2X such that the following conditions hold.

(H1) ∀Y : Y ⊆ h(Y )
(H2) ∀Y, Z : Y ⊆ Z → h(Y ) ⊆ h(Z)
(H3) ∀Y : h(h(Y )) ⊆ h(Y )

As in the case of Aumann contact relations, we start our investigations with a
relation-algebraic characterization of closure operations. In the next theorem,
the relation Ω denotes set inclusion on the powerset 2X as specified in (4).

Theorem 4.1. A mapping H : 2X ↔ 2X is a closure operation iff H ⊆ Ω,
Ω ⊆ H ; Ω; HT, and H ; H ⊆ H.

Proof. As in the case of Theorem 3.1, we only treat one case, viz. the equivalence
of (H3) and H ; H ⊆ H . To enhance readability, in the following calculations, we
apply the common notation of function application also for H .

∀Y : H(H(Y )) ⊆ H(Y )
⇐⇒ ∀Y, Z, U : H(Y ) = U ∧ H(U) = Z → (∃W : H(Y ) = W ⊇ Z)
⇐⇒ ∀Y, Z, U : HY,U ∧ HU,Z → (∃W : HY,W ∧ ΩZ,W )
⇐⇒ ∀Y, Z : (∃U : HY,U ∧ HU,Z) → (∃W : HY,W ∧ ΩT

W,Z)
⇐⇒ ∀Y, Z : (H ; H)Y,Z → (H ; ΩT)Y,Z

⇐⇒ H ; H ⊆ H ; ΩT
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(H1) equals H ⊆ Ω, so that with antisymmetry and univalency of H we get

H ; H ⊆ H ; Ω ∩ H ; ΩT = H ; (Ω ∩ ΩT) ⊆ H ; I = H. �

A simple relation-algebraic reasoning shows that H ; H ⊆ H in fact is equivalent
to the equation H ; H = H when H ⊆ Ω ⊆ H ; Ω; HT. This corresponds to the
well-known property that in (H3), due to (H1) and (H2), even equality holds.

Because of Theorem 4.1, we are able to generalize the concept of a closure
operation from powerset lattices to arbitrary partial order relations within the
language of relation algebra as follows.

Definition 4.1. Given a partial order P : X ↔X, a mapping H : X ↔X is
called a closure operation with respect to P — in short: a P -closure — if the
following conditions hold:

(C1) H ⊆ P (C2) P ⊆ H ; P ; HT (C3) H ; H ⊆ H

In [1] it is shown that there is a one-to-one correspondence between the set of all
Aumann contact relations between X and 2X and the set of all closure operations
on 2X . Without proof and reference to its origin, this correspondence is also
mentioned in [6]. In the remainder of this section, we investigate the relationship
between contact relations and closure operations in our general setting, i.e.,
in conjunction with M -contacts and ΩM -closures, and using relation-algebraic
means. As the only basic prerequisite on the relation M : X ↔G we assume
syq(M, M) = I, i.e., pairwise different columns, to ensure that ΩM is a partial
order (see Section 2). (Even this is not a really essential requirement.)

How to obtain M -contacts from ΩM -closures is shown in the following theo-
rem. In words, the theorem states that x ∈ X is in contact with g ∈ G iff x is a
member of the closure of g.

Theorem 4.2. For all relations M : X ↔G such that syq(M, M) = I and all
ΩM -closures H : G↔G, the relation K := M ; HT : X ↔G is an M -contact.

Proof. For proving (K1), we use (C1) and Prop. 4.2.3 of [12] in

M ; ΩM ⊆ M =⇒ M ; H ⊆ M ⇐⇒ M ⊆ M ; HT ⇐⇒ M ⊆ K.

Now, Lemma 2.2 yields the result. The verification of property (K2) bases on
the following calculation.

K; MT; K = M ; HT; MT; M ; HT

= M ; HT; MT; M ; HT [12] Prop. 4.2.4.iii
= M ; HT; ΩM ; HT

⊆ M ; ΩM ; HT; HT by (C2) (cf. [12] p. 143)
⊆ M ; ΩM ; HT by (C3)
= M ; HT Lemma 2.2
= K

An application of the Schröder rule to this inclusion completes the proof. �
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To obtain a closure operation h from a contact relation A, in [1] the closure h(Y )
of a set Y is defined as the set of elements being in contact with Y . Relation-
algebraically, this leads to the expression syq(A, ε) for the closure operation.
Contrary to the transition from closure operations to contact relations, which
also works in our general setting, the transition from M -contacts K to ΩM -
closures is problematic. The reason is that syq(K, M) may be non-total. But if
syq(K, M) is total, it is indeed an ΩM -closure as the following theorem shows.

Theorem 4.3. For all relations M : X ↔G such that syq(M, M) = I and all
M -contacts K : X ↔G, the relation H := syq(K, M) : G↔G is an ΩM -closure
provided it is total.

Proof. Since totality of H has been assumed as a prerequisite, we show univa-
lence to establish H as a mapping:

HT; H = [syq(K, M)]T; syq(K, M)
= syq(M, K); syq(K, M) by (1)
⊆ syq(M, M) by (2)
= I.

Property (C1) follows from (K1), since

H = syq(K, M) ⊆ KT; M ⊆ MT; M = ΩM .

In the proof of (C2) we use that totality of syq(K, M) implies surjectivity of
syq(M, K) = syq(M , K ) (cf. Prop. 4.4.1.i,ii of [12]). We start with

H ; ΩM ; HT = [syq(M, K)]T; MT; M ; syq(M, K) by (1)
= [M ; syq(M, K)]T; M ; syq(M , K ) by (1)
= KT; K [12] Prop. 4.4.2.ii
⊆ MT; K by (K2)
⊆ MT; M by (K1).

Using that H is a mapping, we get from this H ; ΩM ; HT ⊆ ΩM , i.e., the desired
inclusion ΩM ⊆ H ; ΩM ; HT. Also the first two calculations of the subsequent
proof of property (C3) use the surjectivity of syq(M, K) = syq(M , K ). From
(1) and Prop. 4.4.2.ii of [12] and (K1) we get

KT; M ; syq(M, K) = KT; M ; syq(M , K ) = KT; K ⊆ KT; M

and Prop. 4.4.2.ii of [12] and (K2) yield

K
T
; M ; syq(M, K) = K

T
; K = (KT; K )

T ⊆ (MT; K )
T

= K
T
; M.

Putting these inclusions together, we obtain

(KT; M ∪ K
T
; M); syq(M, K) ⊆ KT; M ∪ K

T
; M
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that, due to the definition of syq(K, M) and (1), holds iff

syq(K, M) ; [syq(K, M)]T ⊆ syq(K, M) .

An application of the Schröder rule to this result followed by the definition of
H , finally, shows H ; H ⊆ H . �

Combining the last two theorems, we obtain for our general setting an injective
embedding of the ΩM -closures into the M -contacts.

Corollary 4.1. Assume a relation M : X ↔G such that syq(M, M) = I and let
KM and HΩM denote the set of M -contacts and ΩM -closures, respectively. Then
the function conM : HΩM → KM , where conM (H) = M ; HT, is injective.

Proof. First we show that syq(conM (H), M) is total for all H ∈ HΩM .

syq(conM (H), M); L = syq(M ; HT, M); L definition of conM (H)
= H ; syq(M, M); L [12] Prop. 4.4.1.vi
= H ; L since syq(M, M) = I
= L H total

Hence, syq(conM (H), M) is an ΩM -closure due to Theorems 4.2 and 4.3. The
above calculation, furthermore, shows that the function

cloM : conM (HΩM ) → HΩM cloM (K) = syq(K, M)

fulfils cloM (conM (H)) = H for all H ∈ HΩM , and we are done. �

Specifying the point-wise ordering of mappings relation-algebraically, we obtain
for H1, H2 ∈ HΩM that H1 ≤ H2 iff H1 ⊆ H2; ΩM

T. In respect thereof, the
following theorem shows that the function conM is even an order embedding
from the ordered set (HΩM ,≤) into the ordered set (KM ,⊆).

Theorem 4.4. Under the assumptions of Corollary 4.1 we have H1 ⊆ H2; ΩM
T

iff M ; H1
T ⊆ M ; H2

T.

Proof. In the following calculation we combine the fact that H1 and H2 are
mappings with Prop. 4.2.4.iii of [12].

H1 ⊆ H2; ΩM
T ⇐⇒ H1 ⊆ H2; MT; M

T

⇐⇒ H1 ⊆ H2; M
T
; M

⇐⇒ H1 ⊆ H2; MT ; M Prop. 4.2.4.ii of [12]
⇐⇒ H2; MT ; M ⊆ H1

⇐⇒ H1; MT ⊆ H2; MT Schröder rule �

A little reflection shows that (KM ,⊆) is a complete lattice. For the ordered
set (HΩM ,≤) this is not true in general. It is, however, true if the underlying
set G on which the closure operations work is finite [10]. In general, we are



Contact Relations with Applications 317

not able to establish a one-to-one correspondence between contact relations and
closure operations in our general setting without further assumptions on the
underlying relation M : X ↔G. For instance, for the example of Section 3,
RelView computed for the membership relation M and M -contact K given
there the following matrices for ΩM and syq(K, M).

ΩM = syq(K, M) =
g1
g2
g3

g1 g2 g3

The relation Ω may be described as being the column-is-contained-preorder for
M , while syq(K, M) compares columns of K and M for being identical. Fur-
thermore, the tool ascertained that there exist exactly 128 relations containing
M and exactly 66 of them are M -contacts. Since ΩM is the identity relation,
however, there exists only one ΩM -closure, viz. ΩM .

In matrix terminology, totality of syq(K, M) means that each column of K :
X ↔G appears also as a column of M . Hence, this property should hold for G
being a powerset 2X and M being the powerset relation ε : X ↔ 2X . And, in fact,
totality of syq(K, ε) can be shown so that, together with the already obtained
results, we are able to give not only a completely relation-algebraic proof of the
above mentioned result of Aumann but also to show that the sets are isomorphic
complete lattices.

Corollary 4.2. For all powerset relations ε : X ↔ 2X , the ordered sets (Kε,⊆)
and (HΩ,≤) are isomorphic via the function conε : HΩ → Kε of Corollary 4.1
and its inverse function cloε : Kε → HΩ, where cloε(K) = syq(K, ε).

Proof. For each K ∈ Kε, (1) and the second axiom of (3) imply

syq(K, ε); L =
(
L; syq(K, ε)T

)T
=

(
L; syq(ε, K)

)T = L.

Because of Theorem 4.3, therefore, cloε(K) is defined for all K ∈ Kε. From the
proof of Corollary 4.1 we know already that

cloε(conε(H)) = H

holds for all H ∈ HΩ. Furthermore, we obtain for all K ∈ Kε the equation

conε(cloε(K)) = ε; syq(K, ε)T = ε; syq(ε, K) = K

using the second axiom of (3) in combination with Prop. 4.4.2.ii of [12]. These
two properties show that the functions are bijective and mutually inverses. That
the two mappings are order isomorphisms follows from Theorem 4.4. �

One might conjecture that in the case syq(M, M) = I from an isomorphism
between the sets KM and HΩM also the second axiom of (3) follows, i.e., M is
essentially a powerset relation. Unfortunately, this speculation is false, as the
simple example with a single group, i.e., G := 11, and M as L : X ↔11 shows.
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5 Linking Column and Row Types of a Relation

Considering a relation M : X ↔Y as a Boolean matrix, rows and columns may
be joined or intersected in much the same way as one may form sums of rows or
columns of real-valued matrices. In comparison with the vector space spanned by
the real-valued rows, on will then obtain unions of rows, or intersections, respec-
tively. Unions of rows of M may, of course, also be considered as complements of
intersections of complemented rows. For the following, we decide to treat mainly
intersections. Although this looks more complicated introducing complements,
it gives better guidance along residuation.

By the following four RelView-pictures we want to decribe the situation.
We consider a 4 × 4 Boolean matrix M . The 4 × 7 matrix right besides M
shows all possible intersections of sets of columns of M , each of the seven results
represented by a column of the matrix. Note, that the universal vector is obtained
by intersecting the empty set of columns. In the same way the 7 × 4 matrix
below M enumerates all intersections of sets of rows of M . Again we have seven
different results, now represented by the matrix’s rows. Finally, the 7× 7 matrix
β bijectively links the column intersections and the row intersections of M .

M =
1
2
3
4

1 2 3 4 5 6 7

= β

It is evident that several combinations of rows may produce the same union.
When considering εT

X , multiplied from the left, where εX : X ↔ 2X is the pow-
erset relation of X , one will probably obtain many identical unions of rows.
In order to eliminate multiply occurring unions, one may, of course, wish to
identify them. A little reflection shows in an analogous way that all intersec-
tions of rows of M are given by the rows of R := εT

X ; M : 2X ↔X. The
elimination of multiple rows of R is obtained via ηT

Ξ ; R : 2X/Ξ ↔Y , where
ηΞ : 2X ↔ 2X/Ξ is the canonical epimorphism induced by the row equivalence
relation Ξ := syq(RT, RT) : 2X ↔ 2X . Equivalence classes of rows so obtained
will be called row types.

We will use contacts for linking the row types of a relation with its col-
umn types. The corresponding reflection, namely, shows that all intersections
of columns of M are given by the columns of C := M ; εY : X ↔ 2Y , where
εY : Y ↔ 2Y is the powerset relation of Y , so that we proceed with

Definition 5.1. Given M : X ↔ Y , C := M ; εY , and R := εT
X ; M , we de-

fine the column intersection types relation as C; ηΨ : X ↔ 2Y/Ψ and the row
intersection types relation as ηT

Ξ ; R : 2X/Ξ ↔Y .
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To visualize the constructions, we consider again the 4×4 matrix M of the above
example. The following RelView-matrices represent the membership relation
εY and the relation C, respectively.

εY = C =

If we transform C into the column intersection types relation C; ηΨ by the elimi-
nation of all multiple occurrences of columns, we exactly obtain the result already
shown above.

It is a remarkable fact that there exists a close connection between the row
and the column types relation. By the following bijection, one may feel reminded
that for a real-valued matrix the row rank equals the column rank. Some ideas
from the approach stem from real valued matrices as presented e.g., in [11]. For
the proof we need that symmetric quotients are difunctional in the sense that

syq(P, Q);
[
syq(P, Q)

]T; syq(P, Q) ⊆ syq(P, Q), (7)

which immediately follows from (1), (2) and Prop. 4.4.1.iv of [12].

Theorem 5.1. Given a relation M : X ↔Y together with the derived relations
C := M ; εY , R := εT

X ; M , Ψ := syq(C, C), and Ξ := syq(RT, RT), there
exists a bijective mapping (in the relational sense) of type [2X/Ξ ↔ 2Y/Ψ ].

Proof. The idea is to compare the contact relation miM (maM (εX)) = miM (RT)
and the lower derivative miM (εY ) = C via a symmetric quotient construction;
so we define (equality of the two versions is easy to prove by expansion):

A := syq(miM (RT), C) = syq(RT, maM (C)) : 2X ↔ 2Y

The relation A is total and surjective. For totality, we calculate

A = syq(miM (RT), C)

= syq( M ; M
T
; εX , M ; εY )

= syq(M ; M
T
; εX , M ; εY ) by (1)

⊇ syq( M
T
; εX , εY ) [12] Prop. 4.4.1.v

and apply then that syq( M
T
; εX , εY ) is total by (3) and (1) . To prove surjec-

tivity, we reason in the same way, but use the other variant of A.
Next, we have a look at the row equivalence relation Ξ ′ := syq(AT, AT) and

the column equivalence relation Ψ ′ := syq(A, A). It so happens that Ξ = Ξ ′ and
Ψ = Ψ ′ via a general cancelling rule for symmetric quotients that follows from
the laws of [12], Section 4.4. E.g., the second equality is shown by

Ψ ′ = syq(A, A)
= syq(syq(miM (RT), C), syq(miM (RT), C))
= syq(C, C) cancelling
= Ψ.
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Based on A : 2X ↔ 2Y and the canonical epimorphisms ηΞ : 2X ↔ 2X/Ξ and
ηΨ : 2Y ↔ 2Y/Ψ , now we define the following relation by simple composition:

β := ηΞ
T; A; ηΨ : 2X/Ξ ↔ 2Y/Ψ

This is a matching, defined as a relation that is at the same time univalent and
injective. Using the Schröder rule, for the proof of univalency we start with

AT; A ⊆ A
T
; A ⇐⇒ A; A

T
; A ⊆ A ⇐⇒ A; AT; A ⊆ A ⇐⇒ A; AT; A ⊆ A.

This yields AT; A ⊆ A
T
; A and, by transposition, also AT; A ⊆ AT; A , since

symmetric quotients are difunctional due to (7). So, we have AT; A ⊆ syq(A, A).
If we combine this with Ξ = Ξ ′ = syq(AT, AT) and Prop 4.4.1.iii of [12], we get

AT; Ξ; A = AT; syq(AT, AT); A = AT; A ⊆ syq(A, A) = Ψ ′ = Ψ.

Now, the univalency of the relation β can be shown as follows:

βT; β =
[
ηΞ

T; A; ηΨ

]T; ηΞ
T; A; ηΨ

= ηΨ
T; AT; ηΞ ; ηΞ

T; A; ηΨ

= ηΨ
T; AT; Ξ; A; ηΨ by (5)

⊆ ηΨ
T; Ψ ; ηΨ see above

= ηΨ
T; ηΨ ; ηΨ

T; ηΨ by (5)
= I by (5)

Transpositions of difunctional relations obviously are also difunctional. This im-
plies A; AT ⊆ syq(AT, AT) and from this fact we obtain, analogously to the above
calculations, first A; Ψ ; AT ⊆ Ξ and then injectivity β; βT ⊆ I.

Since canonical epimorphisms and their transpositions are total and surjective
and these properties pass on to compositions, by construction β is also total and
surjective, i.e., the bijective mapping we have searched for. �

Let, for M : X ↔Y and y ∈ Y , by M (y) : Y ↔11 the y-column of M be denoted.
Then M∩

c := {
⋂

y∈I M (y) | I ∈ 2Y } is the set of all intersections of sets of
columns of M and M∩

r := (MT)∩c that of all intersections of sets of rows. It is
easy to show that

⋂
y∈I M (y) �→ [I] is a bijective function from M∩

c to 2Y/Ψ in
the usual mathematical sense and, hence, |M∩

c | = |2Y/Ψ | and |M∩
r | = |2X/Ξ|.

Now, from the above theorem we get |M∩
c | = |M∩

r |, as already demonstrated by
means of the introductionary example of this section.

Note that all constructions of Theorem 5.1 and its proof are relation-algebraic
expressions, that is, algorithmic. As a consequence, they immediately can be
translated into RelView code, such that the tool can be used to compute for a
given relation its column intersection types relation as well as its row intersection
types relation and also the mapping that bijectively links the rows of the latter
with the columns of the first one. Similar to Definition 5.1 also column union
types relations and row union types relations can be introduced and then an
analogon of Theorem 5.1 holds for these constructions.
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6 Conclusion

At the end of Section 4, we have remarked that a one-to-one correspondence
between M -contacts and ΩM -closures also may exist for M not being (isomor-
phic to) a set-theoretic membership relation. Presently, we are looking for simple
conditions on M which ensure that the sets KM and HΩM are isomorphic. In this
context, it is also interesting to study whether these conditions imply that ΩM

belongs to a specific class of orders. In respect thereof, a first result is that each
relation M that, using matrix terminology, is obtained from a powerset relation
ε by adding additional rows consisting of 1’s only has as many M -contacts as
ΩM -closures and in this case ΩM is isomorphic to Ω.

Besides Aumann contacts, another concept of contacts is discussed in the lit-
erature, mainly for reasoning about spatial regions. In most cases (see e.g.,[8]),
the underlying structure is a Boolean lattice, i.e., essentially a powerset ordered
by set inclusion. This fact leads in a natural way to the task of detecting the
interdependencies between the two concepts (if such are) and whether it is also
possible and reasonable to generalize the latter one similar to our generalization
of Aumann contacts to M -contacts, a work that is planned for the future. An-
other future work is the relation-algebraic treatment of other closure objects,
like implicational structures, join-congruences, Moore families and so on.
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A While Program Normal Form Theorem in
Total Correctness

Kim Solin

Uppsala Universitet, Uppsala, Sweden

Abstract. A classical while-program normal-form theorem is derived in
demonic refinement algebra. In contrast to Kozen’s partial-correctness
proof of the theorem in Kleene algebra with tests, the derivation in de-
monic refinement algebra provides a proof that the theorem holds in total
correctness.

1 A Rather Brief Introduction

A classical folk theorem says that any while program can be simulated by a
while program consisting of at most one loop, provided extra Boolean variables
are allowed. The normal-form theorem for while loops was first published by
Böhm and Jacopini [2], but according to Harel [6] this theorem was known to
Kleene before that. Kozen [8] – based on a proof of Mirkowska [9] – showed how
this theorem can be perspicuously proved in Kleene algebra with tests by elegant
calculational derivations, and was the first to prove the normal form theorem
without introducing an explicit assignment mechanism. However, Kleene algebra
with tests only provides partial-correctness proofs. In this paper, we show how
to obtain a total-correctness normal-form theorem. Our novel total-correctness
proof is based on that of Kozen, but differs in that refinement algebra is used
in the proof. Refinement algebras are abstract algebras intended for reasoning
about program refinement in a total-correctness setting; the creator of the first
such algebra is Joakim von Wright [10,11].

We proceed as follows. First, we present demonic refinement algebra and its
use for reasoning about programs. Then we consider commutativity conditions
and a preservation technique, upon which we conclude by proving the normal-
form theorem.

2 Demonic Refinement Algebra

The demonic refinement algebra of von Wright [10] is axiomatised over four
operators and two constants. The first two operators, denoted ; and �, respec-
tively, are binary infix and the last two, denoted ∗ and ω are unary postfix. The
constants are denoted 1 and ".

The intended intuition behind the operators and the constants is as follows.
First of all, the carrier set of the algebra is to be seen as consisting of programs

R. Berghammer et al. (Eds.): RelMiCS/AKA 2009, LNCS 5827, pp. 322–336, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



A While Program Normal Form Theorem in Total Correctness 323

possibly containing demonic nondeterminism. This means that the operators are
operators on programs and the constants are special programs. The demonic-
choice operator � applied to two programs, x � y, is to be seen as a choice
between x and y made by a demon. That the choice is made by a demon means
that we have no influence over it and that it can be done in the, for us, most
undesirable way: striving to abortion. We will extensively use this way of looking
at demonic choice in the sequel. The operator ; is sequential composition. It
denotes sequential composition of programs: if x and y are programs, then x; y
denotes a program where, first, x is executed and, then, y is executed. The
weak-iteration operator ∗ is to be seen as an iteration of any length that does
terminate, whereas the strong-iteration operator ω is to be seen as an iteration
that either terminates or goes on infinitely – which means abortion. The special
program denoted by the constant " is the fictitious program magic that can
establish any postcondition, and the special program denoted by 1 is skip, the
immediately terminating program. Our terminology will be in the vein of Back
and von Wright [1] and we will, for example, talk about execution of magic,
although it is fictitious and cannot be implemented.1

We can now formulate the basic refinement algebra, which we call demonic
refinement algebra.

Definition 1. (von Wright 2002) A demonic refinement algebra (dRA) is a
structure over the signature

(�, ; , ∗, ω,", 1)

satisfying the following axioms and rules (� has weakest precedence, followed
by ;, and then ∗ and ω, which have equal precedence – we omit ; so that x; y is
written xy when no confusion can arise):

x � (y � z) = (x � y) � z, (1)
x � y = y � x, (2)
x � " = x, (3)
x � x = x, (4)
x(yz) = (xy)z, (5)

1x = x = x1, (6)
"x = ", (7)

x(y � z) = xy � xz, (8)
(x � y)z = xz � yz, (9)

1 Some would object that talking about execution of magic is nonsense, since it is
nonsensical to talk about execution of a nonimplementable program: a program that
cannot be implemented is no program at all and can certainly not be executed. Some
would not. (The idea of using magic was introduced, independently of each other,
by C.C. Morgan, J.M. Morris and G. Nelson in the 1980s).
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x∗ = 1 � xx∗, (10)
x � yx � z ⇒ x � y∗z, (11)
x � xy � z ⇒ x � zy∗, (12)

xω = 1 � xxω , (13)
yx � z � x ⇒ yωz � x and (14)

xω = x∗ � xω", (15)

where the order � is defined by x � y ⇔df x � y = x. �

The refinement ordering on the algebra defined above by

x � y ⇔df x � y = x

is to be read “y establishes anything that x does and possibly more” (intuitively,
if x is refined by y, then a demon would always choose x since y can do anything
that x does and possibly more; by choosing x the demon has a better chance of
winning).

It can be shown that all the operators are isotone with respect to the refine-
ment ordering � and that � is a partial order. The reduct structure over the
signature (�, ; ,", 1) is an idempotent semiring, and the reduct structure over
the signature (�) is a bounded greatest-lower-bound semilattice, with " as the
greatest element. In comparison to Kleene algebra [7], the axiom preventing rea-
soning about total correctness (x" = ") has been removed and strong iteration
has been added.

We define a syntactic constant ⊥ with the intuition that it stands for an
always nonterminating program, an abort statement [10]:

⊥ =df 1ω.

We thus equate abortion and (idle) nontermination. The syntactic constant ⊥
is a least element and a left annihilator, as the following proposition states.

Proposition 1. (von Wright 2002) Let x be an element in the carrier set of a
dRA. Then

⊥ � x and (16)
⊥x = ⊥ (17)

hold.

Axioms will usually be referred to by number, but for convenience the properties
will sometimes only be referred to by their canonical name, such as associativity,
commutativity, idempotence, skip or annihilation. Axioms (8) and (9) will be
referred to as distributivity and axioms (10) and (13) will be referred to as
unfolding; axioms (11–12) and (14) as induction; and axiom (15) as isolation.

Let us look at the program-theoretic intuition behind some of the axioms.
The third axiom says that a demon choosing between a miracle and a program
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x will always choose x. This is because the demon always wants to establish
abortion, and if magic is executed then this is not possible. The seventh axiom
says that after magic has been executed nothing affects the program any more.
The tenth axiom says that a finite iteration can be seen as an unfolding of the
iterated statement: x is repeated any finite number of times until, finally, 1 is
chosen, the program skips and, so, the iteration ends. Axiom (11) says that if
x � yx � z, then x can be refined by a succession of ys, ending with z:

x � yx � yyx � yyyx � · · · � yyy · · · z.

That is, y can be repeated any finite number of times and then followed by z,
in other words y∗z. Axiom (12) is analogous. Axiom (14) says the same thing as
axiom (11), but now the iteration might possibly not terminate. The reason we
do not have a strong-iteration axiom analogous to (12) is related to our ability to
express magic: Take for example x = y = 1 and z = ". Then the left-hand side
of a strong-iteration induction rule analogous to (12) would hold, whereas the
the right-hand side would not. Axiom (15) separates an iteration into its finite
and infinite parts: the finite part is given by weak iteration and the infinite part
is given by the xω". The intuition behind xω" denoting the infinite part is that
unless the iteration goes on forever, and thus aborts, a demon would not choose
that alternative, since this would result in a miracle. The remaining axioms can
easily be given similar interpretations.

So spoke the intuition. But one could argue that this concordance of the ax-
ioms with the every-day understanding of program-theoretic constructs does not
actually justify anything. It is yet to be shown how this algebra mathematically
relates to how one traditionally has understood programs formally. One, but
not necessarily the only, such relation is given by the following fact: the set
of conjunctive predicate transformers over a fixed state space [5] equipped with
standard operators (matching the above interpreation in a predicate-transformer
setting) forms a demonic refinement algebra [10,11].

The leapfrog and decomposition properties

x(yx)ω = (xy)ωx and (18)
(x � y)ω = xω(yxω)ω, (19)

respectively, have been proved by von Wright [10] and will be used later on.
An element g of the carrier set that has a complement ḡ satisfying

gḡ = ḡg = " and g � ḡ = 1 (20)

is called a guard. We collectively refer to the guards as the set of guards and
we will use the symbols f, g and h for denoting guards (if needed, indexed with
natural numbers). Intuitively, guards are statements that check whether a pred-
icate holds and, if so, skip, otherwise do magic. The first guard axiom says that
either a predicate or its negation holds, so a sequential composition of a guard
and its complement is always a miracle. The second guard axiom says that a
demon will always be able to skip when choosing between a guard or the guard’s
complement.
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As the following proposition states, the set of guards forms a Boolean algebra.

Proposition 2. (von Wright 2002) Let G be the set of guards of a dRA. Then

(G,�, ; , ¯ , 1,")

is a Boolean algebra, where � is meet, ; is join, ¯ is complement, 1 is the bottom
element, and " is the top element.

Every guard g is defined to have a corresponding assertion

g◦ = ḡ⊥ � 1. (21)

This means that ◦ is a mapping from guards to a subset of the carrier set, the set
of assertions. Assertions are similar to guards, but abort if the predicate does not
hold. If the predicate does not hold, then a demon would choose the left-hand side
of the demonic choice and the negated guard would skip and the whole program
abort (which is what a demon wants). If, on the other hand, the predicate holds,
then a demon would choose the right-hand side, since otherwise the negated guard
would do magic and the demon could then no longer establish abortion. Note that
ḡ◦ means that the assertion operator ◦ is applied to the guard ḡ (and not to be read
the other way around, that the complement operator is applied to the assertion
g◦). Assertions will not be used in this paper, but are mentioned to make the pre-
sentation of demonic refinement algebra complete. The abstract-algebraic guards
and assertions have canonical interpretations as predicate transformers (see [10]).

The assertion-skip-guard property (the asg property) is an especially impor-
tant property, which states that

g◦ � 1 � h (22)

holds for any guards g and h. The property is immediate from the definition
of assertion and the fact that the guards form a Boolean algebra. We will also
make use of the fact that

ḡ(gx)ω = ḡ (23)

holds (by unfolding of strong iteration (13), the definition of guards and the fact
that " is the top element (3)).

3 Conditionals and Loops

To show how the algebra relates to traditional program constructs we here show
how to do encodings of conditionals and while loops. This means that we can
express the classical while language: sequential composition, choice and iteration.

Conditionals are one of the basic building blocks of any programming lan-
guage. A conditional checks whether a predicate holds, and depending on this it
chooses between two actions. Traditionally, it is written

if g then x else y fi,
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and is to be understood so that if g holds, then x is executed, otherwise y is
executed. In the algebra we can encode this as gx� ḡy with the rationale that the
demon always chooses the statement for which the guard holds. If the guard does
not hold, then the guard performs a miracle. If the demon, then, would choose
to execute that statement the demon could never establish abortion. Note that
the falsum predicate is thus represented by a guard that is always miraculous,
that is, by ".

Another central construct in any programming language is the while loop, or
loop for short. A loop

while g do x od

iterates a program statement x any number of times as long as the predicate g
holds. If the predicate always holds, then the loop will iterate infinitely – a usually
undesirable scenario. In dRA we have two possibilities of modeling a loop: one
using weak iteration, (gx)∗ḡ, and another using strong iteration, (gx)ω ḡ. If weak
iteration is used to model the loop we are assuming that the iteration terminates.
All that is proved about a loop encoded using weak iteration thus assumes that
the iteration is terminating (nevertheless, the loop might still be nonterminating
(aborting) if the iterated program statement is aborting). If, on the other hand,
strong iteration is used, we do not need to assume that the loop is terminating
– indeed, everything we prove about a loop using the strong iteration operator
holds when the loop is terminating as well as when it is nonterminating.

4 Commutativity Conditions

In order to state the theorem, a commutativity condition of the form{
gxg = gx
ḡxḡ = ḡx

, or equivalently, of the form
{

xg � gx
xḡ � ḡx

,

must be made on the programs involved. Intuitively, the condition above says
that “if the program x terminates, it preserves g.” If the program aborts, any-
thing can happen. We will say that x preserves g if x and g meet the above
condition. The two equivalent conditions above correspond to Kozen’s commu-
tativity conditions, but since we want to prove total correctness, it makes sense
not to assume termination of the programs. This means that, unlike Kozen, we
cannot make assumptions of the form gx � xg, since this would imply that x
must terminate (cf. the total-correctness condition in [10,11]; in Kleene algebra,
the characterisations of total and weak correctness coincide). Note that the first
part (the first line) of the condition does not imply the second and vice versa (a
concrete counterexample can be constructed).

To illustrate this technique, Kozen [8] uses

if g then x; y1 else x; y2 fi
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as an example of a conditional that is to be simplified. We now reuse this example
and resettle the properties in total correctness. First assume that g is preserved
by x, that is assume that{

gxg = gx
ḡxḡ = ḡx

holds. Then the program can be rewritten into a more separated form as

x; if g then y1 else y2 fi ,

which can be formulated and proved in dRA by

x(gy1 � ḡy2)
= {distributivity}

xgy1 � xḡy2
= {axiom (6), definition of guards (20)}

(g � ḡ)xgy1 � (g � ḡ)xḡy2
= {distributivity (9)}

gxgy1 � ḡxgy1 � gxḡy2 � ḡxḡy2
= {preservation assumption}

gxy1 � ḡxḡgy1 � gxgḡy2 � ḡxy2
= {definition of guards, axiom (7)}

gxy1 � ḡx" � gx" � ḡxy2
= {axiom (2), distributivity (8)}

gx(y1 � ") � ḡx(y2 � ")
= {axiom (3)}

gxy1 � ḡxy2.

Although similar, the proof is different from Kozen’s, since we work in total cor-
rectness and thus in demonic refinement algebra and with the above preservation
conditions.

It is easy to show that if e is a well-formed expression consisting of elements
from the carrier set and the operators ; and � and all the carrier-set elements
preserve a guard g, then the whole expression e preserves g. This, in turn, means
that xω preserves g (this is the invariant rule for strong iteration in weak cor-
rectness). We will sometimes refer to this fact as “move guard.”

Moreover, assuming that x preserves g, it can be shown – by induction, the
assumption, distributivity, and unfolding – that

(gx)ωg � gxω (24)

holds, a fact which we will employ later on.

5 Kozen’s Preservation Technique

Suppose we would like to preserve the value of g across the program x, but we
cannot assume that x preserves g. To do this we need to first introduce a new
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guard h and assume that x preserves h. Then we can set h to g by a special
program z; (g ↔ h), where g ↔ h =df hg � h̄ḡ, and this program can then
be injected into an appropriate place. This corresponds, on an abstract level,
to adding extra Boolean variables. As Kozen [8] notes, the intuition is that z
assigns the value of g to some new Boolean variable that is tested by h. The
guard g ↔ h says that g and h have the same Boolean value just after execution
of z [8]. This technique was used by Kozen [8] in his seminal paper on Kleene
algebra with tests.

Consider again the example with the conditional from the previous section,
but assume now that g is not preserved by x. Then we can use Kozen’s technique
to first “store” the value of g in a new guard h which is preserved by x, and then
prove that

z; (g ↔ h); if g then x; y1 else x; y2 fi

is equivalent to

z; (g ↔ h); x; if h then y1 else y2 fi .

This is done as follows. Assume{
hxh = hx
h̄xh̄ = h̄x,

and derive

(g ↔ h)(gxy1 � ḡxy2)
= {definition}

(gh � ḡh̄)(gxy1 � ḡxy2)
= {distributivity}

ghgxy1 � ḡh̄gxy1 � ghḡxy2 � ḡh̄ḡxy2
= {guards form a Boolean algebra}

ghgxy1 � ḡgh̄xy1 � gḡhxy2 � ḡh̄ḡxy2
= {definition of guards (20), axiom (7)}

ghgxy1 � " � " � ḡh̄ḡxy2
= {axiom (3)}

ghgxy1 � ḡh̄ḡxy2
= {guards form a Boolean algebra}

ghxy1 � ḡh̄xy2
= {axiom (3)}

ghx(y1 � ") � ḡh̄x(y2 � ")
= {preservation assumption, guards form a BA, distributivity}

ghxhy1 � ghxh̄y2 � ḡh̄xhy1 � ḡh̄xh̄y2
= {distributivity}

(gh � ḡh̄)x(hy1 � h̄y2)
= {definition}

(g ↔ h)x(hy1 � h̄y2).

By isotony, we have then proved the claim.
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6 The Normal Form Theorem

We will say that a while program is in normal form if it is of the form

x; while g do y od,

where x and y do not contain while loops. Using Kleene algebra with tests
Kozen [8] proved that every while program can be written in normal form. Kozen
thus proved the theorem in partial correctness, but here we use refinement alge-
bra to obtain a theorem in total correctness.

Theorem 1. Every (possibly nonterminating) while program, appropriately aug-
mented with subprograms of the form z; (g ↔ h) and when reasoning under
preservation assumptions of the form{

gxg = gx
ḡxḡ = ḡx

,

is equivalent to a while program in normal form.

Proof. The theorem is proved by induction on the structure of while programs.
Following Kozen [8], who in turn follows Mirkowska [9], we give a method for
moving an inner while loop to the outside for every program construct. That
we are working in demonic refinement algebra and encode the loop with strong
iteration in order to obtain total correctness means that several of the indvidual
steps must be done quite differently from Kozen’s.

Step 1: Conditional. Consider the program

if g then x1 while f1 do y1 od
else x2 while f2 do y2 od fi .

To show how to move the while loops outside, we first introduce a new test h and
program z that sets h to g. We also assume that h is preserved by the programs
x1, x2, y1 and y2. Having taken on these assumptions, we prove that

z; (g ↔ h); if g then x1 while f1 do y1 od
else x2 while f2 do y2 od fi

(25)

and

z; (g ↔ h); if h then x1 else x2 fi ;
while (hf1 � h̄f2) do
if h then y1 else y2 fi

od

(26)

are equivalent. To prove that (25) and (26) are equivalent, the beginning z can
be removed and the remaining parts be shown equivalent – this follows from
isotony. Encoding into demonic refinement algebra and then using distributivity,
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the guard definition, axiom (7) and Boolean algebra for simplifying, the first
expression (25) takes the form

ghx1(f1y1)ω f̄1 � ḡh̄x2(f2y2)ω f̄2. (27)

Similarly, the second expression (26) becomes

(ghx1 � ḡh̄x2)(hf1y1 � h̄f2y2)ω(hf̄1 � h̄f̄2). (28)

To see that this is indeed so, use the basic equality

hf1 � h̄f2 = (h̄ � f1)(h � f2),

de Morgan rules and double negation on the subexpression hf1 � h̄f2, and then
distributivity on the remaining subexpression; this is exactly like in Kozen’s
paper [8]. The second expression (28) is in fact equivalent to

ghx1(hf1y1 � h̄f2y2)ωhf̄1
�

ghx1(hf1y1 � h̄f2y2)ωh̄f̄2
�

ḡh̄x2(hf1y1 � h̄f2y2)ωhf̄1
�

ḡh̄x2(hf1y1 � h̄f2y2)ωh̄f̄2

(29)

by distributivity (cf. again Kozen [8]). We now show how the equality of (27)
and (29) can be derived.

For the reverse refinement, -, it suffices to derive

ghx1(hf1y1 � h̄f2y2)ωhf̄1
� {isotony}

ghx1(hf1y1)ωhf̄1
� {property (24)}

ghx1h(hf1y1)ω f̄1
= {preservation assumption}

ghx1(hf1y1)ω f̄1,

that is, to derive the left-hand side (with respect to �) of (27) from the first part
of (29). The right-hand side of (27) follows symmetrically from the fourth part
of (29). By this and isotony we have shown the reverse refinement.

For the refinement, �, we derive

ghx1(f1y1)ω f̄1
� {asg property (22)}

ghx1(hf1y1)ωhf̄1
= {guards form a Boolean algebra, axiom (3)}

ghx1(hhf1y1 � ")ωhf̄1
= {guards form a Boolean algebra, axiom (7), distributivity}

ghx1(h(hf1y1 � h̄f2y2))ωhf̄1
� {property (24)}
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ghx1h(hf1y1 � h̄f2y2)ω f̄1
= {preservation assumption}

ghx1(hf1y1 � h̄f2y2)ω f̄1
� {asg property (22)}

ghx1(hf1y1 � h̄f2y2)ωhf̄1.

We also derive

ghx1(f1y1)ω f̄1
� {asg property (22), isotony}

ghx1(hf1y1)ω"
= {definition of guards (20), axiom (7)}

ghx1(hf1y1)ωhh̄f̄2
� {preservation assumption, move guard}

ghx1h(hf1y1)ωh̄f̄2
� {assumption A, see the appendix}

ghx1h(hf1y1 � h̄f2y2)ωh̄f̄2
= {preservation assumption}

ghx1(hf1y1 � h̄f2y2)ωh̄f̄2.

By this, we have established that

ghx1(f1y1)ω f̄1 � ghx1(hf1y1 � h̄f2y2)ωhf̄1 � ghx1(hf1y1 � h̄f2y2)ωh̄f̄2,

and symmetric reasoning can be used to show that the right-hand side of (27)
derives the two remaining parts of (29).

Step 2: Nested loops. In this step, we can follow Kozen [8], since no commutativity
conditions are needed – nevertheless, strong iteration is different from weak
iteration and this must be taken into consideration.

We first show that

while f do x; while g do y od od (30)

is equal to

if f
then x; while f � g do if g then y else x fi od
else skip
fi

(31)

and then the normal form follows from applying the rule in Step 1. It is easy to
show that the skip clause in the conditional is equivalent to

skip; while " do skip od,

so that the second form exactly matches that of Step 1.
Program (30) takes the form

(fx(gy)ω ḡ)ω f̄
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in refinement algebra, and (31) becomes

fx(gy � ḡfx)ω f̄ ḡ � f̄ ,

after simplification with distributivity and Boolean algebra. We now calculate

(fx(gy)ω ḡ)ω f̄ = fx(gy � ḡfx)ω f̄ ḡ � f̄
⇐ {unfolding (13), isotony}

(gy)ω ḡ(fx(gy)ω ḡ)ω f̄ = (gy � ḡfx)ω f̄ ḡ
⇔ {leapfrog (18)}

(gy)ω(ḡfx(gy)ω)ω ḡf̄ = (gy � ḡfx)ω f̄ ḡ
⇔ {guards form a Boolean algebra}

(gy)ω(ḡfx(gy)ω)ω f̄ ḡ = (gy � ḡfx)ω f̄ ḡ
⇔ {decomposition}

true

and have so proved what we wanted to establish.

Step 3: Eliminating postcomputations. In this step of the proof we show that a
computation that is to be executed after a while loop can be included in the
while loop. More precisely, we first show that

while g do x od; y (32)

is equal to

if ḡ then y;
else while g do x

if ḡ then y else skip fi
od

(33)

under the assumption that y preserves g. (The case where g is not preserved by
y is dealt with later.)

If x and y are while free, then the else clause of (33) is in normal form and
the whole program can thus be transformed in to normal form by Step 1.

Expression (32) can be encoded into refinement algebra as (gx)ω ḡy, which
after unfolding the omega once by axiom (13) and then distributing becomes
gx(gx)ω ḡy � ḡy. The second expression becomes ḡy � g(gx(ḡy � g))ω ḡ after ap-
plying axiom (6). We now show that

(gx)ω ḡy � ḡy � g(gx(ḡy � g))ω ḡ

and

ḡy � g(gx(ḡy � g))ω ḡ � gx(gx)ω ḡy � ḡy

and have thereby shown what we want.
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For the first claim, it suffices to calculate

(gx)ω ḡy � ḡy � g(gx(ḡy � g))ω ḡ
⇔ {distributivity}

(gx)ω ḡy � ḡy � g(gxḡy � gxg)ω ḡ
⇐ {induction (14)}

gx(ḡy � g(gxḡy � gxg)ω ḡ) � ḡy � ḡy � g(gxḡy � gxg)ω ḡ
⇐ {isotony}

gx(ḡy � g(gxḡy � gxg)ω ḡ) � g(gxḡy � gxg)ω ḡ
⇔ {short hand: K =df (gxḡy � gxg)ω ḡ, unfolding (13),

distributivity, guards form a Boolean algebra}
gx(ḡy � gK) � gxḡyK � gxgK � gḡ

⇔ {guards form a Boolean algebra, axiom (3)}
gx(ḡy � gK) � gxḡyK � gxgK

⇐ {distributivity, isotony}
gxḡy � gxḡyK

⇔ {preservation assumption}
gxḡy � gxḡyḡK

⇔ {distributivity, property (23)}
gxḡy � gxḡyḡ

⇔ {preservation assumption}
gxḡy � gxḡy

⇔ {reflexivity of refinement}
true.

For the second claim, we have that

g(gx(ḡy � g))ω ḡ
= {unfolding (13), distributivity, guards form a BA, axiom (3)}

gx(ḡy � g)(gx(ḡy � g))ω ḡ
= {leapfrog (18)}

gx((ḡy � g)gx)ω(ḡy � g)ḡ
� {isotony, guards form a Boolean algebra}

gx(gx)ω ḡyḡ
= {preservation assumption}

gx(gx)ω ḡy,

which by isotony and idempotency of demonic choice establishes what we wanted
to prove (this direction is similar to that of Kozen [8]).

If y does not preserve g, then we can introduce a new test f that is preserved
by y and a program z that sets f to g. We can then insert the program z; (f ↔ g)
before the loop and into the loop body. This means that the programs

z; (f ↔ g); while g do x; z; (f ↔ g) od; y

and

z; (f ↔ g); while f do x; z; (f ↔ g) od; y
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are equivalent, and we can replace the former with the latter – for which the
commutativity assumption that y preserves f holds. The proof that these two
programs are indeed equivalent is left to the reader (for the weak iteration ver-
sion, see Kozen [8]).

Step 4: Composition. The last step we need to consider before finishing our proof
is that of composing two programs in normal form. In this step, we can almost
exactly follow Kozen’s proof. What we want to do is, then, to transform the
program

x1; while g1 do y1od; x2; while g2 do y2 od (34)

into a program in normal form. First, by Step 3, we can move x2 into the first
while loop. The program x1 can, as Kozen notes, be ignored as it can be included
in the precomputation of the resulting normal-form program. It thus suffices to
show that

while g do x od; while h do y od (35)

can be turned into normal form.
We can assume that g commutes with y without loss of generality, just like in

Step 3. This means that g commutes with the second while loop, since

yg � gy
⇒ {isotony}

hyg � hgy
⇔ {guards form a Boolean algebra}

hyg � ghy
⇒ {strong iteration preserves outer commutativity, see von Wright [10]}

(hy)ωg � g(hy)ω

⇒ {isotony}
(hy)ωgh̄ � g(hy)ωh̄

⇔ {guards form a Boolean algebra}
(hy)ωh̄g � g(hy)ωh̄

holds. This, in turn, means that we can use Step 3 to turn the program into

if ḡ then while h do y od
else while g do x

if ḡ then while h do y od else skip fi
od.

(36)

We can now apply Step 1 to the inner conditional, which yields two nested while
loops. These nested while loops can be transformed with Step 2. Finally, we can
apply Step 1, which gives us a program in normal form.

The transformations of the steps above yield a systematic method for trans-
forming any program into normal form by inductively moving while loops out-
wards, starting from the innermost loop. �
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7 The Proof Is Concluded and So Is the Paper

The abstract-algebraic method both initiated and revived by the work of Kozen,
Cohen, von Wright, the Desharnais-Möller-Struth trio and others should be inter-
esting for several different communities. As we hope to have shown in this paper,
abstract algebra can be useful for proving properties of programs, and much of
the work done in related frameworks can be reused, or only slightly modified, to
yield interesting results. The abstract-algebraic method is thus a method worth
learning if one is looking for an efficient and practical reasoning tool.

Acknowledgements. Thanks to L.A. Meinicke, R.J.R. Back, Jules Desharnais,
E.C.R. Hehner and Bernhard Möller for valuable discussions, and to three anony-
mous reviewers for helpful suggestions.
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B. (eds.) MPC 2002. LNCS, vol. 2386, pp. 233–262. Springer, Heidelberg (2002)
11. von Wright, J.: Towards a refinement algebra. Science of Computer Program-

ming 51, 23–45 (2004)

A Proof of Assumption A

Assumption A follows from the general fact that for any guard g and any ele-
ments x and y in the carrier set such that x preserves g

g(gx)ω � g(gx � ḡy)ω

⇐ {guards form a Boolean algebra, isotony, induction (14)}
gxg(gx � ḡy)ω � 1 � g(gx � ḡy)ω

⇔ {unfold (13), distributivity, guards form a BA, axiom (7)}
gxg(gx � ḡy)ω � 1 � (gx � ")(gx � ḡy)ω � g

⇔ {axiom (3), preservation assumption, asg property (22), isotony}
true.
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Abstract. It is known in topos theory that the axiom of choice implies
that the topos is Boolean. In this paper we want to prove and gener-
alize this result in the context of allegories. In particular, we will show
that partial identities do have complements in distributive allegories with
relational sums and total splittings assuming the axiom of choice. Fur-
thermore, we will discuss possible modifications of the assumptions used
in that theorem.

1 Introduction

The calculus of relations, and its categorical versions in particular, are often used
to model programming languages, classical and non-classical logics and different
methods of data mining (see for example [1,2,10,12]). In many applications the
notion of a complement is essential to specify and/or solve a given problem.
Even though a lot of properties can be formalized using pseudocomplements or
residuals a classical negation is sometimes needed.

It is well-known in topos theory [3,5,8] that the axiom of choice implies that
the underlying logic is classical, i.e. that the topos is Boolean. In particular, it
is clear from the proof (see [3]) that this result already holds in any pretopos.
This fact immediately implies the same result for distributive allegories with
total splittings and relational sums that are also tabular. Notice that it is well-
known that a tabular allegory is also representable [4] but not necessarily vice
versa. The current paper was motivated by this situation. We will generalize the
previous result to arbitrary, not necessarily tabular, allegories. The motivation
for this is threefold. First of all, relation algebras are closely related to models
of the 3-variable fragment of various kinds of logics [11]. In distributive alle-
gories, besides being categories instead of algebras, the complement operation
has been removed. Therefore, they can be used to model the 3-variable fragment
of the corresponding restricted logic which provides an immediate motivation to
study the axiom of choice. Notice that allegories with relational products, or pre-
tabular allegories, are already sufficient to model logics with 4 or more variables.
We will provide a simple example of an allegory that has relational products and
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is representable but is not tabular. Even though the original theorem cannot be
applied, it follows from the theory developed in this paper that the allegory in
question is indeed Boolean. Secondly, in certain applications of relational meth-
ods the axiom of choice plays an important role. For example, a decomposition of
a graph using cardinal maximal dicliques uses obviously cardinality properties
of relations while simultaneoulsy staying in a 3-variable environment. Certain
properties of the underlying cardinal arithmetic depend on the axiom of choice
[13]. Last but not least, it has been shown that some non-representable allegories
have interesting properties such as the so-called unsharpness of relational prod-
ucts [9]. Those properties, and, hence, non-representable allegories, might be of
particular interest for certain applications such as models of concurrency and
quantum computing.

In addition, we will discuss weakenings of the assumptions used in the main
theorem. In particular, we will be interested whether it is possible to replace
the existence of total splittings and/or relational sums by stronger versions of
the axiom of choice. Notice that those considerations are trivial for tabular al-
legories, i.e. a tabular allegory satisfying ACC, introduced in Section 4, already
has all total splittings. However, already for pre-tabular allegories, which are
still representable, this is not the case.

The paper is organized as follows. In Section 2 we introduce some basic notions
needed throughout the paper. The main Section 3 focuses on the relational (and
generalized) version of the topos theoretic result mentioned above. Finally, in
Section 4 we discuss possible modifications of the assumptions used in the main
theorem.

2 Categories of Relations

Throughout this paper we assume that the reader is familiar with the basic
notions from category and lattice theory. For notions not defined here we refer
to [4,6].

Given a category C we denote its collection of objects by ObjC and its collec-
tion of morphisms by MorC . To indicate that a morphism f has source A and
target B we usually write f : A → B. The collection of all morphisms between
A and B is denoted by C[A, B]. We use ; for composition of morphisms, which
has to be read from left to right, i.e. f ; g means first f then g. The identity
morphism on the object A is written as IA.

Definition 1. An allegory R is a category satisfying the following:

1. For all objects A and B the class R[A, B] is a lower semi-lattice. Meet and the
induced ordering are denoted by �,�,respectively. The elements in R[A, B]
are called relations.

2. There is a monotone operation � (called the converse operation) such that
for all relations Q, R : A → B and S : B → C the following holds

(Q; S)� = S�; Q� and (Q�)
�

= Q.
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3. For all relations Q : A → B, R, S : B → C we have Q; (R�S) � Q; R�Q; S.
4. For all relations Q : A → B, R : B → C and S : A → C the following

modular law holds Q; R � S � Q; (R � Q�; S).

A relation R : A → B is called univalent (or a partial function) iff R�; R � IB

and total iff IA � R; R�. Functions are total and univalent relations. In the
remainder of the paper we will denote univalent relations usually by lowercase
letters. R is called injective iff R� is univalent and surjective iff R� is total.

In the following lemma we have summarized several basic properties of rela-
tions used in this paper. A proof can be found in [4,10,12].

Lemma 1. Let R be an allegory. Then we have:

1. Q; R�S � (Q�S; R�); (R�Q�; S) for all relations Q : A → B, R : B → C
and S : A → C (Dedekind formula),

2. R = (IA � R; R�); R for all R : A → B,
3. If Q : A → B is univalent, then Q; (R � S) = Q; R � Q; S for all relations

R, S : B → C,
4. If R : B → C is univalent, then Q; R � S = (Q � S; R�); R for all relations

Q : A → B and S : A → C.

Another important class of relations is given by partial identities, i.e. relations
i : A → A such that i � IA. Partial identities is one possible way of abstractly
describing subsets of a given object.

Lemma 2. Let R be an allegory, and i, j : A → A be partial identities. Then
we have:

1. i is symmetric and idempotent, i.e. i� = i and i; i = i,
2. i; j = i � j.

A proof may be found in [4,12].
A subset M of a set N may also be described by the canonical injection

f : M → N . Furthermore, the set of equivalence classes of an equivalence relation
is fully determined by the function mapping each element to its equivalence class.
Combining both concepts we aim at the notion of a splitting.

Definition 2. Let Q : A → A be a symmetric idempotent relation, i.e. Q� = Q
and Q; Q = Q. An object B together with a relation R : B → A is called a
splitting of Q (or R splits Q) iff R; R� = IB and R�; R = Q.

A splitting is unique up to isomorphism. If Q is a partial identity, the object B
of the splitting corresponds to the subset given by Q. Analogously, if Q is an
equivalence relation, i.e. IA � Q, Q; Q � Q and Q� = Q, B corresponds to the
set of equivalence classes. Throughout this paper we are mainly interested in
splitting equivalence relations. Therefore, we say an allegory has total splittings
if every equivalence relation Q, i.e. IA � Q and Q; Q � Q, splits.

The next lemma collects some properties of symmetric and idempotent rela-
tions needed in this paper.
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Lemma 3. Let R be an allegory, X : B → B be a symmetric and idempotent
relation and R : A → B with R; X = X. Then we have:

1. If S � R, then S � S; X,
2. If Q � X, then R; Q� � R.

Proof

1. follows immediately from

S = S � R

= S � R; X

� (S; X� � R); X

� S; X�; X
= S; X.

2. We get R; Q� � R; X� = R; X = R. ��

The notion of a distributive allegory normally does not include the existence of
a greatest element for every collection of relations [4,7,12]. For convenience we
will include this element in the current paper.

Definition 3. An allegory R is called distributive if each class of morphisms
R[A, B] is a distributive lattice with least element ⊥⊥AB and greatest element
""AB. The union operation is denoted by �.

Two functions f : C → A and g : C → B with common source are said to
tabulate a relation R : A → B iff R = f�; g and f ; f� � g; g� = IC . If for all
relations of an allegory R there is tabulation, then R is called tabular. Notice
that a function f : A → B and its converse f� : B → A always have a tabulation.
The tabulation is given by (IA, f) and (f, IB), respectively. A tabulation of the
greatest element ""AB is called a relational product of A and B. In this case the
the object of the tabulation is usually denoted by A×B and the two projection
functions by π : A×B → A and ρ : A×B → B. If R has all relational products
but not necessarily tabulations for every relation, R is called pre-tabular.

The dual concept of a relational product is a relational sum.

Definition 4. Let R be a distributive allegory and A and B be objects of R.
Then an object A+B together with two relations ι : A → A+B and κ : B → A+B
is called a relational sum if it satisfies the following:

ι; ι� = IA, κ; κ� = IB, ι; κ� = ⊥⊥AB, ι�; ι � κ�; κ = IA+B.

The next lemma is of particular interest if R and S are the injections ι and κ of
a relational sum.

Lemma 4. Let R be a distributive allegory, R : A → C and S : B → C
with R; S� = ⊥⊥AB. Then we have for all Q1 : D → A, Q2 : D → B and
T1 : A → E, T2 : B → E:
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1. Q1; R � Q2; S = ⊥⊥DC,
2. (Q1; R � Q2; S); (R�; T1 � S�; T2) = Q1; T1 � Q2; T2.

Proof

1. follows immediately from Q1; R � Q2; S � (Q1; R; S� � Q2); S = ⊥⊥CD.
2. was already shown several times, e.g. [10]. ��

Throughout this paper we are interested in the implication of the axiom of choice
in the context of allegories. One of the possible version of this axiom is as follows:

(AC) For all total relations R : A → B there is a function f : A → B with
f � R.

In the case that the subcategory of functions constitutes a topos the property
above is equivalent to the topos theoretic version of this axiom (see Lemma 4.5.6
in [8]).

3 Complements in Allegories

In this section we want to prove the main theorems about the existence of com-
plements of certain relations of a distributive allegory in the presence of the
axiom of choice. As usual, we call X : A → B a complement of Y : A → B
with respect to a downward closed subclass of R[A, B] with greatest element
Z : A → B if X � Y = ⊥⊥AB and X � Y = Z. In particular, we will be interested
in the full class R[A, B] with its greatest element ""AB and in the class of partial
identities on an object A with its greatest element IA. Notice that complements
will be unique since all allegories considered are assumed to be distributive.

The following theorem, and its proof, was motivated by a similar property in
topos theory. As a consequence, the proof follows closely the proof given in [3].

Theorem 1. Let R be a distributive allegory with total splittings and relational
sums. If R satisfies (AC), then every partial identity has a complement.

Before we prove this theorem we want to illustrate the construction in the proof
by an example. In this example we will work with concrete relations between
finite sets which we are going to represent by Boolean matrices. Let the following
partial identity

j =
(100

010
000

)
on the set M = {a, b, c} be given, i.e. j = {(a, a), (b, b)}. We now construct an
equivalence relation Ξ on the relational sum of M by Ξ := ID+D � ι�; j; κ �
κ�; j; ι, its splitting R and choose a function f in R using the axiom of choice.
In our example we obtain

Ξ =

⎛⎝100100
010010
001000
100100
010010
000001

⎞⎠ , R =
(100100

010010
001000
000001

)
, f =

(100000
000010
001000
000001

)
.
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Next we define the four relations

x0 := κ; R�; f ; ι�, x1 := ι; R�; f ; κ�,

x2 := ι; R�; f ; ι�, x3 := κ; R�; f ; κ�.

In the example we obtain

x0 =
(100

000
000

)
, x1 =

(000
010
000

)
, x2 =

(100
000
001

)
, x3 =

(000
010
001

)
.

From those relations we get j = x0 � x1 and that its complement is given by
x2 � x3. We now formally prove the theorem.

Proof of Theorem 1. Let j � ID be a partial identity, and define Ξ := ID+D �
ι�; j; κ�κ�; j; ι where ι, κ : D → D+D are the injections of D into the relational
sum D+D. Then Ξ is an equivalence relation, since Ξ is obviously reflexive and
symmetric and we have

Ξ; Ξ

= (ID+D � ι�; j; κ � κ�; j; ι); (ID+D � ι�; j; κ � κ�; j; ι)

= Ξ � ι�; j; κ; ι�; j; κ � ι�; j; κ; κ�; j; ι � κ�; j; ι; ι�; j; κ � ι�; j; κ; ι�; j; κ

= Ξ � ι�; j; j; ι � κ�; j; j; κ

� Ξ � ι�; ι � κ�; κ
= Ξ.

Furthermore, we obtain

ι; Ξ; ι� = ι; (ID+D � ι�; j; κ � κ�; j; ι); ι�(∗1)

= ι; ι� � ι; ι�; j; κ; ι� � ι; κ�; j; ι; ι�

= ID,

κ; Ξ; ι� = κ; (ID+D � ι�; j; κ � κ�; j; ι); ι�(∗2)

= κ; ι� � κ; ι�; j; κ; ι� � κ; κ�; j; ι; ι�

= j,

κ; Ξ; κ = ID,(∗3)

ι; Ξ; κ� = j,(∗4)

where (∗3) and (∗4) are shown similar to (∗1) and (∗2), respectively. Now, let
R : A → D +D be a splitting of Ξ. Since R is total, (AC) implies that there is a
function f : A → D+D with f � R. From f ; f� � R; R� = IA we conclude that
f is also injective. The situation so far is illustrated in the following diagram:

D
ι ��

κ
��j ""
D
+
D

Ξ

##
A

R��
f

��



Complements in Distributive Allegories 343

Define xi : D → D for i = 1, 2, 3, 4 by

x0 := κ; R�; f ; ι�, x1 := ι; R�; f ; κ�,

x2 := ι; R�; f ; ι�, x3 := κ; R�; f ; κ�.

First, we want to show that x0 � x1 = j. We obtain

x0 = κ; R�; f ; ι�

� κ; R�; R; ι�

= κ; Ξ; ι�

= j (∗2)

and x1 � j, analogously. This implies x0 � x1 � j. Now, consider the following
computation

j; ι; R� = j; ι; R�; R; R� R splitting

= j; ι; Ξ; R� R splitting

= j; ι; Ξ; (ι�; ι � κ�; κ); R�

= j; (ι; Ξ; ι�; ι � ι; Ξ; κ�; κ); R�

= j; (ι � j; κ); R� (∗1,4)

= (j; ι � j; j; κ); R�

= (j; ι � j; κ); R� Lemma 2(1)

= j; (ι � κ); R�.

Analogously, we get j; κ; R� = j; (ι � κ); R�, and, hence, j; ι; R� = j; κ; R�.
Finally, the other inclusion follows from

j � (x0 � x1)
= j; (x0 � x1); j Lemma 2(2)

= j; (x0; x
�
0 � x1; x

�
1 ); j Lemma 2(1)

= j; (κ; R�; f ; ι�; ι; f�; R; κ� � ι; R�; f ; κ�; κ; f�; R; ι�); j

= j; κ; R�; f ; ι�; ι; f�; R; κ�; j � j; ι; R�; f ; κ�; κ; f�; R; ι�; j

= j; ι; R�; f ; ι�; ι; f�; R; ι�; j � j; ι; R�; f ; κ�; κ; f�; R; ι�; j see above

= j; ι; R�; f ; (ι�; ι � κ�; κ); f�; R; ι�; j

= j; ι; R�; f ; f�; R; ι�; j

= j; ι; R�; R; ι�; j f injective

= j; ι; Ξ; ι�; j R splitting
= j. (∗1)
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Now, define −j := x2 � x3. From

x2 = ι; R�; f ; ι�

� ι; R�; R; ι�

= ι; Ξ; ι�

= ID (∗1)

and a similar computation for x3 we conclude −j � ID. Furthermore, we obtain

x0 �−j � x0 � x3

= κ; R�; f ; ι� � κ; R�; f ; κ�

= κ; R�; f ; (ι� � κ�) f, κ univalent, R injective
= ⊥⊥DD Lemma 4(1)

and x1�−j = ⊥⊥DD, analogously. We conclude j�−j = ⊥⊥DD. It remains to show
that j � −j = ID. Therefore, consider the computation

j � x2 - x1 � x2

= x1; x
�
1 � x2; x

�
2 Lemma 2(1)

= ι; R�; f ; κ�; κ; f�; R; ι� � ι; R�; f ; ι�; ι; f�; R; ι�

= ι; R�; f ; (κ�; κ � ι�; ι); f�; R; ι�

= ι; R�; f ; f�; R; ι�

= ι; R�; R; ι� f injective

= ι; Ξ; ι� R splitting
= ID (∗1),

which immediately implies j � x2 = ID since j and x2 are partial identities.
Analogously, we obtain j � x3 = ID. Consequently, we get

j � −j = (j � x2) � (j � x3) = ID � ID = ID.

This completes the proof. ��
In the presence of relational products every relation R : A → B corresponds to
a partial identity on the product A × B of the source and target of R. Notice
that it is equivalent for an allegory to be tabular or to have (all) splittings and
relational products. Even though we now require tabulations, the following result
needs neither power objects nor a unit.

Theorem 2. Let R be a distributive allegory with total splittings, relational
sums and products. If R satisfies (AC), then every relation has a complement.

Proof. Let R : A → B be given. Then j := IA×B � π; R; ρ� : A × B → A × B
is a partial identity. By Theorem 1 the partial identity j has a complement −j.
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Define −R := π�;−j; ρ and show that −R is the complement of R:

R �−R = R � π�;−j; ρ

� π�; (π; R; ρ� � −j); ρ

= π�; (IA×B � π; R; ρ� � −j); ρ −j partial identity

= π�; (j � −j); ρ

= π�;⊥⊥A×B A×B; ρ −j complement of j

= ⊥⊥AB,

R �−R = R � π�;−j; ρ

- π�; π; R; ρ�; ρ � π�;−j; ρ π, ρ univalent

= π�; (π; R; ρ� � −j); ρ

- π�; ((IA×B � π; R; ρ�) � −j); ρ

= π�; (j � −j); ρ

= π�; ρ −j complement of j

= ""AB. π, ρ tabulate ""

This completes the proof. ��

4 Alternative Versions of the Axiom of Choice

In this section we want to investigate whether the assumptions of Theorem 1 can
be weakened. In particular, we are interested whether it is possible to replace
the existence of total splittings and/or relational sums by other properties.

Every allegory R can be fully embedded into an allegory REq that has total
splittings [4]. The allegory REq and the full embedding E : R → REq are given
by:

1. The objects of REq are the equivalence relations from R.
2. A relation in REq with source X : A → A and target Y : B → B is a relation

R : A → B from R with X ; R; Y = R.
3. The full embedding E is defined by E(A) = IA and E(R) = R.

Notice that the identity relation IX of an object X in REq is the relation X
itself.

Unfortunately, REq may not satisfy (AC) even if R does, as the following
example shows.

Example 1. Let M = {a, b} be a set with two elements. Then M together with
the three relations ⊥⊥, I,"" is a distributive allegory R with one object M . This
allegory satisfies (AC), since "" is the only total relation that is not univalent but
includes the function I. On the other hand, "" does not split.

The allegory REq does not satisfy (AC). For example, the relation "" : "" → I
is total but does not include a function.
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M

⊥⊥ ,I, ��

$$
I ⊥⊥ ,I, ��%%

�� ⊥⊥ , ��
&&��
⊥⊥ , ��

��

Fig. 1. The allegories R and REq

There is a simple reason for the fact that (AC) fails in REq. In R there is
a function, namely I, that is included in the equivalence relation "". But this
function does not map the two elements a, b of the equivalence class induced by
"" to the same element. A function with such a behavior is not in R. Consequently,
"" as a relation between one equivalence class (induced by "") and two equivalence
classes (induced by I) does not contain a function in REq.

As shown by the previous example we need a stronger version of the axiom of
choice in order to guarantee that (AC) holds in REq. We call this axiom Axiom
of consistent choice (ACC). It is given by (AC) plus the following:

– For every equivalence relation X : A → A there is a function f : A → A
with f � X and X ; f � f .

The only extra condition is given by X ; f � f which requires that f maps
every element of the same equivalence class to a single element. The next lemma
provides some basic properties of the relation f in a slightly more general context.

Lemma 5. Let R be an allegory, X : A → A be a symmetric and idempotent
relation and f : A → A univalent with f � X, IA�X = IA�f ; f� and X ; f � f .
Then we have

1. X ; f = f ,
2. X = f ; f�.

Proof
1. Using Lemma 1(2) this follows immediately from

f = (IA � f ; f�); f = (IA � X); f � X ; f.

2. Consider the following computation

X = X ; (IA � X) Lemma 1(2)

= X ; (IA � f ; f�)

� X ; f ; f�

= f ; f�. by 1.

The converse inclusion follows immediately from f � X and the fact that X
is symmetric and idempotent. ��

Before we prove the main property about (ACC) we want to study the relation-
ship of this axiom to other properties of the allegory.
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Lemma 6. Let R be a tabular allegory satisying (ACC). Then R has all total
splittings.

Proof. Suppose X : A → A is an equivalence relation. By (ACC) there is a
function f : A → A with f � X and X ; f � f . Let g : B → A and h : B → A be
a tabulation of f�; f , i.e. g�; h = f�; f and g; g� � h; h� = IB . Then we have

h � g; g�; h g total

= g; f�; f
� g f univalent

and g � h analogously. This implies f�; f = g�; h = g�; g and IB = g; g� �
h; h� = g; g�. Define R := g; f� and compute

R; R� = g; f�; f ; g�

= g; g�; g; g�

= IB, R�; R = f ; g�; g; f�

= f ; f�; f ; f�

= X ; X Lemma 5(2)
= X,

i.e. R splits X . ��

Notice that the same result can be proven if every map in R factors as a surjection
followed by an injection. However, already for pre-tabular allegories the previous
result is not longer true as the following examples shows.

Example 2. Again, consider the set M = {a, b}. Let R be the full allegory of
binary relations whose objects are n-ary cartesian products of M , i.e. an object
A of R satisfies A = M i for an i ≥ 1. Since all morphism sets are finite this
allegory satisfies (AC) and also (ACC). For example, ""M = M × M : M → M
is an equivalence relation on M . The constant valued function f , mapping every
element to a, is a function required by (ACC). Furthermore, this allegory is
pre-tabular. It is easy to verify that M i+j constitues a relational product of the
objects M i and M j . However, R does not have all total splitting since ""M does
not split.

We are now ready to prove the main property about (ACC).

Lemma 7. Let R be an allegory satisfying (ACC). Then REq satisfies (AC).

Proof. Let R : X → Y be a total relation in REq, i.e. X : A → A and Y : B → B
are equivalence relations from R with X ; R; Y = R and we have IX � R; R�.
Since IX = X - IA the latter shows that R is also total in R. Therefore, (AC)
implies that there is a function h : A → B with h � R. Furthermore, (ACC)
implies that there is a function f : A → A with f � X and X ; f � X . Define
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g := f ; h; Y . We want to show that g is the required function for R in REq. First,
we have

X ; g; Y = X ; f ; h; Y ; Y
= X ; f ; h; Y Y idempotent
= f ; h; Y by (ACC)
= g

so that g is indeed a relation in REq with source X and target Y . Furthermore,
we have g = f ; h; Y � X ; R; Y = R. That g is total follows from

IX = X identities in RSId

= f ; f� Lemma 5(2)

� f ; h; h�; f� h total

� f ; h; Y ; h�; f� Y reflexive

= f ; h; Y ; Y �; h�; f� Y symmetric and idempotent

= g; g�.

Finally, the following computation

g�; g = Y ; h�; f�; f ; h; Y Y symmetric
� Y ; Y f, h univalent
= Y Y idempotent

shows that g is univalent since Y is the identity on the object Y in REq. ��

Corollary 1. Let R be a distributive allegory with relational sums satisfying
(ACC). Then every partial identity has a complement. Furthermore, if R has
relational products, then every relation has a complement.

Proof. This follows immediately from the fact that REq has relational sums [4],
Lemma 7, Theorem 1 and 2 and that E : R → REq is a full embedding. ��

Now, we want to focus on the second assumption in Theorem 1 – the existence
of relational sums. Every distributive allegory R can be fully embedded into an
allegoryR+ that has relational sums [4]. The allegory R+ and the full embedding
E : R → R+ are given by:

1. The objects of R+ are finite lists of objects from R.
2. A relation in R+ with source [A1, . . . , Am] and target [B1, . . . , Bn] is a m×n-

matrix R such that Ri,j is a relation from R with source Ai and target Bj .
3. The full embedding E is defined by E(A) = [A] and E(R) = (R), i.e. the

singleton matrix containing R.

Unfortunately, R+ may not satisfy (AC) even if R does, as the following example
shows.
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Example 3. Let M = {a, b, c} be a set with three elements. Consider the follow-
ing five partial identities on M :

⊥⊥ = ∅, x = {(a, a), (b, b)}, y = {(b, b), (c, c)}, z = {(b, b)}, I = {(a, a), (b, b), (c, c)}

or written as Boolean matrices

(000
000
000

)
,
(100

010
000

)
,
(000

010
001

)
,
(000

010
000

)
,
(100

010
001

)
.

⊥⊥ x y z I

The relations above are closed under all relational operations, and, hence, form
a distributive allegory R with one object M . Notice that since all relations are
partial identities we have V � = V and U ; V = U �V for all U, V in {⊥⊥, x, y, z, I}.

Now, let R : [M ] → [M, M ] be the relation in R+ defined by R = (xy). From

R; R� = (xy) ;
(x
y
)

= (x; x � y; y)
= (I) ,

R�; R =
(x
y
)
; (xy)

=
(x; x x; y
y; x y; y

)
=

(xz
z y

)
��

(
I ⊥⊥
⊥⊥ I

)
we conclude that R is total but not univalent. The only two relations of R
included in x are ⊥⊥ and c. The same applies to y. Therefore, the greatest relation
S : [M ] → [M, M ] included in R is S = (z z). But

S; S� = (z z) ;
(z
z
)

= (z; z � z; z)
= (z)

shows that S is not total. Therefore, R+ does not satisfy (AC).
Unlike the previous example it does not seem possible to strengthen (AC)

slightly in order to obtain the desired result. In the current example (AC) fails
in R+ because the pair (b, b) is in both relations x and y, but there is no relation
corresponding to x (or y) without that pair. In terms of the operations of an
allegory, we would need some version of a relative complement u of z in x (or y).
More precisely, assume that T = (uy) with a partial identity u is the function
included in R as required by (AC). Then
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T ; T � = (uy) ;
(u
y
)

= (u; u � y; y)
= (u � y) ,

T �; T =
(u
y
)
; (uy)

=
(u; u u; y
y; u y; y

)
=

(
u u � y

u � y y

)
implies that u � y = I and u � y = ⊥⊥, i.e. u is the complement of y.

5 Conclusion

In this paper we have shown that the axiom of choice implies that partial iden-
tities in distributive allegories with relational sums and total splittings have
complements. Furthermore, we have shown that the assumption of the existence
of total splittings can be dropped by requiring a stronger version of the axiom
of choice, namely the axiom of consistent choice. Unfortunately, a similar re-
sult does not seem possible for the existence of relational sums. Our example
has shown that sums are essential, i.e. that generating sums and preserving the
axiom of choice basically requires complements.
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Abstract. Boolean Contact Algebras (BCA) establish the algebraic
counterpart of the mereotopolopy induced by the Region Connection
Calculus (RCC). Similarly, Stonian p-ortholattices serve as a lattice the-
oretic version of the ontology RT− of Asher and Vieu. In this paper we
study the relationship between BCAs and Stonian p-ortholattices. We
show that the skeleton of every Stonian p-ortholattice is a BCA, and,
conversely, that every BCA is isomorphic to the skeleton of a Stonian
p-ortholattice. Furthermore, we prove the equivalence between algebraic
conditions on Stonian p-ortholattices and the axioms C5, C6, and C7 for
BCAs.

1 Introduction

Region-based theories of space play a crucial role in qualitative spatial reasoning
(QSR) within Artificial Intelligence (cf. [4]). Mereotopology – consisting of some
topological notion of contact and a mereological notion of parthood – is the
common core to most region-based theories of space. Instead of points as in
classical point-set topology, mereotopology uses regions as primitives and focuses
on the qualitative relations between different regions, such as contact, overlap,
external contact, and parthood. In allowing to define part-whole relations such
as self-connectedness of regions, the combination of topology with mereology is
more expressive than either theory by itself.

As long as AI has been interested in mereotopology, different first-order
mereotopological theories have been proposed. Most prominent amongst them is
the Region-Connection Calculus (RCC) [3], which originated from Clarke’s the-
ory [2]. Another theory of the same origin, the RT0 by Asher and Vieu [1], has
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received less attention although the theory is fairly similar to the RCC. The two
theories differ mainly in their intended topological interpretations: RCC models
include only regular closed sets while RT models allow any kind of regular sets
(closed, open, clopen, or neither). A very fruitful way of understanding these
theories of qualitative space is by looking at their algebraic counterparts. For
the RCC, it was shown that the models can be defined in terms of Boolean
Contact Algebras (BCA) for which topological representations have been given
for various subsets of the original RCC axioms [6,7,11,12]. Recently, an algebraic
representation of the theory RT− as Stonian p-ortholattices [10] has been proved
which allows to compare the models of RCC and RT− in a purely algebraic way.
A comparative study of the topological models of the two theories is beyond the
scope of this paper, it will be part of our future work.

In this work, we exhibit the relationship between BCAs and Stonian p-ortholat-
tices by using the skeleton of Stonian p-ortholattices as bridging structure. We
show that the skeleton S(L) of an arbitrary Stonian p-ortholattice L is a BCA
when defining the contact relation of the BCA in terms of the lattice L. In addition
we prove the equivalence between algebraic conditions on Stonian p-ortholattices
and the axioms C5, C6, and C7 for BCAs. On the reverse, we prove that every
BCA can be embedded in a Stonian p-ortholattice. This theoretical work provides
semantic mappings between the two theories; it specifies which class of models of
the RT− can be mapped to which class of BCAs and vice versa.

The paper is structured as following. Section 2 introduces Stonian p-
ortholattices and their algebraic properties. We define standard topological mod-
els and the notion of a skeleton for Stonian p-ortholattices. Afterwards, we briefly
review BCAs and their topological representation. The following two sections
contain the main results of this paper. In Section 4 we establish that the skele-
ton of a Stonian p-ortholattice is a BCA when choosing the contact relation
accordingly, and in Section 5 we construct a Stonian p-ortholattice from any
BCA by using the Boolean algebra of a BCA as the skeleton of the Stonian p-
ortholattice. However, examples demonstrate that there is no unique embedding
of BCAs into Stonian p-ortholattices.

These constructive embedding theorems verify in an algebraic way that the
models of the theory RT− are indeed more general than BCAs. Most significantly
for QSR, the results imply that every model of RT− that is connected, ∗-normal,
and has a dense skeleton is in fact a model of the RCC. However, arbitrary
Stonian p-ortholattices L of RT− models do not adhere to the extensionality,
interpolation, and connection axioms. Their skeletons S(L) are arbitrary BCAs
as axiomatized by C0-C4.

2 Stonian p-Ortholattices

In [1] Asher and Vieu introduced the mereotopology RT0. This theory was
intended to cover exactly those regions that have full interior and smooth
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boundaries. Even though this theory does not include all possible sets of a topo-
logical space, the notion of interior and closure are available. In [10] it was shown
that the models of Asher and Vieu’s theory RT− are equivalent to Stonian (or
Stonean) p-ortholattices. This observation now allows an algebraic treatment of
that theory. First, recall pseudocomplemented and orthocomplemented lattices.

Definition 1. A pseudocomplemented lattice (or p-algebra) is an algebraic
structure 〈L, +, ·,∗ , 0, 1〉 of type 〈2, 2, 1, 0, 0〉 such that

P0. 〈L, +, ·, 0, 1〉 is a bounded lattice,
P1. a∗ is the pseudocomplement of a, i.e. a · x = 0 ⇐⇒ x ≤ a∗.

Definition 2. An ortholattice (or orthocomplemented lattice) is an algebraic
structure 〈L, +, ·,⊥ , 0, 1〉 of type 〈2, 2, 1, 0, 0〉 such that

O0. 〈L, +, ·, 0, 1〉 is a bounded lattice,
O1. a⊥ is an orthocomplement of a, i.e. for all a, b ∈ L we have

(a) a⊥⊥ = a,
(b) a · a⊥ = 0,
(c) a ≤ b implies b⊥ ≤ a⊥.

A lattice that is both pseudocomplemented and orthocomplemented is called a
p-ortholattice. A Stonian p-ortholattice additionally satisfies the Stone identity
(PO.2). Notice that p-ortholattices are not necessarily distributive. In fact any
distributive Stonian p-ortholattice is a Boolean algebra (cf. [10]).

Definition 3. A Stonian p-ortholattice is a structure 〈L, +, ·,∗ ,⊥ , 0, 1〉 of type
〈2, 2, 1, 1, 0, 0〉 such that

PO0. 〈L, +, ·,∗ , 0, 1〉 is a pseudocomplemented lattice,
PO1. 〈L, +, ·,⊥ , 0, 1〉 is an ortholattice,
PO2. (a · b)∗ = a∗ + b∗ holds for all a, b ∈ L.

P-ortholattices are always quasicomplemented (also known as ‘dually pseudo-
complemented’) and thus double p-algebras. In a Stonian p-ortholattice one
may define the quasicomplement a+ of a, i.e. the smallest element b such that
a + b = 1, as a+ = a⊥∗⊥.

The following basic properties of Stonian p-ortholattices were shown in [10].

Lemma 1. Let 〈L, +, ·,∗ ,⊥ , 0, 1〉 be a Stonian p-ortholattice. Then:

1. 0+ = 0⊥ = 0∗ = 1 and 1+ = 1⊥ = 1∗ = 0,
2. a · a+ = a · a⊥ = a · a∗ = 0 and a + a+ = a + a⊥ = a + a∗ = 1,
3. a+ ≤ a⊥ ≤ a∗ and a++ ≤ a ≤ a∗∗

4. a+++ = a+ and a∗∗∗ = a∗,
5. a ≤ b implies b∗ ≤ a∗, b+ ≤ a+, and b⊥ ≤ a⊥,
6. (a+b)∗ = a∗ ·b∗, (a ·b)+ = a++b+, (a+b)⊥ = a⊥ ·b⊥ and (a ·b)⊥ = a⊥+b⊥,
7. a∗⊥ = a⊥+ = a∗+ = a++ and a+⊥ = a⊥∗ = a+∗ = a∗∗.

Throughout this paper we will use the properties above without mentioning.
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Fig. 1. The non-modular, non-distributive Stonian p-ortholattice C6

2.1 Topological Models

Topological models of the theory of Stonian p-ortholattices are given by those
sets that have full interior and smooth boundaries, i.e. are based on RT(X) =
{a ⊆ X | int(a) = int(cl(a))∧cl(a) = cl(int(a))} where int and cl are the interior
and closure operation of the topological space 〈X, τ〉. On those elements we
define the following operations. The notations x∩∗ y and x∪∗ y are maintained
from [1].

x ∩∗ y = x ∩ y ∩ cl(int(x ∩ y)),
x ∪∗ y = x ∪ y ∪ int(cl(x ∪ y)),

x∗ = cl(X \ x),

x⊥ = X \ x.

The next lemma provides some basic properties of those operations.

Lemma 2. Let 〈X, τ〉 be a topological space. Then we have:

1. cl(x ∪∗ y) = cl(x) ∪ cl(y),
2. int(x ∩∗ y) = int(x) ∩ int(y),
3. X \ (x ∩∗ y) = (X \ x) ∪∗ (X \ y),
4. X \ (x ∪∗ y) = (X \ x) ∩∗ (X \ y).

Proof

1. Consider the following computation

cl(x ∪∗ y) = cl(x ∪ y ∪ int(cl(x ∪ y)))
= cl(x ∪ y) ∪ cl(int(cl(x ∪ y)))
= cl(x ∪ y) cl(int(cl(z))) ⊆ cl(z)
= cl(x) ∪ cl(y).

2. is shown analogously.
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3. This property is shown by

X \ (x ∩∗ y) = X \ (x ∩ y ∩ cl(int(x ∩ y)))
= (X \ x) ∪ (X \ y) ∪ (X \ cl(int(x ∩ y)))
= (X \ x) ∪ (X \ y) ∪ int(cl(X \ (x ∩ y)))
= (X \ x) ∪ (X \ y) ∪ int(cl((X \ x) ∪ (X \ y)))
= (X \ x) ∪∗ (X \ y).

4. is shown analogously. ��

The next theorem verifies that the class of all structures RT(X) can be seen as
the class of standard topological models of this kind of mereotopology.

Theorem 1. Let 〈X, τ〉 be a topological space. Then 〈RT(X),∪∗,∩∗,∗ ,⊥ , ∅, X〉
is a Stonian p-ortholattice.

Proof. First, we have to show that RT(X) is closed under all operations. Con-
sider the following computations

cl(x ∪∗ y) = cl(x) ∪ cl(y) Lemma 2(1)
= cl(int(x)) ∪ cl(int(y)) x, y ∈ RT(X)
= cl(int(x) ∪ int(y))
⊆ cl(int(x ∪ y))
⊆ cl(int(x ∪∗ y)),

and

int(cl(x ∪∗ y))
= int(cl(x) ∪ cl(y)) Lemma 2(1)
= int(int(cl(x) ∪ cl(y)))
= int(int(cl(x)) ∪ int(cl(y)) ∪ int(cl(x) ∪ cl(y))) int(z1) ∪ int(z2)

⊆ int(z1 ∪ z2)
= int(int(x) ∪ int(y) ∪ int(cl(x) ∪ cl(y))) x, y ∈ RT(X)
= int(int(x) ∪ int(y) ∪ int(cl(x ∪ y)))
⊆ int(x ∪ y ∪ int(cl(x ∪ y)))
= int(x ∪∗ y).

In both cases the converse inclusion is trivial. The properties int(x ∪∗ y) =
int(cl(x ∪∗ y)) and int(x ∩∗ y) = int(cl(x ∩∗ y)) are shown analogously.

cl(x⊥) = cl(X \ x)
= X \ int(x)
= X \ int(cl(x)) x ∈ RT(X)
= cl(int(X \ x))

= cl(int(x⊥)),
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int(x⊥) = int(X \ x)
= X \ cl(x)
= X \ cl(int(x)) x ∈ RT(X)
= int(cl(X \ x))

= int(cl(x⊥)),
cl(x∗) = cl(cl(X \ x))

= cl(X \ x)

= cl(x⊥)

= cl(int(x⊥)) see above
= cl(int(X \ x))
⊆ cl(int(cl(X \ x)))
= cl(int(x∗)),

int(x∗) = int(cl(X \ x))
= int(cl(cl(X \ x)))
= int(cl(x∗)).

Now, assume x, y, z ∈ RT(X) with z ⊆ x and z ⊆ y. Then z ⊆ x∩y, and we have
z = z ∩ cl(z) = z ∩ cl(int(z)) ⊆ x ∩ y ∩ cl(int(x ∩ y)) = x ∩∗ y. This verifies that
x∩∗ y is the greatest lower bound of x and y in RT(X). It is shown analogously
that x ∪∗ y is the least upper bound of x and y in RT(X).

It is easy to verify that x⊥ is an orthocomplement of x. In order to prove that
x∗ is a pseudocomplement consider the following computation

x ∩∗ x∗ = x ∩ cl(X \ x) ∩ cl(int(x ∩ cl(X \ x)))
⊆ cl(int(x ∩ cl(X \ x)))
= cl(int(x) ∩ int(cl(X \ x)))
= cl(int(x) ∩ int(X \ x)) X \ x ∈ RT(X)
= cl(int(x ∩ (X \ x)))
= cl(int(∅))
= ∅.

In order to verify that x∗ is the pseudocomplement of X it remains to show that
x∗ is the largest element z with x ∩∗ z = ∅. Therefore, assume z ∈ RT(X) with
x∩∗ z = ∅. Then we have int(x)∩ int(z) = int(x∩∗ z) = int(∅) = ∅ using Lemma
2(2). We conclude int(z) ⊆ X \ int(x) = cl(X \x) = x∗. This immediately implies
z ⊆ cl(z) = cl(int(z)) ⊆ cl(x∗) = x∗.



On the Skeleton of Stonian p-Ortholattices 357

The following computation verifies the Stone property

(x ∩∗ y)∗ = cl(X \ (x ∩∗ y))
= cl((X \ x) ∪∗ (X \ y)) Lemma 2(3)
= cl(X \ x) ∪ cl(X \ y) Lemma 2(1)
= x∗ ∪ y∗

= x∗ ∪ y∗ ∪ int(x∗ ∪ y∗)
= x∗ ∪ y∗ ∪ int(cl(X \ x) ∪ cl(X \ y))
= x∗ ∪ y∗ ∪ int(cl(cl(X \ x) ∪ cl(X \ y)))
= x∗ ∪ y∗ ∪ int(cl(x∗ ∪ y∗))
= x∗ ∪∗ y∗.

This completes the proof. ��

2.2 Skeleton

Skeletons (also called centers) have been first defined by Glivenko in 1929 for
Brouwerian lattices [9], showing that pseudocomplementation is a closure map-
ping. Frink [8] generalized this result by showing that the skeleton of a pseudo-
complemented meet-semilattices is always a Boolean algebra.

Definition 4. Let 〈L, ·,∗ , 0〉 be a pseudocomplemented semilattice. Let S(L) =
{a∗|a ∈ L} be the skeleton of L, maintaining the order relation of L and with
meet a ∧ b = a · b and union a ∨ b = (a∗ · b∗)∗.

Theorem 2 (Glivenko-Frink Theorem). [8] Let L be a pseudocomplemented
semilattice. Then S(L) is a Boolean algebra. The (unique) complement of an
element a ∈ S(L) is its pseudocomplement a∗ ∈ L.

Since Stonian p-ortholattices form a subclass of the class of pseudocomplemented
meet-semilattices, the previous theorem immediately implies the following corol-
lary (cf. [10]). Notice that here we have a stronger notion: the skeleton is not
just a Boolean algebra, but a Boolean subalgebra.

Corollary 1. If 〈L, +, ·,∗ ,⊥ , 0, 1〉 is a Stonian p-ortholattice, then S(L) is a
Boolean subalgebra of L.

2.3 Additional Properties of Stonian p-Ortholattices

Motivated by the topological interpretation of the operations (cf. [10]), we call
an element a ∈ S(L), i.e. an element with a∗∗ = a, closed. Dually, we call a open
if a++ = a, and clopen if it is open and closed.

L is called connected iff 0, 1 are the only clopen elements of L.
A topological space is called normal if any two disjoint closed sets can be

separated by disjoint open sets. Following this definition we call a Stonian p-
ortholattice L ∗-normal if for all a, b ∈ L with a∗∗ ≤ b+ there is an element
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c ∈ L with a∗∗ ≤ c++ and b∗∗ ≤ c+. Notice that in this case c+ = c⊥⊥+ = c⊥++.
Then c · c⊥ = 0 implies c++ · c⊥++ = 0 and hence c++ · c+ = 0, ensuring that
the open sets c+ and c++ are disjoint.

A bounded sublattice L′ of L is called (downwards) dense in L if for every
0 �= a ∈ L there is a 0 �= b ∈ L′ with b ≤ a.

In Section 4 we are going to show that denseness, ∗-normality and connected-
ness correspond to well-known additional properties of Boolean contact algebras.
But beforehand, we review Boolean contact algebras and their embedding into
the Boolean algebra of regular closed sets of a topological space.

3 Boolean Contact Algebras

Boolean contact algebras were introduced as the algebraic counterpart of me-
reotopologies induced by the Region Connection Calculus RCC [3]. Therefore,
they are intended to cover closed sets with full interior and smooth boundaries,
i.e. regular closed sets.

Definition 5. A binary relation C on a Boolean algebra 〈B, +, ·,∗ , 0, 1〉 is called
a contact relation if it satisfies:

C0. (∀a)0(−C)a;
C1. (∀a)[a �= 0 ⇒ aCa];
C2. (∀a)(∀b)[aCb ⇒ bCa];
C3. (∀a)(∀b)(∀c)[(aCb ∧ b ≤ c) ⇒ aCc];
C4. (∀a)(∀b)(∀c)[aC(b + c) ⇒ (aCb ∨ aCc)].

The pair 〈B, C〉 is called a Boolean Contact Algebra (BCA).

Additionally, the following properties are of importance:

C5. (∀a)(∀b)[(∀c)(aCc ⇒ bCc) ⇔ a = b]. (The extensionality axiom).
C6. (∀a)(∀b)[(∀c)(aCc ∨ bCc∗) ⇒ aCb] (The interpolation axiom).
C7. (∀a)[(a �= 0 ∧ a �= 1) ⇒ aCa∗] (The connection axiom).

As shown in [12], in the presence of the other axioms we can replace C5 by

C5’. (∀a �= 1)(∃b �= 0)[a(−C)b].

As already mentioned above, the standard models of Boolean contact algebras
are given by the regular closed sets of a topological space together with the
following operations:

x + y := x ∪ y,

x · y := cl(int(x ∩ y)),
x∗ = cl(X \ x).

The contact relation is given by the standard Whiteheadean contact relation
xCy iff x ∩ y �= ∅.

Since their introduction several representation theorems for BCA’s were
proven. The most general version is the following:
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Theorem 3 (Representation Theorem [5]). For each Boolean contact alge-
bra 〈B, C〉 there exists an embedding h : B → RC(X) into the Boolean algebra
of regular closed sets of a topological space 〈X, τ〉 with aCb iff h(a) ∩ h(b) �= ∅.
h is an isomorphism if B is complete.

Notice that the original theorem lists further properties of the topological space
which are not important for the current work.

4 The Skeleton as a BCA

As already mentioned in Section 2.2 the skeleton of a Stonian p-ortholattice is a
Boolean algebra. In this section we verify that it is in fact a BCA with a contact
relation induced by the outer lattice.

Theorem 4. Let 〈L, +, ·,∗ ,⊥ , 0, 1〉 be a Stonian p-ortholattice, then S(L) to-
gether with

aCb ⇐⇒ a � b⊥

is a Boolean contact algebra.

Proof

C0. Assume 0Ca for an a ∈ S(L). Then 0 � a⊥, a contradiction.
C1. From a ≤ a⊥ we conclude a = 0, and, hence, C1.
C2. aCb implies a � b⊥, which is equivalent to b � a⊥. The latter shows bCa.
C3. Let aCb and b ≤ c. This implies a � b⊥ and c⊥ ≤ b⊥. Together we conclude

a � c⊥, and , hence, aCc.
C4. Assume aC(b+c). Then we have a � (b+c)⊥ = b⊥ ·c⊥. This implies a � b⊥

or a � c⊥, and, hence, aCb or aCc. ��

Notice that the definition of C in the theorem above uses an element b⊥ that is
not necessarily in the skeleton, i.e. the definition of C is external to the Boolean
algebra S(L). By definition of the skeleton, all elements in S(L) are regular
closed.

Lemma 3. Let 〈L, +, ·,∗ ,⊥ , 0, 1〉 be a Stonian p-ortholattice and 〈S(L), C〉 its
skeleton BCA. Then we have:

1. S(L) is dense in L iff C satisfies C5.
2. L is ∗-normal iff C satisfies C6.
3. L is connected iff C satisfies C7.

Proof

1. Assume S(L) is dense in L. We want to show that C5’ holds. Therefore, let
1 �= x ∈ S(L). Then x⊥ �= 0 which implies that there is an element 0 �= y ∈
S(L) with y ≤ x⊥, i.e. x(−C)y. Conversely, assume C5’, and let 0 �= y ∈ L.
If y++ = 0 we conclude y ≤ y∗∗ = (y⊥⊥)∗∗ = y⊥+∗∗ = y++∗∗ = 0∗∗ = 0, a
contradiction. This implies y∗ = y⊥∗∗ = y++⊥ �= 1 and y∗ ∈ S(L). By C5’
there is an element 0 �= x ∈ S(L) with y∗(−C)x, i.e. y∗ ≤ x⊥. The latter
implies x ≤ y∗⊥ = y++ ≤ y.
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2. Assume L is ∗-normal, and let x, y ∈ S(L) with x(−C)y. Then we have
x∗∗ = x ≤ y⊥ = y∗∗⊥ = y+. We obtain an element c ∈ L with x∗∗ ≤ c++

and y∗∗ ≤ c+. The elements x, y and c∗ are closed and we get

x = x∗∗ ≤ c++ = c∗⊥ and y = y∗∗ ≤ c+ = c+++ = c∗∗⊥,

which implies x(−C)c∗ and y(−C)c∗∗ and thus C6 holds. Conversely, let
a∗∗ � c++ = c∗⊥ or b∗∗ � c+ = c∗∗⊥ for all c ∈ L. Then a∗∗Cc∗ and b∗∗Cc∗∗

for all c ∈ L. Since {c∗ | c ∈ L} = S(L) we conclude by C6 that a∗∗Cb∗∗,
and, hence, a∗∗ � b∗∗⊥ = b+.

3. Assume C does not satisfy C7. Then there is a closed element x �= 0, 1 with
x(−C)x∗, i.e. x ≤ x∗⊥ = x++. The latter shows that x is also open, and,
hence, L is not connected.

Conversely, assume L is not connected. Then there is a clopen element
x �= 0, 1. We conclude x = x++ = x∗⊥ which implies x(−C)x∗. ��

We want to illustrate the previous lemma by some examples.

Example 1. Consider the Stonian p-ortholattices C18 and C14 from Figure 3
and 4. The pairs (1, 0), (d, c++), (d++, c), (a, f++), (a++, f), (e, b++), (e++, b)
define the orthocomplements of each other. The pseudocomplements are given by
1∗ = 1, 0∗ = 0 and for all other elements {x, x++}∗ = x. The closed elements are
0, a, b, c, d, e, f, 1 and the open elements are 0, a++, b++, c++, d++, e++, f++, 1.
Consequently, the only clopen elements are 0 and 1. On the other hand every
element of the skeleton is in contact to its complement (within the skeleton).
For example, we have a∗ = f and f⊥ = a++. Since a is not open, i.e. a �= a++,
we obtain a � a++ = f⊥ = a∗⊥.

S(L) is not dense in either of those Stonian p-ortholattices. For example,
a++ �= 0 but there is no closed element between a++ and 0. As a consequence
the skeleton is not extensional. We have f �= 1 and no non-zero closed element
is smaller than f⊥ = a++.

Finally, both lattices are not ∗-normal. For example, the closed elements a
and c satisfy a = a∗∗ ≤ d++ = c+. The open elements above a are d++, 1 but
none of d+ = c++, 1+ = 0 is above c. Consequently, the skeleton does not satisfy
C6. Indeed, a ≤ d++ = c⊥, and, hence, a(−C)c, but C(a) = S(L) \ {0, c} and
C(b) = S(L) \ {0, a} so that we have aCb or cCb∗ for all b ∈ S(L).

Example 2. For the second example consider the structure RT(R) of the real
line with the usual topology. Notice that, for example, the set of all rationals r
between 0 and 1 is not in RT(R) since cl(r) = [0, 1] and cl(int(r)) = cl(∅) = ∅.
The skeleton of this Stonian p-ortholattice is the Boolean algebra of all regular
closed sets. Since RT(R) has just two clopen elements, namely ∅ and R, its
skeleton satisfies C7. Furthermore, for every element x ∈ RT(R) there is a non-
empty regular closed set included in int(x). Therefore, the skeleton is extensional.
Finally, the space is normal so that any pair of disjoint regular closed sets can be
separated by disjoint open sets, i.e. RT(R) is ∗-normal, and, hence, its skeleton
satisfies C6.
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5 Embedding a BCA into a Stonian p-Ortholattice

In this section we focus on the converse process. We verify that every BCA is
isomorphic to the skeleton of some Stonian p-ortholattice. The following theorem
shows a way how to construct the Stonian p-ortholattice.

Theorem 5. Let 〈B, C〉 be an arbitrary BCA. Then there is a Stonian p-ortho-
lattice 〈L, +, ·,∗ ,⊥ , 0, 1〉 so that the skeleton S(L) is isomorphic to 〈B, C〉.

Proof. Let 〈X, τ〉 be the topological space induced by Theorem 3 and let h :
B → RC(X). Define L = {x ∈ RT(X) | ∃b ∈ B : cl(x) = h(b)}. Notice that if
x ∈ L, i.e. cl(x) = h(b) for some b ∈ B, then we have

h(b∗) = cl(X \ h(b)) h homomorphism
= cl(X \ cl(x))
= X \ int(cl(x))
= X \ int(x) x ∈ RT(X)
= cl(X \ x).

We have to show that the skeleton S(L) is exactly the image of h, that L is
closed with respect to all operations of RT(X), and that aCb iff h(a) � X \ h(b)
for all a, b ∈ B.

Obviously every h(a) is closed, i.e. h(a) ∈ S(L). Conversely, suppose x is
closed. Then x = cl(x) = h(b) for some b ∈ B, i.e. x is in the image of h.

Now, suppose there are elements b1, b2 ∈ B with cl(x) = h(b1) and cl(y) =
h(b2). and consider the following computations:

cl(x ∩∗ y) = cl(int(x ∩∗ y)) x ∩∗ y ∈ RT(X)
= cl(int(x) ∩ int(y)) Lemma 2(2)
= cl((X \ cl(X \ x)) ∩ (X \ cl(X \ y)))
= cl((X \ h(b∗1)) ∩ (X \ h(b∗2))) see above
= cl(X \ (h(b∗1) ∪ h(b∗2)))
= cl(X \ h(b∗1 + b∗2)) h homomorphism
= h((b∗1 + b∗2)

∗) h homomorphism
= h(b1 · b2),

cl(x ∪∗ y) = cl(x) ∪ cl(y) Lemma 2(1)
= h(b1) ∪ h(b2)
= h(b1 + b2), h homomorphism

cl(x∗) = cl(cl(X \ x))
= cl(X \ x)
= h(b∗1), see above

cl(x⊥) = cl(X \ x)
= h(b∗1). see above
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Finally, using Theorem 3 we immediately conclude aCb iff h(a) ∩ h(b) �= ∅ iff
h(a) � X \ h(b). ��
The Stonian p-ortholattice from the previous theorem is not necessarily the only
lattice that has 〈B, C〉 as its skeleton BCA.
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Fig. 4. The Stonian p-Ortholattice C14

Example 3. Consider the BCA from Figure 2. The diagram just shows external
connection between atoms ( C edges). The actual contact relation C on this
Boolean algebra is given as the smallest relation that contains those edges, over-
lap and is upwards closed, i.e. closed with respect to C3. Notice that this BCA
satisfies C7 but neither C5 nor C6.

The topological space that is constructed in the proof of Theorem 3 (see [5])
for this example is based on a set isomorphic to X = {0, 1, 2, 3, 4} with open sets

τ = {∅, {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}, {0, 1, 3},
{1, 2, 4}, {0, 1, 2, 3}, {0, 1, 2, 4}, {0, 1, 2, 3, 4}}.

From those open sets {0, 1}, {1, 2}, {0, 1, 2}, {0, 1, 2, 4} and {0, 1, 2, 3} are not
regular open, e.g. we have int(cl({1, 2})) = int({1, 2, 3, 4}) = {1, 2, 4}. We obtain
the Stonian p-ortholattice from Figure 3. Notice that this is the lattice C18, one
of the four structures characterizing models of RT [10].

On the other hand, the Stonian p-ortholattice C14 from Figure 4 has the same
skeleton as C18. A careful investigation also shows that the contact relations
induced on the skeleton is the same for both lattices.

6 Conclusion and Future Work

In this paper we have established the relationship between BCAs and Stonian p-
ortholattices. Due to the equivalence of those theories to subtheories of RCC and
RT0 we obtain similar results for those mereotopologies. Our theoretical work
directly implies that every connected, ∗-normal model of RT− with a dense



364 M. Winter, T. Hahmann, and M. Gruninger

skeleton is a model of the full RCC. On the other extreme, any model of the
RT− is a model of the RCC without the axioms C5, C6, and C7. Conversely,
every model of the RCC is a model of RT−: The BCA corresponding to an RCC
model is isomorphic to the skeleton S(L) of some Stonian p-ortholattice L by
Theorem 5. However, the skeleton S(L) itself is a Stonian p-ortholattice, since
the Boolean algebras are a subclass of the Stonian p-ortholattices. Consequently,
every RCC model is a RT− model as well. With little effort we can show the
relation to models of full RT0: if the RCC model contains some minimal set of
regular open sets, it can always be extended to a model of the full theory RT0.

More generally speaking, by using previously published algebraic represen-
tations of the theories RCC and RT0 and clarifying the relationship between
their algebraic representations, this work contributes to the understanding of
the relationship between different logical theories of mereotopology. Establish-
ing a formal relationship between models of subtheories of RCC and RT0 would
have been extremely difficult without the lattice-theoretic account of their mod-
els. This emphasizes the benefit of algebraic representations of logical theories,
in particular of mereotopological theories. Ultimately, we want to gain a deeper
understanding of the relationship between the major theories of mereotopology.
Part of our future work will focus on algebraic representations of other me-
reotopologies. In the long-term, this will allow to obtain similar relationships
between the various mereotopological theories. By doing so, we hope to foster
a deeper understanding of the different mereotopologies, their models, and the
relationships amongst them.

As a separate issue, even though we verified that the structure RT(X) for a
topological space X is indeed a Stonian p-ortholattice, a topological represen-
tation theorem has not yet been established. Future work will concentrate on
this aspect as well. In particular, it is of interest whether a representation theo-
rem can be developed that corresponds on the skeleton to the known results for
BCAs.
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