
Peter Höfner
Peter Jipsen
Wolfram Kahl
Martin Eric Müller (Eds.)

 123

LN
CS

 8
42

8

14th International Conference, RAMiCS 2014
Marienstatt, Germany, April 28 – May 1, 2014
Proceedings

Relational and
Algebraic Methods
in Computer Science

Lecture Notes in Computer Science 8428
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Peter Höfner Peter Jipsen
Wolfram Kahl Martin Eric Müller (Eds.)

Relational and
Algebraic Methods
in Computer Science
14th International Conference, RAMiCS 2014
Marienstatt, Germany, April 28 – May 1, 2014
Proceedings

13

Volume Editors

Peter Höfner
NICTA and UNSW
Anzac Parade 223, Kensington, NSW 2033, Australia
E-mail: peter.hoefner@nicta.com.au

Peter Jipsen
Chapman University, School of Computational Sciences
One University Drive, Orange, CA 92866, USA
E-mail: jipsen@chapman.edu

Wolfram Kahl
McMaster University, Department of Computing and Software
1280 Main Street West, Hamilton, ON L8S 4K1, Canada
E-mail: kahl@mcmaster.ca

Martin Eric Müller
University of Augsburg, Department of Computer Science
Universitätsstraße 6a, 86159 Augsburg, Germany
E-mail: m.e.mueller@acm.org

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-06250-1 e-ISBN 978-3-319-06251-8
DOI 10.1007/978-3-319-06251-8
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: Applied for

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the proceedings of the 14th International Conference on
Relational and Algebraic Methods in Computer Science (RAMiCS 2014). The
conference took place in Marienstatt, Germany, from April 27 to May 1, 2014,
and was the third conference using the RAMiCS title, after Cambridge, UK,
2012, and Rotterdam, The Netherlands, 2011, but the 14th in a series that
started out using the name “Relational Methods in Computer Science” with the
acronym RelMiCS. From 2003 to 2009, the 7th through 11th RelMiCS confer-
ences were held as joint events with Applications of Kleene Algebras (AKA) con-
ferences, motivated by the substantial common interests and overlap of the two
communities. The purpose of the RAMiCS conferences continues to be bringing
together researchers from various subdisciplines of computer science, mathemat-
ics, and related fields who use the calculus of relations and/or Kleene algebra as
methodological and conceptual tools in their work.

The call for papers invited submissions in the general area of relational and
algebraic methods in computer science, placing special focus on formal methods
for software engineering, logics of programs, and links with neighboring disci-
plines. This focus was also realized in the choice of the following three invited
talks: “Developments in Concurrent Kleene Algebra” by Tony Hoare, “Prepar-
ing Relation Algebra for ‘Just Good Enough’ Hardware” by José Nuno Oliveira,
and “Relation Lifting” by Alexander Kurz.

The body of this volume is made up of invited papers accompanying the
invited talks by Hoare and Oliveira, and of 25 contributions by researchers from
all over the world. The papers have been arranged into five groups, with the
invited talks closely related to the first three:

Concurrent Kleene Algebras and Related Formalisms,
including Kleene algebras with tests and Kleene algebras with converse, both
in theoretical investigations and in applications to program correctness.

Reasoning about Computations and Programs,
with considerations of faults and imperfect hardware, separation logics, in-
finite computations, process calculi, and program verification.

Heterogeneous and Categorical Approaches,
including “relation-categorical” studies of topology, concept lattices, semi-
lattice categories, and fuzzy relations.

Applications of Relational and Algebraic Methods,
including to voting systems, databases and data learning, optimization, and
mereotopology.

Developments Related to Modal Logics and Lattices,
with papers related to domain operators for homogeneous fuzzy relations,
accessibility relation semantics and tableau proving for tense operators,

VI Preface

representation theorems for nominal sets, and fixed-point theory of lattice
μ-calculus.

The contributed papers were selected by the Program Committee from 37
relevant submissions. Each submission was reviewed by at least three Program
Committee members; the Program Committee did not meet in person, but had
over one week of intense electronic discussions.

We are very grateful to the members of the Program Committee and the
subreviewers for their care and diligence in reviewing the submitted papers.
We would like to thank the members of the RAMiCS Steering Committee for
their support and advice especially in the early phases of the conference organi-
zation. We are grateful to the Bonn Rhein Sieg University of Applied Sciences
and especially Nadine Kutz for generously providing administrative support. We
gratefully appreciate the excellent facilities offered by the EasyChair conference
administration system. Last but not least, we would like to thank the Deutsche
Forschungsgemeinschaft for their generous financial support.

February 2014 Peter Höfner
Peter Jipsen

Wolfram Kahl
Martin E. Müller

Organization

Organizing Committee

Local Organizer

Martin E. Müller Universität Augsburg, Germany

Programme Co-chairs

Peter Jipsen Chapman University, USA
Wolfram Kahl McMaster University, Canada

Publicity

Peter Höfner NICTA, Australia

Program Committee

Rudolf Berghammer Christian-Albrechts-Universität zu Kiel,
Germany

Harrie de Swart Erasmus University Rotterdam,
The Netherlands

Jules Desharnais Université Laval, Canada
Marc Frappier University of Sherbrooke, Canada
Hitoshi Furusawa Kagoshima University, Japan
Timothy G. Griffin University of Cambridge, UK
Robin Hirsch University College of London, UK
Peter Höfner NICTA Ltd., Australia
Ali Jaoua Qatar University, Qatar
Peter Jipsen Chapman University, USA
Wolfram Kahl McMaster University, Canada
Tadeusz Litak FAU Erlangen-Nürnberg, Germany
Larissa Meinicke The University of Queensland, Australia
Szabolcs Mikulas University of London, UK
Bernhard Möller Universität Augsburg, Germany
Martin E. Müller Universität Augsburg, Germany
José Nuno Oliveira Universidade do Minho, Portugal
Ewa Or�lowska National Institute of Telecommunications,

Warsaw, Poland
Matthew Parkinson Microsoft Research Cambridge, UK
Damien Pous CNRS, Lab. d’Informatique de Grenoble,

France
Ingrid Rewitzky Stellenbosch University, South Africa

VIII Organization

Holger Schlingloff Fraunhofer FIRST and Humboldt University,
Germany

Gunther Schmidt Universität der Bundeswehr München,
Germany

Renate Schmidt University of Manchester, UK
Georg Struth University of Sheffield, UK
George Theodorakopoulos University of Derby, UK
Michael Winter Brock University, Canada

Steering Committee

Rudolf Berghammer Christian-Albrechts-Universität zu Kiel,
Germany

Harrie de Swart Erasmus University Rotterdam,
The Netherlands

Jules Desharnais Université Laval, Canada
Ali Jaoua Qatar University, Qatar
Bernhard Möller Universität Augsburg, Germany
Ewa Or�lowska National Institute of Telecommunications,

Warsaw, Poland
Gunther Schmidt Universität der Bundeswehr München,

Germany
Renate Schmidt University of Manchester, UK
Michael Winter Brock University, Canada

Additional Reviewers

Musa Al-hassy
Daniela Da Cruz
Han-Hing Dang
Nikita Danilenko
Stéphane Demri
Ernst-Erich Doberkat
Zoltan Esik
Roland Glück
Dirk Hofmann
Andrzej Indrzejczak
Yannis Kassios
Dexter Kozen
Steffen Lösch

Koki Nishizawa
Rasmus Lerchedahl Petersen
Patrick Roocks
Agnieszka Rusinowska
David Rydeheard
Thomas Sewell
Paulo F. Silva
John Stell
Insa Stucke
Norihiro Tsumagari
Stephan van Staden
Andreas Zelend

Sponsor

Deutsche Forschungsgemeinschaft

Table of Contents

Concurrent Kleene Algebras and Related Formalisms

Developments in Concurrent Kleene Algebra (Invited Talk) 1
Tony Hoare, Stephan van Staden, Bernhard Möller, Georg Struth,
Jules Villard, Huibiao Zhu, and Peter O’Hearn

Endowing Concurrent Kleene Algebra with Communication Actions 19
Jason Jaskolka, Ridha Khedri, and Qinglei Zhang

Concurrent Kleene Algebra with Tests . 37
Peter Jipsen

Algebras for Program Correctness in Isabelle/HOL 49
Alasdair Armstrong, Victor B.F. Gomes, and Georg Struth

Completeness Theorems for Bi-Kleene Algebras and Series-Parallel
Rational Pomset Languages . 65

Michael R. Laurence and Georg Struth

A Modified Completeness Theorem of KAT and Decidability of Term
Reducibility . 83

Takeo Uramoto

Kleene Algebra with Converse . 101
Paul Brunet and Damien Pous

Reasoning About Computations and Programs

Preparing Relational Algebra for “Just Good Enough” Hardware
(Invited Talk) . 119

José N. Oliveira

Extended Conscriptions Algebraically . 139
Walter Guttmann

Abstract Dynamic Frames . 157
Han-Hing Dang

Automated Verification of Relational While-Programs 173
Rudolf Berghammer, Peter Höfner, and Insa Stucke

On Faults and Faulty Programs . 191
Ali Mili, Marcelo F. Frias, and Ali Jaoua

X Table of Contents

Parameterised Bisimulations: Some Applications . 208
S. Arun-Kumar and Divyanshu Bagga

Heterogeneous and Categorical Approaches

A Point-Free Relation-Algebraic Approach to General Topology 226
Gunther Schmidt

A Mechanised Abstract Formalisation of Concept Lattices 242
Wolfram Kahl

A Sufficient Condition for Liftable Adjunctions
between Eilenberg-Moore Categories . 261

Koki Nishizawa and Hitoshi Furusawa

Higher-Order Arrow Categories . 277
Michael Winter

Type-2 Fuzzy Controllers in Arrow Categories . 293
Michael Winter, Ethan Jackson, and Yuki Fujiwara

Applications of Relational and Algebraic Methods

Relation Algebra and RelView Applied to Approval Voting 309
Rudolf Berghammer, Nikita Danilenko, and Henning Schnoor

Relational Lattices . 327
Tadeusz Litak, Szabolcs Mikulás, and Jan Hidders

Towards Finding Maximal Subrelations with Desired Properties 344
Martin Eric Müller

Complete Solution of a Constrained Tropical Optimization Problem
with Application to Location Analysis . 362

Nikolai Krivulin

Refinements of the RCC25 Composition Table . 379
Manas Ghosh and Michael Winter

Developments Related to Modal Logics and Lattices

Fuzzifying Modal Algebra . 395
Jules Desharnais and Bernhard Möller

Table of Contents XI

Tableau Development for a Bi-intuitionistic Tense Logic 412
John G. Stell, Renate A. Schmidt, and David Rydeheard

Nominal Sets over Algebraic Atoms . 429
Joanna Ochremiak

Fixed-Point Theory in the Varieties Dn . 446
Sabine Frittella and Luigi Santocanale

Author Index . 463

Developments in Concurrent Kleene Algebra

Tony Hoare1, Stephan van Staden2, Bernhard Möller3, Georg Struth4,
Jules Villard5, Huibiao Zhu6, and Peter O’Hearn7

1 Microsoft Research, Cambridge, United Kingdom
2 ETH Zurich, Switzerland

3 Institut für Informatik, Universität Augsburg, Germany
4 Department of Computer Science, The University of Sheffield, United Kingdom

5 Department of Computing, Imperial College London, United Kingdom
6 Software Engineering Institute, East China Normal University, China

7 Facebook, United Kingdom

Abstract. This report summarises recent progress in the research of its
co-authors towards the construction of links between algebraic presen-
tations of the principles of programming and the exploitation of concur-
rency in modern programming practice. The research concentrates on the
construction of a realistic family of partial order models for Concurrent
Kleene Algebra (aka, the Laws of Programming). The main elements
of the model are objects and the events in which they engage. Further
primitive concepts are traces, errors and failures, and transferrable own-
ership. In terms of these we can define other concepts which have proved
useful in reasoning about concurrent programs, for example causal de-
pendency and independence, sequentiality and concurrency, allocation
and disposal, synchrony and asynchrony, sharing and locality, input and
output.

1 Introduction

Concurrency has many manifestations in computer system architecture of the
present day. It is provided in networks of distributed systems and mobile phones
on a world-wide scale; and on a microscopic scale, it is implemented in the multi-
core hardware of single computer chips. In addition to these differences of scale,
there are many essential differences in detail. As in other areas of basic scientific
research, we will initially postpone consideration of these differences, and try to
construct a mathematical model which captures the essence of concurrency at
every scale and in all its variety.

Concurrency also has many manifestations in modern computer programming
languages. It has been embedded into the structure of numerous new and ex-
perimental languages, and in languages for specialised applications, including
hardware design. It is provided in more widely used languages by a choice of
thread packages and concurrency libraries. Further variation is introduced by a
useful range of published concurrency design patterns, from which a software
architect can select one that reconciles the needs of a particular application with
the particular hardware available.

P. Höfner et al. (Eds.): RAMiCS 2014, LNCS 8428, pp. 1–18, 2014.
c© Springer International Publishing Switzerland 2014

2 T. Hoare et al.

Concurrency is also a pervasive phenomenon of the real world in which we
live. A general mathematical model of concurrency shares with the real world
the concept of an object engaging together with other objects in events that
occur at various points in space and at various instants in time. It also shares
the principle of causality, which states that no event can occur before an event
on which it causally depends, as well as a principle of separation, which states
that separate objects occupy separate regions of space. It is these principles
that guide definitions of sequential and concurrent composition of programs in
a model of CKA. They provide evidence for a claim that CKA is an algebraic
presentation of common-sense (non-metric) spatio-temporal reasoning, similar
to that formalised in various ancient and modern modal logics.

1.1 Domain of Discourse

The construction of a model of a set of algebraic laws consists of three tasks.
The first task is the definition of the domain of discourse (carrier set of the
algebra). Any element of the domain is a value that may be attributed to any
of the variables occurring in any of the laws. It is a mathematically defined
structure, describing at some level of abstraction the relevant aspects of the
real or conceptual world to which the algebra is applied. The second task is the
interpretation of each operator of the algebra as a mathematical function, with
its arguments and its result in the domain of discourse. Finally, there is the proof
that the laws of the algebra are true for any attribution of values in the domain
of discourse to all the variables in each of the equations.

It is instructive and convenient to introduce a series of three domains, each one
including all the elements of the next. The most comprehensive domain is that
of specifications, which describe properties and behaviour of a computer system
while executing a program. They may be desirable properties of programs that
are not yet written, or undesirable properties of a program that is still under
test. Formally, a specification is just a set containing traces of all executions
that satisfy the property. It may be expressed in any meaningful mathematical
notation, including arbitrary set unions, and arbitrary intersections, and even
complementation. A most important quality of a specification is that it should
be comprehensible; and therefore it should be accompanied by an informal ex-
planation that makes it so. That is a precept that we hope to follow in this
presentation.

The second domain consists of programs. A program can be regarded as a
precise description of the exact range of all its own possible behaviours when
executed by computer. It is expressed in a highly restricted notation, namely
its programming language. The language excludes negation and other operators
that are incomputable in the sense of Turing and Church. As a result, a program
text can be input directly by computer, and (after various mechanised transfor-
mations) it can be directly executed to cause the computer to produce just one of
the behaviours specified. Inefficiency of implementation is another good reason
for omission from a programming language of the more general operators useful
in a specification. For example, intersection is usually excluded, even though it

Developments in Concurrent Kleene Algebra 3

is the most useful operator for assembling large sets of design requirements into
a specification.

At the third level, a single trace, produced for example by a single program
test, describes just one particular execution of a particular program at a partic-
ular time on a particular computer system or network. The execution itself is
also modelled as a lower-level set, consisting of events that occurred during that
execution, including events in the real world environment immediately surround-
ing the computer system. A trace is effectively a singleton set in the domain of
programs, so it cannot be composed by union; but it can still be composed either
sequentially or concurrently with another trace, and (in our partial order model)
the result is still a single trace. The composition operators are easily proved to
satisfy the laws of CKA.

There is close analogy between this classification of domains for concurrent
programming and the classification of the standard number systems of arithmetic
- reals, rationals, and integers. For example, the operators of a programming
language share the same kind of elementary algebraic properties as arithmetic
operators - distribution, association and commutation, with units and zeroes.

The analogy can be pursued further: our modelling methods are also similar
to those used in the foundations of arithmetic. For example, the reals are defined
as downward-closed sets of rationals (Dedekind cuts). The operators at each level
are then defined in terms of the operators at the lower level. For example, an
operator like addition on reals is defined as the set obtained by adding each
rational from the first real operand to each rational from the second operand.
This construction is known as ‘lifting to sets’, and we will use it to lift individual
traces to the domain of programs and specifications that describe them.

The constructions at the foundations of arithmetic show that the operators of
all the number systems obey the same algebraic laws, or nearly so. Our models
are designed to do the same for the laws of programming, as expressed in a
Concurrent Kleene Algebra.

1.2 Contracts and Counterexamples

Models play an essential role in the development of theories and the practical
use of an algebra in mathematics. They provide evidence (a counterexample) for
the invalidity of an inaccurately formulated conjecture, explaining why it can
never be proved from a given set of algebraic laws. In pure logical and algebraic
research, such evidence proves the independence of each axiom of the algebra
from all the others. For purposes of counterexample generation, appropriate se-
lection from a family of simple models can be more useful and more efficient
than repeated use of a single realistic model that is more complicated. An expe-
rienced mathematician is familiar with a wide range of models, and selects the
one most likely to serve current purposes. However, the research reported here
seeks realism rather than simplicity of its model.

Discovery of counterexamples is also a primary role of models of programming.
A counterexample consists in a trace of program execution which contains an
error; it thereby demonstrates falsity of the conjecture that a program is correct.

4 T. Hoare et al.

An automatic test case generator should obviously concentrate on finding such
counterexamples. It should also indicate where the errors have been detected,
and where they cannot have occurred. The information should be provided in a
form that guides human judgement in diagnosing the error, tracing where it has
occurred, and deciding whether it should be corrected or worked around.

The definition of what counts as an error, and of where it is to be attributed,
can be formalised as a contract at the interface between one part of the program
and another. For each of its participants, a contract has two sides. One side is a
description of the obligations, which any of the other participants may expect to
be fulfilled. An example is the post-condition of a method body, which every call
of the method will rely on to be true afterwards. The other side is a description
of the requirements which each participant may expect of the behaviour of all
the other participants taken together. An example is the precondition of the
method body. Every calling program is required to make this true before the
call, and the method body may rely on this as an assumption.

In addition to violation of contracts, there are various kinds of generic error,
which are universally erroneous, independent of the purposes of the program. Ex-
amples familiar to sequential programmers are undefined operations, overflows,
and resource leakages. Concurrency has introduced into programming several
new classes of generic error, for example, deadlock, livelock, and races (inter-
ference). To deal with these errors, we need new kinds of contract, formulated
in terms of new concepts such as dependency, resource sharing, ownership, and
ownership transfer. We also need to specify dynamic interactions (by synchroni-
sation, input, or output) between a component of a concurrent program and its
surrounding environment.

A full formal definition (semantics) of a programming language will specify the
range of generic errors which programs in the language are liable to commit. The
semantics itself may be regarded as a kind of contract between the implementer
and the user of the language, and they will often allocate responsibility for errors
that occur in a running program. For example, syntax errors and violation of
type security are often avoided by compile-time checks, and the implementer
undertakes to ensure that a program which contains any such errors will not be
released for execution, even in a test.

Conversely, for certain intractable errors, the programmer must accept the
responsibility to avoid them. In the case of a violation occurring at run time,
the language definition may state explicitly that the implementer is freed of all
responsibility for what does or does not happen afterwards. For example, in
the case of deadlock, nothing more will happen. Or worse, the error may even
make the program susceptible to malware attack, with totally unpredictable and
usually unpleasant consequences.

The inclusion of contractual obligations in a model lends it an aspect of deontic
logic, which has no place in the normal pursuit of pure scientific knowledge.
However, it plays a vital role in engineering applications of the discoveries of
science.

Developments in Concurrent Kleene Algebra 5

1.3 Semantics

There are four well-known styles for formalising the definition of the meaning
of a programming language. They are denotational, algebraic, operational and
deductive (originally called axiomatic). They are all useful in defining a common
understanding for the design and exploitation of various software engineering
tools in an Integrated Development Environment (IDE), and for defining sound
contracts between them.

A model of the laws of programming plays the role of a denotational semantics
(due to Scott and Strachey) of a language which obeys the laws. The denota-
tion of each program component is a mathematical structure, which describes
program behaviour at a suitable level of abstraction. The first examples of such
a model were mathematical functions, mapping an input value to an output
value. Later examples included concurrent behaviour, modelled as sets of traces
of events. We follow the later examples, and extend them to support the discov-
ery and attribution of errors in a program. The denotations therefore provide a
conceptual basis for the design and implementation of testing tools, including
test case generators, test trace explorers, and error analysers.

The laws themselves present an algebraic semantics (advocated, for example
by Bergstra and his colleagues) of the same abstract programming language.
Algebra is useful in all forms of reasoning about programs, and the proofs are
often relatively simple, both for man and for machine. The most obvious example
is the use of algebra to validate the transformation of a program into one with
the same meaning, but with more efficient executions. An algebraic semantics
is therefore a good theoretical foundation for program translators, synthesisers
and optimisers.

The rules of an operational semantics (due to Plotkin and Milner) show how to
derive, from the text of a program plus its input data, the individual steps of just
a single execution of the program. This is exactly what any implementation of the
language has to do. The rules thereby provide a specification of the correctness of
more efficient methods of implementation, for example, by means of interpreters
written in the same or a different language, or compilers together with their
low-level run-time support.

The deductive semantics (attributed to Hoare) gives proof rules for construct-
ing a proof that a program is correct. Correctness means that no possible execu-
tion of the program contains an error. Some of the errors, like an overflow, a race
condition or a deadlock, are generic errors. Others are violations of some part of
a contract, for example an assertion, written in the program itself. A deductive
semantics is most suitable as a theoretical basis for program verifiers, analysers
and model checkers, whose function is to prove correctness of programs.

When the full range of tools, based on the four different formalisations of se-
mantics, are assembled into an IDE, it is obviously important that they should
be mutually consistent, and provably so. It is common for the tools to com-
municate with each other by passing annotated programs between them. The
programs are often expressed in a common verification-oriented intermediate
language like Boogie designed and implemented by Leino. The semantics of this

6 T. Hoare et al.

common language must obviously be rigorously formalised and understood by
the designers of all the tools. As described above, the semantics needs to be
formalised in different ways, to suit the purposes of different classes of tool. The
mutual consistency of all the forms of semantics establishes confidence in the
successful integration of the tools, by averting errors at the interface between
them. Ideally, this proof can be presented and checked, even before the individual
tools are written.

An easy way to prove consistency of two different formalisations is to prove
one of them on an assumption of the validity of the other. For example, Hoare
and Wehrman describe how the laws of the algebraic semantics can be derived
rather simply from a graphical denotational model. Similarly, Hoare and van
Staden show that the rules of the operational semantics, as well as the rules of
the deductive semantics, can be derived from the same algebraic laws of pro-
gramming. In combination, these proofs ensure that all the models of the laws
satisfy the rules of all three of the other kinds of semantics.

In fact, most of the laws can themselves be derived in the other direction,
either from the rules of the operational or from the rules of the deductive se-
mantics, or even from both. For example, the principal law of concurrency (the
exchange law) is derivable either from the deductive separation logic rules for
concurrency formalised by O’Hearn, or from the Milner transition rules which
define concurrency in CCS. This direction of derivation gives convincing evidence
that our laws for concurrency are consistent with well-established understanding
of the principles of concurrent programming. Similar mutual derivations are fa-
miliar from the study of propositional logic, where the rules of natural deduction
are derived from Boolean algebra, and vice versa.

2 The Laws of Programming

The laws of programming are an amalgam of laws obtained from many sources:
relational algebra (Tarski), regular languages (Kleene), process algebras (Brookes
and Roscoe, Milner, Bergstra), action algebra (Pratt) and Concurrent Kleene
Algebra (Hoare et al.). The pomset models of Gischer and others have also
provided inspiration.

An earlier introduction to the laws for sequential programming is (Hoare et
al., Laws of Programming). This was written for general computer scientists
and professional software developers. It contains simple proofs that the laws
are satisfied by a relational model of program execution. Unfortunately, the
relational model does not extend easily to concurrency.

The purpose of this section is to list a comprehensive (but not complete) selec-
tion of the laws applicable to concurrent programming. The laws are motivated
informally by describing their consequences and utility. The informal description
of the operators gives the most general meaning of each of them, when applied
to programs and specifications. Several of them do not apply to traces.

The model described in section 3 offers a choice of definitions for many of the
operators. Any combination of the choices will satisfy the laws. The choice is

Developments in Concurrent Kleene Algebra 7

usually made by a programming language definition; but in principle, the choice
could be left as a parameter of an individual test run of a program.

2.1 The Basic Operators

Basic Commands

1 (skip) does nothing, because there is nothing it has been asked to do.

� is a program whose behaviour is totally undetermined. For example, it might
be under control of an undetected virus. Other names for this behaviour are
abort (Dijkstra), CHAOS (in CSP) and havoc in Boogie.

⊥ is a program with no executions. For example, it might contain a type error,
which the compiler is required to detect. As a result, the program is prevented
from running.

Binary Operators

Sequential composition p ; q executes both p and q, where p can finish before q
starts. It is associative with unit 1, and has ⊥ as zero.

Concurrent composition p | q executes both p and q, where p and q can start
together, proceed together with mutual interactions, and finally they can finish
together. The operator is associative and commutative with unit 1 , and has ⊥
as zero.

Choice (p ∪ q) executes just one of p or q. The choice may be determined or
influenced by the environment, or it may be left wholly indeterminate. The op-
erator is associative, commutative and idempotent, with ⊥ as unit.

Refinement

The refinement relation p ⇒ q is reflexive and transitive, i.e., a pre-order. It
means that p is comparable to q in some relevant respect. For example, p may
have less traces, so its behaviour is more deterministic than q, and therefore eas-
ier to predict and control. The three operators listed above are covariant (also
called monotone or isotone) in both arguments with respect to this ordering.
The ordering has ⊥ as bottom, � as top and ∪ as lub. For further explanation
of refinement, see section 2.2.

Distribution

All three binary operators distribute through choice.

Sequential and concurrent composition distribute through each other, as de-
scribed by the following analogue of the exchange (or interchange) law of Cate-
gory Theory:

(p | q) ; (p′ | q′)⇒ (p ; p′) | (q ; q′)

For further explanation of the exchange law, see section 2.3.

8 T. Hoare et al.

Iterations

The sequential iteration p∗ performs a finite sequential repetition of p, zero or
more times.

The concurrent iteration p! performs a finite concurrent repetition of p , zero or
more times.

Residuals

The weakest precondition q -; r (Dijkstra) is the most general specification of
a program p which can be executed before q in order to satisfy specification
r. The weakest precondition consequently cancels sequential composition (and
vice-versa), but the cancellation is only approximate in the refinement ordering:

(q -; r) ; q ⇒ r and p⇒ (q -; (p ; q))

The specification statement p ;- r (due to Back and Morgan) is the most gen-
eral specification of a program q that can be executed after p in order to satisfy
specification r.

p -| r the magic wand (due to O’Hearn and Pym) is similar to the above for
concurrent composition.

Notes:

1. the result of the residuals is a specification rather than a program. Residuals
are in general incomputable. That is why the residual operations are excluded
from programming languages.

2. The constants � and ⊥ , and the operators of iteration and choice, are not
available in the algebra of traces.

2.2 Refinement

The refinement relation p ⇒ q expresses an engineering judgement, comparing
the quality of two products p and q. By convention, the better product is on the
left, and the worse one on the right. For example, the better operand p on the
left may be a program with less possible executions than q. Consequently, if q
is also a program, it is more non-deterministic than p, and so more difficult to
predict and control. If p is a program and q is a specification, the refinement
relation means that p meets the specification q, in the sense that everything that
p can do is described by the specification q. And if they are both specifications,
it means that p logically implies q. Consequently p places stronger constraints
on an implementation, which can be more difficult to meet.

Refinement between programs may also account for failures and errors. For
example, if p is a program that has the same observable behaviour as q , but q
contains a generic programming error that is not present in p, this may be the
grounds for a judgment that p refines q. In other words, a program can be im-
proved by removing its programming errors, but otherwise leaving its behaviour
unchanged. Dually, if p is a specification, it is made weaker (easier to meet)

Developments in Concurrent Kleene Algebra 9

by strengthening the obligation which it places on its environment. Thus the
meaning of refinement is relative to the contracts between the components of a
program, and between the whole program and its environment.

A more precise interpretation for refinement is usually made in a programming
language definition. But a testing tool might allow the definition to be changed,
to reflect exactly the purposes of each test.

2.3 The Exchange Law: (p | q) ; (p′ | q′) ⇒ (p ; p′) | (q ; q′)

The purpose of this law is made clear by describing its consequences, which
are to relate a concurrent composition to one of its possible implementations
by interleaving. The law also permits events to occur concurrently, and requires
dependent events like input output to occur in the right order. Inspection of
the form of the law shows that the left hand side of the law describes a sub-
set of the possible interleavings of the atomic actions from the two component
threads (p ; p′) and (q ; q′) on the right hand side. This subset results from a
scheduling decision that the two semicolons shown on the right hand side will
be ‘synchronised’ as the single semicolon on the left.

The algorithm for finding an interleaving uses the recursive principle of ‘divide-
and conquer’. The interleavings (p | q) before the semicolon on the left are formed
from the two first operands p and q of the two semicolons on the right. The inter-
leavings (p′ | q′) after the semicolon on the left are formed from the two second
operands p′ and q′ of the two semicolons on the right. Every execution of the left
hand side is the sequential composition of a pair of executions, one from each
of (p | q) and (p′|q′). Each such execution achieves synchronisation of the two
semicolons on the right, but it places no other constraint on the interleavings.
(The constraints are specified in the definition of sequential composition).

By introduction and elimination of the unit 1, the exchange law can be
adapted to cases where the term to be transformed has only two or three
operands. The following three theorems are called frame laws:

p ; q ⇒ p | q (frame law 0)

p ; (q | r)⇒ (p ; q) | r (frame law 1)

(p | q) ; r ⇒ p | (q ; r) (frame law 2)

By commuting the operands of concurrent composition, the first frame law gives
a weak principle of sequential consistency:

q ; p⇒ p | q, from which, by covariance and idempotence,

q ; p ∪ p ; q ⇒ p | q

If p and q are atomic commands, then the left hand side of the above conclusion
shows the only two possible interleavings of their concurrent combination on the
right hand side. A strong principle of sequential consistency would allow the
conclusion to be strengthened to an equation (but only in the case of atomic

10 T. Hoare et al.

commands). However, we will continue to exploit the weaker formulation of the
principle.

When there are larger numbers of atomic commands in a formula, the ex-
change law can be used, in conjunction with commutation, association and dis-
tribution, to reduce the formula to a normal form in which the outer operator
is union and the inner operator is sequential composition. The technique is to
use the exchange law to drive the occurrences of concurrent composition to the
atoms, and then apply the weak principle of sequential consistency given above.

For example, from the frame laws we get:

p ; (q ; r ∪ r ; q)⇒ (p ; q) | r and (p ; r ∪ r ; p) ; q ⇒ r | (p ; q)

By commutation, distribution, covariance and idempotence, we can combine
these to an analogue of Milner’s expansion theorem for CCS:

p ; q ; r ∪ p ; r ; q ∪ r ; p ; q ⇒ (p ; q) | r

This theorem remains valid when there are synchronised interactions between
the concurrent commands. When an interleaving · · · p ; q; · · · violates a synchro-
nisation constraint that p must follow q, the definition of sequential composition
will ensure that this interleaving takes the value ⊥, which is the unit of choice.
This particular interleaving is thereby excluded from the left hand side of the
theorem.

3 A Diagrammatic Model

The natural sciences often model a real-world system as a diagram (graph) drawn
in two dimensions: a space dimension extends up and down the vertical axis, and
a time dimension extends along the horizontal axis. We model what happens
inside a computer in the same way. The fundamental components of the model
are objects, which are represented by lines (trajectories) drawn from left to right
on the diagram. An object has a unique identifier (name or address) associated
with it at its allocation. This may be used just like a numeric value in assignments
and communications.

Examples of objects are variables (local or shared), semaphores (for exclusion
or synchronisation), communication channels (buffered or synchronised), and
threads. These classes of object are often built into a programming language;
but in an object-oriented language they can be supplemented by programmed
class declarations.

The lines representing two or more objects may intersect at a point, which
represents an atomic event or action in which the given objects participate si-
multaneously. Examples of events are allocations and disposals of an object,
assignments or fetches of a variable, input or output of a message, seizures or
releases of a semaphore, and forking or joining of threads. An example of mul-
tiple participation is an atomic assignment, which involves fetches from many
variables and assignments to one or more target variables, together with the
thread that contains the assignment.

Developments in Concurrent Kleene Algebra 11

The line for each object passes through the time-ordered sequence of events in
which the object engages. In the case of a thread object, the ordering of events
within a thread is often called program order. It seems reasonable to require
that no event can occur without participation of exactly one thread.

In the diagram for a Petri net, an event is drawn as a transition, in the form
of a box or a bold vertical line. Extending the same convention, we will represent
participation of an object in the transition as a line which passes straight through
the transition. This contrasts with an allocation of a new object whose line begins
at the transition, or with a disposal in the case of a line which ends at it. The
other Petri net component (a place) represents choice; it is therefore not needed
in the diagram for a single trace, for which all choices have already been made.

An arrow is defined as a pair of consecutive points on the same line. It is drawn
with its source on the left and its target on the right. An arrow is labelled by a
primitive constant predicate of an assertion language. For example, in standard
separation logic, the primitive is a pair written (say) 101 |→ 27, where the
constant 101 is the unique identifier of the object, and 27 is the value that is
held by the object between the event at the source of the arrow and the event
at its target.

Arrows are classified as either local or global. The source and target of a local
arrow must be events that involve the same thread, called its current owner:
violation of this rule of locality is an error. In a language like occam, the compiler
is responsible for detecting this error, and making sure that the program is not
executed. However in a language like C this check would be too difficult, and
it is not required. Instead, violation of locality is attributed as an error of the
program.

An object is defined to be local if all its arrows are local, and volatile (shared)
if all its arrows are global. An object with both kinds of arrow is one whose
ownership may change between the event at the tail and the event at the head
of any one of its global arrows. The distinction between local and global arrows
is familiar from Message Sequence Charts. The local arrows representing concur-
rent tasks are drawn downwards, and global arrows are drawn between points
on the vertical lines. The points represent calls, call-backs, returns, and other
communications between the tasks.

In a diagram of program execution, an instant of time (real or virtual) can be
drawn as a vertical coordinate which crosses just one arrow in the line for each
object that is allocated but not yet disposed at that instant. The collection of
labels on the arrows which cross a vertical coordinate describes the state of the
entire system at the given instant. A global arrow denotes a message which has
been buffered between the tail event of the arrow and its head. An arrow of a
volatile object is effectively a special case of a message. A local arrow crossing
the coordinate represents the value held in the computer memory allocated to
the owning object. The state of the entire local memory at the relevant instant
is the relation whose pairs are (loc, val), where the label on the crossing arrow is
loc |→ val. This is necessarily a function, because no line can cross a coordinate
twice: that would involve a backward crossing somewhere in between.

12 T. Hoare et al.

In a diagram of program execution, a point in space can be drawn as a hor-
izontal coordinate separating the threads above it from the threads below it.
The set of global arrows which cross the coordinate in either direction give a
complete account of the dynamic interactions between the threads that reside
on either side of the coordinate. They must all be global arrows. There is no
significance attached to the vertical ordering of the horizontal coordinates. That
is why concurrent composition commutes.

The important concept of causal dependency (happens before) is defined in
terms of arrows. A causal chain is a sequence of arrows (taken usually from
different object lines), in which the head of each arrow is the same point as
the tail of the next arrow (if any). Occurrence of an event on a causal chain is a
(necessary) cause of all subsequent events on the same chain; and it is dependent
on all earlier events on the chain. Obviously, no event can occur before an event
which it depends on, or after an event that depends on it. This is represented
by the left-to-right direction of drawing the arrows.

In summary, the primitive concepts of our geometry are lines and points at
which the lines meet. Arrows are defined and classified as local or global, and
they are given labels. In terms of these primitives we define vertical and horizon-
tal coordinates, system state, ownership and transfer of ownership, and causal
dependency. The concept of synchrony can be defined as mutual dependency,
and the concept of ‘true’ concurrency can be defined in the usual way as causal
independence.

3.1 Decomposition of Diagrams

A diagram in plane geometry can be decomposed into segments in two ways,
either horizontally or vertically. A horizontal segment (slice) contains the entire
lines of a group of related objects, which interact by participating jointly with
each other in their events. This segmentation is useful in analysing the behaviour
of individual objects from the same class, or groups of interacting objects from
the same package of classes.

A vertical segment is similarly separated from its left and right neighbours by
two vertical coordinates, representing the initial and the final instants of time.
The segment contains all events in the diagram which occurred between the
two instants. This form of segmentation is useful in analysing everything that
happens during a particular phase in the execution, for example, a method call.

A third form of decomposition mirrors the syntactic structure of the program
whose execution is recorded in a trace. Each segment (called a tracelet) contains
all the events that occurred during execution of one of the branches of the
abstract syntax tree of the program; the tracelets for two syntactically disjoint
commands of the program will have disjoint sets of events, as they do in reality.

Inside a diagram, the tracelet is surrounded by a perimeter, with vertical and
horizontal sides. The west and east sides of the perimeter are segments from
two vertical coordinates, and the north and south sides are segments of two
horizontal coordinates. Consequently, the tracelet for a sequential composition
p ; q is split vertically into two smaller tracelets, one for p and one for q, with

Developments in Concurrent Kleene Algebra 13

no dependency of any event in p on any event in q; similarly, the tracelet for a
concurrent composition is split horizontally, with no local arrows crossing the
split. The whole plane is tiled by these splits, like a crazy paving. The tiles are
often drawn as rectangles, but this is not necessary.

An arrow with its source outside the box and its target inside is defined as
an input arrow; and an output arrow is defined similarly. The local input arrows
represent the portion of local state (called the initial statelet) which is passed
to the tracelet on entry. By convention, these arrows enter the box on the west
side. Similarly, the local output arrows represent the final statelet, and leave
the box on the right side. The global arrows may cross the north or the south
sides of the box, as convenient. They represent dynamic interactions that take
place with the environment of the tracelet between the start and the finish of its
execution.

A fourth form of segmentation splits a tracelet into three segments, shar-
ing just a single event. One segment contains all events that the shared event
causally depends on. A second segment contains all events that depend on the
shared event; and the remaining segment contains all remaining events, which
are irrelevant to its occurrence.

The diagrammatic representation of the trace described in this section is in-
tended to be helpful to the user of a visual debugging tool, by conveying an
understanding of what has gone wrong in a failed test, and what can be done
about it. For example, the segmentation into tracelets will give the closest pos-
sible indication of where in the source program an error has been detected. In a
visual tool, a hover of the mouse on the perimeter of the tracelet should highlight
the command in the original source program whose execution is recorded in the
tracelet.

Similarly, the causal segmentation gives clear access to the events which may
have caused the error: to prevent the error, at least one of these will have to be
changed. When the culprit has been detected and corrected, the segment that
is dependent on it contains all the events that may have been affected by the
change. The remaining events in the third segment that are causally independent
of the error could be greyed out on a display of the trace.

3.2 Refinement

We represent an error that is detected inside a tracelet by colouring its perimeter.
We attribute the errors as described in section 2.2. If the error is attributed to
the program being executed, the perimeter is drawn in red, or if it is attributed
to the environment of the tracelet, it is marked blue. Where necessary, a single
point can be coloured. For example, evaluation of an assertion to false is marked
red, whereas a false assumption is marked blue. If no error is detected, a normal
black perimeter is drawn. A black perimeter with no points inside represents the
execution of the SKIP command, which literally does nothing.

The refinement relation p⇒ q between tracelets p and q is defined by looking
only at their events, and also at the colour of their two perimeters. The definition
deliberately ignores the internal structure of tracelets within p or q. Validity of

14 T. Hoare et al.

the refinement means that the diagram of one operand are just an isomorphic
copy of the diagram in the other, and that the perimeter of p has a lower colour
than that of q in the natural ordering, with blue below black and red above
it. The definition of the isomorphism can be weakened by ignoring much of the
internal content of the tracelet. However, the labels on the arrows that cross
the perimeter must be preserved, and so must the causal dependencies between
these arrows.

The laws of programming require observance of the following principles in
colouring of perimeters. The first three principles state the obvious fact that a
tracelet inherits all the errors that are contained in any of its subtracelets; but
if it contains both a red and a blue error, a somewhat arbitrary decision states
that the blue dominates. This is required by the zero laws for ⊥: it is certainly
justified when the bottom denotes a program with no executions.

1. If a tracelet contains a tracelet with a blue perimeter, it also has a blue
perimeter.

2. Otherwise, if it contains a tracelet with a red perimeter, it also has a red
perimeter.

3. Otherwise, both operands are black, and the whole tracelet has a black
perimeter too.

Further rules are introduced in the definition of the two composition operators.

4. Any failure to observe the rules of sequential composition colours the perime-
ter blue.

5. Any failure to observe the rules of concurrent composition colours the perime-
ter red, except in the case that principle 1 requires it to be blue.

There is a choice of reasonable meanings for sequential composition. In the
strongest variant, every event of the second operand must be dependent on every
event of the first operand. This is an appropriate definition for sequential com-
positions which occur within a single thread. In most programming languages,
this is the only kind of sequential composition that can be written in the pro-
gram. But if strong composition is applied to a multi-threaded trace, it requires
that all the threads pass the semicolon together, as in PRAM model of lock-step
program execution.

The weakest variant of sequential composition involves the minimum of syn-
chronisation. The principle is simply that no event of the first operand can
depend on any event of the second operand. Violation of this principle would
make it impossible to complete execution of the first operand before the second
operand starts: this was quoted informally in section 2 as the general defining
condition for sequential composition.

This definition is weak enough to allow the reordering optimisations that are
commonly made in modern compilers for widely used languages. When applied
to multi-threaded programs, it allows each thread to pass the semicolon at a
different time.

Turning to concurrent composition, its weakest definition imposes only the
condition that no local arrow can cross its north or south sides. A more realistic

Developments in Concurrent Kleene Algebra 15

definition has to make the occurrence of deadlock into a programming error.
More formally, the condition states that there is no dependency cycle that crosses
from an event of one operand to an event of the other. An exception may be made
to allow synchronised communication between an outputting and an inputting
thread, as in CSP.

The principle that a local arrow cannot cross between threads ensures that
in any correct trace there is no interference by one thread with the values of
a local variable of another thread. Thus separation logic is a valid method of
reasoning about concurrent programs, even in the presence of extra features
like synchronisation, atomicity, and communication. This claim still needs to be
checked in detail.

That concludes our informal description of a diagrammatic model for the
algebra of traces. Our description has been analytic (decompositional). It is
presented as a set of principles that are applied to test whether a given fully
decomposed and annotated trace has been correctly decomposed, and whether
its errors have been correctly attributed, according to the five principles above.
This is in contrast to the usual approach of denotational semantics, which is
compositional (synthetic): the denotation of the result of each operation is fully
defined in terms of the denotations of its operands. The contrast between the
decompositional and compositional interpretations is similar to the analytic and
synthetic readings of a set of recursive syntactic equations of a context-free
language.

The problem with such denotational definitions is that they are too prescrip-
tive of all the details of the model. This is because every needed property of every
aspect of the operator has to be deducible from its definition. In a decomposi-
tional presentation, each aspect of an operator can be described separately, and
as weakly as desired. Indeed, the weakness is often desirable, because interesting
variations of the operator can be identified, classified, and left for later choice.

The problem with the analytic approach is to decide when enough principles
have been given. We suggest that the relevant criterion is simply that all the
laws of programming are provably satisfied by the given collection of principles.
Section 1.3 has presented evidence that the laws are sufficient as a foundation
for reasoning about programs, and for the design of programming tools, which
analyse, implement and verify them.

4 Sketch of a Formal CKA Model

4.1 Graphs and Tracelets

Definition 4.1. Given a set EV of events and a set AR of arrows , a graph
is a structure H = (E,A, s, t) where E ⊆ EV, A ⊆ AR and s, t : A → E
are total functions yielding source and target of an arrow. A tracelet is a pair
tr = (H,F) whereH = (E,A, s, t) is a graph, called the overall trace, and F ⊆ E
is a distinguished set of events, called the focus of tr and denoted by foc(tr).

16 T. Hoare et al.

The pairwise disjoint sets of input, output and internal arrows of the tracelet
are given by

a ∈ in(tr) ⇔df t(a) ∈ F ∧ s(a) �∈ F ,
a ∈ out(tr) ⇔df s(a) ∈ F ∧ t(a) �∈ F ,
a ∈ int(tr) ⇔df s(a) ∈ F ∧ t(a) ∈ F .

As mentioned in Section 3, arrows are classified as local and global, but in
this section we ignore the distinction.

We want to combine tracelets by connecting outputs of one tracelet to inputs
of another. For separation we require the events of tr1 and tr2 to be disjoint.
Moreover, the combination is meaningful only if both tracelets have the same
overall trace. More precisely, consider tracelets tr1, tr2 with disjoint focuses but
same overall trace H , and an arrow a in out(tr1)∩ in(tr2). Then a is automati-
cally an internal arrow of the tracelet (H, foc(tr1)∪ foc(tr1)). If a carries values
of some kind, we view the combination as transferring these values from the
source event of a in tr1 to the target event of a in tr2.

Definition 4.2. Two tracelets tr1, tr2 are combinable if H1 = H2 and foc(tr1)∩
foc(tr2) = ∅. Then their join is tr1 � tr2 =df (H1, F1 ∪F2). Clearly, tr1 � tr2 is
a tracelet again.

Since disjoint union is associative, also � is associative. In the set of all
tracelets with a common overall trace H the empty tracelet �H =df (H, ∅)
with empty focus is the unit of �.

4.2 Tracelets and Colours

In Sect. 3.2 we have presented the idea of accounting for errors by colours.
Formally we use tiles , i.e. pairs (tp, c) with a tracelet tp and a colour c. For
abbreviation we represent the colours red, black and blue by the values ⊥, 1,�
ordered by ⊥ ≤ 1 ≤ �.

◦ ⊥ 1 �
⊥ ⊥ ⊥ ⊥
1 ⊥ 1 �
� ⊥ � �

For combining scores, we use the summary operator ◦ defined by
the table at the right. Obviously, this operator is commutative and
idempotent and has 1 as its unit which is indivisible, i.e., c ◦ c′ = 1

implies c = 1 = c′. The operator is also covariant w.r.t. ≤ . Finally,
it is also associative since it coincides with the supremum operator
on the lattice induced by the second ordering 1 � � � ⊥ (we are not going to
use that ordering any further, though).

The refinement relation, a partial order between tiles, is given by

(p, c) ⇒ (p′, c′) ⇔df p = p′ ∧ c ≤ c′ .

Tiles are composed by joining their tracelet parts and summarising their
colours together with additional error information the joined trace may provide.
For sequential and parallel composition ; and | this information is computed by
two operators ↓ and ↑ mapping pairs of traces to colours.

Developments in Concurrent Kleene Algebra 17

We can realise ↓ and ↑ using binary relations R,R′ that must hold between
the events of joined traces. For combinable traces p, q we set

p ↓ q =df

{
1 if foc(p)× foc(q) ⊆ R ,
⊥ otherwise ,

p ↑ q =df

{
1 if foc(p)× foc(q) ⊆ R′ ,
� otherwise .

Here R and R′ are any of the relations listed for sequential and parallel compo-
sition, respectively, at the end of Section 3.

By definition, these operators satisfy p ↓ q ≤ 1 and 1 ≤ p ↑ q. Moreover, ↑
is commutative. Using the indivisibility of 1 one sees that ↓ and ↑ distribute
through trace join, i.e., (p � q) ↓ r = p ↓ r ◦ q ↓ r etc.

Definition 4.3. Sequential and parallel composition of tiles with combinable
traces are defined as follows:

(p, s) ; (p′, s′) =df (p � p′, s ◦ s′ ◦ p ↓ p′) ,
(p, s) | (p′, s′) =df (p � p′, s ◦ s′ ◦ p ↑ p′) .

Theorem 4.4. The operators ; and | are associative and | is commutative.
Moreover they satisfy the frame and exchange laws. Under the additional as-
sumptions �H ↓ p = 1 = p ↓�H = p ↑�H , the tile (�H , 1) is a shared unit of ;
and | in the set of all tracelets with common overall trace H.

The latter assumptions mean that the empty tracelet is error-free, which is
reasonable. By this Theorem we have provided a recipe for constructing specific
models to meet specific purposes, with a prior guarantee that the model will
satisfy the laws.

4.3 Programs and Lifting

A program is a set of tiles that is downward closed w.r.t. refinement ⇒ .
We already have presented the idea that operators on programs should arise

by pointwise lifting of the corresponding operators on tiles. Of course, this makes
sense only if also the laws for tiles lift to programs.

A sufficient condition for this is bilinearity, viz. that every variable occurs
exactly once on both sides of the law. Examples are associativity, commutativity
and neutrality in the case of equations and the frame and exchange laws in the
case of refinement laws.

While it is clear what equality means for programs, i.e., downward closed
sets of tiles, there are several ways to extend refinement to sets. We choose the
following definition:

p ⇒ p′ iff ∀ t ∈ p : ∃ t′ ∈ p′ : t ⇒ t′ .

By this, a program p refines a specification p′ if each of its tiles refines a tile
admitted by the specification. Downward closure implies that ⇒ in fact coincides
with inclusion ⊆ between programs. Hence the set of programs forms a complete

18 T. Hoare et al.

lattice w.r.t. the inclusion ordering; it has been called the Hoare power domain
in the theory of denotational semantics.

The operators at the tile level can be lifted to downward closed sets by
forming all possible combinations of the tiles in the operands and closing the
result set downward. For instance, p ; p′ is defined as the downward closure
dc({t ; t′ | t ∈ p, t′ ∈ p′}) =df {r | r ⇒ t ; t′ for some t ∈ p, t′ ∈ p′}, and anal-
ogously for the other operators. The lifted versions of covariant tile operators
are covariant again, but even distribute through arbitrary unions of programs.
Therefore, by the Tarski-Knaster fixed point theorem, recursion equations have
least and greatest solutions.

Moreover, it can be shown that with this construction bilinear refinement laws
lift to programs. We illustrate this for the case of the frame law p ; p′ ⇒ p | p′.

Assume r ∈ p ; p′. By the above definition there are t ∈ p, t′ ∈ p′ such that
r ⇒ t ; t′. Since the frame law holds at the tile level, we have t ; t′ ⇒ t | t′.
Moreover, t | t′ is in dc({t | t′ | t ∈ p, t′ ∈ p′}) = p | p′ and we are done.

By this and the second part of Theorem 4.4 the program

1 =df dc({(�H , 1) |H a graph})

is a shared unit of the liftings of ; and | to programs.

4.4 Residuals

By the distributivity of lifted covariant operators and completeness of the lat-
tice of downward closed programs the residuals mentioned in Section 2.1 are
guaranteed to exist. They can be defined by the Galois connections

p ⇒ q -; r iff p ; q ⇒ r ,
q ⇒ p ;- r iff p ; q ⇒ r .

This independent characterisation is necessary, since these operators cannot rea-
sonably be defined as the liftings of corresponding ones at the tile level. An anal-
ogous definition can be given for the magic wand -| . The semi-cancellation laws
of Section 2.1 are immediate consequences of these definitions. Residuals enjoy
many more useful properties, but we forego the details.

Endowing Concurrent Kleene Algebra
with Communication Actions

Jason Jaskolka, Ridha Khedri, and Qinglei Zhang

Department of Computing and Software, Faculty of Engineering
McMaster University, Hamilton, Ontario, Canada

{jaskolj,khedri,zhangq33}@mcmaster.ca

Abstract. Communication is integral to the understanding of agent
interactions in concurrent systems. In this paper, we propose a mathemati-
cal framework for communication and concurrency called Communicating
Concurrent Kleene Algebra (C2KA). C2KA extends concurrent Kleene al-
gebra with the notion of communication actions. This extension captures
both the influence of external stimuli on agent behaviour aswell as the com-
munication and concurrency of communicating agents.

Keywords: concurrency, communication, concurrent Kleene algebra, semi-
modules, specification, algebraic approaches to concurrency.

1 Introduction

Systems interact with other systems resulting in the development of patterns of
stimuli-response relationships. Therefore, models for concurrency are commonly
constructed upon the assumption of uninterruptible system execution or atomic
events. Models for concurrency differ in terms of how they capture this no-
tion. A coarse-grained classification categorises models for concurrency as either
state-based models or event-based models [4]. State-based models describe the
behaviour of a system in terms of the properties of its states. Typical state-based
approaches consist of representing system properties as formulae of temporal log-
ics, for example, such as LTL [26], CTL [2], or CTL∗ [5], and model-checking the
state space of the system against them. Conversely, event-based models represent
systems via structures consisting of atomic events. There is an extensive variety
of examples of event-based models for concurrency including labelled transition
systems [17], Petri nets [25], process calculi (e.g., CCS [22], CSP [7], ACP [1],
and π-calculus [24]), Hoare traces [8], Mazurkiewicz traces [21], synchronisation
trees [22], pomsets [27], and event structures [31].

Recently, Hoare et al. [9–12] proposed a formalism for modelling concurrency
called Concurrent Kleene Algebra (CKA). CKA extends the algebraic framework
provided by Kleene algebra by offering, aside from choice and finite iteration,
operators for sequential and concurrent composition.

In this paper, we propose a mathematical framework for communication and
concurrency called Communicating Concurrent Kleene Algebra (C2KA). It
extends the algebraic model of concurrent Kleene algebra and allows for the

P. Höfner et al. (Eds.): RAMiCS 2014, LNCS 8428, pp. 19–36, 2014.
c© Springer International Publishing Switzerland 2014

20 J. Jaskolka, R. Khedri, and Q. Zhang

separation of communicating and concurrent behaviour in a system and its en-
vironment. With C2KA, we are able to express the influence of external stimuli
on the behaviours of a system of agents resulting from the occurrence of external
events either from communication among agents or from the environment of a
particular agent. In this way, we can think about concurrent and communicating
systems from two different perspectives: a behavioural perspective and an ex-
ternal event (stimulus) perspective. We can obtain a behavioural perspective by
focussing on the behaviour of a particular agent in a communicating system and
considering the influence of stimuli, from the rest of the world in which the agent
resides, as transformations of the agent’s behaviour. Similarly, we can obtain an
external event perspective by considering the influence of agent behaviours as
transformations of external stimuli. It provides a framework which presents a dif-
ferent view of communication and concurrency than what is traditionally given
by existing process calculi.

The remainder of the paper is organised as follows. Section 2 discusses the no-
tions of external stimuli and induced behaviours and introduces a hybrid view of
agent communication. Section 3 provides the mathematical preliminaries needed
for the remainder of this paper. Section 4 presents the proposed mathematical
framework for communication and concurrency and the related results. Section 5
discusses the proposed framework and related work. Finally, Section 6 draws
conclusions and points to the highlights of our current and future work.

2 Stimuli and Induced Behaviours

An essential aspect of concurrent systems is the notion of communication. As
presented in [9–12], communication in CKA is not directly captured. Variables
and communication channels are modelled as sets of traces. Communication can
be perceived only when programs are given in terms of the dependencies of
shared events [13]. One needs to instantiate the low-level model of programs and
traces for CKA in order to define any sort of communication. We would like to
have a way to specify communication in CKA without the need to articulate the
state-based system of each action (i.e., at a convenient abstract level).

Furthermore, CKA does not directly deal with describing how the behaviours
of agents in a system are influenced by external stimuli. From the perspective
of behaviourism [30], a stimulus constitutes the basis for behaviour. In this way,
agent behaviour can be explained without the need to consider the internal states
of an agent. When examining the effects of external stimuli on agent behaviours,
it is important to note that every external stimulus invokes a response from an
agent. When the behaviour of an agent changes as a result of the response, we
say that the external stimulus influences the behaviour of the agent. Moreover,
it is important to have an understanding of how agent behaviours may evolve
due to the influence of external stimuli. In particular, it is often useful to have
an idea of the possible influence that any given external stimulus may have on
a particular agent. We call these possible influences, the induced behaviours via
external stimuli.

Endowing Concurrent Kleene Algebra with Communication Actions 21

Fig. 1. A hybrid view of agent communication

Agents can communicate via their shared environment and through their local
communication channels, but they may also be influenced by external stimuli.
For example, if we consider agents A1 and A2 (dotted box) depicted in Figure 1,
they have a shared environment through which they can communicate. Addi-
tionally, they have some communication channels at their disposal for sending
and receiving messages. However, the behaviour of A1 and A2 can be influenced
by the external stimuli coming from A3, for example. The system formed by A5

alone is a closed system and does not communicate with the rest of the world nei-
ther by external stimuli nor a shared environment. Consider the case where A1

is subjected to an external stimulus from A3. Then, A1 may respond to the stim-
ulus by changing its behaviour which can affect the communication between it
and A2. Currently, this notion cannot be directly handled with CKA. We would
like to have a mathematical framework for systems of communicating agents
which can capture both the influence of external stimuli on agent behaviour, as
well as the communication and concurrency of agents at the abstract algebraic
level.

3 Mathematical Background

In this section, we provide the mathematical preliminaries of monoids, semirings,
Kleene algebras, and semimodules, and we introduce concurrent Kleene algebra.

3.1 Monoids, Semirings, Kleene Algebras, and Semimodules

A monoid is a mathematical structure
(
S, ·, 1

)
consisting of a nonempty set S,

together with an associative binary operation · and a distinguished constant 1
which is the identity with respect to ·. A monoid is called commutative if · is
commutative and a monoid is called idempotent if · is idempotent.

A semiring is a mathematical structure
(
S,+, ·, 0, 1

)
where

(
S,+, 0

)
is a com-

mutative monoid and
(
S, ·, 1

)
is a monoid such that operator · distributes over

operator +. We say that element 0 is multiplicatively absorbing if it annihilates S
with respect to ·. We say that a semiring is idempotent if operator + is idem-
potent. Every idempotent semiring has a natural partial order ≤ on S defined

22 J. Jaskolka, R. Khedri, and Q. Zhang

by a ≤ b ⇐⇒ a+ b = b. Operators + and · are isotone on both the left and the
right with respect to ≤.

Kleene algebra extends the notion of idempotent semirings with the addition
of a unary operator for finite iteration.

Definition 1 (Kleene Algebra – e.g., [19]). A Kleene algebra is a mathe-
matical structure

(
K,+, ·, ∗, 0, 1

)
where

(
K,+, ·, 0, 1

)
is an idempotent semiring

with a multiplicatively absorbing 0 and identity 1 and where the following axioms
are satisfied for all a, b, c ∈ K:

(i) 1 + a · a∗ = a∗

(ii) 1 + a∗ · a = a∗
(iii) b+ a · c ≤ c =⇒ a∗ · b ≤ c
(iv) b+ c · a ≤ c =⇒ b · a∗ ≤ c

An important notion required for the proposed framework for communication
and concurrency is that of semimodules.

Definition 2 (Left S-semimodule – e.g., [6]). Let S =
(
S,+, ·, 0S , 1

)
be

a semiring and K =
(
K,⊕, 0K

)
be a commutative monoid. We call

(
SK,⊕

)
a

left S-semimodule if there exists a mapping S×K → K denoted by juxtaposition
such that for all s, t ∈ S and a, b ∈ K

(i) s(a⊕ b) = sa⊕ sb
(ii) (s+ t)a = sa⊕ sb
(iii) (s · t)a = s(ta)
(iv)

(
SK,⊕

)
is called unitary if it also satisfies 1a = a

(v)
(
SK,⊕

)
is called zero-preserving if it also satisfies 0Sa = 0K

A right S-semimodule can be defined analogously. From Definition 2, it is easy
to see that each unitary left S-semimodule

(
SK,⊕

)
has an embedded left S-

act SK with respect to the monoid
(
S, ·, 1

)
. We say that SK is a left S-act if

there exists a mapping satisfying Axioms (iii) and (iv) of Definition 2 [18].

3.2 Concurrent Kleene Algebra

Concurrent Kleene algebra is an algebraic framework extended from Kleene al-
gebra offering operators for sequential and concurrent composition, along with
those for choice and finite iteration. The operators for sequential and concurrent
composition are related by an inequational form of the exchange axiom.

Definition 3 (Concurrent Kleene Algebra – e.g., [9]). A concurrent Kleene
algebra (CKA) is a structure

(
K,+, ∗, ; , *©, ;©, 0, 1

)
such that

(
K,+, ∗, *©, 0, 1

)
and

(
K,+, ; , ;©, 0, 1

)
are Kleene algebras linked by the exchange axiom given by

(a ∗ b) ; (c ∗ d) ≤ (b ; c) ∗ (a ; d).

A selection of laws for CKA which are needed for the remainder of this paper
are found in [9] and are given in Proposition 1. An additional useful law is given
in Proposition 2.

Endowing Concurrent Kleene Algebra with Communication Actions 23

Proposition 1 (e.g., [9]). For all a, b, c, d ∈ K,

(i) a ∗ b = b ∗ a
(ii) (a ∗ b) ; (c ∗ d) ≤ (a ; c) ∗ (b ;d)
(iii) a ; b ≤ a ∗ b

(iv) (a ∗ b) ; c ≤ a ∗ (b ; c)
(v) a ; (b ∗ c) ≤ (a ; b) ∗ c

(vi) Proposition 2. For all a ∈ K, a ;© ≤ a *©.

Proof. The proof involves the application of Definition 1(iii), Definition 1(i),
and Proposition 1(iii). The detailed proof can be found in Appendix A of [16].

4 The Proposed Framework

In the following subsections, we first articulate the algebraic structures which
capture agent behaviours and external stimuli. After that, we use the aforemen-
tioned algebraic structures for agent behaviours and external stimuli to develop
the proposed framework for communication and concurrency. Throughout this
section, all omitted proofs can be found in Appendix A of [16].

4.1 A Simple Example of a System of Communicating Agents

We adapt a simple illustrative example from [23] to illustrate the basic notions
of specifying a system of communicating agents using the proposed framework.
Consider the behaviour of a one-place buffer. Suppose that the buffer uses two
flags to indicate its current status. Let flag1 denote the empty/full status of the
buffer and let flag2 denote the error status of the buffer. In this simple system
of communicating agents, assume that there are two basic system agents, P
and Q, which are responsible for controlling the buffer state flags flag1 and flag2,
respectively. Throughout the following subsections, we illustrate how we can
utilise the proposed framework to specify the communicating and concurrent
behaviours of the agents P and Q, as well as the overall system behaviour of the
one-place buffer.

4.2 Structure of Agent Behaviours

In [9–12], Hoare et al. presented the framework of concurrent Kleene algebra
which captures the concurrent behaviour of agents. In this paper, we adopt the
framework of CKA in order to describe agent behaviours in systems of com-
municating agents. In what follows, let K def

=
(
K,+, ∗, ; , *©, ;©, 0, 1

)
be called a

CKA.
It is important to note that throughout this paper, the term agent is used in

the sense used by Milner in [23] to mean any system whose behaviour consists
of discrete actions. In this way, an agent can be defined by simply describing its
behaviour. Because of this, we may use the terms agents and behaviours inter-
changeably. With this understanding of agents, the support set K of the CKA K
represents a set of possible behaviours. The operator + is interpreted as a choice

24 J. Jaskolka, R. Khedri, and Q. Zhang

between two behaviours, the operator ; is interpreted as a sequential composition
of two behaviours, and the operator ∗ is interpreted as a parallel composition of
two behaviours. The element 0 represents the behaviour of the inactive agent and
the element 1 represents the behaviour of the idle agent just as in many process
calculi. Moreover, associated with a CKA is a natural ordering relation ≤K rep-
resenting the sub-behaviour relation. For behaviours a, b ∈ K, a ≤K b indicates
that a is a sub-behaviour of b if and only if a+ b = b.

For the one-place buffer example of Section 4.1, we consider the following set
of events which are simple assignments to the buffer status flags:

P1
def
= (flag1 := off) Q1

def
= (flag2 := off)

P2
def
= (flag1 := on) Q2

def
= (flag2 := on)

In this way, K is generated by the set of basic behaviours {P1, P2, Q1, Q2, 0, 1}
where 0 is interpreted as abort and 1 is interpreted as skip .

4.3 Structure of External Stimuli

As mentioned in Section 2, a stimulus constitutes the basis for behaviour. Be-
cause of this, each discrete, observable event introduced to a system, such as
that which occurs through the communication among agents or from the system
environment, is considered to be an external stimulus which invokes a response
from each system agent.

Definition 4 (Stimulus Structure). Let S def
=
(
S,⊕,�, d, n

)
be an idempo-

tent semiring with a multiplicatively absorbing d and identity n. We call S a
stimulus structure.

Within the context of external stimuli, S is the set of external stimuli which
may be introduced to a system. The operator⊕ is interpreted as a choice between
two external stimuli and the operator� is interpreted as a sequential composition
of two external stimuli. The element d represents the deactivation stimulus which
influences all agents to become inactive and the element n represents the neutral
stimulus which has no influence on the behaviour of all agents. Furthermore,
each stimulus structure has a natural ordering relation ≤S representing the sub-
stimulus relation. For external stimuli s, t ∈ S, we write s ≤S t and say that s
is sub-stimulus of t if and only if s⊕ t = t.

Continuing with the one-place buffer example of Section 4.1, suppose that the
behaviour of each agent in the one-place buffer system is influenced by a number
of external stimuli which either place an item in the buffer, remove an item from
the buffer, or generate an error. We denote these stimuli by in , out , and error
respectively. These external stimuli form a stimulus structure S where S is gen-
erated by the set of basic external stimuli {in, out , error , d, n} where we inter-
pret d as a kill signal and n as any stimulus with no influence that belongs to the
complement of the set of external stimuli which may be introduced to a system.

Endowing Concurrent Kleene Algebra with Communication Actions 25

4.4 Communicating Concurrent Kleene Algebra (C2KA)

C2KA extends the algebraic foundation of CKA with the notions of semimod-
ules and stimulus structures to capture the influence of external stimuli on the
behaviour of system agents.

Definition 5 (Communicating Concurrent Kleene Algebra). A Commu-
nicating Concurrent Kleene Algebra (C2KA) is a system

(
S,K

)
, where S =(

S,⊕,�, d, n
)

is a stimulus structure and K =
(
K,+, ∗, ; , *©, ;©, 0, 1

)
is a CKA

such that
(
SK,+

)
is a unitary and zero-preserving left S-semimodule with

mapping ◦ : S ×K → K and
(
SK,⊕

)
is a unitary and zero-preserving right K-

semimodule with mapping1 λ : S×K → S, and where the following axioms are
satisfied for all a, b, c ∈ K and s, t ∈ S:

(i) s ◦ (a ; b) = (s ◦ a) ;
(
λ(s, a) ◦ b

)
(ii) c ≤K a ∨ (s◦a) ;

(
λ(s, c)◦b

)
= 0

(iii) λ(s� t, a) = λ
(
s, (t ◦ a)

)
� λ(t, a)

In essence, a C2KA consists of two semimodules which describe how the stim-
ulus structure S and the CKA K mutually act upon one another in order to
characterise the response invoked by an external stimulus on the behaviour of
an agent as a next behaviour and a next stimulus.

First, the left S-semimodule
(
SK,+

)
describes how the stimulus structure S

acts upon the CKA K via the mapping ◦. We call ◦ the next behaviour map-
ping since it describes how an external stimulus invokes a behavioural response
from a given agent. From

(
SK,+

)
, we have that the next behaviour mapping ◦

distributes over + and ⊕. Additionally, since
(
SK,+

)
is unitary, we have that

the neutral stimulus has no influence on the behaviour of all agents and since
it is zero-preserving, the deactivation stimulus influences all agents to become
inactive. Second, the right K-semimodule

(
SK,⊕

)
describes how the CKA K

acts upon the stimulus structure S via the mapping λ. We call λ the next stim-
ulus mapping since it describes how a new stimulus is generated as a result
of the response invoked by a given external stimulus on an agent behaviour.
From

(
SK,⊕

)
, we have that the next stimulus mapping λ distributes over ⊕

and +. Also, since
(
SK,⊕

)
is unitary, we have that the idle agent forwards

any external stimulus that acts on it and since
(
SK,⊕

)
is zero-preserving, the

inactive agent always generates the deactivation stimulus.
In Definition 5, Axiom (i) describes the interaction of the next behaviour

mapping ◦ with the sequential composition operator ; for agent behaviours.
This axiom corresponds to the definition of the transition function for the cas-
cading product (or synchronous serial composition) of Mealy automata [14].
Axiom (ii), which we call the cascading output law, states that when an external

1 We use an infix notation for the next behaviour mapping ◦ and a prefix notation for
the next stimulus mapping λ. We adopt these notations in an effort to reach out to
those in the communities of monoid acts and Mealy automata since they adopt a
similar non-uniform notation.

26 J. Jaskolka, R. Khedri, and Q. Zhang

stimulus is introduced to the sequential composition (a ; b), then the cascaded
stimulus must be generated by a sub-behaviour of a. In this way, the cascading
output law ensures consistency between the next behaviour and next stimulus
mappings with respect to the sequential composition of agent behaviours. It al-
lows distributivity of ◦ over ; to be applied indiscriminately. Finally, Axiom (iii)
describes the interaction of the next stimulus mapping λ with the sequential
composition operator � for external stimuli. This can be viewed as the analog
of Axiom (i) with respect to the next stimulus mapping λ when considering the
action of

(
SK,⊕

)
.

In a given system of communicating agents, agent behaviour can be initiated in
two ways. The first way to initiate agent behaviour in a system of communicating
agents is by reactivation. We say that a C2KA is with reactivation if s◦1 �= 1 for
some s ∈ S\{d}. Consider the case where the idle agent 1 is not fixed with respect
to some given external stimulus. Then, the passive idle agent could be influenced
to behave as any active agent. In this case, we say that the agent has been
reactivated as it then begins to actively participate in the system operation. If a
C2KA is without reactivation, then the idle agent 1 reflects an idle behaviour that
is not influenced by any external stimulus other than the deactivation stimulus.
In this case, the idle agent does not actively participate in the operation of a
system and it cannot initiate agent behaviours. The second way in which agent
behaviour can be initiated in a system of communicating agents is by external
stimuli. In a C2KA, we say that an agent a ∈ K\{0, 1} is a stimulus initiator if
and only if λ(n, a) �= n. When an agent is a stimulus initiator then that agent may
generate a new stimulus without outside influence. Because

(
SK,⊕

)
is unitary

and zero-preserving, the inactive agent 0 and the idle agent 1 cannot be stimulus
initiators. Intuitively, the inactive agent is not a stimulus initiator since it can
only generate the deactivation stimulus to influence all other agents to cease
their behaviours and become inactive. Likewise, the idle agent is not a stimulus
initiator since it can be seen as having no state-changing observed behaviour
and therefore it cannot generate any stimuli.

A Comment on aModel for C2KA. In [9–12], we find the following model for
CKA. Let EV be a set of event occurrences. A trace is a set of events and a pro-
gram is a set of traces. The set of all traces over EV is denoted by TR(EV)

def
=

P(EV) and the set of all programs is denoted by PR(EV)
def
= P(TR(EV)).

Obviously,
(
PR(EV),∪, ∗, ; , *©, ;©, ∅, {∅}

)
is a CKA [9–12]. Moreover, the struc-

ture of external stimuli is modelled by sets of strings. In this way, it is easy to
see that

(
P(Λ),∪, •, ∅, {ε}

)
is a stimulus structure where Λ is a set of alphabet

symbols, • denotes set concatenation, and ε is the empty string.
In a C2KA, the semimodules

(
SK,+

)
and

(
SK,⊕

)
contain a left S-act SK

and a right K-act KS , respectively. It is well known that monoid acts can
be considered as semiautomata [18, pg. 45]. By combining these two semiau-
tomata, we obtain a Mealy automaton. A Mealy automaton is given by a five-
tuple

(
Q,Σ,Θ, F,G

)
[14]. The set of states Q is a subset of PR(EV) (i.e.,

the set K). In this way, each state of the Mealy automaton represents a possi-
ble program that can be executed by the system as a reaction to the stimulus

Endowing Concurrent Kleene Algebra with Communication Actions 27

(input) leading to the state. The input alphabet Σ and output alphabet Θ are
given by the stimulus structure such that Σ = Θ = S. Finally, the transition
function F : Σ × Q → Q and the output function G : Σ × Q → Θ corre-
spond to the next behaviour mapping ◦ : S ×K → K and next stimulus map-
ping λ : S × K → S, respectively. These mappings respectively correspond to
the transition functions from the semiautomata representations of SK and KS .

The proposed model is also equipped with two operations for Mealy automata.
The operation ; is associative and the operation + is associative, idempotent,
and commutative. The ; operation corresponds to the cascading product of
Mealy automata and the operation + corresponds to the full direct product of
Mealy automata [14].

Proposition 3. Let
(
S,K

)
be a C2KA. For all a, b ∈ K and s, t ∈ S:

(i) a ≤K b ∧ s ≤S t =⇒ s ◦ a ≤K t ◦ b
(ii) a ≤K b ∧ s ≤S t =⇒ λ(s, a) ≤S λ(t, b)

The isotonicity laws of Corollary 1 follow immediately from Proposition 3.
In [9], an idempotent semiring is called a quantale if the natural order induces
a complete lattice and multiplication distributes over arbitrary suprema.

Corollary 1. In a C2KA where the underlying CKA and stimulus structure are
built up from quantales, the following laws hold:

(i) a ≤K b =⇒ s ◦ a ≤K s ◦ b
(ii) s ≤S t =⇒ s ◦ a ≤K t ◦ a
(iii) s ◦ (a ; b+ b ; a) ≤K s ◦ (a ∗ b)
(iv) s ◦ a ;© ≤K s ◦ a *©

(v) s ◦ a ;© = +(n | n ≥ 0 : s ◦ an)

(vi) s ≤S t =⇒ λ(s, a) ≤S λ(t, a)
(vii) a ≤K b =⇒ λ(s, a) ≤S λ(s, b)
(viii) λ(s, (a ; b+ b ; a)) ≤S λ(s, (a ∗ b))
(ix) λ(s, a ;©) ≤S λ(s, a *©)
(x) λ(s, a ;©)=⊕(n | n ≥ 0 : λ(s, an))

4.5 Specifying Systems of Communicating Agents with C2KA

In order to specify a system of communicating agents using C2KA, we have
three levels of specification. Using the illustrative example of the one-place buffer
from Section 4.1, we show how to specify the system agents using the proposed
framework.

The stimulus-response specification of agents level gives the specification of
the next behaviour mapping ◦ and the next stimulus mapping λ for each agent
in the system. Assuming that we have a C2KA without reactivation, the agent
behaviours of P and Q are compactly specified as shown in Table 1. By compos-
ing the behaviours of P and Q, we are able to obtain the complete behaviour of
the one-place buffer. The full stimulus-response specification of the buffer agent
can be found in Table 3 in [16].

The abstract behaviour specification level restricts the specification to the de-
sired behaviour of an agent in the communicating system by computing the
responses to the external stimuli that can be introduced into the system in the
given context. In the one-place buffer example, consider a context in which we

28 J. Jaskolka, R. Khedri, and Q. Zhang

Table 1. Stimulus-Response Specification for Agents P and Q

P
def
= P1 + P2 Q

def
= Q1 +Q2

◦P n in out error

P1 P1 P2 P1 P1

P2 P2 P2 P1 P2

◦Q n in out error

Q1 Q1 Q1 Q1 Q2

Q2 Q2 Q2 Q2 Q2

λP n in out error

P1 n n error n

P2 n error n n

λQ n in out error

Q1 n n n n

Q2 n n n n

∀(Pi, Qi | 1 ≤ i ≤ 2 : d ◦ Pi = 0 ∧ d ◦Qi = 0 ∧ λ(d, Pi) = d ∧ λ(d, Qi) = d)

only consider the buffer as behaving either as an empty buffer or as a full buffer.
Furthermore, assume that the behaviour of the buffer may only be influenced
by the introduction of in and out stimuli since these are the only stimuli that
another external agent may have control over. This is to say that an external
agent cannot issue an error since this is an uncontrollable stimulus which cannot
be issued at will. In this way, after simple computation, we find that the abstract
behaviour of the one-place buffer is given by P1 ;Q1+P1 ;Q2+P2 ;Q1+P2 ;Q2.
At the abstract behaviour specification level, C2KA can be viewed as an event-
based model of communication. In C2KA, the left S-semimodule

(
SK,+

)
and

the right K-semimodule
(
SK,⊕

)
allow us to specify how the external stimuli

influence the behaviour of each agent in a given system. For this reason, this
level of specification is best suited for describing message passing communica-
tion where agents transfer information explicitly through the exchange of data
structures, either synchronously or asynchronously.

Finally, the concrete behaviour specification level provides the state-level spec-
ification of each agent behaviour (i.e., each program). At this level, we define
the concrete programs for each of the CKA terms which specify each agent be-
haviour. The concrete behaviour specification provides the following state-level
programs for each behaviour of the one-place buffer.

empty def
= P1 ;Q1 = (flag1 := off ; flag2 := off)

full def
= P2 ;Q1 = (flag1 := on ; flag2 := off)

underflow def
= P1 ;Q2 = (flag1 := off ; flag2 := on)

overflow def
= P2 ;Q2 = (flag1 := on ; flag2 := on)

Fig. 2. Concrete behaviour specification of the one-place buffer

Since C2KA extends concurrent Kleene algebra, it inherits this model of com-
munication from CKA. Just as in CKA, the instantiation of a low-level model
of programs and traces for C2KA affords the ability to specify communication
through shared events and the dependencies between them. Because of this,
this level of specification is best suited for shared-variable communication where
agents transfer information through a shared medium such as variables, memory
locations, etc.

Endowing Concurrent Kleene Algebra with Communication Actions 29

Depending on which level of specification we are working at, the model can be
viewed as either event-based or state-based. This gives flexibility in allowing us to
choose which level is most suitable for the given problem. The context of the given
problem will help to dictate at which level we need to work. For a full treatment
of the illustrative example of the one-place buffer, the reader is referred to [16].

4.6 C2KA and Orbits, Stabilisers, and Fixed Points

Orbits, stabilisers, and fixed points are notions that allow us to perceive a kind of
topology of a system with respect to the stimulus-response relationships among
the system agents. Because of this, we are able to gain some insight into the
communication channels that can be established among system agents. For ex-
ample, with C2KA, we are able to compute the strong orbits (presented below) of
the agent behaviours in a given system. The strong orbits represent the strongly
connected agent behaviours in the system and therefore can provide some insight
into the abilities of the agents in the same strong orbit to influence one another’s
behaviour through communication. Furthermore, having an idea of the topology
of the system allows for the abstraction of components of the overall system be-
haviour. This kind of abstraction can aid in separating the communicating and
concurrent behaviour in a system and its environment. Moreover, computing the
orbits and stabilisers of agent behaviours can aid in the analysis and verification
of systems of communicating agents, since it allows us to model the possible re-
action of a system to a stimulus. Also, they allow us, in some cases, to reduce the
analysis to only some relevant orbits of a system. Similarly, stabilisers allow us
to reduce the analysis to studying only the stimuli that influence the behaviour
of an agent. We conjecture that such reduction could, for example, alleviate the
state explosion problem in model checking.

Since a C2KA consists of two semimodules
(
SK,+

)
and

(
SK,⊕

)
for which we

have a left S-act SK and a rightK-act SK, we have two complementary notions of
orbits, stabilisers, and fixed points within the context of agent behaviours and
external stimuli, respectively. In this way, one can use these notions to think
about concurrent and communicating systems from two different perspectives,
namely the behavioural perspective provided by the action of external stimuli on
agent behaviours described by

(
SK,+

)
and the external event (stimulus) per-

spective provided by the action of agent behaviours on external stimuli described
by
(
SK,⊕

)
. In this section, we focus only on the treatment of these notions with

respect to the left S-semimodule
(
SK,+

)
and agent behaviours. In a very sim-

ilar way, we can present the same notions for the right K-semimodule
(
SK,⊕

)
and external stimuli.

Definition 6 recalls the notions of orbits, stabilisers, and fixed points from the
mathematical theory of monoids acting on sets [18].

Definition 6. Let
(
SK,+

)
be the unitary and zero-preserving left S-semimodule

of a C2KA and let a ∈ K.
(i) The orbit of a in S is the set given by Orb(a) = {s ◦ a | s ∈ S}.
(ii) The strong orbit of a in S is the set given by OrbS(a) = {b ∈ K | Orb(b) =

Orb(a)}.

30 J. Jaskolka, R. Khedri, and Q. Zhang

(iii) The stabiliser of a in S is the set given by Stab(a) = {s ∈ S | s ◦ a = a}.
(iv) An element a ∈ K is called a fixed point if ∀(s | s ∈ S\{d} : s ◦ a = a).

We can define a preorder on K as a �K b ⇐⇒ Orb(a) ⊆ Orb(b). Given
this preorder, we can obtain an equivalence relation ∼K from the intersection
of �K and �K. The equivalence classes of ∼K give the strong orbits [20]. The
strong orbits can also be viewed as the strongly connected components of a di-
rected graph [29]. Additionally, when a ∈ K is a fixed point, Orb(a) = {0, a}
and Stab(a) = S\{d}. It is important to note that since

(
SK,+

)
is zero-

preserving, every agent behaviour becomes inactive when subjected to the deac-
tivation stimulus d. Because of this, we exclude this special case when discussing
fixed agent behaviours.

Before we discuss the interplay between C2KA and the notions of orbits, sta-
bilisers, and fixed points, we first extend the partial order of sub-behaviours ≤K
to sets in order to express sets of agent behaviours encompassing one another.

Definition 7 (Encompassing Relation). Let A,B ⊆ K be two subsets of
agent behaviours. We write A�K B and say that A is encompassed by B (or B
encompasses A) if and only if ∀

(
a | a ∈ A : ∃(b | b ∈ B : a ≤K b)

)
.

The encompassing relation �S for external stimuli can be defined similarly.

Orbits. The orbit of an agent a ∈ K represents the set of all possible behavioural
responses from an agent behaving as a to any external stimulus from S. In
this way, the orbit of a given agent can be perceived as the set of all possible
future behaviours for that agent. With regard to the specification of the one-
place buffer, we can compute the orbits of each of the buffer behaviours. For
instance, Orb(empty) = {empty, full, underflow, overflow}.

Proposition 4 provides an isotonicity law with respect to the orbits and the
encompassing relation for agent behaviours.

Proposition 4. Let
(
S,K

)
be a C2KA. Then, a ≤K b =⇒ Orb(a) �K Orb(b)

for all a, b ∈ K.

A selection of additional properties follow immediately from Proposition 4
and are given in Corollary 2.

Corollary 2. In a C2KA the following laws hold for all a, b, c ∈ K:

(i) Orb(a)�K Orb(a+ b)
(ii) Orb((a ∗ b) ; (c ∗ d))�K Orb((a ; c) ∗ (b ; d))
(iii) Orb(a ; b)�K Orb(a ∗ b)
(iv) Orb(a ; b+ b ; a)�K Orb(a ∗ b)
(v) Orb((a ∗ b) ; c)�K Orb(a ∗ (b ; c))
(vi) Orb(a ; (b ∗ c))�K Orb((a ; b) ∗ c)
(vii) Orb(a ;©)�K Orb(a *©)
(viii) Orb(a)�KOrb(c) ∧ Orb(b)�KOrb(c) ⇐⇒ Orb(a) ∪ Orb(b)�KOrb(c)

As stated before, without discussing the properties derived from the right K-
semimodule

(
SK,⊕

)
, due to the cascading output law (see Definition 5 (ii)), we

also have that Orb((s◦a) ;
(
λ(s, c) ◦ b

)
) = {0} for any (a ; b) ∈ K and ¬(c ≤K a).

Endowing Concurrent Kleene Algebra with Communication Actions 31

Another Interpretation of Orbits. As mentioned in Section 2, we call the
influence of external stimuli on agent behaviours the induced behaviours via
external stimuli. The notion of induced behaviours allows us to make some pre-
dictions about the evolution of agent behaviours in a given system by providing
some insight into the topology of the system and how different agents can re-
spond to any external stimuli. Here, we provide a formal treatment of the notion
of induced behaviours. While studying induced behaviours, we focus particularly
on the next behaviour mapping ◦ and the effects of external stimuli on agent be-
haviours since we are interested in examining the evolution of agent behaviours
via the influence of external stimuli in a given system of communicating agents.

Definition 8 (Induced Behaviour). Let a, b ∈ K be agent behaviours such
that a �= b. We say that b is induced by a via external stimuli (denoted by a� b)
if and only if ∃(s | s ∈ S : s ◦ a = b).

Equivalently, we can express a� b ⇐⇒ b ∈ Orb(a) for a �= b. In this way, it
can be seen that the orbit of a behaviour a represents the set of all behaviours
which are induced by a via external stimuli. Considering the one-place buffer
example, it is plain to see, for instance, that empty � underflow via the
external stimulus out and empty�overflow via the external stimulus in� in.

Strong Orbits. Two agents are in the same strong orbit, denoted a ∼K b
for a, b ∈ K, if and only if their orbits are identical. This is to say when a ∼K b,
if an agent behaving as a is influenced by an external stimulus to behave as b, then
there exists an external stimulus which influences the agent, now behaving as b,
to revert back to its original behaviour a. Furthermore, if a ∼K b, then ∃(s, t |
s, t ∈ S : s◦a = b ∧ t◦ b = a). In this case, the external stimuli s and t can be
perceived as inverses of one another and allow us to revert an agent back to its
original behaviour since t◦s ◦ a = a and s◦t ◦ b = b (i.e., s�t ∈ Stab(a) and t�s ∈
Stab(b)). In the specification of the one-place buffer, we have two strong orbits,
namely, those given by {empty, full} and {underflow,overflow} which
represent the behaviours from agents P and Q, respectively. This is to say that
we have (empty ∼K full) and (underflow ∼K overflow).

Stabilisers. For any agent a ∈ K, the stabiliser of a represents the set of
external stimuli which have no observable influence (or act as neutral stimuli)
on an agent behaving as a. In the illustrative example of the one-place buffer, we
can compute the stabilisers of each of the buffer behaviours from the specification
of the buffer agent. For example, Stab(empty) is generated by {error , in�out}.

By straightforward calculation and the definition of the encompassing rela-
tion �S for external stimuli, we have that Stab(a) ∩ Stab(b) �S Stab(a + b)
for a, b ∈ K. However, consider a case where ∃(s | s ∈ S : s ◦ a = b ∧
s ◦ b = a). Then, s /∈ Stab(a) and s /∈ Stab(b) but s ∈ Stab(a + b). There-
fore, it is easy to see that in general ¬

(
Stab(a + b) �S

(
Stab(a) ∩ Stab(b)

))
and ¬

(
Stab(a+ b)�S

(
Stab(a) ∪ Stab(b)

))
.

32 J. Jaskolka, R. Khedri, and Q. Zhang

Fixed Points. Depending on the given specification of a system of commu-
nicating agents, there may be any number of fixed points with respect to the
next behaviour mapping ◦. When an agent behaviour is a fixed point, it is not
influenced by any external stimulus other than the deactivation stimulus d. For
example, with regard to the specification of agents for the one-place buffer exam-
ple, it is easy to see that the behaviour Q2 is a fixed point. The existence of fixed
point behaviours is important when considering how agents can communicate
via external stimuli. For instance, an agent that has a fixed point behaviour,
does not have any observable response to any external stimuli (except for the
deactivation stimulus) and therefore it can be seen that such an agent cannot
be a receiver in any sort of communication via external stimuli.

Proposition 5 gives a selection of properties regarding fixed agent behaviours.

Proposition 5. Let
(
S,K

)
be a C2KA and let a, b ∈ K such that a and b are

fixed points. We have:

(i) 0 is a fixed point
(ii) a+ b is a fixed point
(iii) a ; b is a fixed point
(iv) a ;© is a fixed point if additionally

(
S,K

)
is without reactivation

In Proposition 5, Identity (i) states that the inactive agent 0 is a fixed point
with respect to the next behaviour mapping ◦. In this way, the inactive agent is
not influenced by any external stimulus. Similarly, we can see that the deactiva-
tion stimulus d is a fixed point with respect to the next stimulus mapping λ if
we consider the notion of a fixed point in terms of external stimuli. Identity (ii)
(resp. (iii) and (iv)) state that the choice (resp. sequential composition and se-
quential iteration) of fixed point behaviours results in a fixed point behaviour.
In general, even if a, b ∈ K are both fixed points, we are unable to say anything
about (a ∗ b) as a fixed point.

Proposition 6 provides further insight into how the topology of a system of
communicating agents can be perceived using C2KA and the notion of induced
behaviours.

Proposition 6. Let a, b, c ∈ K be agent behaviours.

(i) a is a fixed point =⇒ ∀(b | b ∈ K ∧ b �= 0 ∧ b �= a : ¬(a� b))
(ii) a ∼K b =⇒ a� b ∧ b� a
(iii) a ∼K b =⇒ (a� c ⇐⇒ b � c)

Proposition 6(i) states that if an agent has a fixed point behaviour, then it
does not induce any agent behaviours via external stimuli besides the inactive be-
haviour 0. This is a direct consequence of the fact that an agent with a fixed point
behaviour is not influenced by any external stimuli (except for the deactivation
stimulus d) and therefore remains behaving as it is. Proposition 6(ii) states that
all agent behaviours which belong to the same strong orbit are mutually induced

Endowing Concurrent Kleene Algebra with Communication Actions 33

via some (possibly different) external stimuli. This is to say that if two agent be-
haviours are in the same strong orbit, then there exists inverse stimuli for each
agent behaviour in a strong orbit allowing an agent to revert back to its original
behaviour. Finally, Proposition 6(iii) states that if two agent behaviours are in the
same strong orbit, then a third behaviour can be induced via external stimuli by
either of the behaviours within the strong orbit. This is to say that each behaviour
in a strong orbit can induce the same set of behaviours (perhaps via different ex-
ternal stimuli). Therefore, the strong orbit to which these behaviours belong can
be abstracted and perceived as an equivalent agent behaviour with respect to the
behaviours which it can induce via external stimuli.

5 Related Work and Discussion

Existing state-based and event-based formalisms for communication and concur-
rency such as temporal logics, labelled transition systems, Petri nets, and process
calculi are primarily interested in modelling the behaviour of a system either in
terms of the properties of its states or in terms of the observability of events.
However, they do not directly, if at all, provide a hybrid model of communica-
tion and concurrency which encompass the characteristics of both state-based
and event-based models. Concurrent Kleene algebra is perhaps the closest for-
malism to providing such a hybrid model. While CKA can be perceived as a
hybrid model for concurrency, the same cannot be said for communication since
communication in CKA is not directly evident.

C2KA offers an algebraic setting which can capture both the influence of
external stimuli on agent behaviour as well the communication and concurrency
of agents at the abstract algebraic level. It uses notions from classical algebra to
extend the algebraic foundation provided by CKA. If we consider a C2KA with
a trivial stimulus structure (i.e., S = {n}), then the next behaviour and next
stimulus mappings are trivial and the C2KA reduces to a CKA.

In the past, communication has been studied in process algebras such as CCS
and CSP. As discussed in [9, 11, 12], some analogies can be made between relating
CKA with process algebras. Therefore, if we consider the case where we have a
trivial stimulus structure, then we can make the same kind of analogies relating
C2KA with existing process algebras.

In [9–12], Hoare et al. have taken steps towards investigating some aspects of
communication through the derivation of rules for a simplified rely/
guarantee calculus using CKA. However, this kind of communication is only
captured via shared events. Since the proposed framework provides an exten-
sion of CKA, it is also capable of achieving these results. Furthermore, C2KA
supports the ability to work in either a state-based model (as illustrated by Fig-
ure 2) or an event-based model (as illustrated by Table 1) for the specification
of concurrent and communicating systems. It gives us the ability to separate
the communicating and concurrent behaviour in a system and its environment.
This separation of concerns allows us to consider the influence of stimuli from
the world in which the agent resides as transformations of agent behaviour and

34 J. Jaskolka, R. Khedri, and Q. Zhang

yields the three levels of specification offered by C2KA. With these levels of
specification, C2KA is able to capture the notions of message passing commu-
nication and shared-variable communication consistent with the hybrid view of
agent communication depicted in Figure 1. Specifically, at the abstract behaviour
specification level, we are interested only in the behaviour of an agent as dictated
by the stimulus-response relationships that exist in the given system. In this way,
the behaviour of an agent is dictated by its responses to external stimuli without
the need to articulate the internal state-based system of each behaviour. On the
other hand, by instantiating a concrete model of agent behaviour, such as that
of programs and traces similar to what is done with CKA [9–12] at the concrete
behaviour specification level, we have the ability to define the state-based model
of agent behaviour. In this way, if the given problem requires insight into how
external stimuli are processed by an agent, the concrete behaviour specification
level affords the ability to specify such internal states of agent behaviours in
terms of programs on concrete state variables. Because of this, C2KA is flexible
in allowing the context of the given problem to dictate which level of abstrac-
tion is most suitable. For example, if the given problem need not worry about
the internal states of agent behaviours, then we can specify the system at the
abstract behaviour specification level without any modifications to the proposed
framework. Moreover, C2KA inherits the algebraic foundation of CKA with all
of its models and theory.

6 Conclusion and Future Work

In this paper, we proposed a mathematical framework for communication and
concurrency called Communicating Concurrent Kleene Algebra (C2KA). C2KA
extends the algebraic setting of concurrent Kleene algebra with semimodules in
order to capture the influence of external stimuli on the behaviour of system
agents in addition to the communication among agents through shared variables
and communication channels. C2KA supports the ability to work in either a
state-based or event-based model for both the specification of communicating
and concurrent behaviour by providing three levels of specification which reflect
different levels of abstraction for the behaviour of agents in a given system. To
the best of our knowledge, such a formalism does not currently exist in the liter-
ature and is required for dealing with problems such as studying the necessary
conditions for covert channel existence [15]. A hybrid view of communication
among agents and the influence of external stimuli on agent behaviour needs
to be considered when examining the potential for communication condition for
covert channels. Because of the separation of communicating and concurrent be-
haviour, we expect that C2KA can aid in designing and analysing systems which
are robust against covert communication channels. Since it provides a means for
specifying systems of communicating agents, C2KA can be an integral part of
verifying the necessary conditions for covert channels [15]. We are using it to
formalise and verify the potential for communication condition for covert chan-
nel existence. Also, we are developing a prototype tool using the Maude term

Endowing Concurrent Kleene Algebra with Communication Actions 35

rewriting system [3] to support the automated computation and specification of
systems of communicating agents using C2KA. In future work, we aim to exam-
ine the ability to adapt C2KA for use in solving interface equations (e.g., [28])
which can allow for implicit agent behaviour specifications in a variety of appli-
cation domains. Furthermore, we intend to further investigate the theory and
use of C2KA to capture and explain the influence of external stimuli on agent
behaviour in social networking environments.

Acknowledgements. This research is supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC) through the grant
RGPIN227806-09 and the NSERC PGS D program. We would also like to thank
the anonymous reviewers for their valuable comments which helped us consid-
erably improve the quality of the paper.

References

1. Bergstra, J., Klop, J.: Process algebra for synchronous communication. Information
and Control 60(1-3), 109–137 (1984)

2. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982)

3. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott,
C.: The Maude 2.0 System. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706,
pp. 76–87. Springer, Heidelberg (2003)

4. Cleaveland, R., Smolka, S.: Strategic directions in concurrency research. ACM
Computing Surveys 28(4), 607–625 (1996)

5. Emerson, E., Halpern, J.: “sometimes” and “not never” revisited: On branching
versus linear time temporal logic. Journal of the ACM 33(1), 151–178 (1986)

6. Hebisch, U., Weinert, H.: Semirings: Algebraic Theory and Applications in Com-
puter Science. Series in Algebra, vol. 5. World Scientific (1993)

7. Hoare, C.: Communicating sequential processes. Communications of the
ACM 21(8), 666–677 (1978)

8. Hoare, C.: Communicating Sequential Processes. Prentice-Hall (1985)
9. Hoare, C., Möller, B., Struth, G., Wehrman, I.: Concurrent Kleene algebra. In:

Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 399–414.
Springer, Heidelberg (2009)

10. Hoare, C., Möller, B., Struth, G., Wehrman, I.: Foundations of concurrent Kleene
algebra. In: Berghammer, R., Jaoua, A.M., Möller, B. (eds.) RelMiCS/AKA 2009.
LNCS, vol. 5827, pp. 166–186. Springer, Heidelberg (2009)

11. Hoare, C., Möller, B., Struth, G., Wehrman, I.: Concurrent Kleene algebra and its
foundations. Tech. Rep. CS-10-04, University of Sheffield, Department of Computer
Science, Sheffield, UK (August 2010), http://www.dcs.shef.ac.uk/~georg/ka/

12. Hoare, C., Möller, B., Struth, G., Wehrman, I.: Concurrent Kleene algebra and its
foundations. Journal of Logic and Algebraic Programming 80(6), 266–296 (2011)

13. Hoare, C., Wickerson, J.: Unifying models of data flow. In: Broy, M., Leuxner,
C., Hoare, C. (eds.) Proceedings of the 2010 Marktoberdorf Summer School on
Software and Systems Safety, pp. 211–230. IOS Press (August 2011)

http://www.dcs.shef.ac.uk/~georg/ka/

36 J. Jaskolka, R. Khedri, and Q. Zhang

14. Holcombe, W.: Algebraic Automata Theory. Cambridge Studies in Advanced
Mathematics. Cambridge University Press (2004)

15. Jaskolka, J., Khedri, R., Zhang, Q.: On the necessary conditions for covert chan-
nel existence: A state-of-the-art survey. Procedia Computer Science 10, 458–465
(2012); Proceedings of the 3rd International Conference on Ambient Systems, Net-
works and Technologies, ANT 2012 (2012)

16. Jaskolka, J., Khedri, R., Zhang, Q.: Foundations of communicating concur-
rent Kleene algebra. Tech. Rep. CAS-13-07-RK, McMaster University, Hamilton,
Ontario, Canada (November 2013),
http://www.cas.mcmaster.ca/cas/0template1.php?601

17. Keller, R.: Formal verification of parallel programs. Communications of the
ACM 19(7), 371–384 (1976)

18. Kilp, M., Knauer, U., Mikhalev, A.: Monoids, Acts And Categories With Applica-
tions to Wreath Products and Graphs: A Handbook for Students and Researchers.
De Gruyter Expositions in Mathematics Series, vol. 29. Walter de Gruyter (2000)

19. Kozen, D.: Automata and Computability. Undergraduate Texts in Computer Sci-
ence. Springer (1997)

20. Linton, S., Pfeiffer, G., Robertson, E., Ruškuc, N.: Computing transformation semi-
groups. Journal of Symbolic Computation 33(2), 145–162 (2002)

21. Mazurkiewicz, A.: Trace theory. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
APN 1986. LNCS, vol. 255, pp. 278–324. Springer, Heidelberg (1987)

22. Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer,
Heidelberg (1980)

23. Milner, R.: Communication and Concurrency. Prentice-Hall International Series in
Computer Science. Prentice Hall (1989)

24. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes part I. Informa-
tion and Computation 100(1), 1–40 (1992)

25. Petri, C.: Kommunikation mit Automaten. Ph.D. thesis, Institut für instrumentelle
Mathematik, Bonn, Germany (1962), English translation available as: Communi-
cation with Automata, Technical Report RADC-TR-65-377, vol. 1, supplement 1,
Applied Data Research, Princeton, NJ (1966)

26. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, pp. 46–57 (1977)

27. Pratt, V.: Modeling concurrency with partial orders. International Journal of Par-
allel Programming 15(1), 33–71 (1986)

28. Shields, M.: Implicit system specification and the interface equation. The Computer
Journal 32(5), 399–412 (1989)

29. Steinberg, B.: A theory of transformation monoids: Combinatorics and represen-
tation theory. The Electronic Journal of Combinatorics 17(1) (2010)

30. Watson, J.: Behaviorism. University of Chicago Press (1930)
31. Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)

APN 1986. LNCS, vol. 255, pp. 325–392. Springer, Heidelberg (1987)

http://www.cas.mcmaster.ca/cas/0template1.php?601

Concurrent Kleene Algebra with Tests

Peter Jipsen

Chapman University, Orange, California 92866, USA
jipsen@chapman.edu

Abstract. Concurrent Kleene algebras were introduced by Hoare, Möl-
ler, Struth and Wehrman in [HMSW09, HMSW09a, HMSW11] as idem-
potent bisemirings that satisfy a concurrency inequation and have a
Kleene-star for both sequential and concurrent composition. Kleene al-
gebra with tests (KAT) were defined earlier by Kozen and Smith [KS97].
Concurrent Kleene algebras with tests (CKAT) combine these concepts
and give a relatively simple algebraic model for reasoning about opera-
tional semantics of concurrent programs. We generalize guarded strings
to guarded series-parallel strings, or gsp-strings, to provide a concrete lan-
guage model for CKAT. Combining nondeterministic guarded automata
[Koz03] with branching automata of Lodaya and Weil [LW00] one obtains
a model for processing gsp-strings in parallel, and hence an operational
interpretation for CKAT. For gsp-strings that are simply guarded strings,
the model works like an ordinary nondeterministic guarded automaton.
If the test algebra is assumed to be {0, 1} the language model reduces to
the regular sets of bounded-width sp-strings of Lodaya and Weil.

Since the concurrent composition operator distributes over join, it can
also be added to relation algebras with transitive closure to obtain the
variety CRAT. We provide semantics for these algebras in the form of
coalgebraic arrow frames expanded with concurrency.

Keywords: Concurrent Kleene algebras, Kleene algebras with tests,
parallel programming models, series-parallel strings, relation algebras
with transitive closure.

1 Introduction

Relation algebras and Kleene algebras with tests have been used to model speci-
fications and programs, while automata and coalgebras have been used to model
state based systems and object-oriented programs. To compensate for plateauing
processor speed, multi-core architectures and cluster-computing are becoming
widely available. However there is little agreement on how to efficiently develop
software for these technologies or how to model them with suitably abstract
and simple principles. The recent development of concurrent Kleene algebra
[HMSW09, HMSW09a, HMSW11] builds on a computational model that is well
understood and has numerous applications. Hence it is useful to explore which
aspects of Kleene algebras can be lifted fairly easily to the concurrent setting,
and whether the simplicity of regular languages and guarded strings can be pre-
served along the way. For the nonguarded case many interesting results have

P. Höfner et al. (Eds.): RAMiCS 2014, LNCS 8428, pp. 37–48, 2014.
c© Springer International Publishing Switzerland 2014

38 P. Jipsen

been obtained by Lodaya and Weil [LW00] using labeled posets (or pomsets)
of Pratt [Pra86] and Gisher [Gis88], but restricted to the class of series-parallel
pomsets called sp-posets. This is a special case of the set-based traces and depen-
dency relation used in [HMSW09, HMSW09a, HMSW11] to motivate the laws of
CKA. Here we investigate how to extend guarded strings to handle concurrent
composition with the same approach as for sp-posets in [LW00].

Recall from [KS97] that a Kleene algebra with tests (KAT) is an idempotent
semiring with a Boolean subalgebra of tests and a unary Kleene-star operation
that plays the role of reflexive-transitive closure. More precisely, it is a two-
sorted algebra of the form A = (A,A′,+, 0, ·, 1, ,̄∗) where A′ is a subset of A,
(A,+, 0, ·, 1,∗) is a Kleene algebra and (A′,+, 0, ·, 1,)̄ is a Boolean algebra (the
complementation operation is only defined on A′).

Let Σ be a set of basic program symbols p, q, r, p1, p2, . . . and T a set of ba-
sic test symbols t, t1, t2, . . ., where we assume that Σ ∩ T = ∅. Elements of T
are Boolean generators, and we write 2T for the set of atomic tests, given by
characteristic functions on T and denoted by α, β, γ, α1, α2, . . .

The collection of guarded strings over Σ∪T is GSΣ,T = 2T ×
⋃

n<ω(Σ×2T)n,
and a typical guarded string is denoted by α0p1α1p2α2 . . . pnαn, or by α0wαn

for short, where αi ∈ 2T and pi ∈ Σ. Note that for finite T the members
of 2T ⊆ GSΣ,T can be identified with the atoms of the free Boolean algebra
generated by T .

Concatenation of guarded strings is via the coalesced product: wα � βw′ =
wαw′ if α = β and undefined otherwise. For subsets L,M of GSΣ,T define

– L+M = L ∪M ,
– LM = {v � w : v ∈ L,w ∈M and v � w is defined},
– 0 = ∅, 1 = 2T , L̄ = GSΣ,T \ L and
– L∗ =

⋃
n<ω L

n where L0 = L and Ln = LLn−1 for n > 0.

Then P(GSΣ,T) is a KAT under these operations, and one defines a map G from
KAT terms over Σ ∪ T to this concrete model by

– G(t) = {α ∈ 2T : α(t) = 1} for t ∈ T ,
– G(p) = {αpβ : α, β ∈ 2T} for p ∈ Σ,
– G(p + q) = G(p) + G(q), G(pq) = G(p)G(q), G(p∗) = G(p)∗, for any terms
p, q and

– G(0) = 0, G(1) = 1, G(b̄) = G(b) for any Boolean term b.

The language theoretic model GΣ,T is the subalgebra of P(GSΣ,T) generated by
{G(t) : t ∈ T } ∪ {G(p) : p ∈ Σ}. In fact GΣ,T is the free KAT and its members
are the regular guarded languages. Subsets of 2T are called Boolean tests, and
other members of GΣ,T are called programs.

A nondeterministic guarded automaton is a coalgebra

A : X → P(X)Σ∪P(2
T) × 2

where X is a set of states, A0(x)(y) is the set of successor states of x ∈ X for
symbol y ∈ Σ ∪ P(2T), and F = {x : A1(x) = 1} is the set of final states.

Concurrent KAT 39

Alternatively one can describe these automata in the more traditional way as a
tuple A′ = (X, δ, F) where δ ⊆ X × (Σ ∪ P(2T)) ×X is the transition relation
and F ⊆ X is the set of final states. Acceptance of a guarded string w by A
starting from initial state x0 and ending in state xf is defined recursively by:

– If w = α ∈ 2T then w is accepted iff for some n ≥ 1 there is a path
x0t1x1t2 . . . xn−1tnxf in A of n test transitions ti ∈ P(2T) such that α ∈ ti
for i = 1, . . . , n.

– If w = αpv then w is accepted iff there exist states x1, x2 such that α is
accepted ending in state x1, there is a transition labeled p from x1 to x2
(i.e., x2 ∈ A0(x1)(p)) and v is accepted by A starting from initial state x2.

Finally, w is accepted by A starting from x0 if the ending state xf is indeed a
final state, i.e., satisfies xf ∈ F .

Kozen [Koz03] proved that the equational theory of KAT is decidable in
PSPACE. Moreover KAT is much more versatile that Kleene algebra since it
can faithfully express “if b then p else q” by the term bp+ b̄q and “while b do p”
using (bp)∗b̄, as well as several other standard programming constructs. It also
interprets Hoare logic and properly distinguishes between simple Boolean tests
and complex assertions.

2 Adding Concurrency

After this rather brief discussion of the language semantics and operational se-
mantics of KAT, we now describe how these definitions generalize to handle
concurrency. Intuitively, elements P,Q of a concurrent Kleene algebra with tests
can be thought of as programs or program fragments, and they are represented
by sets of “computation paths”. The operation that needs to be added to KAT
is the concurrent composition P ||Q. Whereas in the sequential model the com-
putation paths are guarded strings, we now need to be able to place two such
sequential strings “next to each other”, and then we also need to be able to se-
quentially compose such “concurrent strings” etc. A convenient way to visualize
the semantic objects that we would like to construct is to view sequential com-
position as vertical concatenation (top to bottom) and concurrent composition
as horizontal concatenation.

So for example, given two guarded strings α0vαm and β0wβn we would like
to construct

α0 β0
v w
αm βn

As with sequential composition, this operation is not always defined. In order
for these type of objects to be sequentially (vertically) composable, we impose
the condition that α0 = β0 and αm = βn. So in fact we have α0vαm||α0wαm

and the resulting object is denoted by α0{|v, w|}αm or vertically by

40 P. Jipsen

α0

v w
αm

In particular, if α, β are distinct atomic tests then α||β is undefined and
α||α = α. Similarly, α||βwγ is undefined for all atomic tests α, β, γ. Also, we
define concurrent composition to be commutative, which is already reflected in
our choice of notation: {|v, w|} = {|w, v|} is a multiset. Moreover it is associative,
which means that in these “strings”, multisets are not members of multisets, i.e.,
{|{|u, v|}, w|} is normalized to {|u, v, w|}. This ensures that (αpβ||αqβ)||αrβ =
α{|p, q, r|}β = αpβ||(αqβ||αrβ). Via successive concurrent and sequential com-
positions we obtain guarded series-parallel strings, or gsp-strings for short. For-
mally the set of gsp-strings generated by Σ, T is the smallest set GSPΣ,T that
has 2T and 2T × Σ × 2T as subsets and is closed under the coalesced product
� as well as the concurrent product ||. For example, if Σ = {p, q} and T = {t}
then, abbreviating 2T by {α, β}, the following expressions are gsp-strings: α,
αpα, αpβ, α{|p, q|}α, α{|p, q|}αqβ, α{|p, {|p, q|}αq|}β, . . .

The language model over gsp-strings is defined as in the case of guarded
strings, except that we now have an additional operation. For L,M ∈ P(GSPΣ,T)
let

– L||M = {v||w : v ∈ L,w ∈M and v||w is defined}.

This makes P(GSPΣ,T) into a complete bisemiring with a Kleene-star for se-
quential composition. The map G from the previous section is extended to all
terms of KAT with ||, by defining G(p||q) = G(p)||G(q). The bi-Kleene algebra
of series-rational gsp-languages1, denoted by CΣ,T , is the subalgebra generated
by {G(t) : t ∈ T } ∪ {G(p) : p ∈ Σ}.

Note that for b ∈ P(2T) and for any subset p of GSPΣ,T the concurrent
composition b||p is equal to b ∩ p. In particular, concurrent and sequential com-
position coincide on tests. However, in general || is not idempotent for sets of
gsp-strings and the identity 1 of sequential composition is not an identity of
concurrent composition.

With this language model as guide, we now define a concurrent Kleene algebra
with tests (CKAT) as an algebra A = (A,A′,+, 0, ||, ·, 1,∗ ,)̄ where

– (A,A′,+, 0, ·, 1,∗ ,)̄ is a Kleene algebra with tests,
– (A,+, 0, ||) is a commutative semiring with 0 (but possibly no unit), and
– b||c = bc for all b, c ∈ A′.

We do not include iterated parallel composition (i.e., parallel star) in the def-
inition of a CKAT since this operation prevents the generalization of Kleene’s
theorem to gsp-languages ([LW00], see Section 3 for further discussion).

The language model also shows that the concurrency inequation (x||y)(z||w) ≤
(xz)||(yw) of CKA is not satisfied under the present definition of CKAT. Take for
1 Lodaya and Weil used the name series-rational sp-language for the members of their

language model

Concurrent KAT 41

example x = {αpβ}, y = {αqβ}, z = {βpγ}, and w = {βqγ}, then (x||y)(z||w) =
{α{|p, q|}β{|p, q|}γ} whereas (xz)||(yw) = {α{|pβp, qβq|}γ}. So each expression
produces a singleton set, but the two elements are distinct, hence the two expres-
sions are not comparable. However one can impose the concurrency inequation
on the generators of the regular gsp-languages to obtain a homomorphic image
that satisfies this condition. Not all forms of concurrency satisfy this inequation
(in some cases the reverse inequality is applicable), so having a more general
axiomatization could be advantageous.

3 Automata over Guarded Series-Parallel Strings

The notion of nondeterministic automaton for gsp-strings is based on the one
for guarded strings, but it is expanded with fork and join transitions taken
from the branching automata of Lodaya and Weil [LW00]. Specifically a guarded
branching automaton is a coalgebra for the functor F (X) = P(X)Σ∪P(2

T) ×
P(M(X)) × P(M(X)) × 2 defined on the category of sets, where M(X) is
the collection of multisets of X with more than one element. This means that
an automaton is a map α : X → F (X) where X is the set of states. As for
guarded automata, the transition function is given by the first component of
α and the set of final states is given by the last component in the form of
a characteristic function. The second and third component are the fork and
join relations respectively. In traditional notation, the automaton can also be
specified by the tuple α′ = (X, δ, δfork, δjoin, F), where

– (X, δ, F) is a guarded automaton,
– δfork ⊆ X ×M(X) and
– δjoin ⊆M(X)×X .

Fork transitions in δfork are denoted (x, {|x1, x2, . . . , xn|}), and if the multiset has
n elements they are called forks of arity n. The join transitions of arity n are
defined similarly, but with the order of the two components reversed.

While coalgebraic automata do not have an explicit initial state, they can be
augmented with such a state whenever this is required. The advantages of the
coalgebraic point of view is that it turns the class of all automata for this func-
tor into a concrete category, and allows many standard results on bisimulation
and coalgebraic modal logic to be applied to this setting. We will not make use
of it at this point, but in the later part of this paper we again use the coalge-
braic perspective to define frame semantics for concurrent relation algebras with
transitive closure.

The acceptance condition for gsp-strings does have to be defined carefully
since it substantially extends the one for guarded strings. Intuitively one can
think of an automaton as evaluating the acceptance condition for parallel parts
of the input string concurrently on separate processors. In many cases, when
large scale parallel programs are run on a distributed cluster of computers, (part
of) the program code is distributed to all the available processors and executes
in separate environments until at an appropriate point results are communicated

42 P. Jipsen

back to a subset of the processors (perhaps a single one) and combined into a
new state. This fork and join paradigm is of course a fairly restricted model of
concurrent programming, but it has the merit of being quite simple and alge-
braic since it avoids syntactic annotations for named channels and other more
architecture-dependent features. It also meshes well with our generalization of
guarded strings and with the laws of concurrent Kleene algebra.

For the actual definition of acceptance we do not need to have separate copies
of automata, instead we simply map the parallel parts of a gsp-string into the
same automaton. Looking back at the recursive definition of acceptance for a
(non-concurrent) guarded string relative to an initial state x0, it is apparent
that this condition is equivalent to finding a path from x0 to some final state xf
such that the atomic program symbols in the string match with symbols along
the path in the same order, and if pi−1αipi occurs in the guarded string then
there is a path β1 . . . βni of Boolean tests βk ≥ αi along edges of the automaton
that lie between the edges matched by pi−1 and pi. For gsp-strings we define
a similar “embedding” into the automaton where parallel branches correspond
to a fork transition, followed by parallel (not necessarily disjoint) paths along
matching edges until they reach a join transition. The precise recursive definition
is as follows: A weak guarded series parallel string (or wgsp-string for short) is
a gsp-string but possibly without the first and/or last atomic test. Acceptance
of a wgsp-string w by A starting from initial state x0 and ending at state xf , is
defined recursively by:

– If w = α ∈ 2T then w is accepted iff for some n ≥ 1 there is a sequential
path x0t1x1t2 . . . xn−1tnxf in A (i.e., (xi−1, ti, xi) is an edge in A) of n test
transitions ti ∈ P(2T) such that α ∈ ti for i = 1, . . . , n.

– If w = p ∈ Σ then w is accepted iff there exist a transition labelled p from
x0 to xf .

– If w = {|u1, . . . , um|}v for m > 1 then w is accepted iff there exist a fork
(x0, {|x1, . . . , xm|}) and a join ({|y1, . . . , ym|}, y0) in A such that ui is accepted
starting from xi and ending at yi for all i = 1, . . . ,m, and furthermore βv is
accepted by A starting at y0 and ending at xf .

– If w = uv then w is accepted iff there exist a state x such that u is accepted
ending in state x and v is accepted by A starting from initial state x and
ending at xf .

Finally, w is accepted by A starting from x0 if the ending state xf is indeed a
final state, i.e., satisfies A2(xf) = 1.

In the second recursive clause the fork transition corresponds to the creation
of n separate processes that can work concurrently on the acceptance of the
wgsp-strings u1, . . . , un. The matching join-operation then corresponds to a com-
munication or merging of states that terminates these processes and continues
in a single thread.

The sets of gsp-strings that are accepted by a finite automaton are called regu-
lar gsp-languages. For sets of (unguarded) strings, the regular languages and the
series-rational languages (i.e., those built from Kleene algebra terms) coincide.

Concurrent KAT 43

However, Loyala and Weil pointed out that this is not the case for sp-posets (de-
fined like gsp-strings except without using atomic tests), since for example the
language {p, p||p, p||p||p, . . .} is regular, but not a series-rational language. The
width of an sp-poset or a gsp-string is the maximal cardinality of an antichain
in the underlying poset. A (g)sp-language is said to be of bounded width if there
exists n < ω such that every member of the language has width less than n.
Intuitively this means that the language can be accepted by a machine that has
no more than n processors. The series-rational languages are of bounded width
since concurrent iteration was not included as one of the operations of CKAT.
For languages of bounded width we regain familiar results such as Kleene’s the-
orem which states that a language is series-rational if and only if it is regular
(i.e., accepted by a finite automaton) and has bounded width.

We now use a method from Kozen and Smith [KS97] to relate the bounded-
width regular languages of Lodaya and Weil [LW00] to guarded bounded-width
regular languages. Let T = {t̄ : t ∈ T } be the set of negated basic tests. From
now on we will assume that T = {t1, . . . , tn} is finite, and we consider atomic
tests α to be (sequential) strings of the form b1b2 . . . bn where each bi is either
the element ti or t̄i. Every term p can be transformed into a term p′ in negation
normal form using DeMorgan laws and ¯̄b = b, so that negation only appears on
ti.

Hence the term p′ is also a CKA term over the set Σ∪T ∪T . Let R(p′) be the
result of evaluating p′ in the set of sp-posets of Lodaya and Weil. In [KS97] it is
shown how to transform p′ further to a sum p̂ of externally guarded terms such
that p = p′ = p̂ in KAT and R(p̂) = G(p̂). This argument extends to terms of
CKAT since || distributes over +. Therefore the completeness result of Lodaya
and Weil [LW00] can be lifted to the following result.

Theorem 1. CKAT |= p = q ⇐⇒ G(p) = G(q)

It follows that CΣ,T is indeed the free algebra of CKAT. With the same approach
one can also deduce the next result from [LW00].

Theorem 2. A set of gsp-strings is series-rational (i.e. an element of CΣ,T)
if and only if it is accepted by a finite guarded branching automaton and has
bounded width.

The condition of bounded width can be rephrased as a restriction on the automa-
ton. A run of A is called fork-acylic if a matching fork-join pair never occurs
as a matched pair nested within itself. The automaton is fork-acylic if all the
accepted runs of A are fork-acyclic. Lodaya and Weil prove that if a language
is accepted by a fork-acyclic automaton then it has bounded width, and their
proof applies equally well to gsp-languages.

At this point it is not clear whether this correspondence can be used as a
decision procedure for the equational theory of concurrent Kleene algebras with
tests.

44 P. Jipsen

4 Trace Semantics for Concurrent Kleene Algebras with
Tests

Kozen and Tiuryn [KT03] (see also [Koz03]) show how to provide trace semantics
for programs (i.e. terms) of Kleene algebra with tests. This is based on an ele-
gant connection between computation traces in a Kripke structure and guarded
strings. Here we point out that this connection extends very simply to the set-
ting of concurrent Kleene algebras with tests, where traces are related to labeled
Hasse diagrams of posets and these objects in turn are associated with guarded
series-parallel strings.

Exactly as for KAT, a Kripke frame over Σ, T is a structure (K,mK) where K
is a set of states, mK : Σ → P(K×K) and mK : T → P(K). An sp-trace τ in K
is essentially a gsp-string with the atomic guards replaced by states in K, such
that whenever a triple spt ∈ K × Σ ×K is a subtrace of τ then (s, t) ∈ mK(p).
As with gsp-strings one can form the coalesced product σ � τ of two sp-traces
σ, τ (if σ ends at the same state as where τ starts) as well as the parallel product
σ||τ (if σ and τ start at the same state and end at the same state). These partial
operations lift to sets X,Y of sp-traces by

– XY = {σ � τ : σ ∈ X, τ ∈ Y and σ � τ is defined}
– X ||Y = {σ||τ : σ ∈ X, τ ∈ Y and σ||τ is defined}.

Programs (terms of CKAT) are interpreted in K using the inductive definition
of Kozen and Tiuryn [KT03] extended by a clause for ||:

– [[p]]K = {spt|(s, t) ∈ mK(p)} for p ∈ Σ
– [[0]]K = ∅ and [[b]]K = mK(b) for b ∈ T
– [[b̄]]K = K \mK(b) and [[p+ q]]K = [[p]]K ∪ [[q]]K
– [[pq]]K = ([[p]]K)([[q]]K) and [[p∗]]K =

⋃
n<ω[[p]]

n
K

– [[p||q]]K = [[p]]K ||[[q]]K .

Each sp-trace τ has an associated gsp-string gsp(τ) obtained by replacing every
state s in τ with the corresponding unique atomic test α ∈ 2T that satisfies
s ∈ [[α]]K . It follows that gsp(τ) is the unique guarded string over Σ, T such that
τ ∈ [[gsp(τ)]]K . As a result the connection between sp-trace semantics and gsp-
strings is the same as in [KT03] (the proof is also by induction on the structure
of p).

Theorem 3. For a Kripke frame K, program p and sp-trace τ , we have τ ∈ [[p]]K
if and only if gsp(τ) ∈ G(p), whence [[p]]K = gsp−1(G(p)). In fact gsp−1 is
a CKAT homomorphism from the free algebra CΣ,T to the algebra of series-
rational sets of sp-traces over K.

The trace model for guarded strings has many applications since each trace in
[[p]]K can be interpreted as a sequential run of the program p starting from the
first state of the trace. The sp-trace model provides a similar interpretation for
programs that fork and join threads during their runs. Each sp-trace in [[p]]K is
a representation of the basic programs and tests that were performed during the

Concurrent KAT 45

possibly concurrent execution of the program p. Note that there are no explicit
fork and join transitions in an sp-trace since, unlike a gsp-automaton (which has
to allow for nondeterministic choice), whenever a state in an sp-trace has several
immediate successor states, this is the result of a fork, and similarly states with
several immediate predecessors represent a join.

While series-parallel traces are more complex than linear traces, they can,
like the gsp-strings in Section 2, still be represented by planar diagrams where
parallel composition is denoted by placing traces next to each other (with only
one copy of the start state and end state), and sequential composition is given
by placing traces vertically above each other (with only one connecting state
between them).

The sp-trace semantics are useful for analysing the behavior of threads that
communicate only indirectly with other concurrent threads via joint termination
in a single state. While this is a restricted model of concurrency, it has a simple
algebraic model based on Kleene algebras with tests, and it satisfies most of the
laws of concurrent Kleene algebra.

5 Expanding Relation Algebras with Concurrency

Kleene algebra with tests provides a reasonable operational semantics for imper-
ative programs, but for specification purposes it would be useful to also have the
full language of binary relations available when reasoning about concurrent soft-
ware. In this section we show how coalgebraic arrow frames of relation algebras
can be augmented with an additional component that corresponds to the || op-
eration. Recall that a relation algebra is of the form A = (A,+, 0,∧,�, ,̄ ; , 1,�)
where (A,+, 0,∧,�,)̄ is a Boolean algebra, (A, ; , 1) is a monoid and for all
x, y, z ∈ A

x; y ≤ z̄ ⇐⇒ x�; z ≤ ȳ ⇐⇒ z; y� ≤ x̄.

It follows that both ; and � distribute over the Boolean join, and that � is an
involution, i.e., x�� = x and (x; y)� = y�;x�. Jónsson and Tarski showed that
every relation algebra A can be embedded in a complete and atomic relation
algebra, and one can define a relational structure on the set of atoms from
which the algebra can be reconstructed as a complex (powerset) algebra. The
structure is known as atom structure or ternary Kripke frame or arrow frame,
but it is in fact a coalgebra. Hence we define an arrow coalgebra to be of the
form γ : X → P(X2)×X × 2 such that for all x, y, z ∈ X ,

– (x ◦ y) ◦ z = x ◦ (y ◦ z) where x ◦ y = γ−10 {(x, y)} and A ◦ z = {a ◦ z : a ∈ A},
– I ◦ x = x = x ◦ I where I = γ−12 {1} and
– (x, y) ∈ γ0(z) ⇐⇒ (x�, z) ∈ γ0(y) ⇐⇒ (z, y�) ∈ γ0(x) where
x� = γ1(x).

For A,B ⊆ X , define A;B = {a ◦ b : a ∈ A, b ∈ B} and A� = {a� : a ∈ A} and
1 = I. Then the complex algebra over γ, denoted

Cm(γ) = (P(X),∪, ∅,∩, X, ,̄ ; ,� , 1′)

46 P. Jipsen

is a complete relation algebra and ; ,� distribute over arbitrary unions. Hence
we can expand this algebra to a relation algebra with reflexive transitive closure
(or RAT for short):

– x∗ =
⋃

n<ω x
n, where x0 = 1′ and xn = x;xn−1 for n > 0.

The variety generated by these algebras has a finite equational axiomatization,
and has been studied by Tarski and Ng [NT77, Ng84]. We now expand arrow
coalgebras further by adding another factor P(X2) to the type functor. A con-
current arrow coalgebra is of the form γ : X → P(X2) × X × 2 × P(X2) such
that the projection onto the first three components is an arrow coalgebra and
for all x, y ∈ X ,

– (x||y)||z = x||(y||z) and x||y = y||x where x||y = γ−13 {x, y}
– x ∈ γ−12 (1) implies x||x = x and if x �= y then x||y is undefined.

The complex algebra of a concurrent arrow coalgebra is a relation algebra with
an additional binary operation || defined on subsets A,B of X by A||B = {a||b :
a ∈ A, b ∈ B}. Adding reflexive transitive closure is done as before. Based on
this concrete model we have the following definition:

A concurrent relation algebra with reflexive transitive closure (or CRAT) is
an algebra of the form

A = (A,+, 0,∧,�, ,̄ ||, ; , 1,� ,∗)

where A = (A,+, 0,∧,�, ,̄ ; , 1,� ,∗) is a RAT, (A,+, 0, ||) is a commutative
semiring with zero and (x ∧ 1)||y = x ∧ y ∧ 1 holds for all x, y ∈ A. The result
below follows from the theory of Boolean algebras with operators.

Theorem 4. The complex algebra of a concurrent arrow coalgebra is a com-
plete and atomic CRAT, and every CRAT can be embedded into such a complex
algebra.

The next result establishes a connection between CRAT and concurrent Kleene
algebras with test.

Theorem 5. Let A = (A,+, 0,∧,�, ,̄ ||, ; , 1,� ,∗) be a CRAT and define A′ =
{b ∈ A : b ≤ 1}. Then A′′ = (A,A′,+, 0, ||, ·, 1, ,̄ ,∗) is a CKAT.

The proof is simply a matter of checking that the axioms of CKAT hold for A′′.
It is currently not known if every CKAT is embeddable into an algebra of the
form A′′. Some related results about KAT can be found in [Koz06].

The concurrency inequality (x||y); (z||w) ≤ (x; z)||(y;w) can be added to
CRAT and defines a proper subvariety. In the language of concurrent arrow
coalgebras the inequality takes the following form: for all t, u, v, w, x, y, z ∈ X

– t ∈ u ◦ v and u ∈ x||y and v ∈ z||w =⇒ ∃r, s ∈ X (t ∈ r||s and r ∈ x ◦ z
and s ∈ y ◦ w).

Concurrent KAT 47

Other inequations that could be considered are x||x = x or x; y ≤ x||y or x||y ≤
x; y.

Unlike Kleene algebras with tests, the equational theory of relation algebras
is known to be undecidable. This is a consequence of having complementation
defined on the whole algebra, together with the associativity of a join-preserving
operation (see [KNSS93] for such general results). However Andreka, Mikulas
and Nemeti [AMN11] have recently proved that the theory of Kleene lattices is
decidable. It is an interesting question whether their result can be extended to
Kleene lattices with tests or concurrent Kleene lattices (with tests).

6 Conclusion

Many theoretical models of concurrency have been proposed and studied dur-
ing the last five decades. Here we have taken an algebraic approach starting
from Kleene algebras with tests and adapting them to concurrent Kleene alge-
bras of Hoare et. al. and bounded-width series-parallel language models. This
provides semantics for concurrency based on standard notions such as regular
languages and automata. The addition of tests allows KAT to express standard
imperative programming constructs such as if-then-else and while-do. Adding
concurrency into this elegant algebraic model is likely to lead to new applica-
tions such as verifying compiler optimizations targeting multicore architectures
or modeling computations on large distributed clusters. In the last section we
have also shown how to add concurrency to relation algebras with reflexive and
transitive closure, thus making concurrent composition part of this well-known
and expressive algebraic setting.

References

[AMN11] Andréka, H., Mikulás, S., Németi, I.: The equational theory of Kleene
lattices. Theoret. Comput. Sci. 412(52), 7099–7108 (2011)

[Gis88] Gisher, L.: The equational theory of pomsets. Theoretical Computer Sci-
ence 62, 224–299 (1988)

[HMSW11] Hoare, C.A.R., Möller, B., Struth, G., Wehrman, I.: Concurrent Kleene
algebra and its foundations. J. Log. Algebr. Program. 80(6), 266–296
(2011)

[HMSW09] Hoare, C.A.R., Möller, B., Struth, G., Wehrman, I.: Foundations of con-
currentKleene algebra. In:Berghammer, R., Jaoua, A.M., Möller, B. (eds.)
RelMiCS/AKA 2009. LNCS, vol. 5827, pp. 166–186. Springer, Heidelberg
(2009)

[HMSW09a] Hoare, C.A.R., Möller, B., Struth, G., Wehrman, I.: Concurrent Kleene
algebra. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS,
vol. 5710, pp. 399–414. Springer, Heidelberg (2009)

[KNSS93] Kurucz, Á., Németi, I., Sain, I., Simon, A.: Undecidable varieties of
semilattice-ordered semigroups, of Boolean algebras with operators, and
logics extending Lambek calculus. Logic Journal of IGPL 1(1), 91–98
(1993)

48 P. Jipsen

[Koz03] Kozen, D.: Automata on guarded strings and applications. In: 8th Work-
shop on Logic, Language, Informations and Computation WoLLIC 2001
(Braslia). Mat. Contemp., vol. 24, pp. 117–139 (2003)

[Koz06] Kozen, D.: On the representation of Kleene algebras with tests. In:
Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 73–83.
Springer, Heidelberg (2006)

[KS97] Kozen, D., Smith, F.: Kleene algebra with tests: Completeness and decid-
ability. In: van Dalen, D., Bezem, M. (eds.) CSL 1996. LNCS, vol. 1258,
pp. 244–259. Springer, Heidelberg (1997)

[KT03] Kozen, D., Tiuryn, J.: Substructural logic and partial correctness. ACM
Trans. Computational Logic 4(3), 355–378 (2003)

[LW00] Lodaya, K., Weil, P.: Series-parallel languages and the bounded-width
property. Theoret. Comput. Sci. 237(1-2), 347–380 (2000)

[Ng84] Ng, K.C.: Relation Algebras with Transitive Closure. PhD thesis,
University of California, Berkeley (1984)

[NT77] Ng, K.C., Tarski, A.: Relation algebras with transitive closure, Abstract
742-02-09. Notices Amer. Math. Soc. 24, A29–A30 (1977)

[Pra86] Pratt, V.: Modelling concurrency with partial orders. Internat. J. Parallel
Prog. 15(1), 33–71 (1986)

Algebras for Program Correctness

in Isabelle/HOL

Alasdair Armstrong, Victor B.F. Gomes, and Georg Struth

Department of Computer Science, University of Sheffield
{a.armstrong,v.gomes,g.struth}@shefield.ac.uk

Abstract. We present a reference formalisation of Kleene algebra and
demonic refinement algebra with tests in Isabelle/HOL. It provides three
different formalisations of tests. Our structured comprehensive libraries
for these algebras extend an existing Kleene algebra library. It includes
an algebraic account of Hoare logic for partial correctness and several
refinement and concurrency control laws in a total correctness setting.
Formalisation examples include a complex refinement theorem, a generic
proof of a loop transformation theorem for partial and total correctness
and a simple prototypical verification tool for while programs, which is
itself formally verified.

1 Introduction

This article documents the formalisation of computationally important algebraic
concepts and structures within a larger project of making variants of Kleene al-
gebras and relation algebras available in the Isabelle proof assistant. It presents
variants of test semirings [17] in Isabelle together with their expansions to Kleene
algebras and demonic refinement algebras with tests [15, 22, 23]. The latter two
algebras have been applied in the verification and correctness of sequential pro-
grams; the first one in partial correctness, the second one in a total correctness
setting. Demonic refinement algebras have also been used for concurrency veri-
fication with action systems [7].

Implementing these algebras with their most important models—the binary
relation model for Kleene algebras with tests and the conjunctive predicate
transformer model for demonic refinement algebras—yields a basis for build-
ing lightweight tools for program verification and correctness in Isabelle. The
general approach is quite simple. The algebraic layer captures part of reasoning
about programs, in particular their control flow, abstractly and concisely. Other
aspects, such as data flow, however, are performed within more concrete models,
for example the relational model of program store. In addition, algebra helps at
the meta-level to derive inference, refinement or transformation rules and im-
plement tactics or decision procedures. Isabelle allows one to reason seamlessly
across these layers, for instance, by programming algebra-driven tactics which
automatically generate verification conditions for concrete models or data types
or by inferring abstract properties of assignment commands. All these features
are provided by our implementation and are illustrated in this article.

P. Höfner et al. (Eds.): RAMiCS 2014, LNCS 8428, pp. 49–64, 2014.
c© Springer International Publishing Switzerland 2014

50 A. Armstrong, V.B.F. Gomes, and G. Struth

More concretely, the main contributions of our formalisation are as follows.
First, based on a comprehensive reference library for variants of dioids and

Kleene algebras [4], we have implemented demonic refinements algebras [22, 23]
as an extension of a variant of Kleene algebra via Isabelle’s type class mecha-
nism, the standard tool for such formalisations. While Kleene algebras provide
operations for the programming concepts of abort, skip, sequential composition,
nondeterministic choice and finite iteration, demonic refinement algebras add
an operation of potentially infinite iteration. We have implemented a library for
equational reasoning in this algebra which contains more than 50 facts from the
literature.

Second, we have formalised three different approaches to tests for variants of
dioids (idempotent semirings) and developed comprehensive libraries for these.
The first one is one-sorted. It implements functions for tests and antitests (boolean
test complements) as in the standard approach to domain semirings [11]. The sec-
ond, two-sorted one follows the approach of embedding a boolean algebra of tests
into the dioid [17]. Both approaches are purely axiomatic; they do not mention an
underlying carrier set. While such axiomatic versions often suffice for verification
applications, a third variant with explicit carrier sets is provided as a basis for
mathematical investigations. From variants of test dioids, Kleene and demonic
refinement algebras with tests are obtained as straightforward expansions. The
libraries for these structures contain more than 350 facts. In particular the third
variant required implementing a range of background theories.

Third, we illustrate our formalisation through two classical examples from
the literature, which any formalisation of these structures should feature. We
have formalised proofs of three variants of Back’s atomicity refinement theorem
for action systems [22, 9, 13] in demonic refinement algebras with tests. We also
present a new generic proof of Kozen’s transformation theorem for while loops in
Kleene algebras with tests [15] and demonic refinement algebras [21]. It is based
on an axiomatisation of regular algebras by Conway [10] in which the iteration
axioms are too weak to distinguish finite from potentially infinite iteration.

Fourth, we demonstrate how simple prototypical tools for the verification, re-
finement and transformation of sequential programs can be obtained in a generic
way from the algebras considered. By developing the tool in Isabelle, it is itself
formally verified. We first derive the inference rules of Hoare logic except the as-
signment rule in Kleene algebras with tests. To capture assignment in concrete
models, we then formalise the relational model of Kleene algebra with tests and
the predicate transformer model of demonic refinement algebra and specialise
the first model further to program stores. We can then derive assignment laws
easily within this model. We have also implemented a tactic for automatically
generating the usual verification conditions for while programs and show the
approach at work on a simple verification example.

In sum, this formalisation spans the gulf between abstract algebras of pro-
grams and concrete tools for program correctness and verification in a simple,
coherent, principled way. We are using it as a template for developing more
sophisticated and applicable tools for sequential and concurrent programs.

Algebras for Program Correctness in Isabelle/HOL 51

2 Algebraic Preliminaries

A dioid, or idempotent semiring is a structure (S,+, ·, 0, 1) such that (S, ·, 1) is
a monoid, (S,+, 0) is a semilattice with least element 0, and the distributivity
laws x · (y+z) = x ·z+y ·z and (x+y) ·z = x ·z+y ·z as well as the annihilation
laws 0 · x = 0 and x · 0 = 0 hold. Addition and multiplication are isotone with
respect to the semilattice order defined by x ≤ y ←→ x + y = y, that is, x ≤ y
implies z + x = z + y, z · x ≤ z · y and x · z ≤ y · z.

A right Kleene algebra is a dioid expanded by a Kleene star which satisfies the
unfold axiom 1+ x∗ ·x ≤ x∗ and the iteration axiom z+ y ·x ≤ y −→ z ·x∗ ≤ y.
The dual unfold law 1 + x · x∗ ≤ x∗ is derivable. A right Kleene algebra is a
Kleene algebra if the left induction axiom z + x · y ≤ y −→ x∗ · z ≤ y holds too.
For an overview of variants of dioids and Kleene algebras, their most useful laws
and their most important models see [4].

In this context it is important to know that binary relations form Kleene
algebras. This relational model is discussed further in Section 7. Binary relations,
in turn, yield a standard semantics for sequential programs. Addition models
nondeterministic choice, multiplication models sequential composition, 1 models
skip, 0 models abort, ∗ models finite iteration.

For modelling conditionals and while loops according to the relational par-
tial correctness semantics, a notion of test needs to be added. In the relational
model a test is simply an element between the empty and the identity relation.
Abstractly, a test dioid [17] is a structure (S,B) such that S is a dioid and B
a boolean algebra which is embedded into the subalgebra of elements between 0
and 1 of the dioid. There are the following correspondences between operations
of the dioid and those of the boolean algebra: 0 corresponds to the least element
of the boolean algebra, 1 to its greatest element, + corresponds to join and · to
meet. Complementation − has no counterpart in the dioid, it exists only for the
subalgebra of tests. A Kleene algebra with tests is a test dioid which is also a
Kleene algebra. We write x, y, z for general Kleene algebra elements and p, q, r
for tests. A technical development can be found in Section 4. Using tests, an
abstract algebraic semantics for conditionals and while loops is given by

if p then x else y = p · x+ (−p) · y, while p do x = (p · x)∗ · (−p).

Multiplying a program x with a test p from the left means restricting the input
of the program to those states where the test holds; multiplying from the right
means an output restriction.

Total program semantics require another variant of Kleene algebra [22, 23]. A
demonic refinement algebra is a Kleene algebra in which the right annihilation
axiom x ·0 = 0 is absent and which is expanded by an operation for possibly infi-
nite iterations which satisfies the unfold axiom 1+x ·x∞ = x∞, the coinduction
axiom y ≤ x · y + z −→ y ≤ x∞ · z and the isolation axiom x∞ = x∗ + x∞ · 0.

This captures total correctness where an agent has no control over termina-
tion; (p · x)∞ · (−p), for instance, models a while loop which may not terminate.
For similar reasons, x · 0 = 0 is invalid due to potentially infinite processes.

52 A. Armstrong, V.B.F. Gomes, and G. Struth

In the isolation axiom, x∗ · 0 annihilates if all processes in x are finite whereas
x∞ · 0 projects on the strictly infinite processes in x∞.

Demonic refinement algebra can be expanded by tests in the obvious way.
The semantics of choice, in this case, is a predicate transformer algebra, which
we discuss in detail in Section 7.

The refinement community’s notation unfortunately deviates from the regular
algebra notation. Their refinement order is the converse of ≤; the symbols �,
!, ; and ω are used instead of 0, +, · and ∞. Finally tests are known as guards.

3 Demonic Refinement Algebra in Isabelle

We now sketch our formalisation of demonic refinement algebra in the theorem
proving environment Isabelle/HOL [18]. We introduce some basic features of
Isabelle while discussing our formalisation. For additional information about
Isabelle we refer to its excellent documentation1. The complete Isabelle code of
our implementation can be found online2. A reference formalisation is available
from the Archive of Formal Proofs [3]. We recommend reading these in parallel.

Isabelle is an interactive proof assistant with embedded automatic theorem
provers and counterexample generators. It is based on a small logical core to
guarantee correctness. It has been used to formalise a wide range of mathematical
theories and applied in numerous computing applications, including program
correctness and verification. Isabelle/HOL, in particular, is based on a typed
higher-order logic which supports reasoning with sets, polymorphic data types,
inductive definitions and recursive functions.

Algebraic hierarchies, like those in the previous section, are usually formalised
with Isabelle’s type class and locale infrastructure. Type classes typically suffice
for simple structures with one single type parameter. More advanced formalisa-
tions often require locales. Both mechanisms support theory expansion and the
formalisation of subclass relationships. Theorems proved for reducts or super-
classes thus become automatically available in expansions or subclasses. Within
this infrastructure, algebras can be linked formally with their models by instan-
tiation or interpretation statements.

We have integrated our formalisation of demonic refinement algebra into the
existing Kleene algebra hierarchy [4]. More precisely, we have formalised demonic
refinement algebra as an expansion of Kleene algebra with a left annihilator,
adding simply the unfold, coinduction and isolation axiom for ∞. By this ex-
pansion, all facts proved for this variant of Kleene algebra become automatically
available in demonic refinement algebra.

class dra = kleene-algebra-zerol + strong-iteration-op +
assumes iteration-unfoldl : 1 + x · x∞ = x∞

and coinduction: y ≤ z + x · y −→ y ≤ x∞ · z
and isolation: x∞ = x� + x∞·0

1 http://isabelle.in.tum.de
2 http://www.dcs.shef.ac.uk/~victor/ramics2014

http://isabelle.in.tum.de
http://www.dcs.shef.ac.uk/~victor/ramics2014

Algebras for Program Correctness in Isabelle/HOL 53

We have developed a comprehensive library of theorems of demonic refine-
ment algebra from the literature. Isabelle offers various ways of proving such
facts. First, there is a range of built-in tactics, provers and simplifiers. These
are generally insufficient for automating algebraic reasoning, but quite powerful
for higher-order reasoning with models. Second, Isabelle’s Sledgehammer tac-
tic calls external automated theorem provers and SMT solvers and reconstructs
their output internally to increase trustworthiness. In this way, many equational
algebraic theorems can be proved fully automatically, but the approach is limited
to first-order reasoning. Finally, Isabelle offers different modes of interactive rea-
soning, notably the proof scripting language Isar which supports human-readable
proofs, as in the following example.

lemma iteration-sim: z ·y ≤ x ·z −→ z ·y∞ ≤ x∞·z
proof
assume assms: z ·y ≤ x ·z
have z ·y∞ = z + z ·y ·y∞

by (metis distrib-left mult-assoc mult-oner iteration-unfoldl)
also have ... ≤ z + x ·z ·y∞

by (metis assms add-commute add-iso mult-isor)
finally show z ·y∞ ≤ x∞·z
by (metis mult-assoc coinduction)

qed

In this proof, individual proof steps have been proved automatically by Sledge-
hammer and internally verified by the metis prover. Isar links these steps into a
complete proof. In total we have proved 57 theorems about demonic refinement
algebra, 43 of which were fully automatic. The remaining 14 facts required user
intervention at the level of the previous example.

Isabelle also offers counterexample generators such as nitpick and quickcheck,
which is very important for exploring mathematical theories. The dual simulation
law y · z ≤ z · x −→ y∞ · z ≤ z · x∞, for instance, has been refuted by nitpick
with a three-element counterexample, whereas both simulation laws—with ∞

replaced by ∗—hold in Kleene algebra.
The most interesting and difficult theorems come from demonic refinement al-

gebra with tests. Before discussing these in Section 5 we present three alternative
formalisations of test dioids in the following section.

4 Three Formalisations of Tests

The embedding of a boolean test algebras into a Kleene algebra can be formalised
in different ways in Isabelle. Our first implementation is based on an unpublished
manuscript by Jipsen and Struth. It is inspired by the axiomatisation of domain
semirings [11]. The main idea is to add a function t to a semiring or dioid S and
axiomatise it in such a way that the image t(S) forms a boolean subalgebra of
tests. The function t is assumed to be a retraction, that is, t ◦ t = t, since then
p ∈ t(S) if and only if t(p) = p. We can use this fixpoint property for typing
tests or verifying closure conditions.

54 A. Armstrong, V.B.F. Gomes, and G. Struth

For encoding test complementation, however, it is more suitable to axiomatise
an antitest function n which satisfies t = n ◦ n:

class dioid-tests-zerol = dioid-one-zerol + comp-op +
assumes test-one: n n 1 = 1
and test-mult : n n (n n x · n n y) = n n y · n n x
and test-mult-comp: n x · n n x = 0
and test-de-morgan: n x + n y = n (n n x · n n y)

We then abbreviate t x ≡ n (n x) and define test p ≡ t p = p. In fact, if
these axioms are added to an arbitrary semiring, idempotence is enforced. It is
straightforward to verify that tests satisfy the boolean algebra axioms, but the
fact that t(S) forms a boolean algebra cannot be expressed explicitly in Isabelle
by a subclass or sublocale statement, simply because the carrier set S is not
explicit in an type class. Thus we cannot formally integrate Isabelle’s library
for boolean algebra and had to build up our own one with the most important
boolean theorems for tests. We provide an alternative implementation where this
problem can be circumvented.

The expansion of test dioids to Kleene algebras with tests is straightforward
and therefore not shown in this paper. We have also verified that our test axioms
are independent, using nitpick for finding counterexamples when trying to prove
each individual axiom from the remaining ones. Despite its limitations, this
formalisation is simple and yields a high degree of automation. Overall, 122
theorems about Kleene algebras with tests and boolean algebra were proved, all
of which fully automatically.

Our second formalisation of test dioids integrates Isabelle’s boolean algebra
type class. In contrast to the previous one-sorted implementation it is therefore
two-sorted. This requires locales instead of type classes.

locale dioid-tests-zerol =
fixes test :: ′a::boolean-algebra ⇒ ′b::dioid-one-zerol
and not :: ′b::dioid-one-zerol ⇒ ′b::dioid-one-zerol
assumes test-sup: test (sup p q) = ‘p + q‘
and test-inf : test (inf p q) = ‘p · q‘
and test-top: test top = 1
and test-bot: test bot = 0
and test-not: test (−p) = ‘−p‘
and test-iso-eq : p ≤ q ←→ ‘p ≤ q‘

Now the function test embeds the boolean algebra into the dioid as usual. A
boolean complementation is also defined on the dioid. The other axioms of this
locale link the boolean operations with the dioid ones, as described in Section 2.
To obtain the typical Kleene algebra with test notation, where the embedding is
implicit, we have implemented a syntax translation which automatically recog-
nises tests in formulas. Hence one can write ‘p+ q‘ for the join of two tests.

With this two-sorted approach, Isabelle’s libraries for boolean algebras become
automatically available. From an automation point of view, however, we noted

Algebras for Program Correctness in Isabelle/HOL 55

little difference between the two approaches. As before, we do not explicitly show
the expansion of test dioids to Kleene algebras with tests.

Our third implementation of test dioids provides explicit carrier sets. It follows
the general Isabelle recipe for setting up such algebras.

record ′a test-dioid-structure = ′a dioid + test :: ′a ord

abbreviation tests A ≡ carrier (test A)

locale dioid-tests-zerol =
fixes A :: ′a test-dioid-structure (structure)
assumes is-dioid : dioid-tests-zerol A
and test-subset : tests A ⊆ carrier A
and test-le: le (test A) = dioid .nat-order A
and test-ba: boolean-algebra (test A)
and test-one: top (test A) = 1
and test-zero: bot (test A) = 0
and test-join: [[x ∈ tests A; y ∈ tests A]] =⇒ join (test A) x y = x + y
and test-meet : [[x ∈ tests A; y ∈ tests A]] =⇒ meet (test A) x y = x · y

This formalisation expands carrier-based formalisations of dioids and boolean
algebras. In this setting, algebraic signatures are specified in records. In this
case it is said that tests have a pre-defined order type. The axioms yield a dioid
without left annihilation where the carrier set of tests is a subset of the main
carrier and the operations are embedded as usual.

To support this approach we had to implement several background theories
from scratch with more than 250 theorems about lattices, dioids, Kleene algebra
and Kleene algebras with tests. Because of the additional constraints, Sledge-
hammer may struggle to automate simple proofs. Hence there is a trade-off
between mathematical precision and automation. This approach has previously
been used to implement schematic Kleene algebra with tests and derive flow
chart equivalence as well as simple program verification proofs in this setting [5].

In sum, our three formalisations all have their advantages and disadvantages.
The one-sorted and two-sorted implementation offer comparable proof automa-
tion and might be superior for program verification applications. Which one
is preferable in practice remains to be seen. The carrier-based implementation
leads to less automatic proofs, but for investigations in universal algebra, for
instance, this price needs to be paid.

5 A Program Refinement Example

All axiomatisations from the previous section have been given for dioids without
the axiom x ·0 = 0. This makes all three formalisations compatible with demonic
refinement algebra. The one-sorted formalisation of tests, for instance, is

class dra-tests = dioid-tests-zerol + dra

An expansion to proper test dioids is, of course, given in our Isabelle theory files.

56 A. Armstrong, V.B.F. Gomes, and G. Struth

The addition of tests or guards make demonic refinement algebra suitable for
program development applications. We have also formalised the dual notion of
assertion. Assertions are used as context information for weakest precondition
reasoning [22, 23] in guarded command languages. We have formalised assertions
as po = (−p)·� + 1. The constant � denotes the greatest element of the demonic
refinement algebra, which exists in this class and is equal to 1∞. Intuitively, an
assertion po aborts when p is false and skips when p is true. We have verified that
guards and assertions are adjoints of Galois connections, p ·x ≤ y ←→ x ≤ po · y
and x · po ≤ y ←→ x ≤ y · p, as well as further properties from the literature.

Demonic refinement algebra is also interesting for modelling concurrency in
Back’s action system framework [7]. As a complex example we have verified three
algebraic versions of Back’s atomicity refinement theorem [6, 22, 23, 9, 13]. For
an explanation we refer to these articles. Here we only discuss algebraic aspects
and proof automation. Von Wright’s variant states that the identity

x · (y + z + v + w)∞ · p ≤ x · (yz∞p+ v + w)∞

can be derived from the 12 assumptions

t p = p, x = x · p, y = p · y, p · z = 0, v · z ≤ z · v,
v · w ≤ w · v, v · p ≤ p · v, y · w ≤ w · y, z · w ≤ w · z,

p · w ≤ w · p, z∞ = z∗, v∞ = v∗.

Note that z∞ = z∗ and w∞ = w∗ express that z and w are finite. Von Wright’s
original proof covers about 3 pages. Our Isabelle proof essentially translates
this proof at this level of granularity; a more coarse grained automation seems
difficult for metis. The main reason is that the terms appearing in this proof are
quite long and many rules can match. This combinatorics is difficult to handle
in particular for metis, which is inferior to Sledgehammer’s external provers. In
fact, a more general proof of this theorem with Prover9 [13] was much more
coarse grained but required excessive running times. Theorems like this provide
interesting benchmarks for Sledgehammer in particular and automated theorem
provers in general. This general version can also be found in our Isabelle files.

Finally, we have verified Cohen’s simplified version of the atomicity refinement
theorem [9] which derives the equation

(x+ y + z)∞ = (p · z)∞ · (x+ (−p) · z + y · (−p))∞ · (y · p)∞

from the assumptions t p = p, x · 0 = 0, y · 0 = 0, p · y · (−p) = 0, p · z · (−p) = 0,
y ·p ·x ≤ x ·y, x ·p ·z ≤ z ·x and y ·p ·z ≤ z ·y. Cohen assumes partial correctness,
so we must explicitly express that x and y must terminate: x ·0 = 0 and y ·0 = 0.
Our proof requires 10 particular steps with Isar.

The results in this section show that libraries that support program refine-
ment can be developed quite easily at the algebraic level with Isabelle. Demonic
refinement algebra is part of more powerful calculi which have been described,
for instance, in the book of Back and von Wright [8]. Their approach is based on
lattice and fixpoint theory. It can easily be obtained by theory expansion from
our formalisation of demonic refinement algebra. This is left for future work.

Algebras for Program Correctness in Isabelle/HOL 57

6 A Program Transformation Example

We now consider a classical program transformation example which has first
been considered in the partial correctness setting of Kleene algebra with tests.
We formalise Kozen’s loop transformation theorem in Kleene algebra with tests:
Every sequential while program, appropriately augmented with subprograms of
the form z · (p · q + (−p) · (−q)), can be viewed as a while program with at most
one loop under certain preservation assumptions [15]. Hence any while program,
suitably augmented with finitely many new dummy subprograms, is equivalent
to a simple while program of the form x; while p do y, where x and y do not
contain any nested loops.

A key ingredient of Kozen’s approach are commutativity conditions of the
form p · x = x · p. We use preservation conditions instead, which are of the form
p · x = p · x · p and (−p) · x = (−p) · x · (−p). In Kleene algebra with tests, these
two conditions are equivalent. However we prove the transformation theorem in
the weaker setting of pre-Conway algebras, where the former imply the latter,
but not vice versa (according to nitpick). Pre-Conway algebras are defined as

class pre-conway = pre-dioid-one-zerol + dagger-op +
assumes dagger-denest : (x + y)† = (x †·y)†·x †

and dagger-prod-unfold : (x ·y)† = 1 + x ·(y ·x)†·y
and dagger-simr : z ·x ≤ y ·z −→ z ·x † ≤ y†·z

As the first line shows, they are based on pre-dioids with only a left-annihilating
zero [4]. In these structures, the left distributivity law x · (y + z) = x · y + x · z
is weakened to sub-distributivity x · y + x · z ≤ x · (y + z) which is equivalent
to isotonicity x ≤ y −→ z · x ≤ z · y. Furthermore, the right annihilation law
x · 0 = 0 is absent. To avoid confusion we use the operator † instead of ∗. The
denest and product-unfold axioms are part of Conway’s classical axioms for
regular algebra [10], but several other axioms, including the idempotency axiom
x†† = x†, are absent. In particular, Conway’s classical axioms are based on a full
dioid. In fact, the dioid-based version plus dagger idempotence is equivalent to
the axioms of right Kleene algebra; and complete with respect to the equational
theory of regular expressions (see [12] for an overview).

In preparation to the proof of the loop transformation theorem we have ver-
ified a number of laws about the dagger in pre-Conway algebra, for instance
isotonicity of dagger, x ≤ y −→ x† ≤ y†, a slide rule, x · (y · x)† = (x · y)† · x,
unfold laws for the dagger, x† = 1 + x · x† and x† = 1 + x† · x, along with some
preservation properties, such as that p · x · p = p · x implies p · x† = (p · x)† · p
and p · (p · x+ (−p) · y)† = (p · x)† · p.

The proof itself is by structural induction on while programs. This can be
formalised in Isabelle by defining a grammar for programs and imposing the
quotient of pre-Conway algebra identities, using Isabelle’s quotient package. We
only discuss the individual cases of this inductive argument. For each program
construct, an inner loop is moved to the outside of a program and these program
transformations are verified in pre-Conway algebra with tests. Programs can be

58 A. Armstrong, V.B.F. Gomes, and G. Struth

augmented by dummy subprograms under preservation assumptions. We follow
Kozen’s case analysis, but proofs for individual cases are different due to our
more general assumptions and the weaker axioms of pre-Conway algebras. To
save space we write xy instead of x · y and x instead of −x. Following Kozen,
we take the sequential composition operator to be of lower precedence than the
other program constructs.

For conditionals, Kozen shows that the following programs are equivalent:

pq + pq; if p then (x1; while r1 do y1) else (x2; while r2 do y2),

pq + pq; if q then x1 else x2; while qr1 + qr2 do (if q then y1 else y2).

Translated into pre-Conway algebra we must prove that

(pq + pq)(px1(r1y1)
†r1 + px2(r2y2)

†r2) =

(pq + pq)(qx1 + qx2)((qr1 + qr2)(qy1 + qy2))
†qr1 + qr2.

This consists of two phases. First, the two terms are simplified by right dis-
tributivity, yielding two subterms each. Second, we proved this by verifying the
following two equations between these subterms, using preservation:

pqx1(r1y1)
†r1 = pqx1(qr1y1 + qr2y2)

†(qr1 + qr2)

pqx2(r2y2)
†r2 = pqx2(qr1y1 + qr2y2)

†(qr1 + qr2)

For nested loops, Kozen proves the following two programs equivalent:

while p do (x; while q do y)

if p then (x; while p+ q do (if q then y else x))

The corresponding proof in pre-Conway algebra was fully automatic.

(px(qy)†q)†q = px((p+ q)(qy + qx))†(p+ q + p)

The case of sequential composition has two subcases. The first one—called
postcomputation—composes a while loop with a loop-free program:

(while p do x); y

if p then y else (while p do (x; if p then y))

The corresponding identity in Conway algebra is

(px)†py = py + p(px(py + p))†p.

Due to the weaker setting, our proof differs from Kozen’s.

p(px(py + p))†p = pp+ ppx((py + p)px)†(py + p)p

= px(pypx+ px)†pyp

= px(py0 + px)†py

= px(px)†(py0)†py

= px(px)†py(0py)†

= px(px)†py.

Algebras for Program Correctness in Isabelle/HOL 59

The first step uses the product unfold law. The second step uses right distribu-
tivity and boolean algebra. The third step uses the preservation assumption
py = pyp. The forth step uses denesting and right annihilation. The fifth step
uses the sliding rule. The last step uses right annihilation and the rule 0† = 1,
which can be derived from the left unfold law. Finally, adding the term py to
both sides and applying unfold yields the desired identity.

The second subcase is the composition of two while loops, which leads to the
equivalence of

while p do x; while q do y

if p then (while q do y) else (while p do (x; if p then (while q do y)))

and the identity (px)†p(qy)†q = p(qy)†q + p(px(p(qy)†q + p))†p.
Its proof has two steps. We first prove that (qy)†q preserves p, that is, p(qy)†q =

p(qy)†qp and q(qy)†q = p(qy)†qp. Then we prove the identity by applying the
previous subcase. This finishes the case analysis.

We have formally shown that every Kleene algebra with tests is a pre-Conway
algebra where we interpret † as ∗.

sublocale kat ⊆ pre-conway star 〈proof〉

Thus our proof generalises Kozen’s result; and Isabelle makes our theorem auto-
matically available in Kleene algebra with tests. We have also shown that every
demonic refinement algebra is a pre-Conway algebra when interpreting † as ∞.

sublocale dra-tests ⊆ pre-conway strong-iteration 〈proof〉

Hence our result holds in demonic refinement algebra as well; our proof gener-
alises a previous result by Solin [21].

Finally, Rabehaja and Sanders [20] have further generalised the loop refine-
ment theorem to a probabilistic demonic refinement algebra in which the star
and the isolation axiom are absent and the left distributivity axiom is weak-
ened to general left sub-distributivity and to a special left distributivity axiom
p · (x+y) = p ·x+p ·y for tests p. We have adapted our proof so that it covers all
three cases. We do not display this most generic result here since probabilistic
variants are not the subject of this article. Our Isabelle file contains all relevant
details. Note that left distributivity does not hold in pre-Conway algebras and
that the product unfold axiom and simulation axiom cannot be derived from
Rabehaja and Sanders’ axioms. The decision whether the Conway-style axiom
set is appropriate for probabilistc reasoning depends on probabilistic semantics.

In pre-Conway algebras, the dagger axioms are too weak to distinguish be-
tween finite and potentially infinite iteration. Conway’s axiom x†† = x†, which
we have dropped, holds of ∗, but not of ∞, since x∞∞ = �. Conway has anal-
ysed the relevance of this axiom for regular algebras and remarked that it is
equivalent to 1† = 1. In demonic refinement algebra, however, 1∞ = �.

60 A. Armstrong, V.B.F. Gomes, and G. Struth

7 Relational and Predicate Transformer Semantics

This section presents the formalisation of the two most important models of
Kleene algebra with tests and demonic refinement algebra: the relational model
for the first and the predicate transformer model for the second. We restrict our
attention to the one-sorted formalisation.

It is well known that, for each set A, the structure (2A×A,∪, ; , ∅, Id ,∗) forms a
Kleene algebra; the full relation Kleene algebra overA. Here, ∪ corresponds to +,
relational composition ; to ·, ∅ to 0, the identity relation Id to 1 and the reflexive
transitive closure operation to ∗. In addition, every subalgebra of a full relation
Kleene algebra forms a relation Kleene algebra. In the one-sorted approach to
the relational model, tests are subidentities and, for each relation x, n x is the
complement of x intersected with the identity relation: n x = Id ∩ (−x). In
Isabelle we have formalised the fact that binary relations form Kleene algebras
with tests by an interpretation statement:

interpretation rel-kat : kat
“op ∪” “op O” “Id” “op ⊆” “op ⊂” “rtrancl” “λx. Id ∩ (−x)”
〈proof〉

The proof is fully automatic because binary relations have already been shown
to form Kleene algebras [4], hence only the axioms for n need to be checked.
Moreover, Isabelle’s libraries for binary relations are very well developed.

The formalisation of Kleene algebra in Isabelle contains additional models,
including formal languages and regular languages, sets of paths in digraphs,
sets of traces and matrices. For languages there are only two tests: the empty
language and the empty word language. Linking these structures with Kleene
algebra with tests is therefore uninteresting. The other models have a richer test
structures. Interpretation statements with respect to Kleene algebra with tests
seem straightforward. This is left for future work.

The intended model of demonic refinement algebras is formed by conjunctive
predicate transformers [23]. Abstractly speaking these are functions f : B → B
over boolean algebras that distribute over arbitrary meets. Boolean algebras
with such functions are also known as boolean algebras with operators [14]. We
have formalised the isomorphic case where B is a field of sets and functions are
strict and additive. In this model, multiplication is function composition and 1
is the identity function; the other dioid operations are

definition f + g ≡ λσ. f σ ∪ g σ

definition 0 ≡ λσ. {}

definition f ≤ g ≡ ∀σ. f σ ⊆ g σ

The iterations ∗ and ∞ correspond to least and greatest fixpoints of the function
λσ. 1+ρ ·σ. To characterise the boolean subalgebra, we have defined the adjoint
of a function f , following Jónsson and Tarski, as adjoint f ≡ (λσ. − f (−σ)).

Algebras for Program Correctness in Isabelle/HOL 61

We could then define the operation n in this model as

definition n f ≡ (adjoint f · 0) + 1

Finally, we have created an Isabelle type for the set of strict additive functions—
or boolean operators—and proved that, along with the operators defined above,
these functions form a demonic refinement algebra with tests.

typedef ′a bool-op = {f :: ′a set ⇒ ′a set . (∀ g h. f ·(g + h) = f ·g + f ·h ∧ 0 ·f = 0)}

instantiation bool-op :: (type) dioid-tests-zerol 〈proof〉

instantiation bool-op :: (dioid-tests-zerol) dra-tests 〈proof〉
A dual statement for multiplicative functions or conjunctive predicate transform-
ers could be obtained similarly. The characterisation of more general function
spaces can also be achieved along these lines. We have not pursued this any
further since Preoteasa [19] has already formalised an isotone predicate trans-
former model for demonic refinement algebra. Hence our main contribution lies
in the formalisation of the function n. An integration of Preoteasa’s model into
the Kleene algebra hierarchy is certainly desirable for applications.

8 A Prototypical Verification Tool

We have already explained that Kleene algebras with tests provide an alge-
braic semantics of while programs in a partial correctness setting. It is also
well known [16] that validity of Hoare triples # {|p|}x{|q|} can be encoded as
p · x · (−q) = 0. This formula states that there are no successful executions of
program x from states in p into the complement of q. In other words, if x is
executed from precondition p, then its output will satisfy postcondition q upon
termination. We have formalised validity of Hoare triples in Kleene algebras
with tests. We have also derived all inference rules of propositional Hoare logic
without the assignment rule. The derivations were fully automatic.

We now demonstrate how the relational model can be used to derive assign-
ment rules in Isabelle and how the algebraic layer can be extended to a simple,
formally verified tool prototype for program verification and correctness. This
semantic approach is in contrast to a previous axiomatic treatment of assign-
ment [5] with schematic Kleene algebra with tests [1]. Within this tool, Kleene
algebra with tests also allows us to automatically generate verification conditions
which completely eliminate the control structure of programs. By our formal
linkage of the relation model with abstract Kleene algebra with tests, we can of
course use all abstract theorems in this particular model. Although this is not
needed for verification, it is important for program transformation.

In the standard relational semantics of imperative programs, a command is
a relation between states and a state is a function from variables to values.
We provide a prototypical implementation of states as functions from strings to
natural numbers and have defined an Isabelle type for this:

type-synonym state = string ⇒ nat

62 A. Armstrong, V.B.F. Gomes, and G. Struth

We have also defined assignment commands as functions from variable names,
update functions and states. They return a new state in which the value of the
variable has been updated. This is defined in Isabelle as follows, where lift-fn
lifts the assignment function into the relational model.

definition lift-fn f ≡ Abs-relation {(x , f x) | x . True}

definition assign-fn x f σ ≡ (λy . if x = y then f σ else σ y)

definition x := e ≡ lift-fn (assign-fn x e)

Subsets of the identity relation represent tests.

definition assert P ≡ Abs-relation (Id-on P)

This set-up allows us to derive assignment axioms, for instance,

P [x|e] ⊆ Q −→ {|assert P |} x := e {|assert Q|},

where P [x|e] is the set of states in P in which the variable x has value e.
For convenience we have added a notion of loop invariant for while loops,

while p inv i do x = (p · x)∗ · (−p).

Invariants are tests or assertions. They are used for generating verification con-
ditions according to the rule

(p ≤ i) ∧ (i · (−b) ≤ q) ∧ {|i · b|}x{|i|} −→ {|p|} while b inv i do x {|q|},

which can be derived easily from the original Hoare rule for the while loop.
Finally, we have adapted the simple proof tactic hoare-auto from [5] for gener-

ating verification conditions in Isabelle. It applies Isabelle’s simplifiers together
with the rules of Hoare logic. This works in practice since Hoare logic provides
precisely one rule per programming construct. Resolving verification conditions
then depends on Isabelle’s libraries for the underlying data domains; algebra is
no longer needed at this level. We verify Euclid’s algorithm as an illustration.

lemma euclids-algorithm:
{|{σ. σ ′′x ′′ = x ∧ σ ′′y ′′ = y}|} -- states σ where ′′x ′′ = x and ′′y ′′ = y
while {σ. σ ′′y ′′ �= 0} -- while the state has ′′y ′′ �= 0
inv {σ. gcd (σ ′′x ′′) (σ ′′y ′′) = gcd x y}
do (

′′z ′′ := ′′y ′′; ′′y ′′ := ′′x ′′ mod ′′y ′′; ′′x ′′ := ′′z ′′

)
{|{σ. σ ′′x ′′ = gcd x y}|} -- states σ where ′′x ′′ = gcd x y

by hoare-auto (metis gcd-red-nat)

In this simple case, hoare-auto presents only gcd x y = gcd y (x mod y) as a single
verification condition; the other ones have been discharged by simplification.

Algebras for Program Correctness in Isabelle/HOL 63

Invoking Sledgehammer discharges this condition automatically, using the fact
gcd-red-nat which been drawn from Isabelle’s library for natural numbers.

This simple prototype of a verification tool yields a general template for
algebra-based program analysis systems. It can readily be adapted and extended
for complex applications. Refinement and transformation tools using the predi-
cate transformer semantics can be built along the same lines.

9 Conclusion

We have extended a reference formalisation for variants of Kleene algebras in
Isabelle by two algebras that are important for program verification and correct-
ness applications: Kleene algebras with tests and demonic refinement algebras.
We provide more than 10 algebraic structures, hundreds of theorems and two
important models. We have demonstrated the applicability of the implementa-
tion by two main examples, and have shown how trustworthy tools for program
construction and verification can be implemented from such algebras. A coherent
integration of algebraic methods into program analysis tools has thereby been
achieved. The associated Isabelle theories in the Archive of Formal Proofs [3]
serve as a reference for extensions and further applications.

Main applications of our formalisation lie in the development of tools for pro-
gram verification and correctness. Our technique for integrating the control flow
into the algebraic layer is generic. We have already extended it to arbitrary data
types beyond natural numbers and verified additional algorithms. An integra-
tion of data flow into predicate transformer semantics and the extension of our
tool to refinement or program transformation are topics for future work. Finally,
we have applied our approach in the context of shared variable concurrency
verification [2], with similar algebras, but trace-based semantics.

Acknowledgements. The authors are grateful to Jordan Milner for a prepara-
tory implementation and to Peter Jipsen for joint work on the one-sorted test
axiomatisation. They also acknowledge funding from CNPq and EPSRC.

References

[1] Angus, A., Kozen, D.: Kleene algebra with tests and program schematology. Tech-
nical Report TR2001-1844, Computer Science Department, Cornell University
(July 2001)

[2] Armstrong, A., Gomes, V.B.F., Struth, G.: Algebraic principles for rely-guarantee
style concurrency verification tools. CoRR, abs/1312.1225 (2013)

[3] Armstrong, A., Gomes, V.B.F., Struth, G.: Kleene algebras with tests and demonic
refinement algebras. Archive of Formal Proofs (2014)

[4] Armstrong, A., Struth, G., Weber, T.: Kleene algebra. Archive of Formal Proofs
(2013)

[5] Armstrong, A., Struth, G., Weber, T.: Program analysis and verification based on
Kleene algebra in Isabelle/HOL. In: Blazy, S., Paulin-Mohring, C., Pichardie, D.
(eds.) ITP 2013. LNCS, vol. 7998, pp. 197–212. Springer, Heidelberg (2013)

64 A. Armstrong, V.B.F. Gomes, and G. Struth

[6] Back, R.-J.R.: A method for refining atomicity in parallel algorithms. In: Odijk, E.,
Rem, M., Syre, J.-C. (eds.) PARLE 1989. LNCS, vol. 366, pp. 199–216. Springer,
Heidelberg (1989)

[7] Back, R.-J., Kurki-Suonio, R.: Distributed cooperation with action systems. ACM
TOPLAS 10(4), 513–554 (1988)

[8] Back, R.-J., von Wright, J.: Refinement Calculus: A Systematic Introduction.
Springer (1998)

[9] Cohen, E.: Separation and reduction. In: Backhouse, R., Oliveira, J.N. (eds.) MPC
2000. LNCS, vol. 1837, pp. 45–59. Springer, Heidelberg (2000)

[10] Conway, J.H.: Regular Algebra and Finite Machines. Chapman and Hall (1971)
[11] Desharnais, J., Struth, G.: Internal axioms for domain semirings. Science of Com-

puter Programming 76(3), 181–203 (2011)
[12] Foster, S., Struth, G.: Automated analysis of regular algebra. In: Gramlich, B.,

Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 271–285. Springer,
Heidelberg (2012)

[13] Höfner, P., Struth, G., Sutcliffe, G.: Automated verification of refinement laws.
Ann. Mathematics and Artificial Intelligence 55(1-2), 35–62 (2009)

[14] Jónsson, B., Tarski, A.: Boolean algebras with operators, part 1. American Journal
of Mathematics 73(4), 891–939 (1951)

[15] Kozen, D.: Kleene algebra with tests. ACM TOPLAS 19(3), 427–443 (1997)
[16] Kozen, D.: On Hoare logic and Kleene algebra with tests. ACM TOCL 1(1), 60–76

(2000)
[17] Manes, E.G., Benson, D.B.: The inverse semigroup of a sum-ordered semiring.

Semigroup Forum 31(1), 129–152 (1985)
[18] Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL - A Proof Assistant for

Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)
[19] Preoteasa, V.: Algebra of monotonic boolean transformers. In: Simao, A., Morgan,

C. (eds.) SBMF 2011. LNCS, vol. 7021, pp. 140–155. Springer, Heidelberg (2011)
[20] Rabehaja, T.M., Sanders, J.W.: Refinement algebra with explicit probabilism. In:

Chin, W.-N., Qin, S. (eds.) TASE, pp. 63–70. IEEE Comp. Soc. (2009)
[21] Solin, K.: Normal forms in total correctness for while programs and action systems.

J. Logic and Algebraic Programming 80(6), 362–375 (2011)
[22] von Wright, J.: From Kleene algebra to refinement algebra. In: Boiten, E.A.,

Möller, B. (eds.) MPC 2002. LNCS, vol. 2386, pp. 233–262. Springer, Heidelberg
(2002)

[23] von Wright, J.: Towards a refinement algebra. Science of Computer Program-
ming 51(1-2), 23–45 (2004)

Completeness Theorems for Bi-Kleene Algebras

and Series-Parallel Rational Pomset Languages

Michael R. Laurence and Georg Struth

Department of Computer Science, University of Sheffield, UK
{m.laurence,g.struth}@sheffield.ac.uk

Abstract. The congruence on series-parallel rational pomset expressions
induced by series-parallel rational pomset language identity is shown to
be axiomatised by the Kleene algebra axioms plus those of commutative
Kleene algebra. A decision procedure is extracted from this proof. On the
way to this result, series-parallel rationalpomset languages are proved tobe
closed under the operations of co-Heyting algebras and homomorphisms.

1 Introduction

Pomsets, or partially ordered multisets, form a standard and widely studied
model of true concurrency [1–6]. They are essentially partial orders which model
the causal dependencies between events in a concurrent system. Vertices are la-
belled by letters from some given alphabet to capture the actions taking place
at particular events. Pomsets generalise both words, which are linear pomsets,
and commutative words, which are discrete ones. Words of the former kind can
be generated from singleton pomsets using a non-commutative sequential com-
position, whereas commutative words are generated using parallel composition
which is commutative. In pomsets, both operations are present.

Pomset languages are sets of pomsets. Several classes have been studied in
the literature, since equivalent ways of defining regularity become distinct when
generalising from word to pomset languages. A word language X over an alpha-
bet Σ is regular if it satisfies any, hence all, of the following conditions. (i) It is
defined as the image of some Σ-term t with regular operations under a regular
homomorphism h, that is, X = h(t). (ii) There is a homomorphism from the free
monoid M with basis Σ into a finite monoid such that X is the preimage of a
subset of the target monoid. (iii) X is accepted by a finite automaton.

Lodaya and Weil [7, 8] have generalised these conditions as follows. A pomset
language is series rational if it is definable by a term with operations 0, 1, +, ·, ∗
and ||; it is series-parallel rational if it is definable by a term with operations in
0, 1, +, ·, ∗, || and (∗), where (∗) denotes the parallel star. It is recognisable if is
definable using preimages of homomorphisms from a free algebra with signature
1, · , || into a finite algebra, by analogy with the special case for word languages.
Lastly, it is regular if it is accepted by a branching automaton, a generalisation
of finite automata. Lodaya and Weil have shown that the class of series-rational

P. Höfner et al. (Eds.): RAMiCS 2014, LNCS 8428, pp. 65–82, 2014.
c© Springer International Publishing Switzerland 2014

66 M.R. Laurence and G. Struth

languages is a strict subset of both the classes of recognisable and regular lan-
guages and that the class of series-parallel-rational languages is a strict subset
of the class of regular languages.

Algebraic axioms for pomset languages have been studied by Gischer [9]. He
proved that additively idempotent bi-semirings, which possess both a sequential
and a commutative parallel multiplication, are sound and complete with respect
to series-rational pomset languages—but without both stars.

The main contribution of this paper is a completeness result for series-parallel
rational pomset languages, where both stars are defined. The algebras employed
are bi-Kleene algebras consisting of a Kleene algebra and a commutative Kleene
algebra with shared addition and units. As in the star-free case, no further axioms
are needed for the interaction between sequential and concurrent behaviours in
the pomset language model.

Completeness is proved relative to Kozen’s completeness result for Kleene
algebras and regular languages [10], as well as Pilling and Conway’s complete-
ness result for commutative Kleene algebra and regular sets of commutative
words [11]. These special cases are used for computing a finite atom structure
for series-parallel rational pomset expressions recursively with respect to the
alternation depth of their serial and parallel operations. Subexpression memo-
isation is used for propagating relationships between expressions across these
layers. Equations between series-parallel rational pomset expressions can then
be decided by comparing finite sets of atoms.

Further contributions are a much simpler completeness proof for bi-Kleene
algebras with a certain continuity property, and a proof that series-parallel ra-
tional pomset languages are closed under the operations of co-Heyting algebras
and homomorphisms. At least the proofs for differences of languages and homo-
morphisms seem to be new.

Bi-Kleene algebras have been proposed as tools for the verification and cor-
rectness of concurrent programs [12]. Our completeness and decidability result
can make reasoning about such programs simpler and more automatic.

2 Pomsets, Pomset Languages, Pomset Algebras

AΣ-labelled poset over a finite alphabetΣ is a structure (P,≤, λ), where (P,≤) is
a poset and λ : P → Σ a function labelling vertices. We call them labelled posets
when the alphabet is clear. The labelled posets (P ≤P , λP) and (Q,≤Q, λQ) are
isomorphic if there is a bijection preserving the ordering and labelling.

A Σ-pomset or partially ordered multiset over Σ is an isomorphism class of
Σ-labelled posets. We tacitly assume that all labelled posets and pomsets are
finite. We write ε for the empty pomset and Pom(Σ) for the set of all (finite)
Σ-pomsets. A pomset language over Σ is a subset of Pom(Σ).

There are two extremal cases: any pomset over a linear order is isomorphic to
a finite word or string; any pomset over the discrete partial order is isomorphic
to a finite commutative word or finite multiset. We refer to the literature cited
in the introduction for more information and examples.

Completeness Theorems 67

Pomsets can be composed sequentially (or serially) and concurrently (or par-
allely). The labelled poset P ·Q is obtained by taking the disjoint union of two
labelled posets P and Q and making every element of P precede every element
in Q. The labelled poset P ||Q is obtained by simply taking the disjoint union of
P and Q (and leaving the ordering unchanged). We assume that labelled posets
are always made disjoint before performing these operations. Formally,

P ·Q = (P ∪Q,≤P ∪ ≤Q ∪P ×Q, λP ∪ λQ),
P ||Q = (P ∪Q,≤P ∪ ≤Q, λP ∪ λQ).

Since the domains of λP and λQ are disjoint, λP ∪λQ is indeed a function. These
definitions are lifted to pomsets in the obvious way.

The algebra of these operations is captured as follows. A bimonoid is a struc-
ture (M, ·, ||, 1) such that (M, ·, 1) is a monoid and (M, ||, 1) a commutative
monoid [13]. The following fact is routine.

Lemma 1. (Pom(Σ), ·, ||, ε) forms a bimonoid.

Strictly speaking, this holds for finite and for infinite pomsets; but in particular
for finite ones since finiteness is preserved by the pomset operations.

The bimonoidal structure on individual pomsets is lifted to the powerset level
of pomset languages as usual by defining complex products, for pomset languages
X,Y ⊆ Pom(Σ), as

X · Y = {P ·Q : P ∈ X ∧Q ∈ Y }, X ||Y = {P ||Q : P ∈ X ∧Q ∈ Y }.

The corresponding algebraic structure is defined as follows. A dioid or idem-
potent semiring is a structure (S,+, ·, 0, 1) such that (S, ·, 1) is a monoid and
(S,+, 0) a semilattice with least element 0 that satisfies the distributivity laws
x · (y + z) = x · y + x · z and (x+ y) · z = x · z + y · z as well as the annihilation
laws x · 0 = 0 and 0 · x = 0. A dioid is commutative if x · y = y · x. A trioid is a
structure (S,+, ·, ||, 0, 1) such that (S,+, ·, 0, 1) is a dioid and (S,+, ||, 0, 1) is a
commutative dioid. The following fact is again routine.

Lemma 2. (2Pom(Σ),∪, ·, ||, ∅, {ε}) forms a trioid.

At the level of pomset languages, stars can be defined as for word languages:

X∗ =
⋃
i≥0

X i, X(∗) =
⋃
i≥0

X(i),

where powers of products are defined as for word languages. A ∗-continuous
bi-Kleene algebra is a trioid expanded by two star operations that satisfy

xy∗z =
∑
i≥0

xyiz, xy(∗)z =
∑
i≥0

xy(i)z,

where powers xi and x(i) are defined like those on pomsets.

68 M.R. Laurence and G. Struth

Proposition 3. (2Pom(Σ),∪, ·, ||, ∅, {ε}, ∗, (∗)) forms a ∗-continuous bi-Kleene
algebra.

In other words, pomset languages form ∗-continuous bi-Kleene algebras.
As special cases, a ∗-continuous Kleene algebra [10] is a dioid expanded by a

sequential star that satisfies the first star axiom above, whereas a ∗-continuous
commutative Kleene algebra is a commutative dioid expanded by a concurrent
star that satisfies the second star axiom.

The above star axioms are first-order infinitary. Every dioid is ordered by the
semilattice order x ≤ y ⇔ x + y = y. The axiom x · y∗ · z =

∑
i≥0 x · yi · z

is therefore equivalent to the conjunction of the two infinitary Horn formulas
∀i ∈ N.x · yi · z ≤ x · y∗ · z and (∀i ∈ N.x · yi · z ≤ w)⇒ x · y∗ · z ≤ w. Hence the
class of star-continuous pomset algebras has free algebras and is closed under
products and subalgebras.

Finally, a Kleene algebra is a dioid where the star is a least pre-fixpoint:

1 + x · x∗ ≤ x∗, z + x · y ≤ y ⇒ x∗ · z ≤ y, z + y · x ≤ y ⇒ z · x∗ ≤ y.

The law 1 + x∗ · x ≤ x∗ is then derivable. A commutative Kleene algebra is a
Kleene algebra which is also a commutative dioid. A bi-Kleene algebra is a trioid,
a Kleene algebra and a commutative Kleene algebra.

We write T for the class of trioids and the trioid axioms, KA for the class
of Kleene algebras and the Kleene algebra axioms, KA∗ for the ∗-continuous
variants, cKA and cKA∗ for the commutative variants and bKA as well as bKA∗
for the cases of bi-Kleene algebras.

3 Series-Parallel Rational Expressions and Languages

Series-parallel rational expressions (spr-expressions) [8] over Σ are defined as

TbKA(Σ) ::= 0 | 1 | a ∈ Σ | e · e | e||e | e+ e | e∗ | e(∗).

Obviously, spr-expressions correspond to the ground terms over the bKA signa-
ture with constants from Σ, which explains the notation TbKA(Σ). It is therefore
appropriate to study these expressions in the context of bi-Kleene algebras.The
operations in (+, ·, ∗, 0, 1) are the usual regular operations ; the expressions over
that signature are the regular expressions or ground KA-terms. The operations
in (+, ||, (∗), 0, 1) are called commutative regular operations ; expressions over that
signature are called commutative regular expressions or ground cKA-terms. We
write TT(Σ), TKA(Σ) and TcKA(Σ) for the sets of trioid ground terms, regular
expressions and commutative regular expressions over Σ.

The canonical homomorphism h : TbKA(Σ)→ 2Pom(Σ) from spr-expressions to
pomset languages is given, for all a ∈ Σ and s, t ∈ TbKA(Σ), by

h(0) = ∅, h(1) = {ε}, h(a) = {a}, h(s+ t) = h(s) ∪ h(t),
h(s · t) = h(s) · h(t), h(s||t) = h(s)||h(t),

h(s∗) = h(s)∗, h(s(∗)) = h(s)(∗).

Completeness Theorems 69

The series-parallel rational pomset languages (spr-languages) over Σ [8] are the
homomorphic images of TbKA(Σ) under h. Alternatively they form the inductive
subset of Pom(Σ) which contains ∅, {ε} and the singleton sets {a} for all a ∈ Σ
and which is closed under finite applications of the operations +, ·,∗ , ||,(∗). The
set of all spr-languages over Σ is denoted SPR(Σ).

The kernel of h induces a congruence on TbKA(Σ). For all s, t ∈ TbKA(Σ),

s ∼ t⇔ h(s) = h(t).

The main contribution of this paper is to show that ∼ is axiomatised precisely
by the bi-Kleene algebra axioms.

It is well known that the elements of spr-languages overΣ are special pomsets,
called series-parallel pomsets (sp-pomsets) over Σ. We write SP(Σ) for the set
of all sp-pomsets. These have been characterised in two different ways.

First, they are built inductively from the empty pomset ε and the singleton
pomsets (isomorphism classes of one-element posets) labelled by a ∈ Σ by closing
under finite sequential and concurrent compositions. Thus all sp-pomsets are
finite and all pomsets occurring in SPR(Σ) are sp-pomsets; SPR(Σ) ⊆ 2SP(Σ).

For the second characterisation consider the poset N with Hasse diagram

p1 p2

p3

��

p4

������������

It has been shown that this pomset cannot be constructed as P ·Q or P ||Q under
any labelling. A po(m)set is called N -free if it does not contain a subpo(m)set
isomorphic to N . More generally, a finite pomset is series-parallel if and only if
it is N-free [1, 14]. Hence not all pomsets are series-parallel and the definition of
sp-pomset is meaningful.

4 Bimonoids and Series-Parallel Pomsets

Let BM denote the bimonoid axioms and the class of all bimonoids. Let TBM(Σ)
denote the ground bimonoid terms, or monomials, with constants from Σ. Gra-
bowski and Gischer [1, 9] have shown the following fact.

Proposition 4. Every finite N-free pomset has a unique decomposition as an
sp-pomset modulo associativity of sequential composition and associativity and
commutativity of concurrent composition.

So, for all monomials s, t ∈ TBM(Σ), we define the congruence

s ∼BM t ⇔ BM # s = t

and write [s]BM for the equivalence class of s with respect to ∼BM. The bimonoid
operations are lifted in the standard way as [s]BM · [t]BM = [s · t]BM and likewise.
The canonical bimonoid homomorphism h : TBM(Σ) → Pom(Σ) is lifted as
h([s]BM) = {h(t) : t ∼BM s}. Grabowski’s result can then be rephrased as follows.

70 M.R. Laurence and G. Struth

Proposition 5.

(1) h([s]BM) = h(s) holds for every s ∈ TBM(Σ).
(2) h is injective: h([s]BM) = h([t]BM)⇒ [s]BM = [t]BM.

This immediately implies the following soundness and completeness result which
links pomsets with bimonoids.

Theorem 6. If s, t ∈ TBM(Σ), then h(s) = h(t)⇔ BM # s = t.

Proof. Soundness, the right-to-left implication, follows from Lemma 1.
For completeness suppose h(s) = h(t). Then h([s]BM) = h([t]BM) by Proposi-

tion 5(1) and [s]BM = [t]BM by Proposition 5(2), whence s ∼BM t and therefore
BM # s = t by definition of ∼BM. !�

Corollary 7. The bimonoid homomorphism h is a bijection between equivalence
classes of monomials and sp-pomsets.

Proof. By Proposition 5(1), each equivalence class [s]BM is mapped to the single-
ton language h(s), which, by the isomorphism between these singleton sets and
sp-pomsets, yields a map to a unique pomset. By Proposition 5(2), this map is
injective, hence invertible. Since every sp-pomset is the image of some monomial,
the map is bijective. !�

This bijective correspondence is important for the completeness results in Sec-
tions 5 and and 7. Due to it we can think of BM-equivalence classes as trees
where sequential edges have a fixed order and concurrent edges are commuta-
tive. The monomial a||(b · (c||c) · a)||(b · b)||c, or rather its equivalence class, and
therefore the unique associated pomset, is represented in Figure 4.

||

�
�
�

�
�
�
�
�

�
�

�

�
�

�
�

�

a ·

��
��
��

��
��
��

·

		
		
		

c

b ||

�
�
�

�
�
�
a b b

c c

Fig. 1. Tree representation of a||(b · (c||c) · a)||(b · b)||c

In Section 6 we define an alternation depth which measures the maximal
number of alternations between the sequential and the concurrent layers of an sp-
pomset tree. The alternation depth of the above monomial and pomset is three.
We say that a monomial is sequential if its top symbol is sequential composition,
and similar for the concurrent case. The above monomial is of course concurrent.

Completeness Theorems 71

As usual, the completeness result for bimonoids can be turned into a result
about free algebras [13].

Lemma 8. (SP(Σ), ·, ||, ε) is freely generated in the variety BM by Σ.

Proof. Let g : TBM(Σ)→ B be a mapping from monomials to some bimonoid B;
let h be the canonical homomorphism from monomials to sp-pomsets. We must
show that g = f ·h and that f is uniquely defined. We first show that f = g ·h−1
is a map. We have kerh ⊆ ker g because h(s) = h(t) implies BM # s = t
and therefore g(s) = g(t). Thus, if h−1 relates an sp-pomset to different spr-
expressions, then these are in ker g and identified by g. This yields indeed a
function. Now suppose f ′ · h = g = f · h. Then f ′ = f since h is surjective. !�

The proofs of the following well known facts, which are due to Gischer, Kozen
and Pilling and Conway, are similar to this one.

Lemma 9.

(1) (SPRf (Σ),∪, ·, ||, ∅, {ε}) is freely generated in the variety T by Σ.

(2) (Reg(Σ),∪, ·, ∅, {ε},∗) is freely generated in the variety KA by Σ.

(3) (cReg(Σ),∪, ||, ∅, {ε},(∗)) is freely generated in the variety cKA by Σ.

Here, SPRf (Σ) denotes the finite series-parallel rational languages overΣ;Reg(Σ)
and cReg(Σ) denote the regular and commutative regular languages over Σ.

5 Completeness of bKA∗

We now prove that bKA∗ is complete for the equational theory of spr-expressions.
This is a simple consequence of the following proposition, which extends a well
known fact about Kleene algebras and regular languages.

Proposition 10. For all r, s, t ∈ TbKA(Σ),

bKA∗ # r · s · t =
∑

P∈h(s)
r · ε(h−1({P})) · t,

where ε chooses some representative p from every equivalence class [p]BM.

Proof. By induction on s. Since, by Corollary 7, the correspondence between p
and {P} = h(p) is bijective, we identify [p]BM, its representative p as well as
{P} = h(p); we write P instead of {P}.

– s = 0. Then h(s) = h(0) = ∅ and the right-hand side is
∑

0 = 0 as well.

– s = 1. Then h(s) = h(1) = {ε}, and
∑

r · 1 · t = r · t.
– s = a ∈ Σ. Then h(a) = {a} and

∑
r · a · t = r · a · t.

72 M.R. Laurence and G. Struth

– s = s1 + s2. Then

r · (s1 + s2) · t = r · s1 · t+ r · s2 · t = r · (
∑

p∈h(s1)
p) · t+ r · (

∑
q∈h(s2)

q) · t

=
∑

p∈h(s1)
(r · p · t) +

∑
q∈h(s2)

(r · q · t) =
∑

p∈h(s1)∪h(s2)
(r · p · t)

=
∑

p∈h(s1+s2)

(r · p · t).

– s = s1 · s2. Then

r · s1 · s2 · t = r · (
∑

p∈h(s1)
p) · s2 · t =

∑
p∈h(s1)

(r · p · s2 · t)

=
∑

p∈h(s1)
(r · p · (

∑
q∈h(s2)

q) · t) =
∑

p∈h(s1)

∑
q∈h(s2)

(r · p · q · t)

=
∑

p∈h(s1),q∈h(s2)
(r · p · q · t) =

∑
p∈h(s1·s2)

(r · p · t).

– s = u∗. Then

r · u∗ · t = r · (
∑
i≥0

ui) · t =
∑
i≥0

(r · ui · t)

=
∑
i≥0

(r · (
∑

p∈h(ui)

p) · t) =
∑
i≥0

∑
p∈h(ui)

(r · p · t)

=
∑

p∈∑i≥0 h(ui)

(r · p · t) =
∑

p∈h(u∗)

(r · p · t).

– s = s1||s2 and s = u(∗) are similar to the sequential cases. !�

Completeness of bKA∗ is now straightforward.

Theorem 11. h(s) = h(t)⇔ bKA∗ # s = t for all s, t ∈ TbKA(Σ).

Proof. Soundness follows from Proposition 3. For completeness assume that
h(s) = h(t). Then, by Proposition 10,

bKA∗ # s =
∑

P∈h(s)
ε(h−1(P)) =

∑
P∈h(t)

ε(h−1(P)) = t.

!�

Theorem 11 generalises the following well known results.

Theorem 12.

(1) h(s) = h(t)⇔ T # s = t, for all s, t ∈ TT(Σ).
(2) h(s) = h(t)⇔ KA∗ # s = t⇔ KA # s = t, for all s, t ∈ TKA(Σ).
(3) h(s) = h(t)⇔ cKA∗ # s = t⇔ cKA # s = t, for all s, t ∈ TcKA(Σ).

Completeness Theorems 73

For the sake of simplicity, we overload notation and do not notationally dis-
tinguish between homomorphisms in the categories of trioids, Kleene algebras,
commutative Kleene algebras and bi-Kleene algebras. (1) is due to Gischer, (2)
to Kozen; (3) is new for cKA∗, but not surprising. For cKA, the result is due
to Conway and Pilling. In fact, Conway proves completeness of a finite equa-
tional axiom system based on commutative dioids which is different from KA.
On the one hand, the axiom xy(∗)z =

∑
i≥0 xy

iz entails Conway and Pilling’s
star axioms. On the other hand, their axioms can be derived from those of cKA.

6 Alternation Depth

We prove our main theorems by induction on the alternation depth of spr-
expressions. This is based on a semantic definition of alternation depth for pom-
sets [15], which we extend to spr-expressions. The alternation depth measures
the number of layers of sequential and concurrent operations in sp-pomsets or
spr-expressions (cf. Section 4).

Let P be an sp-pomset. The alternation depth δ : SP(Σ) → N is defined
recursively as follows, using unique decomposability (Proposition 4).

– if P is a singleton pomset or P = ε, then δ(P) = 0;
– if P = P1 ‖ · · · ‖ Pn then δ(P) = maxi≤n δ(Pi) + 1;
– if P = P1 · · · · · Pn then δ(P) = maxi≤n δ(Pi) + 1;

where all decompositions are maximal and n ≥ 2. The operations of addition
and star are incorporated by the following syntactic definition on spr-expressions,
which is justified by the next lemma.

Lemma 13. For all t ∈ TbKA(Σ) the set {δ(P) : P ∈ h(t)} has a finite upper
bound.

Proof. Let Δ(t) = {δ(P) : P ∈ h(t)}

– If t = 0, then h(t) = ∅ and we can chose 0 as an upper bound.
– If t = 1, then h(t) = {ε} and 0 is an upper bound.
– If t = a for a ∈ Σ, then h(t) = {a} and 0 is an upper bound.
– If t = t1 + t2, then max Δ(t1) ≤ m and max Δ(t2) ≤ n for some m,n ∈ N.

Therefore max Δ(t1 + t2) = max (Δ(t1) ∪Δ(t2)) = max{m,n}.
– If t = t1 · t2, then max Δ(t1) = m and max Δ(t2) = n for some m,n ∈ N.

Then

max Δ(t1 ·t2) = max {δ(P1 ·P2) : P1 ∈ h(t1)∧P2 ∈ h(t2)} ≤ max {m,n}+1.

– If t = u∗, then max Δ(u) ≤ n for some n ∈ N.

max Δ(u∗) = max {δ(P) : P ∈
⋃
i≥0

h(u)i} = max {δ(P) : P ∈ h(u)2} ≤ n+1.

– For t = t1||t2 or t = u(∗) the proofs are similar to the sequential cases. !�

74 M.R. Laurence and G. Struth

In particular, δ(t∗) = δ(t · t) and δ(t(∗)) = δ(t||t). This allows us to define a
syntactic notion of alternation depth for spr-expressions for which we overload
notation. For t ∈ TbKA(Σ),

δ(t) = max {δ(P) : P ∈ h(t)}

is well defined owing to Lemma 13. For convenience, if T is a finite subset of
TbKA(Σ), we write δ(T) = max {δ(t) : t ∈ T }. Intuitively, δ(t) can be computed
by replacing all subterms s∗ of t by s · s and all subterms s(∗) by s||s in t.
By definition, the alternation depth is preserved by distributivity laws, e.g.,
δ(a · (b+ c)) = δ(a · b+ a · c), hence the alternation depth of any spr-expression
can be computed as the maximal alternation depth of all monomials in a finite
sum, according to these transformations.

The following fact is an immediate consequence of the definition.

Lemma 14. If s, t ∈ TbKA(Σ), then h(s) = h(t)⇒ δ(s) = δ(t).

The next lemma is again obvious from the definition of δ and the above obser-
vation on computing alternation depths.

Lemma 15. Let s, t ∈ TbKA(Σ) such that t is a strict subterm of s and s is not
a sum. Then δ(t) < δ(s).

7 Closure Properties

The proof of the closure properties of spr-languages and the completeness proof
for bKA are based on subterm memoisation, and we need the following definition.
A substitution morphism is a function f : Σ → TbKA(Σ) which replaces constants
by spr-expressions. We lift f to a function of type TbKA(Σ)→ TbKA(Σ) as usual:

f(1) = 1, f(x · y) = f(x) · f(y), f(x||y) = f(x)||f(y),
f(x+ y) = f(x) + f(y), f(x∗) = f(x)∗, f(x(∗)) = f(x)(∗).

We next show that the set SPR(Σ) of series-parallel rational languages is
closed under the union, intersection and difference operations, and also under
homomorphisms. Closure under unions is trivial.

Lemma 16. If X,Y ∈ SPR(Σ), then X ∪ Y ∈ SPR(Σ).

Proof. Let s, t ∈ TbKA(Σ) with X = h(s) such that Y = h(t). Then X ∪ Y =
h(s)∪ h(t) = h(s+ t) is the image of s+ t under h and therefore in SPR(Σ). !�

Closure under homomorphisms requires some work. A pomset homomorphism
is a function fl : Pom(Σ)→ Pom(Σ) such that

fl(ε) = {ε}, fl(P ·Q) = fl(P) · fl(Q), fl(P ||Q) = fl(P)||fl(Q)

Completeness Theorems 75

for all P,Q ∈ Pom(Σ). We lift fl to languages by stipulating

fl(X) =
⋃
{fl(P) : P ∈ X}.

In particular, fl(∅) = ∅.
Obviously every substitution homomorphism f defines a homomorphism fl

on spr-languages by fl({a}) = h(f(a)) = {f(a)} for all a ∈ Σ. More generally,
on spr-expressions, we obtain the following two facts.

Lemma 17. Let f be a substitution homomorphism and fl the corresponding
pomset language homomorphism. Then, for all t ∈ TbKA(Σ),

h(f(t)) =
⋃

P∈h(t)
fl({P}).

Proof. By induction on t. The proof is similar to that of Proposition 10.

– t = 0. Then f(t) = 0 and h(f(0)) = h(0) = ∅, hence both sides reduce to ∅.
– t = 1. Then f(t) = 1 and h(f(1)) = h(1) = {ε} = fl({ε}).
– t = a ∈ Σ. Suppose that f(a) = p and that h(p) = {P}. Then fl({a}) = {P}

and both sides are equal.
– t = t1 + t2. Then

h(f(t1 + t2)) = h(f(t1)) ∪ h(f(t2)) =
⋃

P∈h(t1)
fl({P}) ∪

⋃
P∈h(t2)

fl({P})

=
⋃

P∈h(t1)∪h(t2)
fl({P}) =

⋃
P∈h(t1+t2)

fl(P).

– t = t1 · t2. Then

h(f(t1 · t2)) = h(f(t1)) · h(f(t2))

= (
⋃

P1∈h(t1)
fl({P1}) · h(fl(t2))

=
⋃

P1∈h(t1)
(fl({P1}) · h(fl(t2))

=
⋃

P1∈h(t1)
(fl({P1}) · (

⋃
P2∈h(t2)

fl({P2}))

=
⋃

P1∈h(t1)

⋃
P2∈h(t2)

(fl({P1}) · fl({P2}))

=
⋃

P1∈h(t1),P2∈h(t2)
(fl({P1}) · fl({P2}))

=
⋃

P∈h(t1·t2)
fl({P}).

76 M.R. Laurence and G. Struth

– t = u∗. Then

h(f(u∗)) = h(f(u))∗ =
⋃
i≥0

h(f(u))i =
⋃
i≥0

⋃
P∈h(ui)

fl({P})

=
⋃

P∈⋃i≥0 h(ui)

fl({P}) =
⋃

P∈h(u∗)

fl({P}).

– t = t1||t2 and t = u(∗) are similar to the sequential cases.
!�

Lemma 18. fl(h(t)) = h(f(t)).

Proof. fl(h(t))=
⋃

P∈h(t) fl({P})=h(f(t)) by definition of fl and Lemma 17. !�

This shows that the following diagram commutes.

t
f ��

h
��

t′

h
��

X
fl

�� X ′

Closure under homomorphisms then follows.

Proposition 19. X ∈ SPR(Σ) implies fl(X) ∈ SPR(Σ) for all pomset homo-
morphisms fl.

Proof. By Lemma 18, fl(h(t)) = h(f(t)). Thus, if X = h(t) for some spr-
expression t, then f maps t to an spr-expression t′ = f(t) such that h(t′) = fl(X).
Hence fl(X) is the image of some spr-expression under h and thus in SPR(Σ).

!�

Closure under the intersection and difference operators requires a further few
lemmas.

Lemma 20. If f is a monomorphism, then f(X ∩ Y) = f(X) ∩ f(Y).

Proof. The map f has an inverse, so

x ∈ f(X ∩ Y)⇔ f−1(x) ∈ X ∧ f−1(x) ∈ Y ⇔ x ∈ f(X) ∩ f(Y).

!�

Lemma 21. If f is a substitution homomorphism, then

h(f(s)) ∩ h(f(t)) = ∅ ⇒ h(s) ∩ h(t) = ∅.

Proof. Suppose h(f(s)) ∩ h(f(t)) = ∅. By Lemma 17 the sets
⋃

P∈h(s) fl({P})
and

⋃
Q∈h(t) fl({Q}) are disjoint, thus fl({P}) �= fl({Q}) holds for all P ∈ h(s)

and Q ∈ h(t). Therefore {P} �= {Q} holds for all P ∈ h(s) and all Q ∈ h(t), so
{P : P ∈ h(s)} and {Q : Q ∈ h(t)} are disjoint, whence h(s) ∩ h(t) = ∅. !�

Completeness Theorems 77

Proposition 22. If f is an injective substitution homomorphism, then

h(s) ∩ h(t) = ∅ ⇔ h(f(s)) ∩ h(f(t)) = ∅.

Proof. The right-to-left implication holds by Lemma 21. For its converse, observe
thatfl is injective whenever f is. Now suppose h(s) ∩ h(t) = ∅. Then

h(f(s) ∩ h(f(t)) = fl(h(s)) ∩ fl(h(t)) = fl(h(s) ∩ h(t)) = fl(∅) = ∅

by Lemma 18 and Lemma 20. !�

We now prepare for closure under intersection and difference.

Lemma 23. For all (commutative) regular expressions r and s there exists
(commutative) regular expressions t and t′ such that

h(t) = h(r) − h(s), h(t′) = h(r) ∩ h(s).

For regular languages the automata-based constructions are well known; a proof
for commutative regular languages can be found in Conway’s book [11].

Lemma 24. For every finite set T of (commutative) regular expressions, the set
h(T) = {h(t) : t ∈ T } generates a finite boolean algebra of (commutative) regular
languages.

The construction is standard. For |T | = n there are 2n atoms which are obtained
by computing intersections and set differences between the h(t) with t ∈ T . They
are given by the meets of all elements of h(T) and their complements. In the
regular case the atoms are regular sets. Hence there are terms s1, . . . , s2n which
generate them and which can be computed effectively. By definition, h(si) ∩
h(sj) = ∅ for si �= sj . Due to atomicity, every language X ∈ h(T) satisfies

X =
⋃
{h(si) : h(si) ⊆ X};

it is the union of the atomic languages below it. Thus X = h(t) implies

t =
∑
{s : KA # s ≤ t ∧ h(s) is an atom}.

This sum is finite since the underlying boolean algebra is.
In the commutative regular case, the constructions are similar, but can no

longer be based on automata. Language intersections and complementations are
based on normal form constructions explained in Conway’s book [11, p.92–97]

Proposition 25. For every finite set T ⊆ TbKA(Σ), the set

h(T) = {h(t) : t ∈ T }

generates a finite boolean algebra, each of whose elements is representable as h(t)
for some t ∈ TbKA(Σ).

78 M.R. Laurence and G. Struth

Proof. By induction on the alternation depth δ(T).

– Suppose δ(T) = 1 and let T = {t1, . . . , tn}. Then every ti can be decomposed
as ti = ui + vi, where ui is a possibly empty regular expression and vi a
possibly empty commutative regular expression, all of which are not sums.
By Lemma 24, the sets h({ui : 1 ≤ i ≤ n}) and h({vi : 1 ≤ i ≤ n})
form finite boolean algebras with atoms generated by the regular expressions
ru1 , . . . , r

u
2n and the commutative regular expressions rv1 , . . . , r

v
2n . We also

have that h(rui) ∩ h(rvj) = ∅, because every element of h(rui) is a word,
whereas every element of h(rvj) is a commutative word or finite multiset—as
far as constants are concerned, we assume that they are part of the regular
sets. Hence the union of the two sets of expressions generates the atoms of
a larger finite boolean algebra. Each of its elements is generated by a union
of atoms and therefore a regular pomset language according to Lemma 16.

– Suppose the claim holds for δ(T) = n and consider δ(T) = n+1. Let U be the
set of all maximal subterms of terms in T which are commutative at top level
if the element of T is sequential and sequential at top level if the element of
T is commutative (if a term is both, split into smaller terms). It follows that
δ(U) < δ(T) by Lemma 15, hence we can apply the induction hypothesis.
Accordingly, the elements of U generate a finite boolean algebra and there
are terms u1, . . . , un which generate their atoms. Hence h(ui) ∩ h(uj) = ∅
whenever i �= j.

Now introduce constants cu for every term generating an atom h(u) and
define a substitution homomorphism f by f(cu) = u. Then f is injective by
atomicity. For each t ∈ T we obtain a term t′ by replacing each subterm
from U that occurs in it by the sum of the constants cu representing the
atoms below it. Let T ′ be the resulting set of terms.

Obviously, all terms in T ′ can be decomposed into a a regular and a com-
mutative regular term as in the base case. Hence the sets generated by these
terms form a finite boolean algebra with atoms r′1, . . . , r

′
m, as in the base

case. They satisfy h(r′i) ∩ h(r′j) = ∅ for all i �= j. By injectivity of f and
Lemma 22, this is the case if and only if h(f(r′i)) ∩ h(f(r′j)) = ∅ for all
i �= j. In other words, the set {f(r′i) : 1 ≤ i ≤ m} generates the set of atoms
{h(f(r′i)) : 1 ≤ i ≤ m} of the finite boolean algebra h(T).

!�

Proposition 26. For all r, s ∈ TbKA(Σ) there exist t, u ∈ TbKA(Σ) such that

h(t) = h(r)− h(s), h(u) = h(r) ∩ h(s).

Proof. The spr-expressions t and u can be constructed from the atom structure
of the finite boolean algebra generated by r and s, which exists by Proposition 25.
t is the sum of the atoms below r which are not below s; u is the sum of the
atoms below both r and s. !�

Theorem 27. SPR(Σ) is closed under the operations of co-Heyting algebras.

Completeness Theorems 79

Proof. This is a consequence of Lemma 16 and Proposition 26. co-Heyting al-
gebras are (distributive) lattices with an additional operation corresponding to
set difference. !�

All spr-expressions arising from unions, intersections and differences of spr-
languages can be computed effectively. For unions this is straightforward. For set
differences and intersections this can be achieved by a recursive algorithm which
applies the memoisation construction in the proof of Proposition 26 in a bottom-
up fashion. The complexity of set intersections and differences depends on that
of determining intersections and differences of commutative regular languages
using Pilling and Conway’s constructions, which is open.

Peter Jipsen has pointed out that SPR(Σ) might not be closed under comple-
mentation. In fact, by Lemma 13, the alternation depth of any spr-expression
is bounded, whereas the alternation depth of sp-pomsets is unbounded. Hence
there is no maximal spr-expression generated by Σ and therefore 0 has no spr-
expression as a complement.

8 Completeness of bKA

Finally, we prove completeness of bi-Kleene algebras with respect to the equa-
tional theory of spr-expressions, as induced by spr-language identity.

Theorem 28. h(s) = h(t)⇔ bKA # s = t, for all s, t ∈ TbKA(Σ).

Proof. Soundness follows from Proposition 3. For completeness assume that
h(s) = h(t). We proceed by induction over the alternation depth. The assump-
tion implies δ(s) = δ(t) by Lemma 14, which justifies the approach. We need to
show that bKA # s = t.

– δ(t) ≤ 1. Then s = s1 + s2 for some KA-term s1 (possibly empty) and cKA-
term s2 (possibly empty). Similarly t = t1+t2 for some KA-term t1 (possibly
empty) and cKA-term t2 (possibly empty). We also treat the elements of Σ
and the constants 0 and 1 ambivalently as sequential or concurrent terms,
as needed, to simplify the presentation. Hence

h(s) = h(t) ⇔ h(s1) ∪ h(s2) = h(t1) ∪ h(t2)
⇔ h(s1) = h(t1) ∧ h(s2) = h(t2)

⇔ KA # s1 = t1 ∧ cKA # s2 = t2

⇒ bKA # s = t.

by completeness of KA and cKA (Theorem 12).
– Suppose the claim holds for δ(t) = n and consider δ(t) = n+1.We decompose
s = s1 + s2 and t = t1 + t2 into KA and cKA algebra parts as before,
whenever we can find a sequential and a concurrent subterm with the same
alternation depth, including terms with sequential or concurrent stars at top
level. Elements of Σ, 0 and 1 are again considered as ambivalent as needed.

80 M.R. Laurence and G. Struth

Let U be the set of all maximal concurrent subterms of s1 and t1 and of all
maximal sequential subterms of s2 and t2. Then δ(u) < δ(s) = δ(t) for all
u ∈ U by Lemma 15 and the induction hypothesis yields, for all u, v ∈ U ,

h(u) = h(v)⇔ bKA # u = v.

Next, we calculate the finite set of atoms generating the Boolean algebra of
h(U) according to Proposition 25 and assume that V = {v1 . . . vk} is the
resulting set of spr-expressions generating the atoms h(v1), · · · , h(vk). By
definition, the atoms generate disjoint languages: h(vi)∩h(vj) = ∅ whenever
i �= j. This implies that h is injective on V : vi �= vj implies h(vi) �= h(vj).
We can then replace each subterm from U that occurs in s or t by the
(finite) sum of the atoms below it. This preserves language identity. Then,
following Proposition 25, we introduce fresh constants cv for each v ∈ V and
we replace each atom v by its associated constant cv in s and t. We also
define the subsitution homomorphism f by f(cv) = v as in Proposition 25.
Again, f is injective by atomicity and, due to Lemma 18 and injectivity of
h, so is the associated pomset homomorphism fl. It follows that

h(f(cu)) = h(f(cv))⇔ bKA # f(cu) = f(cv)⇔ cu = cv.

Let now s′ and t′ be obtained from s and t by replacing subterms with
constants as described. Then

h(s) = h(t)⇔ h(f(s′)) = h(f(t′))
⇔ h(s′) = h(t′)
⇔ h(s′1) = h(t′1) ∧ h(t′1) = h(t′2)
⇔ cKA # s′1 = t′1 ∧ KA # s′2 = t′2
⇒ bKA # s′ = t′

⇔ bKA # f(s′) = f(t′).

The first step holds by definition of the subsitution homomorphism, s′ and
t′. The second step holds by Lemma 18 and injectivity of fl corresponding
to that of f . The third step holds by definition of s′1, s

′
2, t
′
1, t
′
2 and h. The

fourth step holds by completeness of KA and cKA. The fifth step is trivial.
The last step holds again because f is injective:

bKA # f(s′) = f(t′)⇒ bKA # f−1f(s′) = f−1f(t′)⇔ bKA # s′ = t′.

Finally, bKA # s = f(s′) and bKA # t = f(t′), because these terms have been
obtained from each other by replacing equals by equals at level δ(u) < δ(t)
applying the induction hypothesis.

This proves that h(s) = h(t)⇒ bKA # s = t. !�

Completeness Theorems 81

Theorem 29. The equational theory of bKA is decidable.

Proof. Recursively apply the subterm memoisation procedure from the inner-
most subterms upwards, using the fact that all equations and inequalities can be
decided at each level, because the equational theories of KA and cKA are decid-
able. KA is decidable by automata-theoretic means due to Kozen’s completeness
result [10]. Decidability of the equational theory of cKA follows from results of
Conway and Pilling, as presented in Conway’s book [p.92–97]. !�
Theorem 29 says in other words that the congruence ∼ is decidable. The com-
plexity of the decision procedure depends on deciding identities in commutative
Kleene algebra for which the complexity seems open.

9 Conclusion

We have proved, in this paper, that the class of series-parallel rational pomset
languages is closed under the intersection and difference operations, and that
every identity that is valid for all those languages is a consequence of the set of
valid regular and commutative-regular identities. We have also shown that the
problem of establishing whether two series-parallel rational pomset expressions
define the same language is decidable. The complexity of this is not clear how-
ever. It is known that decidability of equivalence of two regular expressions is
PSPACE-complete [16, 17], and can be shown that the analogous problem for
commutative-regular expressions lies in PSPACE; hence it is possible that gener-
alising to series-parallel rational pomset expressions does not increase the bound
beyond PSPACE. Nevertheless this problem may still be EXPTIME-complete
or EXPSPACE-complete. This is worth investigating further.

Gischer [9] has studied another class of series-parallel rational pomset lan-
guages, which are closed with respect of series-parallel pomset subsumption, but
for the case without both stars. He has shown that trioids which satisfy the
additional interchange law

(w||x) · (y||z) ≤ (w · y)||(x · z)

are sound and complete for this class. Parallel composition needs to be redefined
in this context to preserve subsumption closure. Bi-Kleene algebras which satisfy
this interchange law have recently found applications in the verification and
correctness of concurrent programs [12]. An extension of our completeness and
decidability results to this class seems therefore interesting.

Finally, the algorithmic aspects of our completeness proofs and decision pro-
cedures should be elaborated and a technical more precise and detailed pre-
sentation might be achieved by using categories. To this end, recent work on
coalgebraic and bialgebraic approaches to completeness proofs for Kleene alge-
bras is certainly worth considering [18, 19].

Acknowledgments. We would like to thank the anonymous referees for their
suggestions to improve the presentation of the paper. We are especially grateful
to Peter Jipsen for pointing out a mistake in a previous version.

82 M.R. Laurence and G. Struth

References

1. Grabowski, J.: On partial languages. Fundamenta Informaticae 4(2), 427–498
(1981)

2. Pratt, V.R.: On the composition of processes. In: DeMillo, R.A. (ed.) POPL 1982,
pp. 213–223. ACM (1982)

3. Pratt, V.R.: Some constructions for order-theoretic models of concurrency. In:
Parikh, R. (ed.) Logic of Programs 1985. LNCS, vol. 193, pp. 269–283. Springer,
Heidelberg (1985)

4. Brookes, S.D.: Traces, pomsets, fairness and full abstraction for communicating
processes. In: Brim, L., Jančar, P., Křet́ınský, M., Kučera, A. (eds.) CONCUR
2002. LNCS, vol. 2421, pp. 466–482. Springer, Heidelberg (2002)

5. Gastin, P., Mislove, M.: A truly concurrent semantics for a process algebra using
resource pomsets. Theoretical Computer Science 281, 369–421 (2002)

6. Zhao, Y., Wang, X., Zhu, H.: Towards a pomset semantics for a shared-variable par-
allel language. In: Qin, S. (ed.) UTP 2010. LNCS, vol. 6445, pp. 271–285. Springer,
Heidelberg (2010)

7. Lodaya, K., Weil, P.: Series-parallel posets: Algebra, automata and languages. In:
Morvan, M., Meinel, C., Krob, D. (eds.) STACS 1998. LNCS, vol. 1373, pp. 555–565.
Springer, Heidelberg (1998)

8. Lodaya, K., Weil, P.: Series-parallel languages and the bounded-width property.
Theoretical Computer Science 237(1-2), 347–380 (2000)

9. Gischer, J.L.: The equational theory of pomsets. Theoretical Computer Sci-
ence 61(2-3), 199–224 (1988)

10. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular
events. Information and Computation 110(2), 366–390 (1994)

11. Conway, J.H.: Regular Algebra and Finite Machines. Chapman and Hall (1971)
12. Hoare, T., Möller, B., Struth, G., Wehrman, I.: Concurrent Kleene algebra and its

foundations. Journal of Logical Algebraic Programming 80(6), 266–296 (2011)
13. Bloom, S.L., Ésik, Z.: Free shuffle algebras in language varieties. Theoretical Com-

puter Science 163(1&2), 55–98 (1996)
14. Valdes, J., Tarjan, R.E., Lawler, E.L.: The recognition of series parallel digraphs.

SIAM Journal of Computing 11(2), 298–313 (1982)
15. Ésik, Z., Németh, Z.L.: Automata on series-parallel biposets. In: Kuich, W., Rozen-

berg, G., Salomaa, A. (eds.) DLT 2001. LNCS, vol. 2295, pp. 217–227. Springer,
Heidelberg (2002)

16. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time: Prelim-
inary report. In: Aho, A.V., Borodin, A., Constable, R.L., Floyd, R.W., Harrison,
M.A., Karp, R.M., Strong, H.R. (eds.) STOC 1973, pp. 1–9. ACM (1973)

17. Stockmeyer, L.J.: The Complexity of Decision Problems in Automata Theory and
Logic. PhD thesis. MIT, Cambridge, Massachusetts, USA (1974)

18. Jacobs, B.: A bialgebraic review of deterministic automata, regular expressions
and languages. In: Futatsugi, K., Jouannaud, J.-P., Meseguer, J. (eds.) Algebra,
Meaning, and Computation. LNCS, vol. 4060, pp. 375–404. Springer, Heidelberg
(2006)

19. Bonsangue, M.M., Milius, S., Silva, A.: Sound and complete axiomatizations of
coalgebraic language equivalence. ACM TOCL 14(1) (2013)

A Modified Completeness Theorem of KAT

and Decidability of Term Reducibility

Takeo Uramoto

Department of Mathematics, Kyoto University
Sakyo-ku, Kyoto, Japan

takeo-u@math.kyoto-u.ac.jp

Abstract. Kleene algebra with tests (KAT) was introduced by Kozen
as an extension of Kleene algebra (KA). The decidability of equational
formulas p = q and Horn formulas ∧ipi = qi → p = q in KAT has been
studied so far by several researchers. Continuing this line of research,
this paper studies the decidability of existentially quantified equational
formulas ∃q ∈ P.(p = q) in KAT, where P is a fixed collection of KAT
terms. A new completeness theorem of KAT is proved, and via the com-
pleteness theorem, the decision problem of ∃q ∈ P.(p = q) is reduced to
a certain membership problem of regular languages, to which a pseudo-
identity-based decision method is applicable. Based on this reduction, an
instance of the problem is studied and shown to be decidable.

Keywords: Kleenealgebrawith tests, completeness theorem,decidability.

1 Introduction

A Kleene algebra with tests is a pair (K,B) of a Kleene algebra K [Koz94] and an
embedded Boolean subalgebra B ⊆ K whose members are called tests. Kleene
algebra with tests was introduced by Kozen [Koz97], and the paradigm pro-
vides an algebraic approach to program logic and formal verification of program
equivalences [Koz97, Koz00, Koz08a, KP00].

From a syntactic viewpoint, the equational logic for Kleene algebra with tests
(KAT) is an extension of that for Kleene algebra (KA). Regular expressions
(i.e. KA terms) are extended so that, by KAT terms, one can naturally encode
simple while-programs [Koz97, Koz00] in such a manner that the encoding
is compatible with relational semantics of while-programs [KT90]. Moreover,
KAT has a necessary and sufficient set of axioms for reasoning about relational
equivalences of programs. That is, an identity p = q between programs (or
KAT terms in general) is valid over all relational interpretations if and only if
it is formally deducible from the axioms of KAT [KS96], which we denote by
KAT # p = q.

So far, the formal deducibility KAT # φ of several forms of formulas φ under
the axioms of KAT (or other KA variants) and their decision problems have
been studied by several authors [Coh94, KCS96, KS96]. It was shown in [KS96]
that KAT # p = q (i.e. the equational theory of KAT) is decidable. In the case

P. Höfner et al. (Eds.): RAMiCS 2014, LNCS 8428, pp. 83–100, 2014.
c© Springer International Publishing Switzerland 2014

84 T. Uramoto

of universal Horn formulas (∧ipi = qi → p = q), the problem is undecidable in
general under the axioms of *-continuous Kleene algebras (KAT∗) [Coh94, KS96].
However, the case of universal Horn formulas of the form r = 0→ p = q is proved
to be decidable for KA [Coh94] and also for KAT [KS96], by effectively reducing
it to the decision problem of equational formulas.

Continuing this line of investigations of decision problems, the present pa-
per studies the decidability of existentially quantified equational formulas ∃q ∈
P.(p = q) in KAT with P being a fixed collection of terms. The problem is to
decide if there exists q ∈ P such that KAT # p = q for a given p. When such
q ∈ P exists, we say that p is reducible to the class P. Also we refer to the
problem as the term reducibility problem, writing as KAT # ∃q ∈ P.(p = q). See
§5 for an instance of this problem.

This form of decision problem arises naturally in connection with program
optimizations in particular. In program optimization, one is concerned with
whether a program p of interest can be refined to another program q that
satisfies some fixed criterion (e.g. has PTIME complexity or uses bounded re-
sources), keeping the equivalence of programs. The decision problem of the for-
mula ∃q ∈ P.(p = q) concerns the existence of such an equivalent program
that satisfies an intended criterion (i.e. the membership in the class P). Finding
an equivalent program q for a given program p from a restricted class of pro-
grams is a crucial step in KAT-based studies of program optimizations such as
[Koz97, KP00]. In the present paper, we discuss the decidability of the existence
of a desired equivalent program and develop its decision method.

The method of this paper follows the tradition of the algebraic decision meth-
ods in combinatorics of regular languages [Pin86]. The key step of this decision
method is pseudo-identity-based characterizations of combinatorial properties of
regular languages (§3). In order to apply the method to term reducibility prob-
lems, however, we need to prove a new completeness theorem of KAT (§4). This
theorem plays a central role in the reduction of term reducibility problems to
combinatorial problems of regular languages, to which the pseudo-identity-based
method is applicable. Based on this reduction, we also study an instance of term
reducibility problems and show its decidability (§5).

Related Work. As far as completeness of KAT is concerned, there is a related
achievement due to Kozen and Smith [KS96]. Despite of this achievement, we
shall present our completeness theorem, because there is a certain technical
problem on the relation between Kozen and Smith’s completeness theorem and
the pseudo-identity-based decision method.

In [KS96], Kozen and Smith have shown that KAT is deductively complete
with respect to a model of KAT, denoted GΣ,B, consisting of regular sets of
guarded strings (§2). This completeness theorem shows that there is a term
interpretation p %→ G(p) that assigns effectively to each term p a regular set
G(p) ∈ GΣ,B of guarded strings in such a manner that G(p) = G(q) if and
only if KAT # p = q. This theorem provided a counterpart to the well-known
completeness theorem of KA: For any regular expressions p and q, R(p) = R(q)
if and only if KA # p = q, where R(p) is the standard interpretation of the

A Modified Completeness Theorem of KAT 85

regular expression p as a regular language. In model-theoretic words, GΣ,B is a
free Kleene algebra with tests generated over Σ and B (where B is the extended
alphabet of KAT representing tests) in the same way that the algebra RΣ of
regular languages over an alphabet Σ is a free Kleene algebra generated over Σ.

Technically speaking, GΣ,B is given as a subclass of RΣ∪B∪B̄ simply because
regular sets of guarded strings are defined as a certain type of regular languages
over an alphabet of the form Σ ∪ B ∪ B̄. Due to the completeness of KAT
with respect to GΣ,B, the term reducibility problem KAT # ∃q ∈ P.(p = q)
is equivalent to the decision problem of the membership G(p) ∈ G(P). Thus,
if one could find a decision method for the membership problem in the class
G(P) ⊆ RΣ∪B∪B̄ of regular languages (i.e. a method of deciding whether or not
L ∈ G(P) for L ∈ RΣ∪B∪B̄), then it would follow that KAT # ∃q ∈ P.(p = q) is
decidable.

Characterizations of membership by pseudo identities provide a systematic
decision method for this type of decision problem. Schützenberger’s theorem
[Sch65] is a pioneering result in this direction, from which it follows that the
membership problem in the class SF of star-free languages is decidable: A regu-
lar language L is said to be star-free if there exists an extended regular expression
q that contains no Kleene star and L = R(q). Schützenberger proved that a reg-
ular language L is star-free if and only if its syntactic monoid M(L) satisfies the
identity xω = xω+1 (⇔ ∃n ∈ N. ∀x ∈M(L). xn = xn+1). A syntactic monoid is
a monoidM(L), which is attached canonically to each language L and is finite if
and only if L is regular. Since the multiplication table ofM(L) is calculable from
a regular language L and the equational formula above is decidable by searching
the table, it is decidable if a regular language L is star-free (i.e. L ∈ SF). The key
of this decidability proof is that the membership in SF is characterized by the
identity xω = xω+1 of syntactic monoids. When a class V of regular languages
has such characterizing identities, we say that V is definable by the identities.
So far, several decidability results of membership problems were established in a
similar way, including the decidabilities for locally testable languages [BS72] and
piecewise testable languages [Sim75].

However, in a sharp contrast to this line, GΣ,B is not definable by any set
of pseudo identities when it is regarded as a subclass of RΣ∪B∪B̄, as shown in
§3. Even worse, every non-trivial subclass V ⊆ GΣ,B is not definable by any
set of pseudo identities. In particular, for any class P of terms, the subclass
G(P) ⊆ GΣ,B is not definable. This undefinability implies that it is essentially
impossible to apply the above pseudo-identity-based argument to the decision
problem KAT # ∃q ∈ P.(p = q).

The source of this undefinability is that the class GΣ,B is not closed under
quotients by finite strings. More specifically, residuals of a guarded string fail to
be guarded strings in general.

To remedy this technical issue caused by the undefinability, we introduce the
notion of weakly guarded strings that relaxes the definition of guarded strings.
While in guarded strings test symbols (i.e. letters in B ∪ B̄) must occur in a
definite order and cannot appear twice adjacently, in weakly guarded strings

86 T. Uramoto

they can occur in an arbitrary order and may be duplicated and also eliminated.
Then we define another Kleene algebra with tests, denoted WΣ,B, consisting
of certain regular sets of weakly guarded strings. We show that KAT is still
deductively complete with respect to this refined model WΣ,B as well as GΣ,B,
but that the classWΣ,B is definable by a set of identities, unlike GΣ,B. There is a
term interpretation p %→W (p) that assigns effectively to each term p a regular set
W (p) ∈ WΣ,B of weakly guarded strings. This term interpretation W provides
an effective reduction of the term reducibility problem KAT # ∃q ∈ P.(p = q)
to the membership problem W (p) ∈ W (P), to which the pseudo-identity-based
method is applicable (§5).

Remark. Our completeness theorem of KAT with respect to WΣ,B does not
imply that GΣ,B is no longer interesting. In fact, the model GΣ,B has a close
connection to the study of deterministic flowcharts [AK01, Koz03, KT08], and
is of independent interest. As far as completeness of KAT is concerned, there is
no distinction between GΣ,B and WΣ,B because KAT is equally complete with
respect to both of them. The major distinction between them is that GΣ,B is
more compatible with the study of deterministic flowcharts, whileWΣ,B is more
compatible with the decision method using pseudo identities and thus more
suitable for the reduction of term reducibility problems KAT # ∃q ∈ P.(p = q)
to membership problems of regular languages.

Also the completeness of KAT with respect to GΣ,B plays an important role
in the coinductive proof method for reasoning about KAT term equivalences
[Koz08a], i.e. a proof method based on the idea of Brzozowski derivative on
KAT terms and bisimulation between automata on guarded strings [Koz03]. See
also [Rut98, CP04]. In the last section, we will mention a contribution of our
result to this subject.

2 Kleene Algebras with Tests

In this section, we briefly recall the syntax and semantics (models) of KAT, and
the structure of GΣ,B for the sake of reader’s convenience. For more information,
the reader is referred to [Koz94, KS96].

Terminology. Throughout this paper, alphabets are assumed to be finite and
nonempty. For an alphabet A, we denote by A∗ the free monoid over A and by
ε the unit element (i.e. the empty string). Given a string w = a1a2 · · · an ∈ A∗,
the set {a1, a2, · · · , an} of letters occuring in w is denoted by C(w) and referred
as the content of w. The length of a string w is denoted by |w|. For a string
u ∈ A∗ and a language L ⊆ A∗, the quotient of L by u from left is the language
u\L := {v ∈ A∗ | uv ∈ L}. Similarly, the quotient of L by u from right is defined
as L/u := {v ∈ A∗ | vu ∈ L}. Also the both-sided quotient of L by u and v ∈ A∗
is denoted as u\L/v := {w ∈ A∗ | uwv ∈ L}.

A Modified Completeness Theorem of KAT 87

2.1 Syntax and Models of KAT

Syntax. LetΣ andB be finite sets of symbols. Elements ofΣ are called primitive
actions, and elements of B are called primitive tests. Boolean terms and (KAT)
terms over (Σ,B) are formal expressions defined in BNF format as follows:

b ::= 0 | 1 | b ∈ B | b+ b | bb | b (1)

p ::= p ∈ Σ | b | p+ p | pp | p∗ (2)

Boolean terms are given by b and terms are given by p. Note that every Boolean
term is a term. We denote by TΣ,B the set of all terms over (Σ,B) and by BTB

the set of all Boolean terms over B. By definition, a regular expression is a term
in KAT.

KAT is an extension of KA: In addition to the axioms of KA [Koz94], KAT
also has the following axioms on Boolean terms b, b′ ∈ BTB, which just state
that Boolean terms form a Boolean algebra:

bb = b bb′ = b′b (3)

b+ b̄ = 1 bb̄ = 0. (4)

(These axioms are a proper subset of those given in [KK06], but it is readily
seen that the two axiomatizations are equivalent.)

Given two terms p, q ∈ TΣ,B, we denote by KAT # p = q if the equality p = q
is formally deducible from the axioms of KAT. It is not difficult to see that KAT
is a conservative extension of KA in the sense that, for two regular expressions
p, q over Σ (i.e. p, q do not contain symbols from B), then KA # p = q if and
only if KAT # p = q.

Models. A Kleene algebra with tests [Koz97] is a two-sorted algebraic structure
(K,B,+, ·, ∗, ,̄ 0, 1), where (K,+, ·, ∗, 0, 1) is a Kleene algebra [Koz94]; B ⊆ K;
and (B,+, ·, ,̄ 0, 1) is a Boolean algebra.

Let K be a Kleene algebra with tests. We define a (Σ,B)-interpretation over
K to be a pair of maps IΣ : Σ → K and IB : B → B. Given an interpretation
over K, it extends uniquely to (and is identified with) a map I : TΣ,B → K
such that I coincides with IΣ and IB on Σ and B respectively, commutes with
all algebraic operators, and preserves constants. A model of KAT is a pair of a
Kleene algebra with tests K and an interpretation I over K. If I(p) = I(q), then
we denote this as (K, I) |= p = q.

The soundness of KAT follows directly from the definition: For any model
(K, I) of KAT and terms p, q ∈ TΣ,B, KAT # p = q implies that (K, I) |= p = q.

2.2 Completeness of KAT

In what follows, let B = {b1, b2, · · · , bN} with 1 ≤ N . Also let us denote by B̄
the set {b̄1, b̄2, · · · , b̄N} and assume that it is disjoint from Σ and B. In general,
we call a string γ over B ∪ B̄ a test of B. An atom of B is a test α of B of

88 T. Uramoto

the form α = c1c2 · · · cN where ci ∈ {bi, b̄i} for each 1 ≤ i ≤ N . (For instance,
if B = {b1, b2, b3}, then b1b2b̄3 is an atom, but b2b̄1b3 and b1b2b2b̄3 are not,
because the order of b1 and b2 is reversed in the first one and b2 appears twice
in the second one.) We denote by At(B) the set of all atoms of B.

Definition 1. A guarded string over (Σ,B) is a string over Σ ∪ B ∪ B̄ of the
form α0p1α1 · · · pnαn, where αi ∈ At(B) and pi ∈ Σ.

In other words, a guarded string is a member of the language (At(B)·Σ)∗ ·At(B).
We denote by GS the set of all guarded strings over (Σ,B). By definition, GS
is a regular language over Σ ∪B ∪ B̄. In particular GS ⊆ (Σ ∪B ∪ B̄)∗. We say
that a language L ⊆ (Σ ∪B ∪ B̄)∗ is a language of guarded strings over (Σ,B)
if L ⊆ GS.

Let u = xα and v = βy be two guarded strings over (Σ,B), where α is the
last atom in u and β is the initial atom in v. Then the coalesced product � is
defined as a partial binary operation on GS:

xα � βy :=

{
xαy (α = β)
undefined (α �= β)

(5)

Moreover, given two languages of guarded strings L,R ⊆ GS, define:

L �R := {u � v ∈ GS | u ∈ L, v ∈ R}. (6)

Given a term p ∈ TΣ,B, one can define a language of guarded strings G(p) ⊆ GS
by induction on the structure of p. For the base case p ∈ Σ and b ∈ B,

G(p) := {αpβ ∈ GS | α, β ∈ At(B)} (7)

G(b) := {α ∈ At(B) | b ∈ C(α)}. (8)

For the induction step,

G(p+ q) := G(p) ∪G(q) G(1) := At(B) (9)

G(pq) := G(p) �G(q) G(0) := ∅ (10)

G(p∗) := G(p)∗ G(b̄) := At(B)−G(b). (11)

Here the star G(p)∗ above is intended to be
∑∞

n=0

n times︷ ︸︸ ︷
G(p) � · · · �G(p). A language

of guarded strings L is said to be a regular set of guarded strings if there exists a
term p such that L = G(p). Now we define GΣ,B as the set of all regular sets of
guarded strings over (Σ,B). As pointed out in [Koz03], a regular set of guarded
strings is the same as a regular language consisting of guarded strings only: i.e.
GΣ,B := {G(p) ∈ RΣ∪B∪B̄ | p ∈ TΣ,B} = {L ∈ RΣ∪B∪B̄ | L ⊆ GS}. This fact
will be used later in the construction of WΣ,B (§4).

Naturally, GΣ,B admits a structure of a Kleene algebra with tests: For L,L′ ∈
GΣ,B, their summation is given by the union L∪L′ and the multiplication is given
by the coalesced product L �L′. The Kleene star of L is by

∑∞
n=0 L �L � · · · �L.

A Modified Completeness Theorem of KAT 89

The Boolean subalgebra of tests in GΣ,B is {L ∈ GΣ,B | L ⊆ At(B)}, which
coincides with the image of BTB under G. Also, the above inductive assignment
G defines a map G : TΣ,B & p %→ G(p) ∈ GΣ,B. By definition, G gives a (Σ,B)-
interpretation over GΣ,B and is referred as the standard interpretation over GΣ,B.
Moreover, the standard interpretation G is computable. That is, there exists an
effective procedure whose input is a term p ∈ TΣ,B and output is the regular
expression denoting the regular language G(p) ∈ GΣ,B over Σ ∪ B ∪ B̄. The
procedure can be obtained, e.g., by using the construction given in Lemma 7 of
[KS96], where the authors constructed a regular expression p̂ for each term p by
induction so that R(p̂) = G(p).

Having prepared these, we can now state the completeness theorem of KAT
with respect to the model (GΣ,B, G):

Theorem 1 (Kozen-Smith, [KS96]). Let p, q ∈ TΣ,B be two terms over
(Σ,B). Then KAT # p = q if and only if (GΣ,B, G) |= p = q, namely iff
G(p) = G(q).

3 Pseudo-identity and Undefinability of GΣ,B

In this section, we recall necessary notions and known results from the variety
theory of regular languages, including syntactic semirings and pseudo-identities
in particular. We also see that GΣ,B ⊆ RΣ∪B∪B̄ and its non-trivial subclasses
{∅} �= V ⊆ GΣ,B are not closed under quotients and are thus undefinable.

3.1 Syntactic Semirings

A syntactic semiring is an idempotent semiring S(L) attached to each language L
and subsumes syntactic monoids. Syntactic semirings were introduced by Polák,
who developed the fundamental theory of syntactic semirings. See [Pol03, Pol04a,
Pol04b] for more information.

Let A be an alphabet and denote by F(A∗) the idempotent semiring consisting
of all finite languages over A (i.e. finite subsets of A∗), where the sum is the set-
theoretic union and the multiplication is the element-wise concatenation, i.e.
U · V = {uv ∈ A∗ | u ∈ U, v ∈ V } for U, V ∈ F(A∗). The unit and zero
element of F(A∗) are the singleton language {ε} and the empty language ∅
respectively. We usually identify a string w ∈ A∗ with the singleton language
{w} ∈ F(A∗). Thus a finite language U = {w1, · · · , wn} ∈ F(A∗) can be denoted
as U = w1 + · · ·+ wn. Also the singleton language {ε} and the empty language
∅ are denoted by 1 and 0 respectively when they are regarded as members of
F(A∗).

Definition 2. Let L ⊆ A∗ be a language. The syntactic congruence ≡L and
syntactic quasi-ordering ≤L on the idempotent semiring F(A∗) are defined re-
spectively as follows: For two elements U, V ∈ F(A∗),

U ≡L V ⇔ ∀x, y ∈ A∗ (xUy ∩ L �= ∅ ⇔ xV y ∩ L �= ∅). (12)

U ≤L V ⇔ ∀x, y ∈ A∗ (xUy ∩ L �= ∅ ⇒ xV y ∩ L �= ∅). (13)

90 T. Uramoto

Here, for a finite language U = {w1, · · · , wn} ∈ F(A∗), we denote by xUy the
finite language {xw1y, · · · , xwny}.
Definition 3. Let L ⊆ A∗ be a language. The syntactic semiring S(L) of L is
defined as the quotient semiring F(A∗)/ ≡L. The canonical projection is denoted
by πL : F(A∗) � S(L).

Remark 1. The above syntactic congruence ≡L and quasi-ordering ≤L for L ⊆
A∗ coincide with Polák’s original syntactic congruence and quasi-ordering for
the complement Lc. Originally, syntactic semirings were defined so as to be
applicable to membership problems for classes of regular languages that are
closed under conjunction ∧ (called conjunctive varieties). Taking complement
of languages enables us to use syntactic semirings also for classes of regular
languages closed under disjunction ∨ (called disjunctive varieties), which we
need in this paper. This dualization using complement was discussed also in §6
of [Pol04a].

Remark 2. The syntactic semiring S(L) contains the syntactic monoid M(L):
By definition of syntactic monoids (e.g. [Pin86]), M(L) coincides with the image
of A∗ ⊆ F(A∗) under πL, i.e. πL(A

∗) = M(L). Thus M(L) is a submonoid of
S(L) with respect to multiplication.

Similarly to the fundamental property that a language L is regular if and only
if its syntactic monoid M(L) is finite, Polák proved that the regularity of L is
also characterized by the finiteness of S(L):

Proposition 1 (Polák, [Pol04a]). A language L is regular if and only if S(L)
is a finite semiring.

The structure of S(L) is calculable from a given regular language L, e.g. by using
a finite automaton accepting L or a regular expression denoting L, similarly to
M(L) [Pin86].

3.2 Pseudo-identities and Definability

Let S be the class of all finite idempotent semirings. An n-ary implicit operation
is a family (ρS)S∈S of maps ρS : Sn → S on each S ∈ S satisfying the following:
For any semiring homomorphism f : S → S′ and si ∈ S (1 ≤ i ≤ n), we have
ρS′(f(s1), · · · , f(sn)) = f(ρS(s1, · · · , sn)).
Example 1. The semiring operations + and · (and all algebraic terms composed
from +, ·) define 2-ary (multi-ary) implicit operations, denoted ρ+ = (ρ+S) and
ρ· = (ρ·S) and given as follows respectively: ρ+S (s1, s2) = s1+s2 and ρ·S(s1, s2) =
s1s2. An implicit operation that is obtained from a term is called an explicit
operation. We sometimes denote them as x1 + x2 and x1x2, where x1 and x2
represent distinguished variables.

Example 2. Let S be a finite idempotent semiring and s ∈ S be an arbitrary
element. Then the sub-semigroup generated by s contains the unique multiplica-
tive idempotent, denoted as sω ∈ S. Define a map xωS : S & s %→ sω ∈ S, which
gives a unary implicit operation xω = (xωS).

A Modified Completeness Theorem of KAT 91

Example 3. Let S be a finite idempotent semiring. Then S is a Kleene algebra.
Define a family x∗ = (x∗S) by x

∗
S : S & s %→ s∗ ∈ S, where s∗ is the Kleene star

of s ∈ S. It is readily seen that x∗ is a unary implicit operation.

Definition 4. Let us denote by In the set of all n-ary implicit operations. An n-
ary pseudo-identity is an ordered pair (ρ, τ) of n-ary implicit operations ρ, τ ∈ In.
We denote it as ρ = τ or ρ(x1, · · · , xn) = τ(x1, · · · , xn) to indicate that ρ and τ
are n-ary.

Denote by Vn = {x1, · · · , xn} a set of distinguished n variables. We call a map
σ : Vn → F(A∗) an n-ary substitution of σ(xi) ∈ F(A∗) to the variables xi. Let
S be a finite idempotent semiring having generators A, i.e. S is equipped with
a fixed surjective semiring homomorphism π : F(A∗) � S. Then we say that S
satisfies the n-ary pseudo-identity ρ = τ with respect to an (n-ary) substitution
σ : Vn → F(A∗) if ρS(s1, · · · , sn) = τS(s1, · · · , sn), where si = π ◦σ(xi) (1 ≤ i ≤
n). When this is the case, we denote as S |= ρ(σ) = τ(σ).

Example 4. Let S be a finite semiring with generators A (i.e. a surjective
homomorphism π : F(A∗) � S) and let a1, a2 ∈ A be two generators. Then they
commute in S if and only if S |= x1x2(σ) = x2x1(σ) for the 2-ary substitution
σ such that σ(xi) = ai. We sometimes denote it simply as S |= a1a2 = a2a1.

Let L ⊆ A∗ be a regular language over A, and πL : F(A∗) � S(L) be the
canonical projection onto the syntactic semiring S(L). Also let E be a set of
pseudo identities ρ = τ equipped with substitutions σ, denoted ρ(σ) = τ(σ).
Then one can define a classW(E) ⊆ RA of regular languages over A byW(E) :=
{L ∈ RA | ∀ρ(σ) = τ(σ) ∈ E. S(L) |= ρ(σ) = τ(σ)}. If a class V is of the form
W(E) for some E, then we say that V is definable by E. We also say that L
satisfies E if L ∈ W(E).

Example 5. Let L ⊆ A∗ be a language over an alphabet A and πL : F(A∗) �
S(L) be the canonical projection onto the syntactic semiring of L. Then, by
definition, S(L) |= a1a2 = a2a1 if and only if a1a2 ≡L a2a1. That is, ua1a2v ∈ L
implies ua2a1v ∈ L and vice versa for every u, v ∈ A∗. Thus if E = {a1a2 = a2a1}
for example, then L ∈ W(E) exactly when ua1a2v ∈ L⇔ ua2a1v ∈ L for every
u, v ∈ A∗.
Example 6 (Polák, [Pol04b]). Let Lk,m,l ⊆ RA be the class of regular lan-
guages over A, whose member is a finite summation of regular languages of the
form uB∗1 · · ·B∗mv with u, v ∈ A∗, | u |≤ k, | v |≤ l, B1, · · · , Bm ⊆ A. In [Pol04b],
it was shown that, if m ≤ 2, Lk,m,l is definable by a finite set of certain pseudo
identities. Due to this definability, it is decidable whether a regular language
L ∈ RA is a member of Lk,m,l for m ≤ 2. In fact, L ∈ Lk,m,l is equivalent to the
property that its syntactic semiring S(L) satisfies the finite number of defining
identities, which is decidable.

3.3 Undefinability of GΣ,B

Let P ⊆ TΣ,B be a fixed collection of KAT terms. Then the term reducibility
problem KAT # ∃q ∈ P.(p = q) can be effectively reduced to the membership

92 T. Uramoto

problem in the class G(P) ⊆ RΣ∪B∪B̄. If the class G(P) has a finite number
of defining identities as Example 6, it follows that KAT # ∃q ∈ P.(p = q) is
decidable.

This strategy of reduction is, however, not successful because the class G(P)
has no defining identities for any non-trivial P ⊆ TΣ,B. This follows from the
following fact:

Proposition 2. If V ⊆ GΣ,B is definable, then V = {∅}.

Proof. Note that a definable class W(E) must be closed under quotients by
strings due to the general fact that, for every language L and a string u, there
are canonical projections S(L) � S(u\L) and S(L) � S(L/u). Assume that
V ⊆ GΣ,B is definable. Then it is closed under quotients. Thus, if V should
contain a non-empty language L �= ∅, its quotient b\L by a primitive test b ∈ B
must be in V . However, b\L is not even a language of guarded strings. Thus
b\L /∈ GΣ,B, when b\L /∈ V in particular. This is a contradiction. Thus V
cannot contain any non-empty language. On the other hand, the empty language
∅ satisfies an arbitrary identity, thus ∅ ∈ V . Consequently V = {∅}.

Corollary 1. GΣ,B is undefinable.

4 A Modified Completeness Theorem of KAT

The subject of this section is to construct a subclass WΣ,B ⊆ RΣ∪B∪B̄ that
is definable but isomorphic to GΣ,B by mutually computable isomorphisms. In
particular, it follows that the membership problem in WΣ,B is decidable. Also,
by the isomorphism with GΣ,B, the classWΣ,B forms a free Kleene algebra with
tests over the generators Σ and B. To construct such a model, we relax the
definition of guarded strings and define instead weakly guarded strings.

4.1 Weakly Guarded Strings

We say that a test α′ ∈ (B ∪ B̄)∗ is consistent if there is no bi ∈ B such
that both of bi and b̄i belong to its content C(α′). Thus, for instance, b̄2b1b1 is
consistent, but b2b3b̄2 is not. Note that consistent tests subsume atoms. However,
in general consistent tests, the order of b1, · · · , bN is arbitrary, and multiple
occurrences and absences of them are permitted. The null string ε ∈ (B ∪ B̄)∗

is also a consistent test. We denote by Cst(B) the set of all consistent tests.
Then At(B) ⊆ Cst(B). If we use metavariables α, β · · · , then we intend that
they denote atoms, while we use metavariables with prime α′, β′ · · · to denote
consistent tests (i.e. they may not be atoms in general).

Definition 5. A weakly guarded string is a string over Σ ∪ B ∪ B̄ of the form
α′0p1α

′
1p2 · · · pnα′n, where α′i ∈ Cst(B) and pi ∈ Σ.

In other words, a weakly guarded string is a member of the language (Cst(B) ·
Σ)∗ ·Cst(B), which we denote by WGS. By definition, a guarded string is always
a weakly guarded string. Thus GS ⊆WGS.

A Modified Completeness Theorem of KAT 93

Given a language L ⊆ GS of guarded strings, its weakening wgs(L) ⊆ WGS
is defined as follows:

wgs(L) := {α′0p1α′1 · · · pnα′n | ∃α0p1α1 · · · pnαn ∈ L. α′i ∈ C(αi)
∗}. (14)

Note that, if α is an atom, any element α′ of C(α)∗ is consistent. Thus we have
wgs(L) ⊆ WGS for each L ⊆ GS. Conversely, given a language L′ ⊆ WGS, we
can define a language of guarded strings by L′ ∩GS ⊆ GS, which we denote as
gs(L′).

Lemma 1. For any L ⊆ GS, we have gs · wgs(L) = L.

Proof. Note that, for any atom α ∈ At(B), the language C(α)∗ contains the
unique atom α. Thus, if α0p1α1 · · · pnαn ∈ gs ·wgs(L), then by definition, there
exists β0p1β1 · · · pnβn ∈ L such that αi ∈ C(βi)

∗, i.e. αi = βi. This proves
gs · wgs(L) ⊆ L. The inverse inclusion is immediate from the definitions of wgs
and gs.

Lemma 2. For any L ⊆ GS, its weakening wgs(L) ⊆ WGS is regular if and
only if L ∈ GΣ,B.

Proof. The only if part follows from Lemma 1 and the fact that L ∈ GΣ,B iff L
is regular and L ⊆ GS. The if part follows from the next proposition.

Proposition 3. There is an effective procedure to compute the regular expres-
sion of wgs(L) from a given regular expression of L ∈ GΣ,B.

Proof. Since regular expressions and deterministic finite automata (DFAs) are
effectively transformable, it is sufficient to give an effective procedure whose
input is a DFA accepting the input regular language L ∈ GΣ,B and output is the
regular expression denoting wgs(L) ⊆WGS. Informally speaking, the procedure
replaces all the occurrences of an atom αi in α0p1α1 · · ·pnαn ∈ L by the regular
expression C(αi)

∗. To put it formally, let L be accepted by a DFA with state
set Q.

1. For each atom α = c1c2 · · · cN and each state x ∈ Q, add to the input DFA

a new edge x
α−→ x′ labeled by a formal symbol α if the input DFA has a

path x
c1−→ x1

c2−→ x2 · · ·xN−1
cN−−→ x′;

2. Remove all edges x
c−→ x′ labeled by primitive tests c ∈ B ∪ B̄;

3. Regarding the resulting graph as a DFA over the new alphabet A′ = Σ∪{α |
α ∈ At(B)}, apply the algorithm (e.g. [HMU06]) whose input is a DFA over
A′ and output is the regular expression overA′ denoting the regular language
accepted by the automaton;

4. Replace the occurrence of α in the resulting regular expression over A′ by
the regular expression (c1 + · · ·+ cN)∗ over Σ ∪B ∪ B̄, where α = c1 · · · cN .

Then the resulting regular expression denotes wgs(L).

94 T. Uramoto

We define the class WΣ,B ⊆ RΣ∪B∪B̄ as follows:

WΣ,B := {L′ ∈ RΣ∪B∪B̄ | ∃L ∈ GΣ,B. L
′ = wgs(L)}. (15)

On the one hand, the class GΣ,B is characterized as the set of regular languages
L over Σ ∪ B ∪ B̄ such that L ⊆ GS. On the other hand, the class WΣ,B is
not characterized as the set of regular languages L over Σ ∪ B ∪ B̄ such that
L ⊆ WGS. In fact, there exists a regular language L such that L ⊆ WGS but
L /∈ WΣ,B. However, WΣ,B is definable unlike GΣ,B and thus the membership
in WΣ,B can be characterized by the defining identities.

4.2 Identities Defining WΣ,B

We now show that the class WΣ,B coincides with the class W(EΣ,B) defined by
the following set EΣ,B of identities, which is exactly the axioms added to KA.
That is:

EΣ,B := 〈bb = b, bb′ = b′b, b+ b̄ = 1, bb̄ = 0 | b, b′ ∈ B ∪ B̄〉.

Note that E is a finite set.

Theorem 2. WΣ,B =W(EΣ,B)

The proof of Theorem 2 is divided into two proofs of the mutual inclusions
WΣ,B ⊆ W(EΣ,B) and W(EΣ,B) ⊆ WΣ,B.

Claim 1. WΣ,B ⊆ W(EΣ,B).

Proof. We need to show that, for any L ∈ GΣ,B, the weakening wgs(L) satisfies
the equations EΣ,B. Here we prove only that wgs(L) satisfies b+ b̄ = 1, i.e. the
equivalence b+ b̄ ≡wgs(L) 1 for b ∈ B. The others are similar.

By definition of the equivalence b+ b̄ ≡wgs(L) 1, we need to prove that, for any
u, v ∈ (Σ ∪B ∪ B̄)∗, uv ∈ wgs(L) if and only if ubv ∈ wgs(L) or ub̄v ∈ wgs(L).
However, note that if either of u or v is not weakly guarded, then none of uv, ubv
nor ub̄v can belong to wgs(L). Thus it is sufficient to consider only the case when
u, v are weakly guarded strings. Let u = u′α′, v = β′v′ be weakly guarded strings,
where α′ is the longest suffixal consistent test in u and β′ is the longest prefixal
consistent test in v. We first show that uv ∈ wgs(L) implies ubv ∈ wgs(L) or
ub̄v ∈ wgs(L). Assume that uv ∈ wgs(L). Then there exists α0p1α1 · · · pnαn ∈ L
such that α′β′ ∈ C(αi)

∗ for some i. Since αi is an atom, either of b or b̄ is a
member of C(αi). Thus we have α

′bβ′ ∈ C(αi)
∗ or α′b̄β′ ∈ C(αi)

∗. From this, it
follows that ubv ∈ wgs(L) or ub̄v ∈ wgs(L). Conversely, both of α′bβ′ ∈ C(αi)

∗

and α′b̄β′ ∈ C(αi)
∗ imply α′β′ ∈ C(αi)

∗. This proves the claim.

Claim 2. W(EΣ,B) ⊆ WΣ,B.

Proof. To show this, it is sufficient to prove that wgs · gs(L′) = L′ for any L′ ∈
W(EΣ,B). First we prove the inclusion L

′ ⊆ wgs·gs(L′). Let α′0p1α′1 · · ·pnα′n ∈ L′
and let C(α′i) = {cij1 , · · · , c

i
jk
} with cij ∈ {bj, b̄j} and 1 ≤ j1 < · · · < jk ≤ N .

A Modified Completeness Theorem of KAT 95

(Note that, since L′ satisfies bb̄ = 0 and bb′ = b′b, elements of L′ are of such
form.) By bb ≡L′ b and bb′ ≡L′ b′b, we have the following equivalence for each i:

α′i ≡L′ cij1 · · · c
i
jk . (16)

By bj + b̄j ≡L′ 1 for each bj ∈ B, if jl < j < jl+1 for some j, one obtains the
equivalence: cijlc

i
jl+1

≡L′ cijl(bj + b̄j)c
i
jl+1

. Thus the right hand side of (16) is
equivalent to the following: ∑

C(α′
i)⊆C(αi)

αi. (17)

Here αi ranges over atoms such that C(α′i) ⊆ C(αi), equivalently α
′
i ∈ C(αi)

∗.
Since ≡L′ is a semiring congruence on F(A∗), one obtains the equivalence:

α′0p1α
′
1 · · ·pnα′n ≡L′

∑
α′

i∈C(αi)∗
α0p1α1 · · · pnαn. (18)

Since α′0p1α′1 · · ·pnα′n ∈ L′, this equivalence proves that there exists some tu-
ple (α0, · · · , αn) of atoms αi such that α′i ∈ C(αi)

∗ for each 1 ≤ i ≤ n and
α0p1α1 · · · pnαn ∈ gs(L′). By definition of wgs, it follows that α′0p1α

′
1 · · ·pnα′n ∈

wgs · gs(L′). Thus L′ ⊆ wgs · gs(L′).
Conversely, let α′0p1α

′
1 · · · pnα′n ∈ wgs·gs(L′). Then by definition of wgs, there

exists α0p1α1 · · · pnαn ∈ gs(L′) such that α′i ∈ C(αi)
∗. By the equivalence (18)

and α0p1α1 · · · pnαn ∈ gs(L′) ⊆ L′, it follows that α′0p1α
′
1 · · · pnα′n ∈ L′. This

concludes the proof.

Note that wgs · gs(L′) = L′ for any L′ ∈ W(EΣ,B) = WΣ,B. This means that
the maps gs : WΣ,B → GΣ,B and wgs : GΣ,B → WΣ,B are mutual inverse
isomorphisms. Also both of gs and wgs preserve unions of languages and are
computable. Thus we have proved:

Proposition 4. The class WΣ,B is isomorphic to GΣ,B under the computable
isomorphisms wgs and gs.

Remark 3. Since wgs and gs preserve unions of languages, WΣ,B and GΣ,B

are isomorphic as join semilattices. Note that, however, wgs does not preserve
intersections of languages.We also remark that GΣ,B is closed under intersections
of languages, whileWΣ,B is not. (Of course,WΣ,B has the greatest lower bounds
L′1 ∧ L′2 for any L′1, L

′
2 ∈ WΣ,B because so does GΣ,B, but the greatest lower

bounds are not given as set-theoretic intersections L′1 ∩ L′2.)

Since the class WΣ,B has the finite number of defining identities EΣ,B, the
membership problem L ∈ WΣ,B is decidable by judging if the syntactic semiring
S(L) satisfies the identities.

Corollary 2. It is decidable whether a given regular language over Σ ∪ B ∪ B̄
belongs to WΣ,B.

Since GΣ,B and WΣ,B are isomorphic as join semilattices, the structure of free
Kleene algebra on GΣ,B can be transmitted onto WΣ,B via wgs and gs.

96 T. Uramoto

Proposition 5. The class WΣ,B admits the structure of the free Kleene algebra
with tests over the generating sets Σ and B.

In other words, the equational logic KAT is deductively complete with respect
to the computable KAT-term interpretation W := wgs ◦ G : TΣ,B → WΣ,B.
That is:

Theorem 3. Let p, q ∈ TΣ,B be terms over (Σ,B). Then KAT # p = q if and
only if (WΣ,B,W) |= p = q, namely iff W (p) = W (q).

Remark 4. In this paper, we do not describe explicitly the multiplication struc-
ture of WΣ,B in the style of that of GΣ,B (i.e. coalesced product on languages
of guarded strings) nor present an inductive construction of p %→ W (p) in the
style of G. However, we have seen that WΣ,B can admit the structure of free
Kleene algebra with tests; KAT is complete with respect to WΣ,B; and also the
term interpretation W is effectively calculable (because W is the composition
of G and wgs and both of them are effectively calculable). These properties are
the only necessary properties for the reduction of KAT # ∃q ∈ P.(p = q) to the
membership problem in W (P).

5 Decidability of a Term Reducibility

If the classW (P) is definable by a finite set of identities E = {ρi(σi) = τi(σi)}mi=1,
then the membership problem L ∈W (P) can be reduced to the decision problem
of the quantifier-free sentence

∧m
i=1

(
S(L) |= ρi(σi) = τi(σi)

)
, which is readily

decidable. As shown in §3, a similar reduction by G is never successful for any
P because G(P) is never definable. In this section, we construct a non-trivial P0

for which W (P0) is definable by finite identities and thus the term reducibility
KAT # ∃q ∈ P0.(p = q) is decidable.

For this aim, recall from [KS96] that an externally guarded term is a term
of the form αqβ, where α, β are atoms and q is a regular expression (or term)
over Σ ∪ B ∪ B̄. It was shown in [KS96] that any term p can be transformed
inductively to a finite sum p̂ =

∑
i αiqiβi of externally guarded terms αiqiβi such

that KAT # p = p̂ and G(p̂) = R(p̂). In general, the term qi may still contain
test symbols b ∈ B ∪ B̄, and in some cases, this is unavoidable.

Consider, for example, a program r = while b do p with b ∈ B and p ∈
Σ, which can be encoded by (bp)∗b̄ as a KAT term. (See [Koz97] for more
information on KAT-term encoding of while-programs.) Then (as easily follows
from the proof in Appendix) one can prove that there is no way to refine this
while-program r to a sum of externally guarded terms

∑n
i=0 αiqiβi so that every

qi does not contain test symbols (i.e. qi is a regular expression over Σ). In other
words, if one can prove,

KAT # while b do p =

n∑
i=0

αiqiβi, (19)

then some of qi must contain test symbols.

A Modified Completeness Theorem of KAT 97

Now let P0 be the following collection of KAT terms:

P0 =
{ n∑

i=0

αiqiβi | αi, βi : atom, qi ∈ RExp(Σ)
}
. (20)

Here RExp(Σ) denotes the set of all regular expressions over Σ. If one finds that
a program p is reducible to the class P0, it intuitively means that the process
represented by the program p can be simulated by a process that executes tests
only in its initial and terminal parts. As seen by the above example, not all
programs p are reducible to the class P0. We can show that, however, it is
decidable if a given term (program) p is reducible to P0. In fact:

Lemma 3. The class W (P0) ⊆ WΣ,B is definable by a finite set of identities.

Proof. The proof and the set of defining identities are given in the Appendix.

Of course, as seen in §3, the class G(P0) is undefinable unlike W (P0). From
the definability of W (P0), one can then prove the decidability of KAT # ∃q ∈
P0.(p = q).

Theorem 4. The term reducibility KAT # ∃q ∈ P0.(p = q) is decidable.

Proof. The reducibility KAT # ∃q ∈ P0.(p = q) is equivalent to W (p) ∈ W (P0)
by the completeness of KAT to W . Also, W (p) ∈ W (P0) is decidable because
W (P0) is definable by a finite set of identities. Furthermore, since the map
p %→W (p) is effectively calculable, one can conclude that KAT # ∃q ∈ P0.(p = q)
is decidable.

6 Conclusion

This paper presented a modified completeness theorem of KAT with respect to a
new model (WΣ,B,W). Although both models (GΣ,B, G) and (WΣ,B,W) share
the same equational theory (i.e. the equational theory of KAT) and both of them
consist of regular languages over Σ∪B∪B̄, the characteristic difference between
them is that one of them (i.e. WΣ,B) is definable and the other (i.e. GΣ,B) is
undefinable as subclasses of RΣ∪B∪B̄. This definability of WΣ,B (and its sub-
classes) is crucial when we study the decidability of the validity of existentially
quantified equational formulas ∃q ∈ P.(p = q) in KAT, i.e. the term reducibility.
In fact, as shown by the above instance P0, our modified completeness theorem
provides a pseudo-identity-based decision strategy for term reducibility problem
KAT # ∃q ∈ P.(p = q).

In this paper, however, we left unexplored term reducibility problem for classes
P of programs other than P0. This direction of research would deserve further
investigation, which is of interest as KAT-based study of program optimization.

Finally, we would like to mention that our completeness theorem contributes
to the development of coinductive proof methods studied in [Rut98, CP04,
Koz08a]. Using (WΣ,B,W), one would obtain a coinductive proof method based
on the standard deterministic automata only, while Chen and Pucella [CP04]
and Kozen [Koz08a] needed nonstandard variants of automata. However, it is yet
unknown if our method can improve the complexity of those in [CP04, Koz08a].

98 T. Uramoto

Acknowledgements. I thank Prof. Susumu Nishimura for his helpful com-
ments on the draft of this paper. Also I am grateful to the anonymous reviewers,
whose comments were valuable for improving this paper.

References

[AK01] Angus, A., Kozen, D.: Kleene algebra with tests and program schematol-
ogy. Technical Report TR2001-1844, Computer Science Department, Cornell
University (2001)

[BS72] Brzozowski, J.A., Simon, I.: Characterizations of locally testable events.
Discrete Mathematics 4, 243–271 (1972)

[CP04] Chen, H., Pucella, R.: A coalgebraic approach to Kleene algebra with tests.
Theoret. Comput. Sci. 327, 23–44 (2004)

[Coh94] Cohen, E.: Hypotheses in Kleene algebra (1994),
ftp://ftp.bellcore.com/pub/ernie/research/homepage.html

[HMU06] Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata The-
ory, Languages, and Computation, 3rd edn. Prentice Hall (2006)

[KK06] Kamal, A.-H., Kozen, D.: KAT-ML: An interactive theorem prover for
Kleene algebra with tests. Journal of Applied Non-Classical Logics 16, 9–33
(2006)

[KT90] Kozen, D., Tiuryn, J.: Logics of programs. In: Handbook of Theoretical
Computer Science. Elsevier (1990)

[Koz94] Kozen, D.: A completeness theorem for Kleene algebras and the algebra of
regular events. Infor. and Comput. 110, 366–390 (1994)

[KCS96] Kozen, D., Cohen, E., Smith, F.: The complexity of Kleene algebra with
tests. Technical Report TR96-1598, Computer Science Department, Cornell
University (1996)

[KS96] Kozen, D., Smith, F.: Kleene algebra with tests: Completeness and decid-
ability. In: van Dalen, D., Bezem, M. (eds.) CSL 1996. LNCS, vol. 1258,
pp. 244–259. Springer, Heidelberg (1997)

[Koz97] Kozen, D.: Kleene algebra with tests. Transactions on Programming Lan-
guages and Systems 19, 427–443 (1997)

[Koz00] Kozen, D.: On Hoare logic and Kleene algebra with tests. Trans. Computa-
tional Logic 1, 60–76 (2000)

[KP00] Kozen, D., Patron, M.-C.: Certification of compiler optimizations using
Kleene algebra with tests. In: Lloyd, J., et al. (eds.) CL 2000. LNCS (LNAI),
vol. 1861, pp. 568–582. Springer, Heidelberg (2000)

[Koz03] Kozen, D.: Automata on guarded strings and applications. Matématica Con-
temporânea 24, 117–139 (2003)

[Koz08a] Kozen, D.: Nonlocal flow of control and Kleene algebra with tests. In: Proc.
23rd IEEE Symp. Logic in Computer Science (LICS 2008), pp. 105–117
(2008)

[Koz08b] Kozen, D.: On the coalgebraic theory of Kleene algebra with tests. Tech-
nical Report Computer Science Department, Cornell University (2008),
http://hdl.handle.com/1813/10173

[KT08] Kozen, D., Tseng, W.-L.D.: The Böhm-Jacopini theorem is false, proposi-
tionally. In: Audebaud, P., Paulin-Mohring, C. (eds.) MPC 2008. LNCS,
vol. 5133, pp. 177–192. Springer, Heidelberg (2008)

 ftp://ftp.bellcore.com/pub/ernie/research/homepage.html
http://hdl.handle.com/1813/10173

A Modified Completeness Theorem of KAT 99

[Pin86] Pin, J.E.: Varieties of Formal Languages. Foundations of Computer Science.
Springer (1986)

[Pol03] Polák, L.: Syntactic semiring and language equations. In: Champarnaud,
J.-M., Maurel, D. (eds.) CIAA 2002. LNCS, vol. 2608, pp. 182–193. Springer,
Heidelberg (2003)

[Pol04a] Polák, L.: A classification of rational languages by semilattice-ordered
monoids. Archivum Mathematium 40, 395–406 (2004)

[Pol04b] Polák, L.: On Pseudovarieties of Semiring Homomorphisms. In: Fiala, J.,
Koubek, V., Kratochv́ıl, J. (eds.) MFCS 2004. LNCS, vol. 3153, pp. 635–
647. Springer, Heidelberg (2004)

[Rut98] Rutten, J.J.M.M.: Automata and coinduction (an exercise in coalgebra). In:
Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp.
194–218. Springer, Heidelberg (1998)

[Sch65] Schützenberger, M.-P.: On finite monoids having only trivial subgroups.
Information and Control 8, 190–194 (1965)

[Sim75] Simon, I.: Piecewise testable events. In: Brakhage, H. (ed.) GI-Fachtagung
1975. LNCS, vol. 33, pp. 214–222. Springer, Heidelberg (1975)

Appendix: The Proof of Lemma 3

Let E0 be the following set of identities:

E0 := 〈pbq = pq | p, q ∈ Σ, b = ci1ci2 · · · cil ,
ci ∈ {bi, b̄i}, 1 ≤ i1 < i2 · · · < il ≤ N〉.

Note that this is a finite set. We now show that:

W (P0) =W(EΣ,B ∪E0). (21)

Claim 3. W (P0) ⊆ W(EΣ,B ∪ E0).

Proof. Since W (P0) ⊆ WΣ,B = W(EΣ,B) and W(EΣ,B ∪ E0) is closed un-
der summations, it is sufficient to prove that W (αqβ) satisfies E0, where q ∈
RExp(Σ) and α, β ∈ At(B). The language W (αqβ) can be explicitly specified
as follows:

W (αqβ) = {α′0p1α′1 · · · pnα′n | α′0 ∈ C(α)∗, α′i ∈ Cst(B) (i �= 0, n),

α′n ∈ C(β)∗, p1 · · · pn ∈ R(q).}

Note that internal consistent tests α′i (i �= 0, n) are arbitrary. This implies that
if α′0p1α

′
1p2 · · · pnα′n ∈W (αqβ), then α′0p1p2 · · · pnα′n ∈W (αqβ) and vice versa.

By using this fact, it follows that W (αqβ) satisfies E0 above.

We now show the difficult part of the proof:

Claim 4. W(EΣ,B ∪ E0) ⊆W (P0).

100 T. Uramoto

Proof. Let L ∈ W(EΣ,B ∪ E0). Since L satisfies EΣ,B in particular, we have
bi + b̄i ≡L 1 for any bi ∈ B. This means that, for any string w ∈ (Σ ∪B ∪ B̄)∗,
we have the following equivalence:

w ≡L

∑
α,β∈At(B)

αwβ. (22)

This implies that w ∈ L if and only if αwβ ∈ L for some α, β ∈ At(B), i.e.
L =

∑
α,β α\L/β. Since W(EΣ,B ∪ E0) is closed under quotients, each α\L/β

belongs to W(EΣ,B ∪ E0). Let us denote as Lα,β := α\L/β for short. It is
sufficient to show that each Lα,β belongs to W (P0), because W (P0) is closed
under sums and L =

∑
Lα,β.

Since Lα,β ∩ Σ∗ is a regular language over Σ, there exists a regular expres-
sion qα,β ∈ RExp(Σ) such that R(qα,β) = Lα,β ∩ Σ∗. We now show that
Lα,β = W (αqα,ββ). First, let α

′
0p1α

′
1 · · ·pnα′n ∈ Lα,β. Then p1 · · · pn ∈ Lα,β

because Lα,β satisfies EΣ,B, when p1 · · · pn ∈ R(qα,β). By the definition of
Lα,β and the assumption L ∈ W(EΣ,B), we have α\Lα,β/β = Lα,β . Thus
αα′0p1α

′
1 · · ·pnα′nβ ∈ Lα,β. If either α

′
0 /∈ C(α)∗ or α′n /∈ C(β)∗, then αα′0 ≡Lα,β

0 or α′nβ ≡Lα,β
0 because Lα,β satisfies EΣ,B, i.e. bb̄ ≡Lα,β

0 and bb′ ≡Lα,β
b′b

in particular. This contradicts the fact that αα′0p1α
′
1 · · · pnα′nβ ∈ Lα,β. Thus

α′0 ∈ C(α)∗ and α′n ∈ C(β)∗. This proves that α′0p1α
′
1 · · · pnα′n ∈ W (αqα,ββ),

and thus, Lα,β ⊆W (αqα,ββ).
Conversely, assume that α′0p1α

′
1 · · · pnα′n ∈W (αqα,ββ). Then p1 · · ·pn ∈ Lα,β

by definition of qα,β . By α\Lα,β/β = Lα,β, we have αp1 · · · pnβ ∈ Lα,β. Also since
α′0 ∈ C(α)∗, α′n ∈ C(β)∗ and Lα,β satisfies EΣ,B, it follows that α

′
0p1 · · ·pnα′n ∈

Lα,β. Furthermore, since Lα,β satisfies E0, any consistent test ci1 · · · cil can be
inserted between pj and pj+1 up to equivalence: That is,

α′0p1 · · · pjpj+1 · · ·pnα′n ≡Lα,β
α′0p1 · · · pjci1 · · · cilpj+1 · · · pnα′n (23)

Again, since Lα,β satisfies EΣ,B, the order of ci1 , · · · , cil can be replaced arbi-
trarily and also each occurrence of cik can be copied up to equivalence. Thus,
applying this fact to C(α′j) = {c

j
i1
, · · · , cjil} for each 1 ≤ j ≤ n− 1, we obtain:

α′0p1p2 · · ·pnα′n ≡Lα,β
α′0p1α

′
1p2α

′
2 · · · · · · pnα′n. (24)

Thus, by α′0p1p2 · · · pnα′n ∈ Lα,β, we obtain α′0p1α
′
1p2α

′
2 · · ·pnα′n ∈ Lα,β. Con-

sequently, W (αqα,ββ) ⊆ Lα,β. This concludes the proof.

Kleene Algebra with Converse

Paul Brunet and Damien Pous�

LIP, CNRS, ENS Lyon, INRIA, Université de Lyon, UMR 5668

Abstract. The equational theory generated by all algebras of binary
relations with operations of union, composition, converse and reflexive
transitive closure was studied by Bernátsky, Bloom, Ésik, and Stefanescu
in 1995. We reformulate some of their proofs in syntactic and elemen-
tary terms, and we provide a new algorithm to decide the corresponding
theory. This algorithm is both simpler and more efficient; it relies on
an alternative automata construction, that allows us to prove that the
considered equational theory lies in the complexity class PSpace.

Specific regular languages appear at various places in the proofs. Those
proofs were made tractable by considering appropriate automata recognis-
ing those languages, and exploiting symmetries in those automata.

Introduction

In many contexts in computer science and mathematics operations of union, se-
quence or product and iteration appear naturally. Kleene Algebra, introduced by
John H. Conway under the name regular algebra [Con71], provides an algebraic
framework allowing to express properties of these operators, by studying the
equivalence of expressions built with these connectives. It is well known that the
corresponding equational theory is decidable [Kle51], and that it is complete for
language and relation models.

As expressive as it may be, one may wish to integrate other usual operations in
such a setting. Theories obtained this way, by addition of a finite set of equations
to the axioms of Kleene Algebra, are called Extensions of Kleene Algebra. We
shall focus here on one of these extensions, where an operation of converse is
added to Kleene Algebra. The converse of a word is its mirror image (the word
obtained by reversing the order of the letters), and the converse R∨ of a relation
R is its reciprocal (xR∨y � yRx). This natural operation can be expressed
simply as a set of equations that we add to Kleene Algebra’s axioms.

The question that arises once this theory is built is its decidability: given
two formal expressions built with the connectives product, sum, iteration and
converse, can one decide automatically if they are equivalent, meaning that
their equality can be proven using the axioms of the theory? Bloom, Ésik,

� Work partially funded by the french projects PiCoq (ANR-09-BLAN-0169-01) and
PACE (ANR-12IS02001).

P. Höfner et al. (Eds.): RAMiCS 2014, LNCS 8428, pp. 101–118, 2014.
c© Springer International Publishing Switzerland 2014

102 P. Brunet and D. Pous

Stefanescu and Bernátsky gave an affirmative answer to that question in two
articles, [BÉS95] and [ÉB95], in 1995.

However, although the algorithm they define proves the decidability result,
it is too complicated to be used in actual applications. In this paper, beside
some simplifications of the proofs given in [BÉS95], we give a new and more
efficient algorithm to decide this problem, which we place in the complexity
class PSpace.

The equational theory of Kleene algebra cannot be finitely axiomatised [Red64].
Krob presented the first purely axiomatic (but infinite) presentation [Kro90]. Sev-
eral finite quasi-equational characterisations have been proposed [Sal66, Bof90,
Kro90,Koz91,Bof95]; here we follow the one from Kozen [Koz91].

AKleeneAlgebra is analgebraic structure 〈K,+, ·,� , �, �〉 such that 〈K,+, ·, �, �〉
is an idempotent semi-ring, and the operation � satisfies the following properties

�+ aa� � a� (1a)
�+ a�a � a� (1b)

b+ ax � x⇒ a�b � x (1c)
b+ xa � x⇒ ba� � x (1d)

(Here a � b is a shorthand for a+ b = b.)
The quasi-variety KA consists in the axioms of an idempotent semi-ring to-

gether with axioms and inference rules (1a) to (1d). Kleene Algebras are thus
models of KA. We shall call regular expressions over X , written RegX , the ex-
pressions built from letters of X , the binary connectives + and ·, the unary
connective � and the two constants � and �.

Two families of such algebras are of particular interest: languages (sets of
finite words over a finite alphabet, with union as sum and concatenation as
product) and relations (binary relations over an arbitrary set with union and
composition). KA is complete for both these models [Kro90, Koz91], meaning
that for any e, f ∈ RegX , KA # e = f if and only if e and f coincide under
any language (resp. relational) interpretation. This last property will be written
e ≡Lang f (resp. e ≡Rel f).

More remarkably, if we denote by �e� the language denoted by an expression
e, we have that for any e, f ∈ RegX , KA # e = f if and only if �e� = �f�.
By Kleene’s theorem (see [Kle51]) the equality of two regular languages can be
reduced to the equivalence of two finite automata, which is easy to compute.
Hence, the theory KA is decidable.

Now let us add a unary operation of converse to regular expressions. We shall
denote by Reg∨X the set of regular expressions with converse over a finite alphabet
X . While doing so, several questions arise:

1. Can the converse on languages and on relations be encoded in the same
theory?

2. What axioms do we need to add to KA to model these operations?
3. Are the resulting theories complete for languages and relations?
4. Are these theories decidable?

Kleene Algebra with Converse 103

There is a simple answer to the first question: no. Indeed the equation a �
a·a∨·a is valid for any relation a (because if (x, y) ∈ a, then (x, y) ∈ a, (y, x) ∈ a∨,
and (x, y) ∈ a, so that (x, y) ∈ a ◦ a∨ ◦ a). But this equation is not satisfied for
all languages a (for instance, with the language a = {x}, a · a∨ · a = {xxx} and
x /∈ {xxx}). This means that there are two distinct theories corresponding to
these two families of models. Let us begin by considering the case of languages.

Theorem 1 (Completeness of KAC− [BÉS95]). A complete axiomatisa-
tion of the variety Lang∨ of languages generated by concatenation, union, star,
and converse consists of the axioms of KA together with axioms (2a) to (2d).

(a+ b)
∨
= a∨ + b∨ (2a)

(a · b)∨ = b∨ · a∨ (2b)

(a�)
∨
= (a∨)� (2c)

a∨∨ = a. (2d)

We call this theory KAC−; it is decidable.

As for relations, we write e ≡Lang∨ f if e and f have the same language
interpretations (for a formal definition, see the “Notation” subsection below). To
prove this result, one first associates to any expression e ∈ Reg∨X an expression
e ∈ RegX, where X is an alphabet obtained by adding to X a disjoint copy of
itself. Then, one proves that the following implications hold.

e ≡Lang∨ f ⇒ �e� = �f� (3)

�e� = �f� ⇒ KAC− # e = f (4)

(That KAC− # e = f entails e ≡Lang∨ f is obvious; decidability comes from
that of regular languages equivalence.) We reformulate Bloom et al.’s proofs of
these implications in elementary terms in Section 1.1.

As stated before, the equation a � a · a∨ · a provides a difference between
languages with converse and relations with converse. It turns out that it is the
only difference, in the sense that the following theorem holds:

Theorem 2 (Completeness of KAC [BÉS95,ÉB95]). A complete axioma-
tisation of the variety Rel∨ of relations generated by composition, union, star,
and converse consists of the axioms of KAC− together with the axiom (5).

a � a · a∨ · a. (5)

We call this theory KAC; it is decidable.

The proof of this result also relies on a translation into regular languages.
Ésik et al. define a notion of closure, written cl (), for languages over X, and
they prove the following implications:

e ≡Rel∨ f ⇒ cl (�e�) = cl (�f�) (6)
cl (�e�) = cl (�f�) ⇒ KAC # e = f (7)

104 P. Brunet and D. Pous

(Again, that KAC # e = f entails e ≡Rel∨ f is obvious.) The first implication (6)
was proven in [BÉS95]; we give a new formulation of this proof in Section 1.2.
The second one (7) was proven in [ÉB95].

The last consideration is the decidability of KAC. To this end, Bloom et al.
propose a construction to obtain an automaton recognising cl (L), when given an
automaton recognising L. Decidability follows: to decide whether KAC # e = f
one can build two automata recognising cl (�e�) and cl (�f�) and check if they are
equivalent. Unfortunately, their construction tends to produce huge automata,
which makes it useless for practical application. We propose a new and simpler
one in Section 2; by analysing this construction, we show in Section 3 how it
leads to a proof that the problem of equivalence in KAC is PSpace.

Notation

For any word w, |w| is the size of w, meaning its number of letters; for any
1 � i � |w|, we’ll write w(i) for the ith letter of w and w|i � w(1)w(2) · · ·w(i)
for its prefix of size i. Also, suffixes(w) � {v | ∃u : uv = w } is the set of all
suffixes of w. A deterministic automaton is a tuple 〈Q,Σ, q0, T, δ〉; with Q a set
of states, Σ an alphabet, q0 ∈ Q an initial state, T ⊆ Q a set of final states and
δ : Q ×Σ → Q a transition function. A non-deterministic automaton is a tuple
〈Q,Σ, I, T,Δ〉; with Q, Σ and T same as before, I ⊆ Q a set of initial states and
Δ ⊆ Q×Σ×Q a set of transitions. We write L (A) for the language recognised
by the automaton A . For any a ∈ Σ, we write Δ(a) for {(p, q) | (p, a, q) ∈ Δ}.
We also use the compact notation p

w−−→A q to denote that there is in the
automaton A a path labelled by w from the state p to the state q. For a set
E ⊆ Q and a relation R over Q, we write E ·R for the set {y | ∃x ∈ E : xRy }.

Given a map σ from a set X to the languages on an alphabet Σ (resp. the
relations on a set S), there is a unique extension of σ into a homomorphism from
RegX to LangΣ (resp. RelS), which we denote by σ̂. The same thing can be done
with regular expressions with converse, and we will use the same notation for it.
We finally denote by ≡V the equality in a variety V (Lang, Rel, Lang∨ or Rel∨):
e ≡V f � ∀K, ∀σ : X → VK , σ̂(e) = σ̂(f).

1 Preliminary Material

1.1 Languages with Converse: Theory KAC−

We consider regular expressions with converse over a finite alphabet X . The
alphabet X is defined as X ∪ X ′, where X ′ � {x′ | x ∈ X } is a disjoint copy
of X . As a shorthand, we use ′ as an internal operation on X going from X to
X ′ and from X ′ to X such that if x ∈ X , x′ � x′ ∈ X ′ and (x′)′ � x ∈ X . An
important operation in the following is the translation of an expression e ∈ Reg∨X
to an expression e ∈ RegX. We proceed to its definition in two steps.

Kleene Algebra with Converse 105

Let τ(e) denote the normal form of an expression e ∈ Reg∨X in the following
convergent term rewriting system:

(a+ b)
∨ → a∨ + b∨ �

∨ → � (a�)
∨ → (a∨)�

(a · b)∨ → b∨ · a∨ �
∨ → � a∨∨ → a

The corresponding equations being derivable in KAC−, one easily obtain that

∀e ∈ Reg∨X , KAC− # τ(e) = e (8)

We finally denote by e the expression obtained by further applying the sub-
stitution ν � [x∨ %→ x′, (∀x ∈ X)], i.e., e � ν(τ(e)). (Note that e ∈ RegX: it
is regular, all occurrences of the converse operation have been eliminated.) As
explained in the introduction, Bloom et al.’s proof [BÉS95] amounts to proving
the implications (3) and (4). We include a syntactic and elementary presentation
of this proof, for the sake of completeness.

Lemma 3. For all e, f ∈ Reg∨X , e ≡Lang∨ f entails �e� = �f�.

Proof. For any e ∈ Reg∨X , we have τ(e) ≡Lang∨ e (†) as an immediate conse-
quence of (8). Let us write X• � X) {•} and consider the following interpreta-
tions (which appear in [BÉS95, proof of Proposition 4.3]):

μ : X −→ P (X�
•) η : X −→ P (X�

•)
x %−→ {x · •} x ∈ X %−→ {x · •}

x′ ∈ X ′ %−→ {• · x}

One can check that η̂ is injective modulo equality of denoted languages, in the
sense that for any expression e ∈ RegX, we have

η̂(e) = η̂(f) implies that �e� = �f� . (9)

By a simple induction on e, we get μ̂(τ(e)) = η̂(ν(τ(e))) = η̂(e). Combined
with (†), we deduce that μ̂(e) = η̂(e). All in all, we obtain: e ≡Lang∨ f ⇒ μ̂(e) =
μ̂(f)⇒ η̂(e) = η̂(f)⇒ �e� = �f�.

The second implication is even more immediate, using KA completeness.

Lemma 4. For all e, f ∈ Reg∨X , if �e� = �f� then KAC− # e = f .

Proof. By completeness of KA [Kro90,Koz91], if �e� = �f�, then we know that
there is a proof π1 : KA # e = f . As KA is contained in KAC−, the same proof
can be seen as π1 : KAC− # e = f . By substituting x′ by (x∨) everywhere in
this proof, we get a new proof π2 : KAC− # τ(e) = τ(f). By (8) and transitivity
we thus get KAC− # e = f .

We finally deduce that e ≡Lang∨ f ⇔ �e� = �f� ⇔ KAC− # e = f . Since the
regular expressions e and f can be easily computed from e and f , the problem
of equivalence in KAC− thus reduces to an equality of regular languages, which
makes it decidable.

106 P. Brunet and D. Pous

1.2 Relations with Converse: Theory KAC

We now move to the equational theory generated by relational models. It turns
out that this theory will be characterised using “closed” languages on the ex-
tended alphabet X. To define this closure operation, we first define a mirror
operation w on words over X, such that ε � ε and for any x,w ∈ X × X�,
wx = x′w. Accordingly with the axiom (5) of KAC we define a reduction rela-
tion � on words over X, using the following word rewriting rule.

www � w .

We call www a pattern of root w. The last two thirds of the pattern are ww.
Following [BÉS95, ÉB95], we extend this relation into a closure operation on
languages.

Definition 5. The closure of a language L ⊆ X� is the smallest language con-
taining L that is downward-closed with respect to �:

cl (L) � {v | ∃u ∈ L : u�� v } .

Example 6. If X = {a, b, c, d}, then X = {a, b, c, d, a′, b′, c′, d′}, and ab′ = ba′.
We have the reduction cab′ba′ab′d′ � cab′d′, by triggering a pattern of root ab′.
For L = {aa′a, b, cab′ba′ab′d′}, we have cl (L) = L ∪ {a, cab′d′}.

Now we define a family of languages which play a prominent role in the sequel.

Definition 7. For any word w ∈ X�, we define a regular language Γ (w) by:

Γ (ε) � {ε}
∀x ∈ X, ∀w ∈ X�, Γ (wx) � (x′Γ (w)x)� .

An equivalent operator called G is used in [BÉS95]: we actually have Γ (w) =
G(w), and our recursive definition directly corresponds to [BÉS95, Proposi-
tion 5.11.(2)]. By using such a simple recursive definition, we avoid the need
for the notion of admissible maps, which is extensively used in [BÉS95].

Instead, we just have the following property to establish, which illustrates why
these languages are of interest: words in Γ (w) reduce into the last two thirds
of a pattern compatible with w. Therefore, in the context of recognition by an
automaton, Γ (w) contains all the words that could potentially be skipped after
reading w, in a closure automaton.

Proposition 8. For all words u and v, u ∈ Γ (v)⇔ ∃t ∈ suffixes(v) : u �� tt.

Proof. The proof of the implication from left to right is routine but a bit lengthy,
we include it in [BP14].

For the converse implication, we first define the following language: Γ ′(v) �{
tt | t ∈ suffixes(v)

}
. We thus have to show that the upward closure of Γ ′(v)

is contained in Γ (v). We first check that this language satisfies Γ ′(ε) = ε and

Kleene Algebra with Converse 107

���������	0

v(n)′
��

��
�������	1

v(n−1)′
��

v(n)
��

�������	2

v(n−2)′
��

v(n−1)
�� · · ·

v(1)′
��

v(n−2)
��

�������	n
v(1)

��

Fig. 1. Automaton G (v) recognising Γ (v), with |v| = n

Γ ′(vx) = ε + x′Γ ′(v)x, which allows us to deduce that Γ ′(v) ⊆ Γ (v) by a
straightforward induction.

It thus suffices to show that Γ (v) is upward-closed with respect to �. For
this, we introduce the family of automata G (v) depicted in Figure 1. One can
check that G (v) recognises Γ (v) by a simple induction on v. One can moreover

notice that in this automaton, if p x−−→G (v) q, then q
x′
−−→G (v) p. More generally,

for any word u, if p u−−→G (v) q, then q
u−−→G (v) p. So if u1wu2 ∈ Γ (v), then by

definition of the automaton we have 0
u1−−−→G (v) q1

w−−→G (v) q2
u2−−−→G (v) 0 , and

thus, by the previous remark:

0
u1

G (v)
�� q1

w

G (v)
�� q2

w

G (v)
�� q1

w

G (v)
�� q2

u2

G (v)
�� 0 ,

i.e., u1wwwu2 ∈ Γ (v). In other words, for any words v and w and any u ∈ Γ (v),
if w � u then w is also in Γ (v), meaning exactly that Γ (v) is upward-closed
with respect to �.

Since Γ ′(v) ⊆ Γ (v), we deduce that Γ (v) contains the upward closure of Γ ′(v),
as expected.

We now have enough material to embark in the proof of the implication (6)
from the introduction, stating that if two expressions e, f ∈ Reg∨X are equal for
all interpretations in all relational models, then cl (e) = cl (f).

Proof. Bloom et al. [BÉS95] consider specific relational interpretations: for any
word u ∈ X� and for any letter x ∈ X, they define

φu(x) � {(i− 1, i) | u(i) = x} ∪ {(i, i− 1) | u(i) = x′ } ⊆ {0, . . . , n}2 ,

where n � |u|. The key property of those interpretations is the following:

(0, n) ∈ φ̂u(v)⇔ v �� u . (10)

We give a new proof of this property, by using the automaton Φ(u) depicted in
Figure 2. By definition of Φ(u) and φu, we have that

(i, j) ∈ φu(x)⇔ i
x−−→Φ(u) j .

Therefore, proving (10) amounts to proving

v ∈ L(Φ(u))⇔ v �� u . (11)

108 P. Brunet and D. Pous

���������	0
u(1)

���������	1
u(2)

��

u(1)′
��

�������	2
u(3)

��

u(2)′
�� · · ·

u(n)
��

u(3)′
��

�������	n
u(n)′
��

��

Fig. 2. Automaton Φ(u), with |u| = n

���������	0
x ��

x ��

�������	1′
u(1)

��

x′
��

�������	2′
u(2)

��

u(1)′
�� · · ·

u(n)
��

u(2)′
��

�������	n′
u(n)′
��

�������	1

u(1)
���������	2

u(2)
��

u(1)′
�� · · ·

u(n)
��

u(2)′
��

�������	n
u(n)′
��

��

Fig. 3. Automaton Φ′(xu), with |u| = n, language equivalent to Φ(xu)

First notice that i x−−→Φ(u) j ⇔ j
x′
−−→Φ(u) i. We can extend this to paths (as in

the proof of Proposition 8) and then prove that if s � t and i
t−−→Φ(u) j then

i
s−−→Φ(u) j. As u is clearly in L(Φ(u)), any v such that v �� u is also in L(Φ(u)).
We proceed by induction on u for the other implication. The case u = ε

being trivial, we consider v ∈ L(Φ(xu)). We introduce a second automaton
Φ′(xu) given in Figure 3, that recognises the same language as Φ(xu). The upper
part of this automaton is actually the automaton G (xu) (as given in Figure 1),
recognising the language Γ (xu). Moreover, the lower part starting from state 1 is
the automaton Φ(u). This allows us to obtain that L(Φ(xu)) = Γ (xu)xL(Φ(u)).
Hence, for any v ∈ L(Φ(xu)), there are v1 ∈ Γ (xu) and v2 ∈ L(Φ(u)) such that
v = v1xv2. By induction, we get v2 �� u, and by Proposition 8 we know that
v1 �� ww, with w ∈ suffixes(xu). That means that xu = tw, for some word t,
so xu = tw = w t. If we put everything back together:

v = v1xv2 �� v1xu �� wwxu = www t� w t = xu .

This concludes the proof of (11), and thus (10).
We follow Bloom et al.’s proof [BÉS95] to deduce that the implication (6)

from the introduction holds: we first prove that for all e ∈ RegX, we have

u ∈ cl (�e�)⇔ ∃v ∈ �e�, v �� u (by definition)

⇔ ∃v ∈ �e�, (0, n) ∈ φ̂u(v) (by (10))

⇔ (0, n) ∈ φ̂u(e) .

(For the last line, we use the fact that for any relational interpretation φ, we
have φ̂(e) =

⋃
w∈�e� φ̂(w).)

Kleene Algebra with Converse 109

Furthermore, as φu(x′) = φu(x)
∨, we can prove that φ̂u(e) = φ̂u(e) . There-

fore, for all expressions e, f ∈ Reg∨X such that e ≡Rel∨ f , we have φ̂u(e) =

φ̂u(e) = φ̂u(f) = φ̂u(f), and we deduce that cl (�e�) = cl (�f�) thanks to the
above characterisation.

2 Closure of an Automaton

The problem here is the following: given two regular expressions e, f ∈ Reg∨X ,
how to decide cl (�e�) = cl (�f�)? We follow the approach proposed by Bloom
et al.: given an automaton recognising a language L, we show how to construct
an automaton recognising cl (L). To solve the initial problem, it then suffices to
build two automata recognising �e� and �f�, to apply a construction to obtain two
automata for cl (�e�) and cl (�f�), and to check those for language equivalence.

As a starting point, we first recall the construction proposed in [BÉS95].

2.1 The Original Construction

This construction uses the transition monoid of the input automaton:

Definition 9 (Transition monoid). Let A = 〈Q,Σ, q0, T, δ〉 be a determin-
istic automaton. Each word u ∈ Σ� induces a function uA : Q → Q which
associates to a state p the state q obtained by following the unique path from p
labelled by u. The transition monoid of A , written MA , is the set of functions
Q → Q induced by words of Σ�, equipped with the composition of functions
and the identity function.

This monoid is finite, and its subsets form a Kleene Algebra. Bloom et al.
then proceed to define the closure automaton in the following way:

Theorem 10 (Closure automaton of [BÉS95]). Let L ⊆ X� be a regular
language, recognised by the deterministic automaton A = 〈Q,X, q0, Qf , δ〉. Let
MA be the transition monoid of A . Then the following deterministic automaton
recognises cl (L):

B � 〈P (MA)× P (MA) ,X, ({εA } , {εA }) , T, δ1〉
with T � {(F,G) | ∃uA ∈ F : uA (q0) ∈ Qf } ,

and δ1((F,G), x) �
(
F · {xA } ·

(
({x′A } ·G · {xA })

�)
, ({x′A } ·G · {xA })

�)
.

An important idea in this construction, that inspired our own, is the transition
rule for the second component above. Let us write δ2(G, x) for the expression
({x′A } ·G · {xA })

�, so that the definition of δ1 can be reformulated as

δ1((F,G), x) = (F · {xA } · δ2(G, x), δ2(G, x)).

With that in mind, one can see the second component as some kind of history,
that runs on its own, and is used at each step to enrich the first component. At
this point, it might be interesting to notice that the formula for δ2(G, x) closely
resembles the one for Γ (wx) = (x′Γ (w)x)�, which we defined in Section 1.2.

110 P. Brunet and D. Pous

2.2 Intuitions

Let us forget the above construction, and try to build a closure automaton. One
way would be to simply add transitions to the initial automaton. This idea comes
naturally when one realises that if u �� v, then v is obtained by erasing some
subwords from u: at each reduction step u1wwwu2 � u1wu2 we just erase ww.
To “erase” such subwords using an automaton, it suffices to allow one to jump
along certain paths.

Suppose for instance that we start from the following automaton:

�� �������	q0
a �� �������	q1

b �� �������	q2
b′ �� �������	q3

a′
�� �������	q4

a �� �������	q5
b �� �������	q6 ��

We can detect the pattern ababab, and allow one to “jump” over it when reading
the last letter of the root of the pattern, in this case the b in second position.
Our automaton thus becomes:

�� �������	q0
a �� �������	q1

b ��

b

��� � � � � � � � � � � �

�������	q2
b′ �� �������	q3

a′
�� �������	q4

a �� �������	q5
b �� �������	q6 ��

However, this approach is too naive, and it quickly leads to errors. If for in-
stance we slightly modify the above example by adding a transition labelled by
b′ between q0 and q1, the same method leads to the following automaton, by
detecting the patterns b′bb′ between q0 and q3 and abb′a′ab between q0 and q6.

�� �������	q0
a ��

b′
��

b′

���
�

� � � � � �
�

�������	q1
b ��

b

��� � � � � � � � � � � �

�������	q2
b′ �� �������	q3

a′
�� �������	q4

a �� �������	q5
b �� �������	q6 ��

The problem is that the word b′b is now wrongly recognised in the produced
automaton. What happens here is that we can use the jump from q1 to q6,
even though we didn’t read the prerequisite for doing so, in this case the a
constituting the beginning of the root ab of pattern ababab. (Note that the dual
idea, consisting in enabling a jump when reading the first letter of the root of
the pattern, would lead to similar problems.)

A way to prevent that, which was implicitly introduced in the original con-
struction, consists in using a notion of history. The states of the closure au-
tomaton will be pairs of a state in the initial automaton and a history. That will
allow us to distinguish between the state q1 after reading a and the state q1 after
reading b′, and to specify which jumps are possible considering what has been
previously read. In the construction given in [BÉS95], the history is given by an
element of P (MA), in the second component of the states (the “G” part). We
will define a history as a set of words allowing for the same jumps, using Γ (w).

Kleene Algebra with Converse 111

2.3 Our Construction

We have shown in Section 1.2 that ∀u ∈ Γ (w), ∃v ∈ suffixes(w) : u �� vv, so we
do have a characterisation of the words “allowing jumps” after having read some
word w. The problem is that we want a finite number of possible histories, and
there are infinitely many Γ (w) (for instance, all the Γ (an) are different). To get
that, we will project Γ (w) on the automaton. Let us consider a non-deterministic
automaton A = 〈Q,X, I, T,Δ〉 recognising a language L.

Definition 11. For any wordw ∈ X� we define the relation γ(w) between states
of A by γ(ε) � IdQ and γ(wx) = (Δ(x′) ◦ γ(w) ◦Δ(x))

�.

One can notice right away the strong relationship between γ and Γ :

Proposition 12. ∀w, q1, q2, (q1, q2) ∈ γ(w) ⇔ ∃u ∈ Γ (w) : q1 u−−→A q2.

This result is straightforward once one realises that γ(w) = σ̂ (Γ (w)) with
σ(x) = Δ(x). By composing Propositions 8 and 12 we eventually obtain that
((q1, q2) ∈ γ(w)) iff ∃u : q1

u−−→A q2 and u�� vv, with v a suffix of w.
The set Q being finite, γ has a finite index and one can define a finite set of

histories as follows:

Definition 13. Let ∼γ be the kernel of γ: u ∼γ v iff γ(u) = γ(v). We define
the set G as the quotient of X� by ∼γ . We denote by [w] the elements of G, in
such a way that [u] = [v]⇔ u ∼γ v ⇔ γ(u) = γ(v).

We now have all the tools required for our construction of the closure of A :

Theorem 14 (Closure Automaton). The closure of the language L is recog-
nised by the automaton A ′ � 〈Q ×G,X, I × {[ε]} , T ×G,Δ′〉 with:

Δ′ = {((q1, [w]), x, (q2, [wx])) | (q1, q2) ∈ Δ(x) ◦ γ(wx)} .

We shall write L′ for the language recognised by A ′. One can read the set
of transitions as “from a state q1 with an history w, perform a step x in the
automaton A , and then a jump compatible with wx, which becomes the new
history”. One can see, from the definition of Δ′ and Proposition 12 that :

(q1, [u])
x−−→A ′ (q2, [ux]) ⇔ ∃(q3, v) ∈ Q× Γ (ux) : q1

x−−→A q3
v−−→A q2. (12)

Now we prove the correctness of this construction. First recall the notion of
simulation [Mil89]:

Definition 15 (Simulation). A relationR between the states of two automata
A and B is a simulation if for all (p, q) ∈ R we have (a) if p x−−→A p′, then there
exists q′ such that q x−−→B q′ and (p′, q′) ∈ R, and (b) if p ∈ TA then q ∈ TB.

We say that A is simulated by B if there is a simulation R such that for any
p0 ∈ IA , there is q0 ∈ IB such that p0 R q0.

112 P. Brunet and D. Pous

The following property of γ is proved by exhibiting such a simulation:

Proposition 16. For all words u, v ∈ X� such that u � v, we have γ(u) ⊆ γ(v).

Proof. First, notice that Γ (u) ⊆ Γ (v) ⇒ γ(u) ⊆ γ(v), using Proposition 12.
It thus suffices to prove u � v ⇒ Γ (u) ⊆ Γ (v), which can be rewritten as
Γ (u1wwwu2) ⊆ Γ (u1wu2). We can drop u2 (it is clear that Γ (w1) ⊆ Γ (w2) ⇒
∀x ∈ X, Γ (w1x) ⊆ Γ (w2x), from the definition of Γ): we now have to prove
that Γ (u1www) ⊆ Γ (u1w). The proof of this inclusion relies on the fact that the
automaton G (u1www) is simulated by the automaton G (u1w) (see [BP14]).

We define an order relation � on the states of the produced automaton (Q×
G), by (p, [u]) � (q, [v]) � p = q ∧ γ(u) ⊆ γ(v).

Proposition 17. The relation � is a simulation for the automaton A ′.

Proof. Suppose that (p, [u]) � (q, [v]) and (p, [u])
x−−→A ′ (p′, [ux]), i.e., (p, p′) ∈

Δx ◦ γ(ux). We have p = q and γ(u) ⊆ γ(v), hence γ(ux) ⊆ γ(vx), and thus
(p, p′) ∈ Δx ◦ γ(vx) meaning that (p, [v])

x−−→A ′ (p′, [vx]). It remains to check
that (p′, [ux]) � (p′, [vx]), i.e., γ(ux) ⊆ γ(vx), which we just proved.

We may now prove that L′ = cl (L).

Lemma 18. L′ ⊆ cl (L)

Proof. We prove by induction on u that for all q0, q such that (q0, [ε])
u−−→A ′

(q, [u]), there exists v such that v �� u and q0
v−−→A q. The case u = ε is trivial.

If (q0, [ε])
u−−→A ′ (q1, [u])

x−−→A ′ (q, [ux]), by induction one can find v1 such
that q0

v1−−→A q1 and v1 �� u. We also know (by (12) and Proposition 8) that
there are some q2, v2 and v3 ∈ suffixes(ux) such that q1

x−−→A q2, v2 �� v3v3
and q2

v2−−→A q. We thus get

q0
v1−−→A q1

x−−→A q2
v2−−→A q and v1xv2 �� uxv2 �� uxv3v3 � ux.

By choosing q ∈ T , we obtain the desired result.

Lemma 19. L ⊆ L′

Proof. This is actually very simple. First notice that for all u, γ(u) is a reflexive
relation, hence q1

x−−→A q2 entails ∀u, (q1, [u]) x−−→A ′ (q2, [ux]). This means that
the relation R defined by p R (q, [w]) ⇔ p = q is a simulation between A and
A ′, and thus L = L(A) ⊆ L(A ′) = L′.

Lemma 20. L′ is downward-closed for �.

A technical lemma is required to establish this closure property:

Lemma 21. If (q1, [uw])
x−−→A ′ (q2, [uwx])

wx wx−−−−−−→A ′ (q3, [uwx wx wx]), then
(q1, [uw])

x−−→A ′ (q3, [uwx]).

Kleene Algebra with Converse 113

Proof sketch. The proof being quite verbose and dry, we shall only give a sketch
of it here, referring to [BP14] for a detailed one. If |w| = n and |u| = m, the
premise can be equivalently stated:

(q1, [(uw)|m+n−1])
w(n)−−−−→A ′ (q2, [uw])

ww−−−→A ′ (q3, [uwww]).

(Recall that u|i denotes the prefix of length i of a word u.) Let us write Γi =
Γ ((uwww)|m+n+i) = Γ (uw(ww)|i) and xi = (uwww)(n+m+i) for 0 � i � 2n.
By Proposition 12 and the definition of A ′, we can show that there are vi ∈ Γi

such that the execution above can be lifted into an execution in A :

q1
x0v0x1v1···xivi···x2nv2n−−−−−−−−−−−−−−−−−→A q3.

Then one can prove by recurrence on i and using Proposition 8 that:

∀i, ∃ti ∈ Γ (uw) : (ww)|ivi �� ti(ww)|i. (13)

We deduce that v0x1v1 · · ·xivi · · ·x2nv2n �� t0t1 · · · t2nww ∈ Γ (uw)2n+2 ⊆
Γ (uw). By Proposition 8, this means that v0x1v1 · · ·xivi · · ·x2nv2n is in Γ (uw),

so that (q1, q3) ∈ Δ(w(n)) ◦ γ(uw), and (q1, [uw|n−1])
w(n)−−−−→A ′ (q2, [uw]).

With this intermediate lemma, one can obtain a succinct proof of Lemma 20:

Proof. The statement of the lemma is equivalent to saying that if u � v with
u ∈ L′ then v is also in L′. Consider u = u1w · w · wu2 and v = u1wu2 with
|w| = n 	 1 (the case where w = ε doesn’t hold any interest since it implies that
u = v). By combining Lemma 21 and Proposition 17 we can build the following
diagram:

(q0, [ε])
u1w|n−1�� (q1, [u1w|n−1])

w(n) ��

w(n)

Lem. 21 ���
�����
(q2, [u1w])

ww �� (q3, [u1www])
u2 �� (qf , [u])

(q3, [u1w])
u2

Prop. 17
�������������

�

Prop. 16

(qf , [v])

�

Lemmas 19 and 20 tell us that L′ is closed and contains L, so by definition
of the closure of a language, we get cl (L) ⊆ L′. Lemma 18 gives us the other
inclusion, thus proving Theorem 14.

3 Analysis and Consequences

3.1 Relationship with [BÉS95]’s construction

As suggested by an anonymous referee, one can also formally relate our con-
struction to the one from [BÉS95]: we give below an explicit and rather natural
bisimulation relation between the automata produced by both these methods.

114 P. Brunet and D. Pous

This results in an alternative correctness proof of our construction, by reducing
it to the correctness of the one from [BÉS95].

We first make the two constructions comparable: the original construction, be-
cause it considers the transition monoid, takes as input a deterministic automa-
ton. It returns a deterministic automaton. Instead, our construction does not
require determinism in its input, but produces a non-deterministic automaton.
We thus have to ask of both methods to accept as their input a non-deterministic
automaton, and to return a deterministic automaton.

For our construction, the straightforward thing to do would be to determinise
the automaton afterwards. We can actually do better, by noticing that from a
state (p, [u]), reading some x, there may be a lot of accessible states, but all of
their histories (second components) will be equal to [ux]. So in order to get a
deterministic automaton, one only has to perform the power-set construction on
the first component of the automaton. This way, we get an automaton A1 with
states in P (Q)×G and a transition function

δ1((P, [u]), x) = (P · (Δ(x) ◦ γ(ux)) , [ux]) .

The original construction can also be adjusted very easily: first build a de-
terministic automaton D with the usual powerset construction, then apply the
construction as described in Theorem 10 to get an automaton which we call A2.
An important thing here is to understand the shape of the resulting transition
monoid MD : its elements are functions over sets of states (because of the power-
set construction) induced by words; more precisely, they are sup-semilattice ho-
momorphisms, and they are in bijection with binary relations on states.

Define the following KA-homomorphism from P (MD) to P
(
Q2
)
:

i(F) = {(p, q) | ∃uD ∈ F : q ∈ uD({p})} .

(That i is a KA-homomorphism comes from the fact that the elements of MD

are themselves sup-semilattice homomorphisms on P (Q).) We can check that
for all x ∈ X, we have

i ({xD}) = {(p, q) | q ∈ xD({p})} = {(p, q) | q ∈ δ({p} , x)}

=
{
(p, q)

∣∣∣ p x−−→A q
}
= Δ(x) ,

It follows that the following relation is a bisimulation between A1 and A2.

{((Q, [u]), (F,G)) | Q = I · i(F) and γ(u) = i(G)}

(See [BP14] for a detailed proof.)

3.2 Complexity

Because we are speaking about algorithms rather than actual programs, it is a
bit difficult to give accurate complexity bounds, considering the many possible

Kleene Algebra with Converse 115

data structures appearing during the computation. However, one may think that
a relevant complexity measure of the final algorithm (for deciding equality in
KAC) could be the size of the produced automata. In the following the size of
an automaton is its number of states. In order to give a fair comparison, we will
consider the generic algorithms given in the previous subsection, taking as their
input a non-deterministic automaton, and returning a deterministic automaton.

Let us begin by evaluating the size of the automaton produced by the method
in [BÉS95], given a non-deterministic automaton of size n. As explained above,
the states of the constructed transition monoid (MD) are in bijection with the
binary relations on Q. There are thus at most 2n

2

elements in this monoid. We
deduce that the final automaton, whose states are pairs of subsets of MD has at
most 22

n2

× 22
n2

= 22
n2+1

states.
Now with the deterministic version of our construction, the states are in the

set P (Q) ×G. Since G is the set of equivalence classes of ∼γ and γ has values
in the reflexive binary relations over Q, we know that ∼γ has less than 2n×(n−1)

elements. Hence we can see that |P (Q)×G| � 2n × 2n×(n−1) = 2n
2

, which is
significantly smaller than the 22

n2+1

states we get with the other construction.

3.3 A Polynomial-Space Algorithm

The above upper-bound on the number of states of the automata produced by
our construction allows us to show that the problem of equivalence in KAC is
in PSpace (the problem was already known to be PSpace-hard since KAC is
conservative over KA, which is PSpace-complete [MS73]).

Recall that the equivalence of two deterministic automata A and B is in
LogSpace. The algorithm to show that relies on the fact that A and B are
different if and only if there is a word w in the difference of L(A) and L(B)
such that |w| � |A | × |B|. With that in mind, we can give a non-deterministic
algorithm, by simulating a computation in both automata with a letter chosen
non-deterministically at each step, with a counter to stop us at size |A | × |B|.
The resulting algorithm will only have to store the counter of size log(|A |× |B|)
and the two current states.

For our problem, the first step is to compute e and f from the regular ex-
pressions with converse e and f . It is obvious that such a transformation can
be done in linear time and space, by a single sweep of both e and f . Then we
have to build automata for e and f . Once again this is a very light operation: if
one considers for instance the position automaton (also called Glushkov’s con-
struction [Glu61]), we obtain automata of respective sizes n = |e|+ 1 = |e|+ 1
and m = |f |+ 1 = |f |+ 1, where | · | denotes the number of variable leaves of a
regular expression (possibly with converse).

Our construction then produces closed automata of size at most 2n
2

and 2m
2

,
so that the non-deterministic algorithm to check their equivalence needs to scan
all words of size smaller than by 2n

2 × 2m
2

= 2n
2+m2

. The counter used to
bound the recursion depth can thus be stored in polynomial space (n2 +m2).

116 P. Brunet and D. Pous

input : Two regular expressions with converse e, f ∈ Reg∨
X

output: A Boolean, saying whether or not KAC � e = f .

1 A1 = 〈Q1,X, I1, T1,Δ1〉 ← Glushkov’ automaton recognising �e�;
2 A2 = 〈Q2,X, I2, T2,Δ2〉 ← Glushkov’ automaton recognising �f�;
3 N ← (2(|e|+1)2 × 2(|f |+1)2); /* N gets a value 	 |cl (A1)| · |cl (A2)| */
4 ((P1, R1), (P2, R2)) ← ((I1, IdQ1), (I2, IdQ1));
5 while N > 0 do
6 N ← N − 1; /* N bounds the recursion depth */
7 f1 ← is_empty(P1 ∩ T1);
8 f2 ← is_empty(P2 ∩ T2);
9 if f1 = f2 then

10 x ←random(X); /* Non-deterministic choice */
11 (R1, R2) ← ((Δ1(x

′) ◦R1 ◦Δ1(x))
�, (Δ2(x

′) ◦ R2 ◦Δ2(x))
�);

12 (P1, P2) ← (P1 · (Δ1(x) ◦ R1), P2 · (Δ2(x) ◦ R2));
13 else
14 return false; /* A difference appeared for some word, e �= f */
15 end
16 end
17 return true; /* There was no difference, KAC � e = f */

Algorithm 1. A PSpace algorithm for KAC

It is worth mentioning here that with the automata constructed in [BÉS95], the
counter would have size 2n

2+1 + 2m
2+1 which is not a polynomial.

Now the last two important things to worry about are the representation of
the states of the closure automata, in particular their “history” component, and
the way to compute their transition function. Let us focus on the automaton for
e and let Q be the set of states of the Glushkov automaton built out of it.

– For the state representation, one needs to represent an equivalence class
[u] ∈ G by its image under γ: while the smallest word w ∈ [u] may be quite
long, γ(u) is just a binary relation on Q. We shall thus represent the states
in the determinised closure automaton as pairs of a set of states in Q and a
binary relation (set of pairs) over Q. Such a pair can be stored in polynomial
space (recall that |Q| = n = |e|+ 1).

– For computing the transition function, the image of a pair ({q1, · · · , qk} , R)
(with R ⊆ Q2) by a letter x ∈ X is done in two steps: first the rela-
tion becomes R′ = (Δ(x′) ◦R ◦Δ(x))

�, then the set of states becomes
{q | ∃i, 1 � i � k : (qi, q) ∈ Δ(x) ◦R′ }. Those computations take place in
PSpace. (The composition of two relations in Q2 can be performed in space
O
(
|Q|2

)
, and the same holds for the reflexive and transitive closure of a

relation R by building the powers (R+ IdQ)
2k and keeping a copy of the

previous iteration to stop when the fixed-point is reached.)

Summing up, we obtain Algorithm 1, which is PSpace.

Kleene Algebra with Converse 117

Conclusion

Starting from the works of Bernátsky, Bloom, Ésik and Stefanescu, we gave a
new and more efficient algorithm to decide the theory KAC. This algorithm
relies on a new construction for the closure of an automaton, which allowed us
to show that the problem was in fact in the complexity class PSpace.

To prove the correctness of our construction, we used the family of regular
languages Γ (w) (G(w∨) in [BÉS95]), and we establish its main properties using
a proper finite automata characterisation. Moreover, this function allowed us to
reformulate the proof of the completeness of the reduction from equality in Rel∨

to equivalence of closed automata (implication (6) from the introduction).
As an exercise, we have implemented and tested the various constructions and

algorithms in an OCaml program which is available online1.
To continue this work, we would like to implement our algorithm in the proof

assistant Coq, as a tactic to automatically prove the equalities in KAC—as it has
already been done for the theories KA and KAT. The simplifications we propose
in this paper give us hope that such a task is feasible. The main difficulty cer-
tainly lies in the formalisation of the completeness proof of KAC (implication (7)
from the introduction): the proof given in [ÉB95] uses yet another automaton
construction for the closure, which is much more complicated than the one used
in [BÉS95], and which seems quite difficult to formalise in Coq. We hope to find
an alternative completeness proof, by exploiting the simplicity of the presented
construction.

Acknowledgements. We are grateful to the anonymous referees who suggested
us the alternative proof of correctness which we provide in Section 3.1, and who
helped us to improve this paper.

References

[BÉS95] Bloom, S.L., Ésik, Z., Stefanescu, G.: Notes on equational theories of relations.
Algebra Universalis 33, 98–126 (1995)

[Bof90] Boffa, M.: Une remarque sur les systèmes complets d’identités rationnelles.
Informatique Théorique et Applications 24, 419–428 (1990)

[Bof95] Boffa, M.: Une condition impliquant toutes les identités rationnelles. Infor-
matique Théorique et Applications 29, 515–518 (1995)

[BP14] Brunet, P., Pous, D.: Extended version of this abstract, with omitted proofs.
Technical report, LIP - CNRS, ENS Lyon (2014),
http://hal.archives-ouvertes.fr/hal-00938235

[Con71] Conway, J.H.: Regular algebra and finite machines. Chapman and Hall
Mathematics Series (1971)

[ÉB95] Ésik, Z., Bernátsky, L.: Equational properties of Kleene algebras of relations
with conversion. Theoretical Computer Science 137, 237–251 (1995)

[Glu61] Glushkov, V.M.: The abstract theory of automata. Russian Mathematical
Surveys 16, 1 (1961)

1 http://perso.ens-lyon.fr/paul.brunet/cka.html

http://hal.archives-ouvertes.fr/hal-00938235
http://perso.ens-lyon.fr/paul.brunet/cka.html

118 P. Brunet and D. Pous

[Kle51] Kleene, S.C.: Representation of Events in Nerve Nets and Finite Automata.
Memorandum. Rand Corporation (1951)

[Koz91] Kozen, D.: A Completeness Theorem for Kleene Algebras and the Algebra of
Regular Events. In: LICS, pp. 214–225. IEEE Computer Society (1991)

[Kro90] Krob, D.: A Complete System of B-Rational Identities. In: Paterson, M. (ed.)
ICALP 1990. LNCS, vol. 443, pp. 60–73. Springer, Heidelberg (1990)

[MS73] Meyer, A., Stockmeyer, L.J.: Word problems requiring exponential time. In:
Proc. ACM Symposium on Theory of Computing, pp. 1–9. ACM (1973)

[Mil89] Milner, R.: Communication and Concurrency. Prentice Hall (1989)
[Red64] Redko, V.N.: On defining relations for the algebra of regular events. In:

Ukrainskii Matematicheskii Zhurnal, pp. 120–126 (1964)
[Sal66] Salomaa, A.: Two Complete Axiom Systems for the Algebra of Regular

Events. J. ACM 13, 158–169 (1966)

Preparing Relational Algebra

for “Just Good Enough” Hardware

José N. Oliveira

High Assurance Software Laboratory
INESC TEC and University of Minho

Braga, Portugal
jno@di.uminho.pt

Abstract. Device miniaturization is pointing towards tolerating imper-
fect hardware provided it is “good enough”. Software design theories will
have to face the impact of such a trend sooner or later.

A school of thought in software design is relational : it expresses spec-
ifications as relations and derives programs from specifications using re-
lational algebra.

This paper proposes that linear algebra be adopted as an evolution
of relational algebra able to cope with the quantification of the impact
of imperfect hardware on (otherwise) reliable software.

The approach is illustrated by developing a monadic calculus for com-
ponent oriented software construction with a probabilistic dimension
quantifying (by linear algebra) the propagation of imperfect behaviour
from lower to upper layers of software systems.

1 Introduction

In the trend towards miniaturization of automated systems the size of circuit
transistors cannot be reduced endlessly, as these eventually become unreliable.
There is, however, the idea that inexact hardware can be tolerated provided it
is “good enough” [16].

Good enough has always been the way engineering works as a broad discipline:
why invest in a “perfect” device if a less perfect (and less expensive) alternative
fits the needs? Imperfect circuits will make a certain number of errors, but these
will be tolerated if they nevertheless exhibit almost the same performance as
perfect circuits. This is the principle behind inexact circuit design [16], where
accuracy of the circuit is exchanged for cost savings (e.g. energy, delay, silicon)
in a controlled way.

If unreliable hardware becomes widely accepted on the basis of fault tolerance
guarantees, what will the impact of this be into the software layers which run on
top of it in virtually any automated system? Running on less reliable hardware,
functionally correct (e.g. proven) code becomes faulty and risky. Are we prepared
to handle such risk at the software level in the same way it is tackled by hardware
specialists? One needs to know how risk propagates across networks of software
components so as to mitigate it.

P. Höfner et al. (Eds.): RAMiCS 2014, LNCS 8428, pp. 119–138, 2014.
c© Springer International Publishing Switzerland 2014

120 J.N. Oliveira

The theory of software design by stepwise refinement already copes with some
form of “approximation” in the sense that “vague” specifications are eventually
realized by precise algorithms by taking design decisions which lead to (deter-
ministic) code. However, there is a fundamental difference: all input-output pairs
of a post-condition in a software specification are equally acceptable, giving room
for the implementer to choose among them. In the case of imperfect design, one
is coping with undesirable, possibly catastrophic outputs which one wishes to
prove very unlikely.

In the area of safety critical systems, NASA has defined a probabilistic risk
assessment (PRA) methodology [27] which characterizes risk in terms of three
basic questions: what can go wrong? how likely is it? and what are the conse-
quences? The PRA process answers these questions by systematically modeling
and quantifying those scenarios that can lead to undesired consequences.

Altogether, it seems that (as happened with other sciences in the past) soft-
ware design needs to become a quantitative or probabilistic science. Consider
concepts such as e.g. reliability. From a qualitative perspective, a software sys-
tem is reliable if it can successfully carry out its own task as specified [9]. But
our italicized text is a inexact quotation of [9], the exact one being: reliability
[is] defined as a probabilistic measure of the system ability to successfully carry
out its own task as specified.

From a functional perspective, this means moving from specifications (in-
put/output relations) and implementations (functions) to something which lives
in between, for instance probabilistic functions expressing the propensity, or
likelihood of multiple, possibly erroneous outputs. Typically, the classic non-
deterministic choice between alternative behaviours,

bad ∪ good (1)

has to be replaced by probabilistic choice [19]

bad p� good (2)

and the reasoning should be able to ensure that the probability p of bad be-
haviour is acceptably small.

Does the above entail abandoning relational reasoning in software design?
Interestingly, the same style of reasoning will be preserved provided binary rela-
tions are generalized to (typed) matrices, the former being just a special case of
the latter. This leads to a kind of linear algebra of programming [21]. Technically,
in the same way relations can be transposed to set valued functions, which rely on
the powerset monad to express non-determinism, so do probabilistic matrices,
which transpose to distribution-valued functions that rely on the distribution
monad to express probabilistic behaviour. It turns out that it is the converse of
such transposition which helps, saving explicit set-theoretical constructions in
one case and explicit distribution manipulation in the other via pointfree styled,
algebraic reasoning.

Contribution. This paper proposes that, similarly to what has happened with the
increasing role of relational algebra in computer science [7, 5, 25], linear algebra

Preparing Relational Algebra for “Just Good Enough” Hardware 121

be adopted as its natural development where quantitative reasoning is required.
Relation algebra and linear algebra share a lot in common once addressed from
e.g. a categorial perspective [8, 17]. So it seems that there is room for evolution
rather than radical change.

In this setting, this paper contributes (a) with a case study on such an evolu-
tion concerning a calculus of software components [2, 3] intended for quantitative
analysis of software reliability; (b) with a strategy for reducing the impact of the
“probabilistic move” based on re-interpreting software component semantics in
linear algebra through a so-called “Kleisli-lifting’ which keeps as much of the
original semantics definition as possible.

2 Context

Quantitative software reliability analysis is not so easy in practice because, as
is well-known, software systems are nowadays built component-wise. Cortellessa
and Grassi [9] quantify component-to-component error propagation in terms of a
matrix whose entry (i, j) gives the probability of component i transferring control
to component j — a kind of probabilistic call-graph. For our purposes, this ab-
stracts too much from the semantics of component-oriented systems, which have
been quite successfully formalized under the components as coalgebras motto
(see e.g. [2]), building on extensive work on automata using coalgebra theory
[24, 12].

Coalgebra theory can be regarded as a generic approach to transition systems,
described by functions of type

f : S → F S (3)

where S is a set of states and F S captures the future behaviour of the system ac-
cording to evolution “pattern” F which (technically) is a functor. For F S = P S ,
the powerset functor, f is the power-transpose [5] of a binary relation on the state
space S . Other instances of F lead to more sophisticated transition structures,
for instance Mealy and Moore machines involving inputs and outputs. Barbosa
[2] gives a software component calculus in which components are regarded as
such machines, expressed as coalgebras.

In this paper we wish to investigate a (technically) cheap way of promoting the
components as coalgebras approach from the qualitative, original formulation [2]
to a quantitative, probabilistic extension able to cope with the impact of inexact
circuit design into software. As the survey by Sokolova [26] shows, probabilistic
systems have been in the software research agenda for quite some time. From
the available literature we focus on a paper [12] which suits our needs: it studies
trace semantics of state-based systems with different forms of branching such as
e.g. the non-deterministic and the probabilistic, in a categorial setting. This fits
with our previous work [22] on probabilistic automata as coalgebras in categories
of matrices which shows that the cost of going quantitative amounts essentially
to changing the underlying category where the reasoning takes place.

122 J.N. Oliveira

3 Motivation

This section presents a brief account of the component algebra [2] which is cen-
tral to the current paper. For illustrative purposes, we have implemented this
algebra of component combinators in Haskell, for the particular situation in
which components are regarded as (monadic) Mealy machines. The original al-
gebra has furthermore been extended probabilistically relying on the PFP library
written by Erwig and Kollmansberger [10]. On purpose, the examples hide many
technical details which are deferred to later sections.

Abstract Mealy machines. An F-branching Mealy machine is a function of type

S × I → F (S ×O) (4)

where S is the machine’s internal state space, I is the set of inputs and O the
set of outputs. Our main principle is that of regarding a software system as a
combination of Mealy machines, from elementary to more complex ones. For
this to work, F in (4) will be regarded as a monad capturing effects which are
propagated upwards, from component to composite machines.

Functions of type (4), for F a monad, will be referred to as monadic Mealy
machines (MMM) in the sequel. This type (4) can be written in two other equiv-
alent (isomorphic) ways, all useful in component algebra: the coalgebraic S →
(F (S ×O))I — compare with (3) — and the state-monadic I → (F (S ×O))S ,
depending on how currying is applied.

Methods = elementary Mealy machines. Let us see an example which shows how
an aggregation of (possibly partial) functions sharing a data type already is a
Mealy machine. In the example, a stack is modelled as a (partial) algebra of
finite lists written in Haskell syntax as follows

push (s , a) = a : s
pop = tail
top = head
empty s = (0 ≡ length s)

whose types are

push :: ([a], a)→ [a]
pop :: [a]→ [a]
top :: [a]→ a
empty :: [a]→ B

Below we show how to write each individual function as an elementary Mealy
machine on the shared state space S = [a] before aggregating them all into a
single machine (component).

In the case of push, I = a. (Note that in Haskell syntax type variables are
denoted by lower-case letters). What about O? We may regard it as an instance
of the singleton type 1, whose unique inhabitant carries the information that the
action indeed took place:

push′ :: ([a], a)→ ([a], 1)
push′ = push � !

This definition relies on the pairing operator, (f � g) x = (f x , g x) and on the
uniquely defined (total and constant) function ! :: b → 1, often referred to as the
”bang” function.

Preparing Relational Algebra for “Just Good Enough” Hardware 123

Note how action (“method”) push′ is pure in the sense that it does not gen-
erate any effect. The same happens with

empty ′ :: ([a], 1)→ ([a],B)
empty ′ = (id � empty) · π1

where this time the singleton type is at the input side, meaning a “trigger” for
the operation to take place. Functions id and π1 are the identity function and the
projection π1 (x , y) = x , respectively, the former ensuring that no state change
takes place.

Concerning pop and top we have a new situation: as these are partial functions,
some sort of totalization is required before promoting them to Mealy machines.
The cheapest way of totalizing partial functions resorts to the “Maybe” monad
M, mapping into an error value ⊥ the inputs for which the function is undefined
and otherwise signaling a successful computation using the monad’s unit η ::S →
M S :1

· ⇐ · ::(a → b)→ (a → B)→ a →M b
(f ⇐ p) a = if p a then (η · f) a else ⊥

Note how f ⇐ p “fuses” f with a given pre-condition p, as in the following
promotion of top to a M-monadic Mealy machine

top′ :: ([a], 1)→M ([a], a)
top′ = (id � top ⇐ (¬ · empty)) · π1

which, as empty ′, does not change the state. Opting for the usual semantics of
the pop method,

pop′ :: ([a], 1)→ M ([a], a)
pop′ = (pop � top ⇐ (¬ · empty)) · π1

we finally go back to pure push′ and empty ′ making them M-compatible (ie.
M-resultric) through the success operator:

push′ :: ([a], a)→M ([a], 1)
push′ = η · (push � !)

empty ′ :: ([a], 1)→M ([a],B)
empty ′ = η · (id � empty) · π1

Components =
∑

methods. Now that we have the methods of a stack written
as individual Mealy machines over the same monad and shared state space, we
add them up to obtain the intended stack component 2

stack :: ([a], 1 + 1 + a + 1)→M ([a], a + a + 1 + B)
stack = pop′ ⊕ top′ ⊕ push′ ⊕ empty ′

1 Symbols ⊥ and η pretty-print Nothing and Just of Haskell’s concrete syntax, respec-
tively, cf. definition data M a = Nothing | Just a.

2 Notation x + y pretty-prints Haskell’s syntax for disjoint union, Either x y .

124 J.N. Oliveira

1 + 1 + a+ 1

��
stack

��
a + a + 1 + B

Before giving the details of the binary operator ⊕
which binds methods together, note that stack is also
a (composite) Mealy machine (4), for I = 1+1+ a+1
and O = a + a + 1+B. This I/O interfacing, pictured
aside, captures the four alternatives which are available
for interacting with a stack. Note how singleton types
(1) at the input side mean “do it!” and at the output
side mean “done!”.

· ⊕ · ::(Functor F)⇒
-- input machines
((s , i)→ F (s , o))→
((s , j)→ F (s , p))→
-- output machine
(s , i + j)→ F (s , o + p)
-- definition

m1⊕m2 = (F dr◦)·Δ·(m1+m2)·dr

Components such as stack arise as
the sum of their methods, a MMM
binary combinator whose definition
in Haskell syntax is given aside. Iso-
morphism dr::(s , i+j)→ (s , i)+(s , j)
(resp. its converse dr◦) distributes
(resp. factorizes) the shared state
across the sum of inputs (resp. out-
puts); m1+m2 is the sum of m1 and
m2 and “cozip” operator Δ :: F a + F b → F (a + b) promotes sums through
functor F .

I ��
m1

� J�

�� ��
J��

; m2

K
��

(5)
Systems = component compo-
sitions. Let us now consider
the idea of building a system
in which two stacks interact
with each other, e.g. by pop-
ping from one and pushing
the outcome onto the other.3

For this another MMM com-
binator is needed taking two I/O compatible MMM m1 and m2 (with different
internal states in general) and building a third one, m1 ;m2, in which outputs
of m1 are sent to m2 (5).

· ; · ::(Strong F,Monad F)⇒
-- input machines
((s , i)→ F (s , j))→
((r , j)→ F (r , k))→
-- output machine
((s , r), i)→ F ((s , r), k)

The type of this combinator as im-
plemented in Haskell is given aside. It
requires F to be a strong monad [15],
a topic to be addressed later. Note
how the output machine has a com-
posite state pairing the states of the
two input machines.

We defer to a later stage the anal-
ysis of the formal definition of this
combinator, which is central to the principle of building components out of
other components [2]. Instead, we build the composite machine already antici-
pated above,

3 This interaction will of course fail if the source stack is empty, but this is not our
concern — monad M will take care of such effects.

Preparing Relational Algebra for “Just Good Enough” Hardware 125

m = pop′ ; push′

which pops from a source stack (m1 = pop′) and pushes onto a target stack
(m2 = push′). By running e.g. 4

> m(([1],[2]),())

Just (([],[1,2]),())

we obtain the expected output and new state, while

> m(([],[2]),())

Nothing

fails, because the source stack is empty.

Faulty components. Let us finally consider the possibility of, due to hardware
imperfection, pop′ behaving in the source stack as expected, with probability p,
and unexpectedly like top′ with probability 1− p,

pop′′ :: P→ ([a], 1)→ D (M ([a], a))
pop′′ p = pop′ p� top′

recall (2). P pretty-prints the probability representation data type ProbRep of
the PFP library and D denotes the (finite) distribution monad implemented in
the same library. The choice operator · p� · is the pointfree counterpart of a
similar operator in PFP.

Concerning the target stack, the conjectured fault of push′ is that it does not
push anything with probability 1− q:

push′′ :: P→ ([a], a)→ D (M ([a], 1))
push′′ q = push′ q� !′

where !′ = η · (id × !), of generic type (s , a)→ M (s , 1), is the promotion of the
bang function ! to a MMM.

· ;D · ::
-- input probabilistic MMMs
((s , i)→ D (M (s , j)))→
((r , j)→ D (M (r , k)))→
-- output probabilistic MMM
((s , r), i)→ D (M ((s , r), k))

Note how pop′′ and push′′

have become “doubly” monadic
in their cascading of the distri-
bution (D) and Maybe (M) mon-
ads. To compose them as in m =
pop′ ; push′ above we need a more
sophisticated version of the semi-
colon combinator (aside) whose actual implementation is once again intention-
ally skipped. Thanks to this new combinator, we can build a faulty version of
machine m above 5

m2 = (pop′′ 0.95) ;D (push′′ 0.8)

and test it for the same composite state ([1], [2]) as in the first experiment above,
obtaining

4 Recall that () is the Haskell notation for the unique inhabitant of type 1.
5 The probabilities in these examples are chosen with no criterion apart from leading
to distributions visible to the naked eye. By all means, 5% would be extremely high
risk in realistic PRA [27], where only figures as small as 1.0E-7 become “acceptable”.

126 J.N. Oliveira

> m2(([1],[2]),())

Just (([],[1,2]),()) 76.0%

Just (([],[2]),()) 19.0%

Just (([1],[1,2]),()) 4.0%

Just (([1],[2]),()) 1.0%

The simulation shows that the overall risk of faulty behaviour is 24% (1− 0.76),
structured as 1%: both stacks misbehave; 4%: source stack misbehaves; 19%:
target stack misbehaves. As expected, the second experiment

> m2(([],[2]),())

Nothing 100.0%

is always catastrophic (again popping from an empty stack).
Summing up: our animation in Haskell has been able to simulate fault propa-

gation between two stack components with different fault patterns arising from
conjectured hardware imperfections. In the sequel we will want to reason about
such fault propagation rather than just simulate it.

4 Related Work and Research Questions

Elsewhere [21, 20] we have shown that fault propagation can be reasoned about
for functional programs of a particular kind — they are inductive extensions
(termed folds or catamorphisms) of given algebras. In particular, the linear (ma-
trix) algebra of programming mentioned in the introduction is used to decide
which laws of programming [5] hold probabilistically or to find side-conditions
for them to hold.

In the current paper we are faced with the dual situation: our programs are
coalgebras and we want to observe and compare their behaviour expressed by
unfolds (also known as anamorphisms) which tell how likely particular execution
traces are. In particular, we want to be able to ascertain which (different) ma-
chines exhibit the same (probabilistic) traces for the same starting states (trace
equivalence).

Looking at the types of push′′, m2 etc. above we realize that our MMMs have
become probabilistic, leading to coalgebras of general shape

S → (D(F(S ×O)))I (6)

This leads into our main research questions: How tractable (mathematically) is
this doubly-monadic framework? Can F be any monad?

Relatives of shape (6) have been studied elsewhere [26], namely reactive prob-

abilistic automata, S → (M (D S))
I
; generative probabilistic automata, S →

M (D (O × S)); bundle systems, S → D (P (O × S)) and so on. In a coalge-
braic approach to weighted automata, reference [6] studies coalgebras of functor
S → K×(KS

ω)
I for K a field. Such coalgebras rely on the so-called field valuation

(exponential) functor K−ω calling for vector spaces.
Inspired by this approach, a similar framework was studied directly in suitable

categories of matrices [22]. We will follow a similar strategy in the current paper
concerning probabilistic MMMs and their combinators.

Preparing Relational Algebra for “Just Good Enough” Hardware 127

5 Composition

The essence of the component algebra of [2] is a notion of component composition
stated in a coalgebraic, categorial setting. Let us briefly review this framework,
instantiated for generic F-branching Mealy machines (4).

Let X
η �� FX F2X

μ�� be a monad and m1, m2 be two machines (func-
tions) of types S × I → F (S × J) and Q × J → F (Q × K), respectively. Ab-
stracting from their internal states as in picture (5) above, these machines can

be represented by the arrows I
m1 �� J and J

m2 �� K , respectively. Their

composition by I
m1;m2 �� K is a machine with composite state S × Q built in

the following way: first, m1 is “wrapped” with the state Q of m2,

F (S × J)×Q

τr
��

(S × I)×Q
m1×id�� (S ×Q)× I

xr��

g��������
������

������
����

F ((S × J)×Q)

where xr is the obvious isomorphism and τr is the right strength of monad F,
τr : (F A) × B → F (A × B), which therefore has to be a strong monad. The
purpose of xr is to ensure the compound state and input I on the input side. In
turn, m2 is wrapped with the state of m1,

F (S × (Q ×K))

F a◦
��

S × F (Q ×K)
τl�� S × (Q × J)

id×m2�� (S × J)×Q
xl��

f		���������
��������

��������
��������

�������

F ((S ×Q)×K)

where a◦ is the converse of isomorphism a :(A×B)×C → A×(B×C) and xl is a
variant of xr above. Finally, τl is the left strength of F, τl :(B×F A)→ F (B×A).

F (F C)

μ

��

F B
F f�� A

g��

f •g

F C B
f��

(7)
Note how F a◦ ensures the com-

pound state and type K on the out-
put. In spite of the efforts of xl to ap-
proximate the input of contribution
f to the output of the other (g), they
do not match, as the latter is F-more
complex than the former.

This suggests that f and g be composed using the Kleisli composition associ-
ated with monad F, denoted by f •g and depicted in diagram (7). Thus we obtain
the Haskell implementation of machine composition which was left unspecified
in section 3:

m1 ;m2 = ((F a◦) · τl · (id ×m2) · xl) • (τr · (m1 × id) · xr) (8)

An advantage of relying on Kleisli composition (7) is its rich algebra, forming a
monoid with η

f • (g • h) = (f • g) • h (9)

f • η = f = η • f (10)

128 J.N. Oliveira

and trading nicely with normal composition, cf. for instance

(F f) · (h • k) = (F f · h) • k (11)

(f · g) • h = f • (F g · h) (12)

It turns out that Mealy machines too form a monoid whose binary operator is

(8) and whose unit is the machine J
copy �� J which faithfully passes its input

to the output, never changing state:

copy : 1× J → F (1× J)
copy = η

However, such an algebraic structure holds up to behavioural equivalence only,
denoted by symbol *:

m ; copy * m * copy ;m (13)

m ; (n ; p) * (m ; n) ; p (14)

F (S × J)

F (h×id)
��

S × I
m1��

h×id
��

S

h

��
F (Q × J) Q × Im2

�� Q

Behavioural equivalence can be established
by defining morphisms between equivalent
machines regarded as coalgebras. In gen-
eral, given two F-Mealy machines m1 and
m2 (aside), a state transformation h:S → Q
is a morphism between them if the diagram
aside commutes.

For instance, to establish the first part of (13) it suffices to show that the
natural isomorphism lft :A×1→ A is a morphism between m ;copy and m itself:
F (lft× id) · (m ;copy) = m · (lft× id). As example of pointfree calculation typical
of * reasoning, the proof of this equality is given next, where rgt : 1×A→ A is
another natural isomorphism:

F (lft× id) · (m ; copy) = m · (lft× id)

≡ { definition of composition (8) }

F (lft× id) · (((F a◦) · τl · (id × η) · xl) • τr · (m × id) · xr) = m · (lft× id)

≡ { trading (11); τl · (id × η) = η; lft commutes with rgt via a◦ }

(F (id × rgt) · η · xl) • (τr · (m × id) · xr) = m · (lft× id)

≡ { naturality of η; (id × rgt) · xl = lft }

(η · lft) • (τr · (m × id) · xr) = m · (lft× id)

≡ { (12); unit η (10) }

(F lft) · τr · (m × id) · xr = m · (lft× id)

≡ { F lft · τr = lft ; lft · xr = lft × id }

lft · (m × id) · xr = m · lft · xr

Preparing Relational Algebra for “Just Good Enough” Hardware 129

≡ { cancel xr; naturality of lft: lft · (m × id)= m · lft }
true

The component algebra of [2] contains several other combinators which are of
interest. For economy of space we will restrict ourselves to composition, as this
is enough for our main point in the paper: what is the impact in the component
algebra of [2] of having faulty Mealy machines as models of components?

6 Composing Non-deterministic Components

Recall from the motivation how we have simulated faulty composition of M-
Mealy machines on top of the PFP Haskell library. In general, this means han-
dling machines of type I → J , that is, functions of type Q × I → D (F (Q × J))
for some space state Q , where before we had Q × I → F (Q × J). Thus, further
to monad F, another monad is around, the distribution monad D.

Generalizing even further, we want to consider machines of type

Q × I → T (F (Q × J)) (15)

where monad X
ηF �� F X F2X

μF�� caters for transitional effects (how the

machine evolves) and monad X
ηT �� T X T2X

μT�� specifies the branching
type of the system [12]. A typical instance is T = P (powerset) and F = M = (1+)
(‘maybe’), that is, we have machines

m :Q × I → P (1 +Q × J) (16)

which are reactive, non-deterministic finite state automata with explicit termi-
nation.

Note, however, that m (16) could alternatively be specified as a binary relation
R of type Q × I → 1 + Q × J of which m is the power transpose [5], following
the equivalence

R = +m, ≡ 〈∀b, a :: b R a ≡ b ∈ m a〉 (17)

which tells that a set-valued function m is uniquely represented by a binary
relation R = +m, and vice-versa. Moreover, +m • n, = +m, · +n, holds, where
m • n means the Kleisli composition of two set-valued functions and +m, · +n,
is the relational composition of the corresponding binary relations :

b (R · S) a ≡ 〈∃c :: b R c ∧ c S a〉 (18)

In categorial-speak, this means that the category of binary relations coincides

with the Kleisli category of the powerset monad X
sing �� P X P2X

dunion�� where
sing a = {a} and dunion S =

⋃
s∈S s.

Back to (16), the advantage of “thinking relationally” is that machine m can
be “replaced” by the relation +m, :Q × I → 1 +Q × J from whose (relational)

130 J.N. Oliveira

type the powerset has vanished. So, in a sense, it is as if we were back to the
situation where only M = (1+) is present.

How do relational, M-machines compose? Recall from (8) that machine com-
position relies on Kleisli composition (7) — in this case, of monad M X = 1+X ,

with structure X
i2 �� 1 +X 1 + (1 +X)

[i1,id]�� , where i1 and i2 are the in-

jections associated to binary sums. Thus

f • g = [i1, id] · (id + f) · g = [i1, f] · g (19)

where [f , g] is the junc combinator satisfying [f , g] · i1 = f and [f , g] · i2 = g. How
about relations? Consider evaluating expression [i1, f] · g for f replaced by some

relation 1 + B C
R�� ,6 g replaced by some other relation 1 + C A

S��

and functional composition replaced by relational composition:

R • S = [i1,R] · S (20)

Unfolding [i1,R] to i1 · i◦1 ∪ R · i◦2 — where R◦ denotes the converse of R —
one obtains, abbreviating by ∗ the application of i1 to the unique inhabitant of
singleton type 1:

y (R • S) a ≡ (y = ∗) ∧ (∗ S a) ∨ 〈∃c :: (y R c) ∧ ((i2 c) S a)〉

In words: composition R •S is doomed to fail wherever S fails; otherwise, it will
fail where R fails. For the same input, R • S may both succeed or fail.

Summing up: we have encoded the Kleisli composition of a monad (M) not in
the category of sets and functions but in the Kleisli category of another monad
(the powerset) which eventually we found familiar with — we met relational
algebra there. Back to (8), can think of M-monadic Mealy machines as binary
relations which compose (as machines) according to definition

S ; R = [i1, (id + a◦) · τl · (id × R) · xl] · τr · (S × id) · xr (21)

where all dots mean relational composition (18).7

7 Composing Probabilistic Components

For the above constructions to help in reasoning about non-deterministic compo-
nents we have to check if the properties of monad M remain intact once encoded
relationally, extensive to the properties of the strength operators also present
in (21).

6 Relations of this type express the possibility that for some inputs, both termination
and nontermination are possible [that is] relations from legal states to a “lifted”
state set containing all legal states and in addition one “illegal state” standing for
nontermination [13].

7 As usual, every function symbol f in (21) should be regarded as the homonym
relation f such that b f a holds iff b = f a.

Preparing Relational Algebra for “Just Good Enough” Hardware 131

Prior to this, however, let us not forget that our aim is to prepare relational
algebra for “just good enough” hardware and its imprecision, calling for a prob-
abilistic treatment of faults. In this direction, we should also check the scenario
of the previous section once the distribution monad replaces the powerset,

m :Q × I → D (1 +Q × J) (22)

whereupon non-deterministic branching becomes weighted with probabilities
indicating the likelihood of state transitions, recall (2). So,m is now a distribution-
valued function. We assume below that such distributions have countable
support.8

It turns out that the strategy to cope with this situation is similar to that of
the previous section: distribution-valued functions are adjoint to so-called column
stochastic (CS) matrices, which represent the inhabitants of the Kleisli category
associated with monad D; and, for this monad, Kleisli composition corresponds
to matrix composition, usually termed matrix multiplication:

b (M · N) a ≡ 〈
∑

c :: (b M c)× (c N a)〉 (23)

In this formula, both M and N are matrices. We prefer to denote the cell in
(say) M addressed by row b and column a by the infix notation b M a, rather
than the customary M (b, a) or Mb,a. This stresses on the notational proximity
with relations: matrices are just weighted relations.9

Summing up: in the same way the “Kleisli lifting” of section 6 makes the
powerset monad implicit, leading into relational algebra, the same lifting now
hides the distribution monad and leads to the linear algebra of CS matrices [21],
under the universal correspondence

M = +f , ≡ 〈∀b, a :: b M a = (f a) b〉 (24)

where f :A→ D B is a probabilistic function and D B is the set of all distributions
on B with countable support; that is, for every a ∈ A, f a = μ where μ : B →
[0, 1] is a function such that

∑
b ∈ B m b = 1.

Correspondence (24) establishes the isomorphism

A→ D B ∼= A→ B (25)

where on the left hand side we have D-valued functions and on the right hand
side A→ B denotes the set of all CS matrices with columns indexed by A, rows
indexed by B and cells taking values from the interval [0, 1].10 This matrices as
arrows approach [17] regards them as morphisms of suitable categories (of typed
matrices). In the current paper we only consider matrices on the interval [0, 1]
subject to the column stochasticity constraint expressed above.

8 This is reasonable in the sense that they arise from a finite number of applications
of the choice (2) operator.

9 Reference [22] argues in this direction by adapting rules typical of relational algebra
to linear algebra.

10 Each such column represents a distribution and therefore adds up to 1, as written
above.

132 J.N. Oliveira

With no further detours let us adapt definition (20) of (relational) M-Kleisli
composition to the corresponding definition in linear algebra, where relation R

gives place to matrix 1 + B C
M�� , relation S to matrix 1 + C A

N�� and
the little dot now denotes matrix composition (23):

M •N = [i1|M] · N (26)

The reader may wonder about how does injection i1 (a function) fit into
a linear algebra expression (26). The explanation is the same as for functions
in relational expressions: every function f : A → B is uniquely represented by
the homonym matrix f defined by b f a = 1 if b = f a and 0 otherwise.11

Combinator [M |N] occurring in (26) means the juxtaposition of matrices M and
N , which therefore have to exhibit the same output type (and thus the same
number of rows). Similarly to relations, it decomposes into [M |N] = M ·i◦1+N ·i◦2
where addition of matrices is the obvious cell-wise operation and the converse
M ◦ of a matrix M swaps its rows with columns (it is commonly known as the
transpose of M). Because matrix multiplication is bilinear, we obtain M •N =
i1 · i◦1 ·N +M · i◦2 · N and therefore the following pointwise version of (26)

y (M •N) a = (y = ∗)× (∗ N a) + 〈
∑

c :: (y M c)× ((i2 c) N a)〉

where ∗ is the same abbreviation used before and term y = ∗ evaluates to 1 if
the equality holds and to 0 otherwise.12

The picture aside shows an example of
probabilistic, M-Kleisli composition of two
matrices N : {a1, a2, a3} → 1 + {c1, c2} and
M : {c1, c2} → 1+ {b1, b2}. Injection i1 : 1→
1 + {b1, b2} is the leftmost column vector.
Note how, for input a1, there is 60% proba-
bility of M •N failing, partly due (50%) to N
failing or (50%) to passing output c1 to M ,
which for such an input has 20% probability
of failing again.

As before with relations, we can think of probabilistic M-monadic Mealy ma-
chines as column stochastic matrices which compose (matricially) as follows

N ;M = [i1|(id ⊕ a◦) · τl · (id ⊗M) · xl] · τr · (N ⊗ id) · xr (27)

where relational product becomes matrix Kronecker product

(y, x)(M ⊗N)(b, a) = (yMb)× (xNa) (28)

and relational sum gives place to matrix direct sum, M ⊕N =

[
M 0
0 N

]
.

11 See section 8 for a technically more detailed explanation.
12 See [22, 20] for a number of useful rules interfacing index-free and index-wise matrix

notation. Such rules, expressed in the style of the Eindhoven quantifier calculus [1],
provide evidence of the safe mix among matrix, predicate and function notation in
typed linear algebra.

Preparing Relational Algebra for “Just Good Enough” Hardware 133

8 Monads in Relational/Linear Algebra

The evolution from relational to (typed) linear algebra proposed in the previous
sections corresponds to moving from non-deterministic choice (1) to probabilistic
choice (2). The latter can now be defined matricially, for probabilistic f and g:
+f p� g, = p⊗ +f,+ (1 − p)⊗ +g,.

A generic strategy can be identified: having a notion of composition (8) for
machines of type Q×I → F (Q×J) (4), where monad F captures their transition
pattern, we want to reuse such a definition for more sophisticated machines of
type Q × I → T (F (Q × J)) (15) by porting it “as is” to the Kleisli category of
the extra monad T which captures the branching structure.

For this to make sense we must be sure that the lifting of monad F by T still

is a monad in the Kleisli category of T. In general, let X
ηT �� TX T2X

μT��

and X
ηF �� FX F2X

μF�� be two monads in a category C, and let C� denote

the Kleisli category induced by T. Denote by B A
f�

�� the morphism in C�

corresponding to TB A
f�� in C and define:

f � · g� = (f • g)� = (μT · T f · g)� (29)

For any morphism B A
f�� in C define its lifting to C� by f = (ηT · f)�. As

in [12], assume a distributive law λ : FT→ TF and define, for each endofunctor
F in C, its lifting F to C� by

F(f �) = (λ · F f)� cf. diagram TFB FTBλ�� F A
F f�� (30)

for T B A
f�� . For F to be a functor in C� two conditions must hold [12]:

λ · F ηT = ηT (31)

μT · Tλ · λ = λ · F μT (32)

We want to check under what conditions monad F lifts to a monad in the Kleisli
of T, that is, whether

X
ηF=(ηT·ηF)

�

�� FX F
2
X

μF=(ηT·μF)
�

�� (33)

is a monad in C�. The standard monadic laws, e.g. μF · ηF = id , hold by con-
struction.13 It can be checked that the remaining natural laws, F f � · ηF = ηF · f �

13 The general rule is that f = (ηT · f)� embeds C in C�. Thus the lifting of e.g. an

equality f · g = h in C, that is f · g = h in C�, is (ηT · f)� · (ηT · f)� = (ηT · h)�
which, by (29), reduces to the original f · g = h. Within the image of the embedding,
everything in C� “works as if” in C. Our previous use of a function symbol f as
denotation of the corresponding relation or matrix f is a very convenient abuse of
notation.

134 J.N. Oliveira

and F f � · μF = μF · (F
2
f �) are ensured by two “monad-monad” compatibility

conditions:14

λ · ηF = TηF (34)

TμF · λ · Fλ = λ · μF (35)

Recall that, in our component algebra illustration, F is the maybe monad M
and T is one of either the powerset or distribution monads. From a result in [12]
it can immediately be shown that the distributive law λ : 1 + T X → T (1 +X)
between M and any other monad T, λ = [ηT · i1,T i2], satisfies (31,32) in both
cases.15

It is also easy to show that M satisfies (34,35) for any T. 16 So nondeterminis-
tic (resp. probabilistic) composition of M-monadic Mealy machines regarded as
binary relations (resp. matrices) given by monadic definitions (21) (resp. (27)) is
sound, where M can be generalized to any T-liftable monad F satisfying (34,35).

In retrospect, recall from the motivation that we went as far as simulating
probabilistic composition of M-machines in Haskell using the operator m1 ;D
m2, the probabilistic evolution of m1 ; m2 (8). Although we have not seen its
actual definition, we can say that fact +m1 ;D m2, = +m1, ; +m2, holds, where
composition +m1, ; +m2, is given by (27).17

Instead of staying in the original category and elaborating the definition to the
probabilistic case we have kept the original definition by changing category. The
advantage is that all probabilistic accounting is silently carried out by (monadic)
matrix composition and is not our concern.

9 Strong Monads in Relational/Linear Algebra

We are not yet done, however: definition (27) is strongly monadic and we need
to know in what sense strength is preserved through Kleisli-lifting. The question
is, which strong monads (F) are still strong once lifted to the Kleisli category of
another monad (T)? Recall that the two strengths

τl : B × F A→ F (B × A)
τr : F A× B → F (A× B)

distribute context (B) across F-data structures. Their basic properties, F lft·τr =
lft and F a◦ · τr = τr · (τr× id) · a◦ (similarly for τl) are preserved by their liftings
τr and τl, recall footnote 13. So, what may fail is their naturality, e.g.

τl · (N ⊗ F M) = F (N ⊗M) · τl (36)

14 See e.g. [28], among the literature emerging from [4].
15 This happens because the powerset and distribution monads are commutative.
16 Concerning (34): [ηT · i1,T i2] · i2 = T i2; concerning (35): T [i1, id] · [ηT · i1,T i2 ·λ] =

[ηT · [i1, id] · i1, λ] = [λ · i1, λ] = λ · [i1, id].
17 The actual implementation of ·;D · in the Haskell simulator follows verbatim pointfree

formula (27) carefully using the encodings of section 8.

Preparing Relational Algebra for “Just Good Enough” Hardware 135

where M and N are arbitrary column-stochastic matrices. This is important
because strength naturality is essential to many proofs of the component algebra
of [2], for instance to that of (14). All proofs go in the style of that given for
(13), with matrices in the place of functions.

Let us investigate (36) for F = M, in which case we have τl = (!⊕ id) · dr, of
type B × (1 +A)→ 1+B ×A, where dr :A× (C +B)→ A×C +A×B is the
obvious isomorphism and ! : A → 1 lifts the “bang” function to the row vector
of its type wholly filled with 1s.

The naturality of τl (hereupon we drop the lifting bars, under the convention
we have used before) arises from that of dr and of !⊕ id . The naturality of dr is
easy to prove from that of its converse using relational/matrix biproducts [17].
Concerning !⊕ id :

(id ⊕N) · (!⊕ id) = (!⊕ id) · (M ⊕N)

≡ { bifunctor · ⊕ · }
!⊕N = (! ·M)⊕N

≡ { ! ·M = ! because M is assumed column stochastic [22] }
true

The calculation for τr is similar. Thus M is strong. ⎡⎢⎢⎣
F T

(F ,F) 1 0
(F ,T) 0 0
(T ,F) 0 0
(T ,T) 0 1

⎤⎥⎥⎦
Note, however, that not every natural transforma-

tion remains natural once “Kleisli lifted”. A very sim-
ple example is the diagonal function Δ : A → A × A,
Δ a = (a, a), shown aside for A = B. Its natural prop-
erty, (M ⊗ M) · Δ = Δ · M does not hold because
(y, z) ((M ⊗ M) · Δ) x = (y M x) × (z M x) on the
left hand side, and (y, z) (Δ ·M) x = (if y = z then y M x else 0) on the right
hand side. Thus the distributions captured by (M ⊗ M) · Δ have, in general,
larger support. The same happens, of course, for relations: (R ⊗ R) ·Δ ⊇ Δ · R
holds but the converse inclusion does not.

In the terminology of categorial physics, Δ fails to be a uniform copying
operation [8]. This has to do with the fact that the pairing operator (f � g) a =
(f a, g a) (note that Δ = id � id) does not form a categorial product once
Kleisli-lifted [20]. The corresponding matrix operation is the so-called Khatri-
Rao matrix product, defined by (b, c) (M � N) a = (b M c) × (c N a). In
relational algebra it is known as (strict) fork [11, 25]. 18

10 Conclusions and Future Work

Faced with the need to quantify software (un)reliability in presence of faults aris-
ing from (intentionally) inexact hardware, the semantics of software systems has
to evolve towards weighted nondeterminism, for instance in a probabilistic way.

18 Both Khatri-Rao and fork can be regarded as the lifting of the pairing operator,
f � � g� = (dstr · (f � g))� where dstr denotes the “double strength” of a commutative
monad [12], a class of monads which includes both D and P.

136 J.N. Oliveira

This paper proposes that such semantics evolution be obtained without sac-
rificing the simplicity of the original (qualitative) semantics definition. The idea
is to keep quantification implicit rather than explicit, the trick being a change
of category: instead of the category of sets where traditional (e.g. coalgebraic)
semantics is expressed, we change to a suitable category (e.g. of matrices) tuned
to the specific quantitative (e.g. probabilistic) effect.

Technically, this “keep definition, change category” approach consists of in-
vesting in the Kleisli category of the monad chosen to capture the new (e.g.
quantitative) effect. The approach is useful because such a Kleisli lifting leads
to rich algebraic theories: to relational algebra and linear algebra19 in particular,
both offering a useful pointfree styled calculus.

The approach is illustrated in the paper by enriching an existing software
component calculus with fault propagation, by lifting it through a discrete dis-
tribution monad. As the original semantics are already monadic and coalgebraic,
“keeping the definitions” entails monad-monad lifting.

Ideally, the proposed Kleisli-lifting should preserve theories, not only defi-
nitions (the theory of component behavioural equivalence of [2], in our case).
But things are not so immediate in presence of tupling (cf. strong monads) as
products become weak once lifted. Weak tupling calls for a wider perspective,
interestingly bridging relational algebra to categorial quantum physics under the
umbrella of monoidal categories. Thus the remarks by Coecke and Paquette, in
their Categories for the Practising Physicist [8]:

Rel [the category of relations] possesses more ’quantum features’ than the cat-
egory Set of sets and functions [...] The categories FdHilb [of finite dimensional
Hilbert spaces] and Rel moreover admit a categorical matrix calculus.

Future work. This paper is part of a research line aiming at promoting linear
algebra as the “natural” evolution of (pointfree) relational algebra towards quan-
titative reasoning in the software sciences. Work in this direction is still in its
infancy [21, 17, 22, 20].

A full-fledged coalgebraic trace semantics for probabilistic, component ori-
ented software systems will call for sub-distributions and, more generally, to
measure theory [12, 23, 14]. The main result of [12] — that the (final) behaviour
coalgebra in a Kleisli category is given by an initial algebra in sets — is central
to the approach.

The connection to categorial quantum physics and monoidal categories [8]
should be exploited, in particular concerning partial orders defined for quantum
states which could be used to support a notion of refinement.

On the applications side, it would be interesting to address case studies such
as that of [18], the verification of a persistent memory manager (in IBM’s 4765
secure coprocessor) in face of restarts and hardware failures, using probabilis-
tic component algebra. As the authors of [18] write, the inclusion of hardware
failures incurs a significant jump in system complexity.

19 This carries over to more sophisticated algebras and monads, for instance that of
stochastic relations, the “Kleisli lifting” of the Giry monad [23].

Preparing Relational Algebra for “Just Good Enough” Hardware 137

Acknowledgments. This work is funded by ERDF - European Regional De-
velopment Fund through the COMPETE Programme (operational programme
for competitiveness) and by National Funds through the FCT - Fundação para
a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology)
within project FCOMP-01-0124-FEDER-020537.

Feedback and exchange of ideas with Tarmo Uustalu, Alexandra Silva and
Lúıs Barbosa are gratefully acknowledged.

References

[1] Backhouse, R., Michaelis, D.: Exercises in quantifier manipulation. In:
Uustalu, T. (ed.) MPC 2006. LNCS, vol. 4014, pp. 69–81. Springer,
Heidelberg (2006)

[2] Barbosa, L.: Towards a Calculus of State-based Software Components.
JUCS 9(8), 891–909 (2003)

[3] Barbosa, L., Oliveira, J.: Transposing Partial Components — An Exer-
cise on Coalgebraic Refinement. Theor. Comp. Sci. 365(1), 2–22 (2006),
http://dx.doi.org/10.1016/j.tcs.2006.07.030

[4] Beck, J.: Distributive laws. In: Eckmann, B. (ed.) Seminar on Triples
and Categorical Homology Theory. Lecture Notes in Mathematics, vol. 80,
pp. 119–140. Springer (1969)

[5] Bird, R., de Moor, O.: Algebra of Programming. Series in Computer Science.
Prentice-Hall International (1997)

[6] Bonchi, F., Bonsangue, M., Boreale, M., Rutten, J., Silva, A.: A coalgebraic
perspective on linear weighted automata. Inf. & Comp. 211, 77–105 (2012)

[7] Brink, C., Kahl, W., Schmidt, G. (eds.): Relational methods in computer
science. Springer-Verlag New York, Inc., New York (1997)

[8] Coecke, B. (ed.): New Structures for Physics. Lecture Notes in Physics,
vol. 831. Springer (2011)

[9] Cortellessa, V., Grassi, V.: A modeling approach to analyze the impact of
error propagation on reliability of component-based systems. In: Schmidt,
H.W., Crnković, I., Heineman, G.T., Stafford, J.A. (eds.) CBSE 2007.
LNCS, vol. 4608, pp. 140–156. Springer, Heidelberg (2007)

[10] Erwig, M., Kollmansberger, S.: Functional pearls: Probabilistic functional
programming in Haskell. J. Funct. Program. 16, 21–34 (2006)

[11] Frias, M., Baum, G., Haeberer, A.: Fork algebras in algebra, logic and com-
puter science. Fundam. Inform., 1–25 (1997)

[12] Hasuo, I., Jacobs, B., Sokolova, A.: Generic trace semantics via coinduction.
Logical Methods in Computer Science 3(4), 1–36 (2007)

[13] Kahl, W.: Refinement and development of programs from relational speci-
fications. ENTCS 44(3), 4.1–4.43 (2003)

[14] Kerstan, H., König, B.: Coalgebraic trace semantics for probabilistic transi-
tion systems based on measure theory. In: Koutny, M., Ulidowski, I. (eds.)
CONCUR 2012. LNCS, vol. 7454, pp. 410–424. Springer, Heidelberg (2012)

[15] Kock, A.: Strong functors and monoidal monads. Archiv der Mathe-
matik 23(1), 113–120 (1972), http://dx.doi.org/10.1007/BF01304852

http://dx.doi.org/10.1016/j.tcs.2006.07.030
http://dx.doi.org/10.1007/BF01304852

138 J.N. Oliveira

[16] Lingamneni, A., Enz, C., Palem, K., Piguet, C.: Synthesizing parsimonious
inexact circuits through probabilistic design techniques. ACM Trans. Em-
bed. Comput. Syst. 12(2s), 93:1–93:26 (2013)

[17] Macedo, H., Oliveira, J.: Typing linear algebra: A biproduct-oriented ap-
proach. Science of Computer Programming 78(11), 2160–2191 (2013)

[18] Marić, O., Sprenger, C.: Verification of a transactional memory manager
under hardware failures and restarts (2013), conference paper (submitted)

[19] McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic
Systems. Monographs in Computer Science. Springer (2005)

[20] Murta, D., Oliveira, J.N.: Calculating risk in functional programming.
CoRR abs/1311.3687 (2013)

[21] Oliveira, J.: Towards a linear algebra of programming. Formal Aspects of
Computing 24(4-6), 433–458 (2012)

[22] Oliveira, J.: Weighted automata as coalgebras in categories of matrices. Int.
Journal of Found. of Comp. Science 24(06), 709–728 (2013)

[23] Panangaden, P.: Labelled Markov Processes. Imperial College Press (2009)
[24] Rutten, J.: Universal coalgebra: A theory of systems. Theor. Comp.

Sci. 249(1), 3–80 (2000); Revised version of CWI Techn. Rep. CS-R9652
(1996)

[25] Schmidt, G.: Relational Mathematics. Encyclopedia of Mathematics and its
Applications, vol. 132. Cambridge University Press (November 2010)

[26] Sokolova, A.: Probabilistic systems coalgebraically: A survey. Theor. Com-
put. Sci. 412(38), 5095–5110 (2011)

[27] Stamatelatos, M., Dezfuli, H.: Probabilistic Risk Assessment Procedures
Guide for NASA Managers and Practitioners, NASA/SP-2011-3421, 2nd
edn (December 2011)

[28] Tanaka, M.: Pseudo-Distributive Laws and a Unified Framework for Vari-
able Binding. Ph.D. thesis, School of Informatics, University of Edinburgh
(2005)

Extended Conscriptions Algebraically

Walter Guttmann

Department of Computer Science and Software Engineering,
University of Canterbury, New Zealand
walter.guttmann@canterbury.ac.nz

Abstract. Conscriptions are a model of sequential computations with
assumption/commitment specifications in which assumptions can refer
to final states, not just to initial states. We show that they instantiate
existing algebras for iteration and infinite computations. We use these al-
gebras to derive an approximation order for conscriptions and one for ex-
tended conscriptions, which additionally represent aborting executions.
We give a new computation model which generalises extended conscrip-
tions and apply the algebraic techniques for a unified treatment.

1 Introduction

Various relational models have been proposed for sequential computations, for
example, in [15,4,13,9,11]. The most precise of these models can represent fi-
nite, infinite and aborting executions independently of each other. Less precise
models ignore certain kinds of executions if others are present, but have simpler
descriptions. All of these models have two properties in common:

– They represent only the initial and final states of computations and disregard
the intermediate states.

– Whenever they represent infinite or aborting executions, they only record if
such executions are present or absent from each starting state.

The latter in particular means that there is no notion of a final state when it
comes to infinite or aborting executions. For several reasons it is desirable to
eliminate this restriction:

– Its removal provides a basis for more detailed models that involve time.
– Different interpretations of a model may replace infinite or aborting execu-

tions with other kinds of executions for which final states are observable.
– A final state may be observable for a blocking computation which waits for

external input that never arrives.
– A final state may be observable for an infinite execution, for example, if it

stabilises and continues as an endless loop that does not change the state.
– A final state may be observable for an aborting execution, namely the last

state before the execution aborts.
– The restriction is a technical constraint on the model: some entries in the

matrix of relations that represent a computation have to be vectors, which
are special relations. It is natural to generalise them to arbitrary relations.

P. Höfner et al. (Eds.): RAMiCS 2014, LNCS 8428, pp. 139–156, 2014.
c© Springer International Publishing Switzerland 2014

140 W. Guttmann

Two models that lift the restriction have been described in [5]. Conscriptions
represent infinite and finite executions independently, but have no notion of
aborting executions. There is no restriction on the final states in the case of
infinite executions. Extended conscriptions represent aborting, infinite and finite
executions independently. There is no restriction on the final states in the case
of aborting executions, but the restriction to vectors still applies for infinite
executions. For both models, basic algebraic properties of sequential composition
and non-deterministic choice have been derived.

The present paper extends this investigation by considering the following
questions:

– How is recursion defined for the new computation models?

– Can extended conscriptions be further generalised by lifting the restriction
on infinite executions?

– What algebraic structures underlie iteration in these models?

– Can all of these models be captured by a unifying algebraic theory?

We provide the following contributions:

– Several new computation models, the most precise of which represents fi-
nite, infinite and aborting executions independently of each other with no
restrictions on the final states for any kind of execution.

– Instances of previously introduced algebras for iteration and infinite com-
putations for each of these models. Consequences are a unified description
of recursion and applications including separation and refinement theorems
and various program transformations for the new models.

– An approximation order for the new models, which is used to define the se-
mantics of recursion. The approximation orders known from previous models
do not generalise in a direct way. Instead, the new models turn out to satisfy
axioms of algebras previously developed for non-strict computations [12]; we
use these algebras to obtain the approximation order.

Section 2 gives the basic algebraic structures referred to in the remainder of this
paper. Section 3 derives an approximation order for conscriptions and shows how
conscriptions instantiate algebraic structures to describe iterations and infinite
executions. Section 4 applies the method of Section 3 to extended conscriptions.
Section 5 introduces the most precise computation model, applies the method
of Section 3 to it and shows how to specialise it to obtain other models.

2 Algebraic Structures for Sequential Computations

In this section we axiomatise the operations of non-deterministic choice, con-
junction and sequential composition, the infinite executions of a computation
and various forms of iteration featured by many computation models.

Extended Conscriptions Algebraically 141

A lattice-ordered semiring is an algebraic structure (S,+,
, ·, 0, 1,�) such
that the following axioms hold:

x+ (y + z) = (x+ y) + z x
 (y
 z) = (x
 y)
 z
x+ y = y + x x
 y = y
 x
x+ x = x x
 x = x
0 + x = x �
 x = x

x+ (y
 z) = (x+ y)
 (x+ z) x
 (y + z) = (x
 y) + (x
 z)
x+ (x
 y) = x x
 (x+ y) = x

1 · x = x x · (y + z) = (x · y) + (x · z)
x · 1 = x (x+ y) · z = (x · z) + (y · z)

x · (y · z) = (x · y) · z 0 · x = 0

The axioms not involving · make up a bounded distributive lattice (S,+,
, 0,�).
The axioms not involving
 make up an idempotent semiring without right
annihilator (S,+, ·, 0, 1), simply called semiring in the remainder of this paper.
In particular, x · 0 = 0 is not an axiom. The lattice order x ≤ y ⇔ x+ y = y ⇔
x
 y = x has least element 0, greatest element �, least upper bound + and
greatest lower bound
. The operations +,
 and · are ≤-isotone. We abbreviate
x · y as xy.

In many computation models the operation + represents non-deterministic
choice, the operation
 conjunction, the operation · sequential composition, 0
the computation with no executions, 1 the computation that does not change
the state, � the computation with all executions, and ≤ the refinement relation.

The following algebras capture various fixpoints of the function λx.yx + z,
which are useful to describe iteration.

A Kleene algebra (S,+, ·, ∗, 0, 1) adds to a semiring an operation ∗ with the
following unfold and induction axioms [16]:

1 + yy∗ ≤ y∗ z + yx ≤ x⇒ y∗z ≤ x
1 + y∗y ≤ y∗ z + xy ≤ x⇒ zy∗ ≤ x

It follows that y∗z is the ≤-least fixpoint of λx.yx+z and that zy∗ is the ≤-least
fixpoint of λx.xy + z. The operation ∗ is ≤-isotone.

An omega algebra (S,+, ·, ∗, ω, 0, 1) adds to a Kleene algebra an operation ω

with the following unfold and induction axioms [2,17]:

yyω = yω x ≤ yx+ z ⇒ x ≤ yω + y∗z

It follows that yω + y∗z is the ≤-greatest fixpoint of λx.yx + z. In particular,
� = 1ω is the ≤-greatest element. The operation ω is ≤-isotone.

For computation models that require different fixpoints of λx.yx + z, we use
the following generalisations of Kleene algebras.

An extended binary itering (S,+, ·, �, 0, 1) adds to a semiring a binary opera-
tion � with the following axioms [10]:

(x+ y) � z = (x � y) � (x � z) x � (y + z) = (x � y) + (x � z)
(xy) � z = z + x((yx) � (yz)) (x � y)z ≤ x � (yz)

142 W. Guttmann

zx ≤ y(y � z) + w ⇒ z(x � v) ≤ y � (zv + w(x � v))
xz ≤ z(y � 1) + w ⇒ x � (zv) ≤ z(y � v) + (x � (w(y � v)))

w(x � (yz)) ≤ (w(x � y)) � (w(x � y)z)

It follows that y � z is a fixpoint of λx.yx + z. The operation � is ≤-isotone. The
element y � z corresponds to iterating y an unspecified number of times, followed
by a single occurrence of z. This may involve an infinite number of iterations of y.

In models that satisfy (x � y)z = x � (yz), the binary itering operation spe-
cialises to a unary operation ◦ with the following simpler axioms. An itering
(S,+, ·, ◦, 0, 1) adds to a semiring an operation ◦ with the sumstar and product-
star equations of [3] and two simulation axioms [9]:

(x+ y)◦ = (x◦y)◦x◦ zx ≤ yy◦z + w ⇒ zx◦ ≤ y◦(z + wx◦)
(xy)◦ = 1 + x(yx)◦y xz ≤ zy◦ + w ⇒ x◦z ≤ (z + x◦w)y◦

It follows that y◦z is a fixpoint of λx.yx+z and that zy◦ is a fixpoint of λx.xy+z.
The operation ◦ is ≤-isotone.

Every Kleene algebra is an itering using x◦ = x∗. Every omega algebra is an
itering using x◦ = xω0 + x∗. Every itering is an extended binary itering using
x � y = x◦y. Further instances and consequences of iterings are given in [9,10].

We finally describe the set of states n(x) from which a computation x has
infinite executions. Sets are represented as tests, that is, as elements ≤ 1. The
axioms have been developed in [12] for a unified treatment of strict and non-strict
computations; the latter can produce defined outputs from undefined inputs. An
axiomatisation for strict computations has been given in [9].

An n-algebra (S,+,
, ·, n, 0, 1, L,�) adds to a lattice-ordered semiring an op-
eration n : S → S and a constant L with the following axioms:

(n1) n(x) + n(y) = n(n(x)� + y) (n6) n(x) ≤ n(L)
 1
(n2) n(x)n(y) = n(n(x)y) (n7) n(x)L ≤ x
(n3) n(x)n(x + y) = n(x) (n8) n(L)x ≤ xn(L)
(n4) n(L)x = (x
 L) + n(L0)x (n9) xn(y)� ≤ x0 + n(xy)�
(n5) xL = x0 + n(xL)L (n10) x�y
 L ≤ xLy

An n-omega algebra (S,+,
, ·, n, ∗, ω, 0, 1, L,�) adds the following axioms to an
n-algebra (S,+,
, ·, n, 0, 1, L,�) and an omega algebra (S,+, ·, ∗, ω, 0, 1):

(n11) n(L)xω ≤ x∗n(xω)� (n12) xL ≤ xLxL

The constant L represents the endless loop, that is, the computation with all
infinite executions. A constant for the computation with all aborting executions
is not provided.

3 Conscriptions

The state space A of a sequential computation is given by the values of the
program variables. A computation is thus represented as a relation R on A, that

Extended Conscriptions Algebraically 143

is, as a subset of the Cartesian product A× A. A pair (x, x′) ∈ R signifies that
there is a finite execution of the program which starts in state x and ends in
state x′; in other words, x′ is a possible output for input x. Several outputs for
the same input indicate non-determinism.

This simple model is sufficient for partial correctness, but does not provide
means to represent infinite executions. For the latter, extended models can be
used which represent computations as assumption/commitment pairs. The as-
sumption part specifies the conditions under which termination is guaranteed
and the commitment part specifies the effect if the program terminates. The
conditions of termination traditionally refer only to the pre-state x of the com-
putation, not to its post-state x′. As discussed in the introduction, conscriptions
are introduced in [5] to eliminate this restriction.

A conscription is a 2×2 matrix whose entries are relations over A. The matrix
has the following form: (

1 0
Q R

)
The entries in the top row are the identity relation 1 and the empty relation
0, respectively, for each conscription. Only the entries in the bottom row can
vary: the relation Q represents the complement of the assumption (the infinite
executions) and the relationR represents the commitment (the finite executions).
No restrictions are placed on Q and R. This is in contrast to other models such
as the designs of [15], the prescriptions of [4] and the extended designs of [13].
They require Q to be a vector, that is, in those models Q relates every state x
either to all states x′ or to no state.

Sequential composition and non-deterministic choice of conscriptions are given
by matrix product and componentwise union, respectively. The refinement order
on conscriptions is the componentwise set inclusion order. The computation
which does not change the state and the endless loop are represented by the
conscriptions

skip =

(
1 0
0 1

)
L =

(
1 0
� 0

)
where � is the universal relation. The conscription skip is a neutral element of
sequential composition and L is a left annihilator.

We wish to define the semantics of recursion by least fixpoints in a suitable
approximation order . Because the endless loop L has to be the -least element,
the refinement order cannot be used for approximation.

3.1 An Approximation Order for Conscriptions: Two Attempts

In the following we discuss two attempts to define an approximation order for
conscriptions and the reasons why they fail. The first attempt is to take the
approximation order of prescriptions [7,6]. Prescriptions correspond to a subset
of conscriptions in which the assumption component Q is a vector. It is therefore
natural to assume that the approximation order for conscriptions specialises to

144 W. Guttmann

the approximation order for prescriptions when restricted to this subset. The
approximation order 1 on conscriptions would accordingly be defined as(

1 0
Q1 R1

)
 1

(
1 0
Q2 R2

)
⇔ Q2 ⊆ Q1 ∧R1 ⊆ R2 ⊆ R1 ∪Q1

The intuition underlying 1 is that in states with infinite executions, finite
executions can be added but only such that have the same output. A problem
with 1 is that sequential composition from the right is not 1-isotone. Namely,(

1 0
1 0

)
 1

(
1 0
0 1

)
but (

1 0
1 0

)(
1 0
� �

)
=

(
1 0
1 0

)
� 1

(
1 0
� �

)
=

(
1 0
0 1

)(
1 0
� �

)
The second attempt converts conscriptions to prescriptions and takes their order:(

1 0
Q1 R1

)
 2

(
1 0
Q2 R2

)
⇔

(
1 0

Q1� R1

)
 1

(
1 0

Q2� R2

)
The assumptions are converted to vectors by composing them with �. Hence
the resulting prescription has an infinite execution from state x if the original
conscription has any infinite execution starting in x. The intuition underlying
 2 is that in states with any infinite executions, any finite execution can be
added. A problem with 2 is that it is not antisymmetric. Namely,(

1 0
1 0

)
 2

(
1 0
� 0

)
and

(
1 0
� 0

)
 2

(
1 0
1 0

)
More generally, it is inconsistent to assume all of the following four properties
of an approximation relation for conscriptions:

– is a partial order,
– sequential composition from the right is -isotone,

–

(
1 0
� 0

)

(
1 0
0 1

)
,

–

(
1 0
1 0

)

(
1 0
0 1

)
.

This is because they would imply(
1 0
1 0

)
=

(
1 0
1 0

)(
1 0
� 0

)

(
1 0
0 1

)(
1 0
� 0

)
=

(
1 0
� 0

)
and (

1 0
� 0

)
=

(
1 0
� 0

)(
1 0
1 0

)

(
1 0
0 1

)(
1 0
1 0

)
=

(
1 0
1 0

)
and therefore (

1 0
1 0

)
=

(
1 0
� 0

)
The approximation relation we subsequently derive satisfies the first three prop-
erties of the above list, but not the last one.

Extended Conscriptions Algebraically 145

3.2 An Approximation Order for Conscriptions

To obtain a suitable approximation order for conscriptions, we use the algebraic
method developed in [9,12]. We first observe the following basic structure.

Theorem 1. Conscriptions form a lattice-ordered semiring with the operations(
1 0
Q1 R1

)
+

(
1 0
Q2 R2

)
=

(
1 0

Q1 ∪Q2 R1 ∪R2

)
0 =

(
1 0
0 0

)
(

1 0
Q1 R1

)

(

1 0
Q2 R2

)
=

(
1 0

Q1 ∩Q2 R1 ∩R2

)
� =

(
1 0
� �

)
(

1 0
Q1 R1

)
·
(

1 0
Q2 R2

)
=

(
1 0

Q1 ∪R1Q2 R1R2

)
1 =

(
1 0
0 1

)
Proof. The claims follow by simple calculations since + and
 are defined com-
ponentwise and · is the matrix product. !�

The lattice order ≤ on conscriptions therefore amounts to componentwise in-
clusion. The algebraic approach to approximation is based on the operation n
that represents the infinite executions of a computation as a test, that is, as an
element ≤ 1. For conscriptions, tests take the form(

1 0
0 R

)
where R ⊆ 1. The operation n that maps semiring elements to tests is charac-
terised by the Galois connection

n(x)L ≤ y ⇔ n(x) ≤ n(y)

Hence n(y) is the greatest test whose composition with L is below y. We use
this Galois connection to obtain a definition of n for conscriptions. Because the
result of n is a test, assume that n is given by the general form

n

(
1 0
Q R

)
=

(
1 0
0 f(Q,R)

)
using a function f that maps its argument relations Q and R to a relation below
the identity 1, that is, f(Q,R) ⊆ 1. By the Galois connection,

f(Q1, R1) ⊆ f(Q2, R2) ⇔
(
1 0
0 f(Q1, R1)

)
≤
(
1 0
0 f(Q2, R2)

)
⇔ n

(
1 0
Q1 R1

)
≤ n

(
1 0
Q2 R2

)
⇔ n

(
1 0
Q1 R1

)
L ≤

(
1 0
Q2 R2

)
⇔

(
1 0
0 f(Q1, R1)

)(
1 0
� 0

)
≤
(

1 0
Q2 R2

)
⇔

(
1 0

f(Q1, R1)� 0

)
≤
(

1 0
Q2 R2

)
⇔ f(Q1, R1)� ⊆ Q2 ⇔ f(Q1, R1) ⊆ Q2� ⇔ f(Q1, R1) ⊆ Q2� ∩ 1

146 W. Guttmann

The operation is the relational complement. The next-to-last step is a conse-
quence of a Schröder equivalence.

The above calculation suggests the definition f(Q,R) = Q� ∩ 1. A simple
rearrangement of the calculation shows that this satisfies the Galois connection.
We therefore define

n

(
1 0
Q R

)
=

(
1 0

0 Q� ∩ 1

)
In [9] we give an approximation order in terms of n that covers a range of models
of strict computations including prescriptions and extended designs. The present
definition of n for conscriptions does not satisfy the axioms n(x+y) = n(x)+n(y)
and xn(y)L = x0 + n(xy)L used there. However, n satisfies the weaker axioms
given in [12], which have been developed to uniformly describe strict and non-
strict computations.

Theorem 2. Conscriptions form an n-algebra with the operations

n

(
1 0
Q R

)
=

(
1 0

0 Q� ∩ 1

)
L =

(
1 0
� 0

)
Proof. Observe that n(L) = 1 and Lx = L; this implies axioms (n4), (n6) and
(n8). The remaining axioms are shown as follows. See [20] for properties of
relations used in the calculations.

(n1)

n

(
n

(
1 0
Q1 R1

)(
1 0
� �

)
+

(
1 0
Q2 R2

))
= n

((
1 0

0 Q1� ∩ 1

)(
1 0
� �

)
+

(
1 0
Q2 R2

))
= n

(
1 0

Q1� ∪Q2 Q1� ∪R2

)
=

(
1 0

0 Q1� ∪Q2� ∩ 1

)
=

(
1 0

0 Q1� ∩Q2� ∩ 1

)
=

(
1 0

0 (Q1� ∪Q2�) ∩ 1

)
=

(
1 0

0 Q1� ∩ 1

)
+

(
1 0

0 Q2� ∩ 1

)
= n

(
1 0
Q1 R1

)
+ n

(
1 0
Q2 R2

)
(n2)

n

(
n

(
1 0
Q1 R1

)(
1 0
Q2 R2

))
= n

((
1 0

0 Q1� ∩ 1

)(
1 0
Q2 R2

))
= n

(
1 0

(Q1� ∩ 1)Q2 (Q1� ∩ 1)R2

)
= n

(
1 0

Q1� ∩Q2 Q1� ∩R2

)
=

(
1 0

0 Q1� ∩Q2� ∩ 1

)
=

(
1 0

0 Q1� ∩Q2� ∩ 1

)
=

(
1 0

0 (Q1� ∩ 1)(Q2� ∩ 1)

)
=

(
1 0

0 Q1� ∩ 1

)(
1 0

0 Q2� ∩ 1

)
= n

(
1 0
Q1 R1

)
n

(
1 0
Q2 R2

)

Extended Conscriptions Algebraically 147

(n3) The calculation uses that Q1� ⊆ Q1 ∪Q2�:

n

(
1 0
Q1 R1

)
n

((
1 0
Q1 R1

)
+

(
1 0
Q2 R2

))
= n

(
1 0
Q1 R1

)
n

(
1 0

Q1 ∪Q2 R1 ∪R2

)
=

(
1 0

0 Q1� ∩ 1

)(
1 0

0 Q1 ∪Q2� ∩ 1

)
=

(
1 0

0 (Q1� ∩ 1)(Q1 ∪Q2� ∩ 1)

)
=

(
1 0

0 Q1� ∩Q1 ∪Q2� ∩ 1

)
=

(
1 0

0 Q1� ∩ 1

)
= n

(
1 0
Q1 R1

)

(n5) The calculation uses that Q� ⊆ Q:(
1 0
Q R

)(
1 0
0 0

)
+ n

((
1 0
Q R

)(
1 0
� 0

))(
1 0
� 0

)
=

(
1 0
Q 0

)
+ n

(
1 0

Q ∪R� 0

)(
1 0
� 0

)
=

(
1 0
Q 0

)
+

(
1 0

0 Q ∪R�� ∩ 1

)(
1 0
� 0

)
=

(
1 0
Q 0

)
+

(
1 0

Q ∪R�� 0

)
=

(
1 0

Q ∪Q� ∩R� 0

)
=

(
1 0

Q ∪Q� ∪R� 0

)
=

(
1 0

Q ∪R� 0

)
=

(
1 0
Q R

)(
1 0
� 0

)
(n7)

n

(
1 0
Q R

)(
1 0
� 0

)
=

(
1 0

0 Q� ∩ 1

)(
1 0
� 0

)
=

(
1 0

Q� 0

)
≤
(
1 0
Q R

)

(n9) The calculation uses that R1Q2� ⊆ R1Q2� ⊆ Q1 ∪R1Q2�:(
1 0
Q1 R1

)
n

(
1 0
Q2 R2

)(
1 0
� �

)
=

(
1 0
Q1 R1

)(
1 0

0 Q2� ∩ 1

)(
1 0
� �

)
=

(
1 0
Q1 R1

)(
1 0

Q2� Q2�

)
=

(
1 0

Q1 ∪R1Q2� R1Q2�

)
=

(
1 0
Q1 0

)
+

(
1 0

R1Q2� R1Q2�

)
≤
(

1 0
Q1 0

)
+

(
1 0

R1Q2� R1Q2�

)
≤
(

1 0
Q1 0

)
+

(
1 0

Q1 ∪R1Q2� Q1 ∪R1Q2�

)
=

(
1 0
Q1 0

)
+

(
1 0

0 Q1 ∪R1Q2� ∩ 1

)(
1 0
� �

)
=

(
1 0
Q1 0

)
+ n

(
1 0

Q1 ∪R1Q2 R1R2

)(
1 0
� �

)
=

(
1 0
Q1 R1

)(
1 0
0 0

)
+ n

((
1 0
Q1 R1

)(
1 0
Q2 R2

))(
1 0
� �

)

148 W. Guttmann

(n10) (
1 0
Q1 R1

)(
1 0
� �

)(
1 0
Q2 R2

)

(
1 0
� 0

)
=

(
1 0

Q1 ∪R1� R1�

)(
1 0
Q2 R2

)

(
1 0
� 0

)
=

(
1 0

Q1 ∪R1� ∪R1�Q2 R1�R2

)

(
1 0
� 0

)
=

(
1 0

Q1 ∪R1� 0

)
=

(
1 0
Q1 R1

)(
1 0
� 0

)
=

(
1 0
Q1 R1

)(
1 0
� 0

)(
1 0
Q2 R2

)
!�

As a consequence, we can use the approximation order given in [12]:

x y ⇔ x ≤ y + L ∧ n(L)y ≤ x+ n(x)�

For conscriptions, n(L) = 1 holds, whence the order elaborates to(
1 0
Q1 R1

)

(

1 0
Q2 R2

)
⇔

(
1 0
Q1 R1

)
≤
(

1 0
Q2 R2

)
+

(
1 0
� 0

)
=

(
1 0
� R2

)
∧(

1 0
Q2 R2

)
≤
(

1 0
Q1 R1

)
+ n

(
1 0
Q1 R1

)(
1 0
� �

)
=

(
1 0
Q1 R1

)
+

(
1 0

0 Q1� ∩ 1

)(
1 0
� �

)
=

(
1 0
Q1 R1

)
+

(
1 0

Q1� Q1�

)
=

(
1 0

Q1 R1 ∪Q1�

)
⇔ Q2 ⊆ Q1 ∧R1 ⊆ R2 ⊆ R1 ∪Q1�

The relation Q1� is a vector that represents the states where all infinite execu-
tions are present. The intuition underlying the approximation order is that in
states with all infinite executions, any finite execution can be added. In states
where at least one infinite execution is missing, no finite execution can be added.
Infinite executions can only be removed.

It follows that all properties shown in [12, Theorems 1–4] hold for conscrip-
tions. This includes various properties of the operation n and of and repre-
sentations of -least fixpoints in terms of ≤-least and ≤-greatest fixpoints. For
reference they are reproduced in the appendix of this paper.

3.3 Iteration

For instantiating further results concerning iteration, we show that conscriptions
form a Kleene algebra and an omega algebra. The Kleene star is derived by the
standard automata-based matrix construction [3], according to which

Extended Conscriptions Algebraically 149(
a b
c d

)∗
=

(
e∗ a∗bf∗

d∗ce∗ f∗

)
where

(
e
f

)
=

(
a ∪ bd∗c
d ∪ ca∗b

)
The Kleene star of a relation is its reflexive-transitive closure. For conscriptions,
e = 1 ∪ 0R∗Q = 1 and f = R ∪Q1∗0 = R, so the Kleene star elaborates to(

1 0
Q R

)∗
=

(
1∗ 1∗0R∗

R∗Q1∗ R∗

)
=

(
1 0

R∗Q R∗

)
The result is a conscription, whence the operation satisfies the Kleene algebra
axioms.

The standard automata-based construction does not work for the omega op-
eration as the resulting matrix is not a conscription. This problem, which arises
also for prescriptions and extended designs, is solved by typed omega algebras
as detailed in [8]. The resulting operation is(

1 0
Q R

)
ω

=

(
1 0

Rω ∪R∗Q Rω

)
It satisfies the omega algebra axioms. The operation ω on relations describes the
states from which infinite transition paths exist. We obtain the following result.

Theorem 3. Conscriptions form an n-omega algebra with the operations(
1 0
Q R

)∗
=

(
1 0

R∗Q R∗

) (
1 0
Q R

)
ω

=

(
1 0

Rω ∪R∗Q Rω

)
Proof. Axiom (n12) follows since Lx = L. As n(L) = 1, axiom (n11) follows by(

1 0
Q R

)
ω

=

(
1 0

Rω ∪R∗Q Rω

)
≤
(

1 0

Rω ∪R∗Q Rω ∪R∗Q�

)
=

(
1 0

R∗Rω ∪R∗Q ∪R∗R∗Q� R∗Rω ∪R∗R∗Q�

)
=

(
1 0

R∗Q ∪R∗(Rω ∪R∗Q�) R∗(Rω ∪R∗Q�)

)
=

(
1 0

R∗Q R∗

)(
1 0

Rω ∪R∗Q� Rω ∪R∗Q�

)
=

(
1 0
Q R

)∗(1 0

Rω ∪R∗Q� Rω ∪R∗Q�

)
=

(
1 0
Q R

)∗(1 0

0 Rω ∪R∗Q� ∩ 1

)(
1 0
� �

)
=

(
1 0
Q R

)∗
n

(
1 0

Rω ∪R∗Q Rω

)(
1 0
� �

)
=

(
1 0
Q R

)∗
n

((
1 0
Q R

)
ω
)(

1 0
� �

)
The calculation uses that Rω is a vector and that R∗R∗Q� = R∗Q� ⊆ R∗Q. !�

150 W. Guttmann

Therefore all properties shown in [12, Theorems 5–6] hold for conscriptions. This
includes further properties of the operation n and representations of iteration in
terms of the Kleene star and omega operations; see again the appendix. In par-
ticular, conscriptions form an extended binary itering and an itering as follows.

Corollary 1. Conscriptions form an extended binary itering and an itering with(
1 0
Q1 R1

)
�

(
1 0
Q2 R2

)
=

(
1 0

Rω
1 ∪R∗1(Q1 ∪Q2) R∗1R2

)
(
1 0
Q R

)◦
=

(
1 0

Rω ∪R∗Q R∗

)
Proof. The extended binary itering instance follows by [12, Theorem 6]. More-
over, conscriptions satisfy the property (x � y)z = x � (yz):((

1 0
Q1 R1

)
�

(
1 0
Q2 R2

))(
1 0
Q3 R3

)
=

(
1 0

Rω
1 ∪R∗1(Q1 ∪Q2) R∗1R2

)(
1 0
Q3 R3

)
=

(
1 0

Rω
1 ∪R∗1(Q1 ∪Q2) ∪R∗1R2Q3 R∗1R2R3

)
=

(
1 0

Rω
1 ∪R∗1(Q1 ∪Q2 ∪R2Q3) R∗1R2R3

)
=

(
1 0
Q1 R1

)
�

(
1 0

Q2 ∪R2Q3 R2R3

)
=

(
1 0
Q1 R1

)
�

((
1 0
Q2 R2

)(
1 0
Q3 R3

))
Hence conscriptions form an itering with x◦ = x � 1. !�

It follows that all consequences of iterings and binary iterings shown in [9,10]
hold for conscriptions. They include separation theorems generalised from omega
algebras and Back’s atomicity refinement theorem.

4 Extended Conscriptions

Extended conscriptions combine aspects of three computation models:

– They represent aborting executions in addition to finite and infinite execu-
tions; so do extended designs [13].

– They represent aborting, infinite and finite executions independently; so does
the model introduced in [9].

– Aborting executions can refer to final states; so do infinite executions in
conscriptions.

Extended Conscriptions Algebraically 151

Infinite executions of extended conscriptions are restricted to refer to initial
states only.

An extended conscription is a 3 × 3 matrix whose entries are relations over
the state space A. The matrix has the following form⎛⎝1 0 0

0 � 0
P Q R

⎞⎠
where Q is a vector, that is, Q� = Q. The relation P represents the aborting
executions, Q represents the states from which infinite executions exist and R
represents the finite executions. Hence the endless loop is represented by the
extended conscription

L =

⎛⎝1 0 0
0 � 0
0 � 0

⎞⎠
Sequential composition and non-deterministic choice of extended conscriptions
are given by matrix product and componentwise union, respectively. The opera-
tion n for extended conscriptions is derived by the method applied to conscrip-
tions in Section 3.2. The result is

n

⎛⎝1 0 0
0 � 0
P Q R

⎞⎠ =

⎛⎝1 0 0
0 � 0
0 0 Q ∩ 1

⎞⎠
The simpler form Q ∩ 1 is due to the fact that Q is a vector. This operation
satisfies the axioms given in [9] for models of strict computations and the axioms
given in [12]. The approximation order instantiates to⎛⎝ 1 0 0

0 � 0
P1 Q1 R1

⎞⎠
⎛⎝ 1 0 0

0 � 0
P2 Q2 R2

⎞⎠ ⇔
P1 ⊆ P2 ⊆ P1 ∪Q1 ∧

Q2 ⊆ Q1 ∧
R1 ⊆ R2 ⊆ R1 ∪Q1

The intuition is that in states with an infinite execution, any aborting and finite
executions can be added. In states with no infinite execution, no executions can
be added. Infinite executions can only be removed.

The standard matrix construction for the Kleene star and the typed matrix
construction for the omega operation yield the following operations. Moreover
extended conscriptions form an itering that does not satisfy x◦ = xω0 + x∗ in
general: ⎛⎝1 0 0

0 � 0
P Q R

⎞⎠∗=
⎛⎝ 1 0 0

0 � 0
R∗P R∗Q R∗

⎞⎠
⎛⎝1 0 0
0 � 0
P Q R

⎞⎠ω=
⎛⎝ 1 0 0

0 � 0
Rω ∪R∗P Rω ∪R∗Q Rω

⎞⎠
⎛⎝1 0 0
0 � 0
P Q R

⎞⎠◦=
⎛⎝ 1 0 0

0 � 0
R∗P Rω ∪R∗Q R∗

⎞⎠

152 W. Guttmann

The following result summarises the algebraic properties of extended conscrip-
tions. Hence all properties shown in [9,12] hold for extended conscriptions.

Theorem 4. Extended conscriptions form a lattice-ordered semiring, an n-
algebra, an n-omega algebra, an itering and an extended binary itering.

Proof. The lattice-ordered semiring, n-algebra and n-omega algebra instances
follow by calculations as in the proof of Theorems 1–3. The itering and extended
binary itering instances follow as in the proof of Corollary 1. !�

5 Further Computation Models

Comparing the various computation models – designs, prescriptions, extended
designs, conscriptions, extended conscriptions – it is natural to further generalise
extended conscriptions by eliminating the restriction placed on the infinite exe-
cutions. This is done in a similar way as for conscriptions and for the aborting
executions of extended conscriptions.

A computation in the resulting model is a 3× 3 matrix of the following form:

(P |Q|R) =

⎛⎝1 0 0
0 1 0
P Q R

⎞⎠
There are no restrictions on P , Q or R. The calculations to obtain the operation
n, the approximation order, the Kleene star, the omega operation, the itering
operation and the binary itering operation follow the method of Section 3. The
following result summarises the algebraic structure.

Theorem 5. Let A be a set and let S = {(P |Q|R) | P,Q,R ⊆ A×A}. Then S
is a lattice-ordered semiring, an n-algebra, an n-omega algebra, an itering and
an extended binary itering using the following operations:

(P1|Q1|R1) + (P2|Q2|R2) = (P1 ∪ P2|Q1 ∪Q2|R1 ∪R2)
(P1|Q1|R1)
 (P2|Q2|R2) = (P1 ∩ P2|Q1 ∩Q2|R1 ∩R2)
(P1|Q1|R1) · (P2|Q2|R2) = (P1 ∪R1P2|Q1 ∪R1Q2|R1R2)
(P1|Q1|R1) � (P2|Q2|R2) = (R∗1(P1 ∪ P2)|Rω

1 ∪R∗1(Q1 ∪Q2)|R∗1R2)

n(P |Q|R) = (0|0|Q� ∩ 1)
(P |Q|R)∗ = (R∗P |R∗Q|R∗)
(P |Q|R)ω = (Rω ∪R∗P |Rω ∪R∗Q|Rω)
(P |Q|R)◦ = (R∗P |Rω ∪R∗Q|R∗)

0 = (0|0|0)
� = (�|�|�)
1 = (0|0|1)
L = (0|�|0)

The approximation order on S is

(P1|Q1|R1) (P2|Q2|R2) ⇔ P1 ⊆ P2 ⊆ P1 ∪Q1� ∧Q2 ⊆ Q1 ∧
R1 ⊆ R2 ⊆ R1 ∪Q1�

Extended Conscriptions Algebraically 153

Proof. The lattice-ordered semiring, n-algebra and n-omega algebra instances
follow by calculations as in the proof of Theorems 1–3. The itering and extended
binary itering instances follow as in the proof of Corollary 1. !�

This computation model is the most precise among those considered in this
paper: it can represent finite, infinite and aborting executions independently
and without any restrictions. Previously investigated computation models are
isomorphic to substructures of this model:

– extended conscriptions: {(P |Q|R) | Q = Q�},
– the model of [9]: {(P |Q|R) | P = P� ∧Q = Q�},
– extended designs: {(P |Q|R) | P = P� ∧Q = Q� ∧ P ⊆ Q ∧ P ⊆ R},
– conscriptions: {(P |Q|R) | P = 0},
– prescriptions: {(P |Q|R) | P = 0 ∧Q = Q�},
– designs: {(P |Q|R) | P = 0 ∧Q = Q� ∧Q ⊆ R}.

Other restrictions lead to further computation models which can be represented
by matrices, for example,

– {(P |Q|R) | P = P�} requires that aborting executions do not refer to final
states;

– {(P |Q|R) | P = P� ∧ Q = Q� ∧ Q ⊆ P ∧ Q ⊆ R} requires that aborting
and infinite executions do not refer to final states and that in the presence
of infinite executions, aborting or finite executions cannot be distinguished.

Further combinations are possible, but in each case it has to be verified that the
subset is closed under operations such as sequential composition.

6 Conclusion

In this paper we have derived approximation orders for new computation models
based on a Galois connection for infinite executions and on algebras previously
introduced for other models. Once more this shows that the algebraic approach
can essentially contribute to the development of computation models. Addition-
ally we inherit a multitude of results that have been proved for the previously
introduced algebras. Future work will be concerned with computation models
involving time, such as those studied in [13,14,5].

Acknowledgement. I thank the anonymous referees for helpful comments.

References

1. Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending Sledgehammer with SMT
solvers. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS,
vol. 6803, pp. 116–130. Springer, Heidelberg (2011)

2. Cohen, E.: Separation and reduction. In: Backhouse, R., Oliveira, J.N. (eds.) MPC
2000. LNCS, vol. 1837, pp. 45–59. Springer, Heidelberg (2000)

154 W. Guttmann

3. Conway, J.H.: Regular Algebra and Finite Machines. Chapman and Hall (1971)
4. Dunne, S.: Recasting Hoare and He’s Unifying Theory of Programs in the context

of general correctness. In: Butterfield, A., Strong, G., Pahl, C. (eds.) 5th Irish
Workshop on Formal Methods. Electronic Workshops in Computing. The British
Computer Society (2001)

5. Dunne, S.: Conscriptions: A new relational model for sequential computations.
In: Wolff, B., Gaudel, M.-C., Feliachi, A. (eds.) UTP 2012. LNCS, vol. 7681,
pp. 144–163. Springer, Heidelberg (2013)

6. Dunne, S.E., Hayes, I.J., Galloway, A.J.: Reasoning about loops in total and gen-
eral correctness. In: Butterfield, A. (ed.) UTP 2008. LNCS, vol. 5713, pp. 62–81.
Springer, Heidelberg (2010)

7. Guttmann, W.: General correctness algebra. In: Berghammer, R., Jaoua, A.M.,
Möller, B. (eds.) RelMiCS/AKA 2009. LNCS, vol. 5827, pp. 150–165. Springer,
Heidelberg (2009)

8. Guttmann, W.: Towards a typed omega algebra. In: de Swart, H. (ed.) RAMiCS
2011. LNCS, vol. 6663, pp. 196–211. Springer, Heidelberg (2011)

9. Guttmann, W.: Algebras for iteration and infinite computations. Acta Inf. 49(5),
343–359 (2012)

10. Guttmann, W.: Unifying lazy and strict computations. In: Kahl, W., Griffin, T.G.
(eds.) RAMiCS 2012. LNCS, vol. 7560, pp. 17–32. Springer, Heidelberg (2012)

11. Guttmann, W.: Extended designs algebraically. Sci. Comput. Program. 78(11),
2064–2085 (2013)

12. Guttmann, W.: Infinite executions of lazy and strict computations (2013) (submit-
ted)

13. Hayes, I.J., Dunne, S.E., Meinicke, L.: Unifying theories of programming that dis-
tinguish nontermination and abort. In: Bolduc, C., Desharnais, J., Ktari, B. (eds.)
MPC 2010. LNCS, vol. 6120, pp. 178–194. Springer, Heidelberg (2010)

14. Hayes, I.J., Dunne, S.E., Meinicke, L.A.: Linking Unifying Theories of Program
refinement. Sci. Comput. Program. 78(11), 2086–2107 (2013)

15. Hoare, C.A.R., He, J.: Unifying theories of programming. Prentice Hall Europe
(1998)

16. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular
events. Information and Computation 110(2), 366–390 (1994)

17. Möller, B.: Kleene getting lazy. Sci. Comput. Program. 65(2), 195–214 (2007)
18. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for

Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)
19. Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer, a

practical link between automatic and interactive theorem provers. In: Sutcliffe, G.,
Ternovska, E., Schulz, S. (eds.) Proceedings of the 8th International Workshop on
the Implementation of Logics, pp. 3–13 (2010)

20. Schmidt, G., Ströhlein, T.: Relationen und Graphen. Springer (1989)

Appendix: Consequences of n-Algebras

Because the models discussed in this paper form n-omega algebras, they satisfy
all of the following results, which appear as Theorems 1–6 in [12]. The results
have been verified in Isabelle/HOL [18], making heavy use of its integrated auto-
mated theorem provers and SMT solvers [19,1]. The proofs can be found in the
theory files at http://www.csse.canterbury.ac.nz/walter.guttmann/algebra/.

http://www.csse.canterbury.ac.nz/walter.guttmann/algebra/

Extended Conscriptions Algebraically 155

Proposition 1. Let S be an n-algebra. Then (n(S),+, ·, n(0), n(�)) is a semi-
ring with right annihilator n(0) and a bounded distributive lattice with meet ·.
Moreover, n is ≤-isotone and the following properties hold for x, y ∈ S:

1. n(x)n(y) = n(y)n(x)
2. n(x)n(x) = n(x)
3. n(x)n(y) ≤ n(x)
4. n(x)n(y) ≤ n(y)
5. n(x) ≤ n(x+ y)
6. n(x) ≤ 1
7. n(x)0 = 0
8. n(x)n(0) = n(0)
9. n(x) ≤ x+ n(x0)
10. n(x+ n(x)�) = n(x)
11. n(n(x)L) = n(x)
12. n(x)n(L) = n(x)
13. n(x) ≤ n(L)
14. n(x) ≤ n(xL)
15. n(x)L ≤ xL
16. n(0)L = 0
17. n(L) = n(�)
18. n(x�) = n(xL)
19. n(x)� = n(x)L+ n(x0)�
20. n(xn(y)L) ≤ n(xy)

21. xn(y)� ≤ xy + n(xy)�
22. n(x)�y ≤ xy + n(xy)�
23. xn(y)L = x0 + n(xn(y)L)L
24. xn(y)L ≤ x0 + n(xy)L
25. n(L)x ≤ x0 + n(xL)�
26. n(L)L = Ln(L) = L
27. LL = L� = L�L = L
28. Lx ≤ L
29. xL ≤ x0 + L
30. x�
 L ≤ xL
31. x�y
 L = xLy
 L
32. x�y
 L ≤ x0 + Ly
33. (x
 L)0 ≤ x0
 L
34. n(x) = n(x
 L) = (n(x)
 L) +n(x0)
35. n(x)L ≤ x
 L ≤ n(L)x
36. n(x)
 L ≤ (n(x)
 L)� ≤ n(x)L ≤ x
37. x ≤ y ⇔ x ≤ y+L∧n(L)x ≤ y+n(y)�
38. x ≤ y ⇔ x ≤ y + L ∧ x ≤ y + n(y)�
39. n(y)x ≤ xn(y)⇔ n(y)x = n(y)xn(y)
40. n(x) ≤ n(y)⇔ n(x)L ≤ y

In an n-algebra S the approximation relation is defined by

x y ⇔ x ≤ y + L ∧ n(L)y ≤ x+ n(x)�

where x, y ∈ S. The following result gives properties of .

Proposition 2. Let S be an n-algebra.

1. The relation is a partial order with least element L.
2. The operations + and · and λx.x
 L and λx.n(x)L are -isotone.
3. If S is an itering, the operation ◦ is -isotone.
4. If S is a Kleene algebra, the operation ∗ is -isotone.

Further results concern fixpoints of a function f : S → S. Provided they exist,
the ≤-least, ≤-greatest and -least fixpoints of f are denoted by μf , νf and κf ,
respectively:

f(μf) = μf f(x) = x ⇒ μf ≤ x
f(νf) = νf f(x) = x ⇒ νf ≥ x
f(κf) = κf f(x) = x ⇒ κf x

We abbreviate κ(λx.f(x)) by κx.f(x). Provided it exists, the -greatest lower
bound of x, y ∈ S is denoted by x ! y:

x ! y x x ! y y z x ∧ z y ⇒ z x ! y

156 W. Guttmann

Proposition 3. Let S be an n-algebra, let f : S → S be ≤- and -isotone, and
assume that μf and νf exist. Then the following are equivalent:

1. κf exists.
2. κf and μf ! νf exist and κf = μf ! νf .
3. κf exists and κf = (νf
 L) + μf .
4. n(L)νf ≤ (νf
 L) + μf + n(νf)�.
5. n(L)νf ≤ (νf
 L) + μf + n((νf
 L) + μf)�.
6. (νf
 L) + μf νf .
7. μf ! νf exists and μf ! νf = (νf
 L) + μf .
8. μf ! νf exists and μf ! νf ≤ νf .

Condition 4 of this proposition characterises the existence of κf in terms of μf
and νf . Condition 3 shows how to obtain κf from μf and νf . This simplifies
calculations as ≤ is less complex than . Further characterisations generalise to
n-algebras as shown in the following result.

Proposition 4. Let S be an n-algebra, let f : S → S be ≤- and -isotone, and
assume that μf and νf exist. Then the following are equivalent and imply the
statements of Proposition 3:

1. κf exists and κf = n(νf)L+ μf .
2. n(L)νf ≤ μf + n(νf)�.
3. n(νf)L+ μf νf .
4. μf ! νf exists and μf ! νf = n(νf)L+ μf .

Proposition 5. Let S be an n-omega algebra and x, y, z ∈ S. Then the following
properties hold:

1. Lx∗ = L
2. (xL)∗ = 1 + xL
3. (xL)ω = xL = xLxL
4. (xL)∗y ≤ y + xL
5. (xL+ y)∗ = y∗ + y∗xL
6. (xL+ y)ω = yω + y∗xL
7. n(x) ≤ n(xω)
8. n(yω + y∗z) = n(yω) + n(y∗z)

9. x∗ + n(xω)L = x∗ + x∗n(xω)L
10. x∗ + n(xω)L = x∗ + xn(xω)L
11. yx∗ + n(yxω)L = yx∗ + yn(xω)L
12. x∗0 + n(xω)L = x∗0 + x∗n(xω)L
13. xx∗0 + n(xω)L = xx∗0 + xn(xω)L
14. yx∗0 + n(yxω)L = yx∗0 + yn(xω)L
15. n(L)xω ≤ x∗0 + n(xω)�
16. n(L)(yω + y∗z) ≤ y∗z+n(yω + y∗z)�

Proposition 6. Let S be an n-omega algebra, let x, y, z ∈ S, and let f : S → S
be given by f(x) = yx+ z.

1. The -least fixpoint of f is κf = (yω
 L) + y∗z = n(yω)L+ y∗z.
2. The operations ω and λy.(κx.yx+ z) and λz.(κx.yx+ z) are -isotone.
3. S is an extended binary itering using x � y = n(xω)L+ x∗y.

Abstract Dynamic Frames

Han-Hing Dang

Institut für Informatik, Universität Augsburg, 86159 Augsburg, Germany
h.dang@informatik.uni-augsburg.de

Abstract. Based on a former relation-algebraic approach to separation
logic we present an abstraction of the theory of dynamic frames and
algebraically describe concepts, properties and behaviour of that theory
in a pointfree fashion. Moreover, relationships to abstract concepts of
separation logic are given to pave the way for a unified treatment of
both approaches. In particular, we also sketch the main ideas within the
framework of local actions.

Keywords: Frame problem, local actions, relational semantics, separa-
tion algebra.

1 Introduction

For obtaining a methodology that guarantees modularity and hence scalability
in specification and correctness proofs of computer programs, an adequate so-
lution to the frame problem [MH69] is required. The frame problem asks for a
methodology that allows specifying which resources of a program can be changed
and which ones are left unchanged without naming them explicitly. A popular
approach to this problem is the theory of dynamic frames [Kas11] that provides
the mentioned modularity while still being expressive enough to handle a variety
of useful programs. Further variations of the theory address the automation of
program verification (e.g., [SJP09, Lei10, GGN11]).

Another approach to the frame problem is given by separation logic [Rey02]
which allows, due to its popular frame rule, modular reasoning about parts of a
program without the need to construct a program proof in a larger context anew.
For this logic there exist a few abstract and algebraic approaches that are used
to extract and formalise general behaviour [COY07, DHM11, HHM+11, DM12],
also in the case of concurrency. Unfortunately, for the theory of dynamic frames
such approaches and considerations barely exist.

In the present paper we revisit a former relation-based algebraic calculus
[DHM11, DM12] that was used as a formal base for pointfree proofs of inference
rules of separation logic and combine it with the theory of dynamic frames.

The contributions of this work comprise an abstract treatment of the resources
and locations dealt with in that theory, based on separation algebras. Moreover
we give point-free characterisations and proofs of crucial concepts within the
extended relational approach of [DM12] and explain their concrete meaning. By
this, the relational calculus extends towards a unifying approach for dynamic
frames and separation logic.

P. Höfner et al. (Eds.): RAMiCS 2014, LNCS 8428, pp. 157–172, 2014.
c© Springer International Publishing Switzerland 2014

158 H.-H. Dang

The structure of this paper is as follows. First, we present all required ba-
sic definitions of separation algebras and the extended relational structure. In
Section 3 we give pointfree variants of framing requirements and consequences
of this. By this, Section 4 abstractly clarifies the relationship between locality
principles and their application in accumulating frames. We conclude this work
with a discussion on the relationship to so-called local actions.

2 Basics of the Algebraic Structure

This section provides the formal background to abstractly characterise dynamic
frames. Framing requirements are defined in [Kas11] using a relational style. This
motivates the idea to use the relation-algebraic structures of [DHM11, DM12]
as an abstract base.

2.1 Separation Algebras

Before giving basic definitions and direct consequences of the algebra we start
with the concept of separation algebras that provides a general way to charac-
terise the structure and properties of resources [COY07].

Definition 2.1. A separation algebra is a cancellative and partial commutative
monoid that we denote by (Σ, •, u). Elements of the algebra are called states
and denoted by σ, τ, . . . ∈ Σ. Due to partiality two terms are defined to be
equal iff both are defined and equal or both terms are undefined. This induces
a combinability relation # defined by

σ0 #σ1 ⇔df σ0 • σ1 is defined

and a substate relation given for σ0, σ1 ∈ Σ by

σ0 � σ1 ⇔df ∃σ2. σ0 • σ2 = σ1 .

When writing σ•τ for states σ, τ we will implicitly assume σ# τ in the following.
The empty state u is the unit of the partial binary operator • which, addition-

ally satisfies cancellativity, i.e., σ1 • τ = σ2 • τ ⇒ σ1 = σ2 for arbitrary states
σ1, σ2, τ .

A concrete instance of a separation algebra can be found in the dynamic
frames setting. Resources or states in that approach are finite mappings from
an infinite set of locations Loc to an infinite set of values Val that comprises
at least integers and Booleans. Formally. we use the concrete dynamic frames
separation algebra DFSA =df (Loc � Val, ∪̇ , ∅) where ∪̇ denotes union of
location-disjoint functions, ∅ the completely undefined function and σ# τ ⇔
dom(σ) ∩ dom(τ) = ∅. We write dom(σ) for a mapping or state σ to denote
its domain or more concretely all of its allocated locations, i.e., a subset of Loc.
Moreover, we define the substate σ|X that restricts the domain of the state σ
to a set of locations X .

Abstract Dynamic Frames 159

Lemma 2.2. For a state τ assume dom(τ) = X. Then for arbitrary σ we have
(σ • τ)|X = τ .

We continue to characterise and manage several central properties of the dy-
namic frames approach within the abstraction to separation algebras. For this
we require additional assumptions given in [DHA09] and basically follow the
approach of that work. A separation algebra (Σ, • , u) satisfies disjointness iff
for all σ, τ

σ • σ = τ ⇒ σ = τ (1)

and it satisfies cross-split iff for arbitrary σi with i ∈ {1, 2, 3, 4}

σ1 • σ2 = σ3 • σ4 ⇒ ∃σ13, σ14, σ23, σ24. σ1 = σ13 • σ14 ∧ σ2 = σ23 • σ24
∧ σ3 = σ13 • σ23 ∧ σ4 = σ14 • σ24 .

(2)

Disjointness in the presence of cancellativity implies that the only element
that can be combined with itself is the neutral element u, i.e.,

σ#σ ⇒ σ = u . (3)

Equivalently, non-unit elements cannot be combined with themselves since any
allocated resources will overlap in such products. Therefore, the condition of (1)
is called disjointness.

For a proof of (3) assume a state σ that satisfies σ#σ. By definition of #,
Equation (1), and a logic step:

σ#σ ⇔ (∃ τ. σ • σ = τ) ⇒ (τ = σ) ⇒ (σ • σ = σ) .

Now, by cancellativity we can infer u • σ = σ • σ ⇒ u = σ.
To explain the idea of the cross-split assumption, assume that a state can be

combined in two ways or that there exist two possible splits of a state. Then
there need to exist four substates that represent a partition of the original state
w.r.t. the mentioned splits. The partitions of the state can be depicted as follows:

For the remaining sections we assume separation algebras that satisfy dis-
jointness and cross-split. A concrete example of such a separation algebra can
be found in [HV13]. The assumptions are required there to establish basic prop-
erties of operators for reasoning about sharing within data structures. Note that
the separation algebra DFSA also satisfies disjointness and cross-split.

2.2 The Relational Structure

In what follows we define a relational structure enriched by an operator ∗ that
is also called separating conjunction. It ensures disjointness of program states or
executions on disjoint states (cf. [DM12]).

160 H.-H. Dang

Definition 2.3. Assume a separation algebra (Σ, •, u). A command is a relation
P ⊆ Σ × Σ. Relational composition of commands is denoted by ; . Its unit
skip =df {(σ, σ) : σ ∈ Σ} is the identity relation while the universal relation
is denoted by �. Tests are special commands p, q, r that satisfy p ⊆ skip. As
particular tests we define emp =df {(u, u)} that characterises the empty state
u and �P that represents the domain of a command P . It is characterised by the
universal property

�P ⊆ q ⇔ P ⊆ q ; P (4)

where q is an arbitrary test. In particular, P ⊆ �P ; P and hence P = �P ; P .
Moreover, we have �P = (P ;�) ∩ skip .

Note that tests form a Boolean algebra with skip as its greatest and ∅ as its
least element w.r.t. ⊆ . Moreover, on tests ∪ coincides with join and ; with
meet. In particular, tests are idempotent and commute under composition, i.e.,
p ; p = p and p ; q = q ; p.

We now come to the definitions to introduce state separation relationally.
Separation of commands can be interpreted either as their parallel execution on
disjoint portions of states or, in the special case of tests as assertions character-
ising disjoint resources. For both cases we need a concept to be able to reason
independently on disjoint portions of resources relationally.

First we introduce the Cartesian product P ×Q of commands P,Q by

(σ1, σ2) (P ×Q) (τ1, τ2) ⇔df σ1 P τ1 ∧ σ2 Q τ2 .

Union, inclusion and intersection of such relations on pairs are straightforward
while composition is defined componentwise.

We assume that ; binds tighter than × and ∩ . It is clear that skip× skip is
the identity of ; on products. Note that × and ; satisfy an equational exchange
law:

P ;Q × R ; S = (P ×R) ; (Q× S) . (5)

Pairs of tests are subidentities w.r.t. skip× skip and thus are idempotent and
commute under ; . A special test is given by the combinability check # [DM12],
on pairs of states:

(σ1, σ2)# (τ1, τ2) ⇔df σ1 #σ2 ∧ σ1 = τ1 ∧ σ2 = τ2 .

It main usage is to rule out pairs of incompatible states that can occur within
products P ×Q for arbitrary commands P,Q .

As in [DHM11], we connect the pairs of states with single states using the
so-called split relation � and its converse join � defined by

σ� (σ1, σ2) ⇔df (σ1, σ2)� σ ⇔df σ1#σ2 ∧ σ = σ1 • σ2 .

Corollary 2.4. # ;� = � and symmetrically � ; # = �. Moreover, # ⊆
� ;� .

Abstract Dynamic Frames 161

Corollary 2.5 (Forward/Backward Compatiblity). For tests p, q we have
; (p× q) = (p× q) ; # .

The intuition for this inequation is that tests do not change states as subidentities
and hence starting from compatible states they return the same compatible ones.
Finally, the ∗ - composition of commands P,Q is defined by

P ∗Q =df � ; (P ×Q) ;� . (6)

For states σ, τ we have σ (P ∗ Q) τ iff σ can be split into states σP , σQ on
which P and Q can act and produce results τP , τQ that are again combinable to
τ = τP • τQ. Hence P ∗Q also provides a possibility to characterise the structure
of commands and hence their behaviour on parts of a state.

Moreover, P ∗ Q can also be interpreted as the concurrent execution of pro-
grams P,Q running on combinable or disjoint sets of resources [DM12, DM13].

Note that for tests p, q the command p ∗ q is also a test and in particular, skip ∗
skip = skip. Moreover, ∗ is associative and commutative and emp is its unit.

For readers familiar with fork algebras (e.g., [FBH97]) we remark that using
the pairing operation �(σ, τ) = (σ, τ) one has the relationship

� = ((�)∇ (�)) ; # ∩ (•)

where ∇ denotes the fork operator, � the converse of � and σ (•) (σ1, σ2) ⇔
σ = σ1 •σ2 . Moreover, the Cartesian products coincides with the direct product,
i.e., P × Q = P ⊗ Q . For the sake of simplicity we stay with the above given
definitions, since the additional constructs provided by fork algebras are not
required for our purposes.

3 Abstracting Dynamic Frames

Dynamic frames are represented in concrete program specifications as specifica-
tion variables, i.e., variables that serve only for verification purposes and hence
are not physically visible in the program itself. Their usage is to cover a set of
locations of a state σ ranging over variables or allocated objects. By this mech-
anism one obtains the expressiveness to specify what a program or a method is
allowed to modify and what remains untouched during its execution.

For an abstraction of the theory of dynamic frames we start by considering
the concrete separation algebra DFSA. Frequently used examples in the theory
of dynamic frames are the auxiliary specification variables

used = usedσ =df dom(σ) and unused =df Loc− used .

The former denotes the set of locations to which the state σ assigns values while
the latter corresponds to all unallocated ones in that state. A dynamic frame f
at a state σ is defined as a subset of Loc satisfying f ⊆ used. Hence, dynamic
frames are state dependent and may vary with state transitions, i.e., considering
σ P σ′ for a command P and a dynamic frame f in σ then generally f in σ′ will

162 H.-H. Dang

capture a different set of locations. Following the notation in [Kas11] a dynamic
frame f in a final state σ′ is denoted by f ′, i.e., it would correspond to fσ′ .

Our central goal is to derive an abstract and pointfree relational treatment of
dynamic frames. Therefore, we are mainly interested in extracting behavioural
patterns and aspects or effects of these. For a relational treatment we use a
constant set of locations representing an initial dynamic frame f . The dynamic
behaviour within state transitions σ P σ′ will be represented by relational and
pointfree formalisations rather than using functions or expressions that depend
on the states σ or σ′ . This will allow more concise structural characterisations
and pointfree proofs of basic properties involving dynamic frames.

Concretely, assuming an initial dynamic frame f to be a fixed set of locations
we define

[[f]] =df {(σ, σ) : f = dom(σ)} ,

i.e., embedding f as a relation yields a subidentity which characterises all states
where the allocated set of locations equals f . Note that [[f]] �= ∅, even if f = ∅,
because then [[f]] = {(u, u)}. For better readability we will omit the [[]] brackets
in the following. The context will disambiguate the usage.

This embedding of f implies that the corresponding test satisfies a special
behaviour which coincides with a pointfree characterisation of so-called precise
tests [DM13]:

(f × skip) ;� ;� ; (f × skip) ⊆ f × skip . (7)

In a pointwise form it reads for arbitrary states σ, σ1, σ2

(σ1 ∈ f ∧ σ2 ∈ f ∧ σ1 � σ ∧ σ2 � σ) ⇒ σ1 = σ2 ,

where τ ∈ f ⇔df τ f τ for arbitrary states τ and test f . This means that in
any state τ a unique substate w.r.t. � that contains exactly the locations of f
can always be pointed out.

As the next step we introduce pointfree relational variants of framing require-
ments that are crucial for the theory of dynamic frames [Kas11].

Definition 3.1 (Framing Requirements). Assume a dynamic frame f . Then
the modification command Δ() and preservation command Ξ() are defined by

Δf =df {(σ, σ′) : σ|used−f = σ′|used−f} ,
Ξf =df {(σ, σ′) : σ|f = σ′|f} .

The modification requirement Δf intuitively asserts that at most resources cap-
tured by the frame f can be changed while any other resources remain untouched
and hence are not modified. In particular, Δf allows the allocation of fresh stor-
age. Conversely, Ξf asserts that at least the state parts characterised by f are
not changed while anything else can be changed arbitrarily.

Theorem 3.2. Assume a dynamic frame f . Then

Δf = (f ;�) ∗ skip and Ξf = f ∗ � .

Abstract Dynamic Frames 163

Proof. By definition of Δ , definition of skip, by set theory and definition of �,
using f is a test, definition of ; , and definition of ∗ :

σ (Δf) σ′

⇔ σ|used−f = σ′|used−f
⇔ σ|used−f skip σ′|used−f
⇔ σ|used−f skip σ′|used−f ∧ σ|f � σ′|used′−(used−f)
⇔ σ|used−f skip σ′|used−f ∧ σ|f � σ′|used′−(used−f) ∧ σ|f f σ|f
⇔ σ|used−f skip σ′|used−f ∧ σ|f (f ;�) σ′|used′−(used−f)
⇒ σ ((f ;�) ∗ skip) σ′ .

For the reverse implication assume states σf , σskip, σ� with σf ∈ f ∧ σ = σf •
σskip ∧ σ′ = σ� • σskip . Using Lemma 2.2 we get σ|f = (σf • σskip)|f = σf .

Hence, σ = σ|f • σ|used−f and cancellativity implies σskip = σ|used−f . Moreover,

we can infer σ′|used−f = (σ� • σskip)|used−f = (σ� • σ|used−f)
∣∣∣
used−f

= σ|used−f .
Now Lemma 2.2 implies σ� = σ′|used′−(used−f) .

By definition of Ξ , f is a test, set theory and definition of �, and definition
of ∗ :

σ (Ξf) σ′

⇔ σ|f = σ′|f
⇔ σ|f f σ′|f
⇔ σ|f f σ′|f ∧ σ|used−f � σ′|used′−f
⇒ σ (f ∗ �) σ′ .

The reverse implication can be proved analogously to the above case. !�

The algebraic embedding of dynamic frames as precise tests and their use in
pointfree characterisations of the framing requirements yields the abstraction
from the concrete DFSA separation algebra to arbitrary ones mentioned in Sec-
tion 2.1. Moreover this allows calculational proofs of fundamental properties that
establish the theory as a solution to tackle the frame problem (cf. Section 1).
We begin with the following result: Assume two initial disjoint sets of locations
f, g where only locations of f can be modified, then all locations of g will remain
unchanged. The general idea of this is that expressions depending on locations
of f will not affect expressions that depend only on locations in g.

Lemma 3.3. Assume dynamic frames f, g. Then

(f ∗ g ∗ skip) ; Δf ⊆ g ∗Δf .

Proof. By Theorem 3.2, definition of ∗, neutrality of skip and Equation (5),
f is precise (Equation (7)), skip is neutral and Equation (5), definition of ∗,
commutativity of ∗ and Theorem 3.2,

(f ∗ g ∗ skip) ; Δf
= (f ∗ g ∗ skip) ; ((f ;�) ∗ skip)
= � ; (f × (g ∗ skip)) ;� ;� ; (f ;�× skip) ;�

164 H.-H. Dang

= � ; (skip× (g ∗ skip)) ; (f × skip) ;� ;� ; (f × skip) ; (�× skip) ;�
⊆ � ; (skip× (g ∗ skip)) ; (f × skip) ; (� × skip) ;�
= � ; (f ;�× (g ∗ skip)) ;�
= (f ;�) ∗ g ∗ skip
= g ∗Δf .

!�

Since a dynamic frame f covers a set of locations on a state, it can be con-
cluded that as long as f is not changed then all variables and expressions that
depend on its locations will also remain unchanged. Expressions E can be ab-
stracted relationally to tests that only include the states that assign values to
at least all free variables occurring in E . Abstractly we define that a dynamic
frame f frames a test E iff

(E ∗ skip) ; Ξf ⊆ E ∗ � . (8)

Ξf states that dynamic frame f is preserved while the test E ∗ skip assumes a
starting state σ that contains at least the required locations of E. Now by the
relation E ∗ � we can conclude that these locations will not be modified in a
final state σ′ since E is a test.

Altogether we can now prove a central theorem of the dynamic frames theory,
stating that a dynamic frame will preserve its values while modifications on a
disjoint frame are performed.

Lemma 3.4 (Value preservation). Assume dynamic frames f, g. If g frames
a test E then

(E ∗ skip) ; (f ∗ g ∗ skip) ; Δf ⊆ E ∗ � .

Proof. By Lemma 3.3, isotony, Theorem 3.2 and g frames E (Equation (8)),

(E ∗ skip) ; (f ∗g ∗ skip) ;Δf ⊆ (E ∗ skip) ; (g ∗Δf) ⊆ (E ∗ skip) ; (g ∗�) ⊆ E ∗� .
!�

The abstraction of dynamic frames to sets of locations and representing them
relationally as precise tests implies that they already come with the so-called self-
framing property. It is used in the program specifications of [Kas11] to maintain
that initial disjointness of dynamic frames is preserved in final states. Concretely
it characterises a dynamic frame to be preserved whenever the environment does
not change its value.

Lemma 3.5. Dynamic frames are self-framing.

Proof. Follows directly from f ∗ skip ⊆ skip, isotony of ; and Theorem 3.2. !�

Basically, dynamic frames in concrete verification applications are always defined
to be self-framing. Hence, this does not impose a restriction on the theory.

We continue with an auxiliary result that is required for later calculations.

Lemma 3.6. For a dynamic frame f we have �(Δf) = f ∗ skip = �(Ξf) .
A proof can be found in the appendix.

Abstract Dynamic Frames 165

4 Locality and Frame Accumulation

The relational structure of modification commands (cf. Theorem 3.2) reveals that
they are related to so-called local commands [DM12, HHM+11]. These commands
have the following special behaviour: at most resources in the footprint1 of such a
command are modified while all other resources are left unchanged. Relationally,
local commands P are simply characterised by the equation P ∗ skip = P [DM12].
For modifications we can immediately conclude

Lemma 4.1. Modifications Δf are local commands.

Proof. By Theorem 3.2, associativity of ∗, skip ∗ skip = skip ,

Δf ∗ skip = ((f ;�) ∗ skip) ∗ skip = (f ;�) ∗ (skip ∗ skip) = (f ;�) ∗ skip = Δf .
!�

Basically, pairs of commands within ∗ - compositions operate separately on dis-
joint portions of states. In [DM12] it turned out that due to the angelic behaviour
of relations, an additional assumption is required for pointfree calculations on the
footprint and the resources that remain untouched in ∗-products. The assumption
can be encoded relationally by the frame property [DHM11], i.e.,

(�P × skip) ;� ; P ⊆ (P × skip) ;� . (9)

In pointwise form it reads as follows, considering arbitrary σP , σskip, σ
′ in a pair

((σP , σskip), σ
′) of the left-hand side:

σP ∈ �P ∧ (σP • σskip) P σ′ ⇒ ∃σ′P . σP P σ′P ∧ σ′ = σ′P • σskip .

This implies that the state portion σskip above does not contain any resources
that P would need for a successful execution and hence is not affected by the
execution of P . Equation (9) is named after the frame property of separation
logic, since it basically reflects similar behaviour [DHM11]. It can be shown that
local commands with a precise footprint satisfy this inequation as, e.g., in the
case of modifications Δf .

Lemma 4.2. Modifications Δf have the frame property.

A proof can be found in the appendix.
In the present work, Equation (9) will be applied to prove a relational version

of the frame accumulation law of [Kas11]. For a better intuition we start by
providing the logical version of that law and describe its semantics. It is originally
given as an imperative specification, i.e., a Boolean expression that is relationally
evaluated on arbitrary pairs (σ, σ′) where σ denotes the initial and σ′ the final
state of an arbitrary execution. The accumulation law reads as follows

(Δf ∧ g′ ⊆ f ∪ unused) ; Δg ⇒ Δf . (10)

1 The minimal set of resources required for non-aborting executions.

166 H.-H. Dang

The relational version of the accumulation law is to be understood pointwise on
arbitrary pairs (σ, σ′) by

(∃σ′′. σ Δf σ′′ ∧ g(σ′′) ⊆ f(σ) ∪ unused(σ) ∧ σ′′ Δg σ′) ⇒ σ Δf σ′

where σ denotes an initial state and σ′ a final state. Note that the dynamic
frame g′ of Equation (10) denotes the final value of g on the intermediate state
σ′′ instead of σ′ .

The law means that whenever g in the intermediate state is bounded by f and
can only increase by initially unallocated resources then the overall effect is that
at most locations in f are changed in the composition Δf ; Δg. Or equivalently,
all allocated resources initially from f disjoint are preserved. For an algebraic
proof we need a pointfree variant to characterise bounds for dynamic frames
within modifications, which is of course not trivial to achieve since dynamic
frames are state-dependent.

Definition 4.3. For dynamic frames f, g we say that g is bounded by f iff

; (f ;�× skip) ;� ; (g ∗ skip) ⊆ (f ;� ; (g ∗ skip)× skip) ;� .

To understand the intuition of this formula within the dynamic frames theory
we describe its meaning in the concrete separation algebra DFSA . Of course
it can be interpreted in other adequate separation algebras, too. Assume an
arbitrary pair ((σf , σskip), σ

′) from the left-hand side of the above inequation. In
a pointwise form the premise then reads

∃σ�, σg, τskip. σf ∈ f ∧ σf#σskip ∧ σ� • σskip = σg • τskip = σ′ ∧ σg ∈ g .

Intuitively the substate σf represents that part of the complete state σf • σskip
that can be changed while σskip corresponds to the untouched part in which any
changes to resources are not permitted. By assuming ∃σ′. σ′ = σ� •σskip we also
know σ�#σskip and hence σskip is also disjoint from any additionally allocated
resources, i.e., dom(σskip) is disjoint from any locations of unused(σf • σskip).

Now, the right-hand side states that

∃σrem. σf ∈ f ∧ σ′ = (σg • σrem) • σskip ∧ σg ∈ g .

This means by cancellativity of the underlying separation algebra that σ� =
σg •σrem and τskip = σrem •σskip . Hence, σg � σ� and σskip � τskip . In particular,
we get σg#σskip , i.e., σg is disjoint from σskip which in turn implies that its
allocated locations can only cover locations of f and initially unallocated ones
in unused(σf • σskip) . The above state partitions can be depicted as follows:

Conversely, we can show using cross-split and disjointness that the underlying
separation algebra satisfies the inequation of Definition 4.3, assuming σg#σskip .

Abstract Dynamic Frames 167

To see this, note that the premise asserts σ� • σskip = σg • τskip and hence
σ�#σskip. By cross-split, i.e., Equation (2) we infer

∃σ1, σ2, σ3, σ4 . σ� = σ1 • σ2 ∧ σskip = σ3 • σ4 ∧
σg = σ1 • σ3 ∧ τskip = σ2 • σ4 .

Thus, σg#σskip ⇔ σ1 • σ3 # σ3 • σ4 ⇒ σ3#σ3 and Equation (3) implies that
σ3 = u . By this we immediately have σg = σ1 ∧ σskip = σ4 and therefore
σ� = σg • σ2 ∧ τskip = σ2 • σskip . Since σ� # σskip we can instantiate σrem as σ2.

Unfortunately, Definition 4.3 is more complex than its logical variant which
is due to implicitly expressing the particular restriction of g to unallocated re-
sources w.r.t. f . However, with Definition 4.3 we now have the possibility to
abstractly relate dynamic frames among each other and can continue by rea-
soning in an (in)equational style. By this we can summarise a central result of
dynamic frames within modifications.

Theorem 4.4. Assume dynamic frames where g is bounded by f then

Δf ; Δg ⊆ (f ;� ; Δg) ∗ skip .

Proof. By Theorem 3.2, Corollary 2.4 and Lemma 3.6, g is bounded by f ,
skip = skip ; skip and Equation (5), Lemma 3.6, Δg has the frame property
and Equation (5) again, and definition of ∗ :

Δf ; Δg
= � ; (f ;�× skip) ;� ; Δg
= � ; # ; (f ;�× skip) ;� ; (g ∗ skip) ; Δg
⊆ � ; (f ;� ; (g ∗ skip)× skip) ;� ; Δg
= � ; (f ;�× skip) ; ((g ∗ skip)× skip) ;� ; Δg
⊆ � ; (f ;�× skip) ; (�Δg × skip) ;� ; Δg
⊆ � ; (f ;� ; Δg × skip) ;�
= (f ;� ; Δg) ∗ skip .

!�

This characterises the behaviour that only the changes on the execution within
f need to be considered for Δg if g is bounded by f , while all other allocated
locations w.r.t a starting state will remain unchanged.

Corollary 4.5 (Frame Accumulation). Assume dynamic frames f, g where
g is bounded by f . Then

Δf ; Δg ⊆ Δf .

Proof. By Theorem 4.4, isotony and definition of �, and Theorem 4.4:

Δf ; Δg ⊆ (f ;� ; Δg) ∗ skip ⊆ (f ;�) ∗ skip = Δf .
!�

This result can be interpreted as a pointfree variant of the frame accumula-
tion theorem of [Kas11] (cf. Equation (10)). Its general application is to simplify

168 H.-H. Dang

correctness proofs of specifications by eliminating occurrences of sequential com-
position in combination with framing requirements.

In [Kas11] the concept of strong dynamic frames is also defined. Such frames
f come with the additional restriction on a final state σ′ that f(σ′) can only
contain locations of f(σ) for a starting state σ or unallocated ones w.r.t. σ .
Since the given abstractions of dynamic frames in this work imply that they are
always self-framing, the modifications Δf are only able to extend f in σ′ by
previously unallocated locations as in [Kas11]. Hence, simple modifications Δf
already coincide with the stronger variant within our abstraction.

As a final result we present another treatment of the abstracted theory in the
context of related work.

5 A Related Approach: Local Actions

In [COY07] an abstract approach to separation logic was presented that is built
on separation algebras and provides a model of programs in terms of so-called
local actions . By contrast with the relational approach of Section 2.2 this concept
works pointwise. We show in the following by the use of previous ideas about
abstracting dynamic frames that formalisations about modifications in that ap-
proach satisfy a similar locality condition and allow a calculational proof of the
frame accumulation law within the separation algebra DFSA.

Basically, local actions are special state transformers, i.e., special functions
that map from states to sets of states or to a distinguished element � 2. The
element � is used to denote program abortion, e.g., due to dereferencing of
non-allocated resources.

There is also an order defined on sets of states and �. For arbitrary sets
of states p, q ∈ P(Σ) it is defined by p q =df p ⊆ q. Moreover, � is the
greatest element w.r.t. the order , i.e., for arbitrary p ∈ P(Σ) ∪ {�} we have
p � . One can extend pointwise to state transformers f, g by f g ⇔df

∀σ. f(σ) g(σ) .
Separating conjunction ∗ on sets of states is given by

p ∗ q =df

{
{σ1 • σ2 : σ1#σ2, σ1 ∈ p, σ2 ∈ q} if p, q ∈ P(Σ)
� otherwise .

A proper definition of ∗ on strongest postcondition state transformers might lead
to problems with associativity. Hence we stay with the definitions of the original
approach. A state transformer definition for modifications can be obtained for a
fixed set of locations f with the same ideas as in Section 3 by

(Δf)(σ) =df

{
Σ ∗ {σ|used−f} if f ⊆ used(σ)

� otherwise .

Intuitively, whenever all locations of f are allocated then all other used locations
in σ are preserved. Otherwise, an erroneous execution is signalled by the output
� . Analogously, in the case of Ξf we can define

2 � does not denote the universal relation in this context.

Abstract Dynamic Frames 169

(Ξf)(σ) =df

{
Σ ∗ {σ|f} if f ⊆ used(σ)

� otherwise .

According to Lemma 4.2, the relational version of Δf satisfies the frame prop-
erty, i.e., Equation (9). Similar behaviour is obtained for the state transformer
definition of Δf by the locality property of [COY07], i.e.,

σ1#σ2 ⇒ (Δf) (σ1 • σ2) (Δf) (σ1) ∗ {σ2} . (11)

State transformers that satisfy Equation (11) are called local actions . The local-
ity property has similar behaviour as the relational version of the frame property.
The state σ2 represents that part of the state σ1 •σ2 that will remain unchanged
while σ1 contains the footprint of Δf .

For a proof of Equation (11) a case distinction is needed. First assume σ1#σ2.
If f �⊆ used(σ1) then (Δf) (σ1) ∗ {σ2} = � ∗ {σ2} = � and the inequation holds.
Now assume f ⊆ used(σ1) , then

(Δf) (σ1 • σ2) = Σ ∗ {σ1 • σ2|used(σ1•σ2)−f}
 Σ ∗ {σ1|used(σ1)−f • σ2}
= Σ ∗ {σ1|used(σ1)−f} ∗ {σ2}
= Δf ∗ {σ2} .

Next we show that a treatment of the frame accumulation law is also possible
using local actions. For a translation of the frame accumulation law into that
setting we need to define a local action that models the restricted modification
given in its logical variant (cf. Equation (10))

Δ(f, g) =df Δf ∧ g′ ⊆ f ∪ unused(σ) .

Note that g′ = g(σ′) generally implies the existence of a set of locations g in
each state σ′ in the result set (Δf) (σ) , interpreting modifications as a local
action. By this we need to restrict the local action definition of modification Δf
as follows to get a local action for Δ(f, g)

(Δ(f, g))(σ) =df

{
{σ′ : used(σ′) = g } ∗Σ ∗ {σ|used−f} if f ⊆ used(σ)

� otherwise .

The general idea with this is to restrict the output of Δf to involve a fixed set
of locations g. Another possibility would be to define another local action that
sequentially composed with Δf restricts its output adequately. The above local
action for Δ(f, g) includes the behaviour described in Definition 4.3 in which a
bounding between dynamic frames g and f is characterised. Analogously to Δf ,
the state transformer is also a local action. Now, the frame accumulation law in
that setting can be stated as follows

∀σ. (Δ(f, g) ; Δg) (σ) Δf(σ) ,

where for arbitrary local actions f, g one pointwise lifts (f ;g) (σ) =df

⊔
{ g(σ′) :

σ′ ∈ f(σ)} if f(σ) �= � and otherwise f ; g also equals � . For a proof of the
above inequation we assume f ⊆ used(σ) and g ⊆ f ∪ unused(σ) and calculate

170 H.-H. Dang

(Δ(f, g) ; Δg) (σ) =
⊔
{Δg (σ′′) : σ′′ ∈ {σ′ : used(σ′) = g } ∗Σ ∗ {σ|used−f}}

=
⊔
{Δg (σ′ • τ • σ|used−f) : used(σ′) = g, τ ∈ Σ}

⊔
{Δg (σ′) ∗ {τ • σ|used−f} : used(σ′) = g, τ ∈ Σ}

=
⊔
{Σ ∗ {τ • σ|used−f} : τ ∈ Σ}

⊔
{Σ ∗ {σ|used−f}}

= Σ ∗ {σ|used−f}
= Δf (σ) .

6 Conclusion and Outlook

We explored algebraic and abstract calculi for the theory of dynamic frames. It
turned out that an extended relational approach, originally used as an algebraic
base for separation logic, can also be used to generally formalise effects of the
dynamic frames theory. Since definitions in that theory were given in [Kas11]
in a relational style, a direct translation to relational pointfree variants was
possible by a few abstractions. This yields a step towards a unifying calculus for
abstractly capturing crucial behaviours of dynamic frames and separation logic.

As further work it would be interesting to include the overlapping conjunction
of [HV13] into this setting. Applied to assertions it allows an unspecified portion
of resources to be shared among two predicates. For the presented calculus, it
would enable an abstract treatment of dynamic frames that share certain parts
of their locations as e.g., in the situation when two iterators are attached to the
same list as described in [Kas11]. Another possibility for this can be considering
separation algebras that involve permissions [BCOP05].

Moreover, the relationships to concrete approaches [DYDG+10, PS11, JB12]
and their integration into this framework has to be investigated.

Acknowledgements. I am grateful to Eric C. R. Hehner and Bernhard Möller
for drawing my attention to this particular topic. Moreover, I thank Bernhard
Möller for valuable remarks and all anonymous reviewers for their helpful feed-
back and comments that significantly helped to improve the paper. This research
was partially funded by the DFG projectMO 690/9-1 AlgSep — Algebraic Cal-
culi for Separation Logic.

References

[BCOP05] Bornat, R., Calcagno, C., O’Hearn, P.W., Parkinson, M.J.: Permission
Accounting in Separation Logic. In: Palsberg, J., Abadi, M. (eds.) Proc.
of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pp. 259–270. ACM Press (2005)

[COY07] Calcagno, C., O’Hearn, P.W., Yang, H.: Local Action and Abstract Sep-
aration Logic. In: Proc. of the 22nd Symposium on Logic in Computer
Science, pp. 366–378. IEEE Press (2007)

[DHM11] Dang, H.-H., Höfner, P., Möller, B.: Algebraic Separation Logic. Journal
of Logic and Algebraic Programming 80, 221–247 (2011)

Abstract Dynamic Frames 171

[DM12] Dang, H.-H., Möller, B.: Reverse Exchange for Concurrency and Lo-
cal Reasoning. In: Gibbons, J., Nogueira, P. (eds.) MPC 2012. LNCS,
vol. 7342, pp. 177–197. Springer, Heidelberg (2012)

[DM13] Dang, H.-H., Möller, B.: Concurrency and Local Reasoning under Re-
verse Exchange. Science of Computer Programming (2013)

[DYDG+10] Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M.J., Vafeiadis,
V.: Concurrent Abstract Predicates. In: D’Hondt, T. (ed.) ECOOP 2010.
LNCS, vol. 6183, pp. 504–528. Springer, Heidelberg (2010)

[DHA09] Dockins, R., Hobor, A., Appel, A.W.: A Fresh Look at Separation Al-
gebras and Share Accounting. In: Hu, Z. (ed.) APLAS 2009. LNCS,
vol. 5904, pp. 161–177. Springer, Heidelberg (2009)

[FBH97] Frias, M.F., Baum, G., Haeberer, A.M.: Fork Algebras in Algebra, Logic
and Computer Science. Fundam. Inform. 32, 1–25 (1997)

[GGN11] Garbervetsky, D., Goŕın, D., Neisen, A.: Enforcing Structural Invariants
using Dynamic Frames. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS
2011. LNCS, vol. 6605, pp. 65–80. Springer, Heidelberg (2011)

[HHM+11] Hoare, C.A.R., Hussain, A., Möller, B., O’Hearn, P.W., Petersen, R.L.,
Struth, G.: On Locality and the Exchange Law for Concurrent Processes.
In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901,
pp. 250–264. Springer, Heidelberg (2011)

[HV13] Hobor, A., Villard, J.: The Ramifications of Sharing in Data Struc-
tures. In: Giacobazzi, R., Cousot, R. (eds.) Proc. of the 40th annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL, pp. 523–536. ACM Press (2013)

[JB12] Jensen, J.B., Birkedal, L.: Fictional Separation Logic. In: Seidl, H. (ed.)
ESOP 2012. LNCS, vol. 7211, pp. 377–396. Springer, Heidelberg (2012)

[Kas11] Kassios, I.T.: The Dynamic Frames Theory. Formal Aspects of Comput-
ing 23, 267–289 (2011)

[Lei10] Leino, K.R.M.: Dafny: An Automatic Program Verifier for Functional
Correctness. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS,
vol. 6355, pp. 348–370. Springer, Heidelberg (2010)

[MH69] McCarthy, J., Hayes, P.J.: Some Philosophical Problems from the Stand-
point of Artificial Intelligence. In: Meltzer, B., Michie, D. (eds.) Machine
Intelligence 4, pp. 463–502. Edinburgh University Press (1969)

[PS11] Parkinson, M.J., Summers, A.J.: The Relationship between Separation
Logic and Implicit Dynamic Frames. In: Barthe, G. (ed.) ESOP 2011.
LNCS, vol. 6602, pp. 439–458. Springer, Heidelberg (2011)

[Rey02] Reynolds, J.C.: Separation Logic: A Logic for Shared Mutable Data
Structures. In: Proc. of the 17th Annual IEEE Symposium on Logic
in Computer Science, pp. 55–74. IEEE Computer Society (2002)

[SJP09] Smans, J., Jacobs, B., Piessens, F.: Implicit Dynamic Frames: Combin-
ing Dynamic Frames and Separation Logic. In: Drossopoulou, S. (ed.)
ECOOP 2009. LNCS, vol. 5653, pp. 148–172. Springer, Heidelberg (2009)

172 H.-H. Dang

Appendix: Deferred Proofs

Proof of Lemma 3.6.

By Theorem 3.2 and def. of ∗ , f is a test, skip = skip ; skip and Equation (5),
Corollary 2.4 and Corollary 2.5, again Corollary 2.4, Theorem 3.2, def. of ∗ ,

Δf = � ; (f ;�× skip) ;�
= � ; (f ; f ;�× skip) ;�
= � ; (f × skip) ; (f ;�× skip) ;�
= � ; (f × skip) ; # ; (f ;�× skip) ;�
⊆ � ; (f × skip) ;� ;� ; (f ;�× skip) ;�
= (f ∗ skip) ; Δf .

Hence, by Equation (4) we have �(Δf) ⊆ f ∗ skip . For the converse we calculate
f ∗ skip = �(f ∗ skip) ⊆ �((f ; �) ∗ skip) = �(Δf) . Analogous calculations show
the result for Ξf . !�

Proof of Lemma 4.2.

σ1 �(Δf) σ1 ∧ σ1 • σ2 Δf σ′

⇔ {[Lemma 4.1 and Lemma 3.6]}
σ1 f ∗ skip σ1 ∧ σ1 • σ2 Δf ∗ skip σ′

⇔ {[definition of ∗]}
∃σf , σskip, τ1, τ2, τ ′1. σ1 = σf • σskip ∧ σf ∈ f ∧ σ1 • σ2 = τ1 • τ2
∧ τ1 Δf τ ′1 ∧ σ′ = τ ′1 • τ2

⇔ {[Theorem 3.2]}
∃σf , σskip, τ1, τ2, τ ′1, τf , τ ′f , τskip. σ1 = σf • σskip ∧ σf ∈ f ∧
σ1 • σ2 = τ1 • τ2 ∧ τ1 = τf • τskip ∧ τ ′1 = τ ′f • τskip ∧ τf ∈ f ∧
σ′ = τ ′1 • τ2

⇒ {[Equation (7) implies σf = τf , logic]}
∃σf , σskip, τ1, τ2, τ ′f , τskip. σ1 = σf • σskip ∧ σf ∈ f ∧
σ1 • σ2 = τ1 • τ2 ∧ τ1 = σf • τskip ∧ σ′ = τ ′f • τskip • τ2

⇒ {[cancellativity implies σskip • σ2 = τskip • τ2, logic]}
∃σf , σskip, τ ′f . σ1 = σf • σskip ∧ σf ∈ f ∧ σ′ = (τ ′f • σskip) • σ2

⇔ {[definition of ; , ∗ and Theorem 3.2]}
∃σ′1. σ1 Δf σ′1 ∧ σ′ = σ′1 • σ2 .

!�

Automated Verification

of Relational While-Programs

Rudolf Berghammer1, Peter Höfner2,3, and Insa Stucke1

1 Institut für Informatik, Christian-Albrechts-Universität zu Kiel, Germany
2 NICTA, Australia

3 Computer Science and Engineering, University of New South Wales, Australia

Abstract. Software verification is essential for safety-critical systems.
In this paper, we illustrate that some verification tasks can be done fully
automatically. We show how to automatically verify imperative programs
for relation-based discrete structures by combining relation algebra and
the well-known assertion-based verification method with automated the-
orem proving. We present two examples in detail: a relational program
for determining the reflexive-transitive closure and a topological sorting
algorithm. We also treat the automatic verification of the equivalence of
common-logical and relation-algebraic specifications.

1 Introduction

Many discrete structures of mathematics and computer science, such as orders,
lattices, certain classes of graphs, Petri nets, and games, are relations or can
easily be modelled by means of relations. In such cases computational tasks
frequently reduce computations on relations and the correctness proofs of the
corresponding algorithms to proofs of statements over relations.

In the past, various techniques for programming with relations have been
proposed. In this paper, we follow an approach that considers relations only
as data structures and manipulates them with a simple, imperative program-
ming language. It is straightforward to translate the relational programs into
more efficient programming languages such as Java or C. The approach also
bears methodical advantages: if problem specifications are expressed via relation-
algebraic formulae, then the correctness proofs allow to intertwine approved pro-
gram verification steps with formal and precise relation-algebraic calculations.
This mathematical rigour drastically reduces errors in the programs. Moreover,
this approach is supported by tools for (a) prototyping and testing, (b) inter-
active theorem proving, and (c) automatic theorem proving. An example for
prototyping and testing relation-algebraic specifications is RelView (cf. [30]),
which allows the evaluation of relation-algebraic expressions and the formulation
of relational programs. With regard to interactive theorem proving either special
purpose systems, such as RALF (see [14]), can be used, or relation-algebraic tech-
niques can be integrated into existing provers (for example into Isabelle/HOL as
described in [28,12]). Full automatisation of proofs can frequently be achieved

P. Höfner et al. (Eds.): RAMiCS 2014, LNCS 8428, pp. 173–190, 2014.
c© Springer International Publishing Switzerland 2014

174 R. Berghammer, P. Höfner, and I. Stucke

by off-the-shelf automated theorem provers, such as Prover9 (see [31]). We refer
to [16] for such an application. In the present paper, we will follow the latter
approach and use Prover9 for automated program verification of while-programs.

Formal verification of imperative programs is often done by use of pre- and
post-conditions as problem specifications, and loop-invariants; see e.g., [10,11,13].
This so-called assertion-based technique is particularly useful for while-loops,
where it is sufficient to show that the loop-invariant is established and maintained
(under the assumption that the pre-condition holds) and that the post-condition
is valid as soon as the while-loop terminates. The combination of program ver-
ification and relation algebra we are going to use is not new; it was applied in
several case studies, for instance in [1,2,3,4].

Encouraged by the practicability and elegance of the latter results and the
positive experiences of [16], the combination of assertion-based program verifica-
tion and relation algebra was combined with automated theorem proving using
Prover9; see [5]. This paper is a continuation as well as a step further of this idea.
We consider two new and more sophisticated examples, viz. the computation of
reflexive-transitive closures by means of decomposition and the computation of
topological sortings in case of cycle-free relations. We further demonstrate how
the equivalences of the logical specifications and their relation-algebraic coun-
terparts can automatically be verified using Prover9. The paper closes with a
short discussion on the lessons we have learned from the two case studies.

2 Preliminaries

In this paper, we formalise data structures and assertions of imperative pro-
grams by homogeneous relation algebra, as axiomatised by Tarski in [26]. The
pre-conditions, post-conditions, loop-invariants and proof obligations will be for-
malised via expressions and formulae in relation algebra and implemented in
Prover9. In this section, we recapitulate the basic concepts of the relational cal-
culus and its automation via automated theorem proving, which are needed later
on. For more details we refer to [22,23] concerning relation algebra, to [31] con-
cerning Prover9, and to [7,24] concerning the use of automated theorem proving
in general software engineering.

2.1 (Homogeneous) Relation Algebra

Homogeneous relation algebra was first axiomatised in [26] and further developed
in [8,27]. A relation R over a set X , the universe, is a subset of the direct
product X ×X . Relation algebra offers five operations on relations, viz. R ∪
S (union), R ∩ S (intersection), R (complement), R;S (composition) and RT

(transposition), two predicates to compare relations, viz. R ⊆ S (inclusion) and
R=S (equality), and three special relations: O (empty relation), L (universal
relation), and I (identity relation). Except composition, transposition and the
identity relation all concepts are defined by standard set theory. The composition
R;S of two relations R and S is the set of all pairs (x, y) ∈ X ×X such that

Automated Verification of Relational While-Programs 175

(x, z) ∈ R and (z, y)∈S for some z ∈X , the transposition RT is the set of all
pairs (x, y) ∈ X ×X with (y, x) ∈ R, and the identity relation I is the set of all
pairs (x, y) ∈ X ×X with x = y.

These definitions form the base of concrete relation algebras . An (abstract)
relation algebra abstracts from set theory and is axiomatised as follows, where
we follow the axiomatisation of [22] instead of [8,26,27].

1. With regard to , ∪, ∩, the order ⊆, and the constants O and L the relations
form a Boolean algebra.

2. With regard to composition and the identity relation I the relations form a
monoid.

3. The Dedekind rule holds, i.e., for all relations Q, R and S we have

Q;R ∩ S ⊆ (Q ∩ S ;RT);(R ∩QT ;S) . (1)

Since all axioms are first-order, it is easy to encode them in any off-the-shelf
automated theorem prover.

From the Dedekind rule we obtain the so-called Schröder equivalences (also
known as “Theorem K” of de Morgan). They state that

Q;R ⊆ S ⇔ QT ; S ⊆ R Q;R ⊆ S ⇔ S ;RT ⊆ Q (2)

for all relations Q, R, and S. The Schröder equivalences are equivalent to the
Dedekind rule (see e.g., [22]).

Using relation algebra, we now recapitulate some fundamental classes of rela-
tions. These will be used in the remainder of the paper.

A relation R is called reflexive if I ⊆ R and transitive if R;R ⊆ R. The least
reflexive and transitive relation containing R is its reflexive-transitive closure
R∗, specified by the laws I ∪ R;R∗ = R∗ and R;Q ∪ S ⊆ Q ⇒ R∗ ;S ⊆ Q or,
equivalently, by the laws I ∪ R∗ ;R = R∗ and Q;R ∪ S ⊆ Q ⇒ S ;R∗ ⊆ Q to
hold for all relations Q, R, and S. A relation R is antisymmetric if R ∩ RT ⊆ I
and in combination with the above formulae this allows to characterise partial
order relations R by I ⊆ R, R;R ⊆ R, and R ∩RT ⊆ I. A partial order relation
R is called a linear order relation if additionally R ∪ RT = L holds. A relation
v satisfying v = v ;L is called a vector . In case of a set-theoretic (i.e., concrete)
relation v ⊆ X ×X this equation means that an element x ∈ X is either in
relationship to none of the elements of X or to all elements of X . Due to this
property, vectors can be used to model subsets of the universe X . We say that
v ⊆ X × X models the subset Y of X if for all x, y ∈ X we have that x ∈ Y
iff (x, y) ∈ v. By definition, a point is an injective and surjective vector, i.e., a
vector p such that the two properties L;p = L and p;pT ⊆ I hold. In case of a
set-theoretic point p ⊆ X × X these properties mean that it models a singleton
subset {x} of X , i.e., the element x of the universe if we identify the singleton
set {x} with the only element x it contains.

2.2 Automating Relation Algebra

Automated/mechanised reasoning is not a new challenge, but has been performed
since more than 20 years. Interactive theorem provers for relation algebras have

176 R. Berghammer, P. Höfner, and I. Stucke

been implemented (see e.g., [28,17]) and relational techniques have been integrated
into various proof checkers for B or Z. Special purpose first-order proof systems
for relation algebras, including tableaux and Rasiowa-Sikorski calculi, have been
proposed as well (e.g., in [20]). Translations of relation-algebraic formulae into
(undecidable) fragments of predicate logics have been implemented (see [25]) and
integrated into the theorem prover SPASS (see [29]). However, it has been shown
that automated reasoning with relation algebra does not need special-purpose
tools nor interaction. As demonstrated in [16,5], an off-the-shelf automated theo-
rem prover, such as Prover9, is often sufficient.

In this paper, we follow the latter approach and encode relation algebra in
Prover9, which is a saturation-based automated theorem prover for first-order
logic with equality. An evaluation of various automated theorem provers has
shown that in our context Prover9 is currently best suited for verifying proper-
ties in relation algebra; see [9]. We also have experimented with the interactive
theorem prover Isabelle/HOL. However, for our specific purpose the proof-effort
of interactive theorem provers presently seems to be too high. Moreover, we be-
lieve that they often require a rather deep understanding of the used tool and
hence experienced user, whereas our approach also can be used by people mainly
interested in relation algebra and not in theorem proving.

Prover9 implements a first-order resolution and paramodulation calculus.
Equalities are handled via rewriting rules and Knuth-Bendix completion. The
tool suite also offers the counterexample generator Mace4, which is very useful
in practice. The encoding of relation-algebraic formulae in Prover9 is straight-
forward. For example the Dedekind rule (1) can be written as follows:

all Q all R all S (Q * R /\ S <= (Q /\ R * S^) * (R /\ Q^ * S)).

Since Prover9 allows only ASCII symbols as input, we use the symbols \/, /\, *,
^, ’, <= and rtc() for union, intersection, composition, transposition, com-
plement, inclusion, and the operator for reflexive-transitiv closure, respectively.
An entire input template can be found in the appendix.

Prover9 does not support types. Hence we define the following two predicates
to characterise relations as vectors and points; they are nothing else than the
translations of the definitions of Section 2.1 into the language of Prover9:

vector(R) <-> R = R*L.

point(R) <-> (R = R*L & L*R = L & R*R^ <= I).

Prover9, as any other automated theorem proving system, heavily depends on
the axioms given as input. In case one only uses the few axioms of relation
algebra given in Section 2.1, an automated theorem prover has to derive each
and every relation-algebraic fact used in a proof. For example, if a distributivity
law is needed for a proof, Prover9 has to derive it first. This fact does not only
increase the running times of the theorem prover, but sometimes even yields
failure in the proof search. Due to this, suitable and well-known facts, such as
the following distributivity laws, should be added as axioms.

all R all S all T ((R \/ S)*T = R*T \/ S*T).

all R all S all T (T*(R \/ S) = T*R \/ T*S).

Automated Verification of Relational While-Programs 177

Other examples for useful relation-algebraic facts concern transposition, such as
the following formulae:

all R (R^^ = R).

all R all S ((R * S)^ = S^ * R^).

For the proof automatisation we use a suitable (fixed) set of axioms. In case we
need some special fact as additional input, we will state it. All input files can be
found at the webpage http://hoefner-online.de/ramics14/. Running times
presented in this paper are w.r.t. a standard desktop PC equipped with a 3.1GHz
Intel Pentium 5 CPU, 16GB main memory, running a Mac OS operating system.

3 Automation of Proof Obligations

We start with a description of our general approach to the automation of the
assertion-based verification of relational programs. Then we consider two exam-
ples. All formulae appearing in the verifications are relation-algebraic ones, but
usually the notions in question are specified by predicate-logical means. To con-
nect these two kinds of specifications, we finally show how to automatically verify
the equivalence of the relation-algebraic and the common-logical specifications.

3.1 Verification of Relational While-Programs

In the present paper, we treat imperative programs with relations as data type.
Concretely this means that the constants, operations and predicates of relation
algebra, as introduced in Section 2.1, are available. Furthermore, we consider
while-programs of the following specific form only:

x := I(α);

while B(α,x) do

x := E(α,x) od

(W)

This specific form is only chosen for simplifying program verification. There are
no problems on the conceptional side to handle more complicated programs,
like those of [3]. Whether the presented approach scales to larger programs, i.e.,
whether automated theorem provers are able to automatically verify larger re-
lational programs, is part of future work. However, at this place it should be
mentioned that relational programs are often small. This is due to the fact that
relation-algebraic expressions frequently allow concise descriptions of computa-
tions which in conventional programming languages usually are expressed by, for
example, (nested) loops.

In the while-program (W) x denotes a non-empty list x1, . . . , xn of variables
for relations. Furthermore, α denotes a list of input relations and by I(α) and
I1(α), . . . , In(α) a list of relation-algebraic expressions over the input relations.
So, the collateral assignment x := I(α) describes the initialisation of the vari-
ables. E(α,x) denotes a list E1(α,x), . . . , En(α,x) of relation-algebraic expres-
sions, but now over the input relations and the variables. Finally, B(α,x) denotes

http://hoefner-online.de/ramics14/

178 R. Berghammer, P. Höfner, and I. Stucke

a quantifier-free formula built over the vocabulary of relation algebra, the input
relations, and the variables, usually an inclusion or an equation. It is called the
loop-condition. As long as it evaluates to true, the loop-body x :=E(α,x), again
a collateral assignment, is executed.

A problem specification consists of a pre-condition Pre(α) and a post-condi-
tion Post(α,x). The pre-condition describes the input restrictions and the post-
condition describes the result(s) which should be computed. In our case both
conditions are formulated within the language of relation algebra, frequently as
conjunctions of relation-algebraic inclusions and equations. A given algorithm (a
while-program) is partially correct if it satisfies the post-condition after termi-
nation, in case that the pre-condition holds. It is totally correct if it is partially
correct and also guarantees termination, provided the pre-condition holds.

To prove that a program of the presented form (W) is totally correct w.r.t.
a given problem specification, we use the inductive assertion method (see e.g.,
[10,11,13]). This method consists of three major steps: (a) the identification of
a loop-invariant Inv(α,x), (b) the verification of three proof obligations , viz.
that the loop-invariant is established by the initialisation, maintained by the
loop-body, and that the loop-invariant together with the negated loop-condition
implies the post-condition, and (c) the termination of the program.

Since we are looking at relational while-programs, the loop-invariant Inv(α,x)
is also formulated within the language of relation algebra. The three proof
obligations of (b) then may be formalised by three implications over Pre(α),
Post(α,x), Inv(α) and B(α,x). The first one,

Pre(α)⇒ Inv(α, I(α)) (PO1)

says that, if the pre-condition holds, then the loop-invariant has to be established
by the initialisation of the variables. After it has been shown that the loop-
invariant is established, it needs to be maintained during all runs through the
loop. This is formally expressed by the implication

Inv(α,x) ∧B(α,x)⇒ Inv(α,E(α,x)) . (PO2)

The implication that formalises the third proof obligation is

Inv(α,x) ∧ ¬B(α,x)⇒ Post(α,x) . (PO3)

It expresses that if the while-loop terminates, i.e., B(α,x) does not hold any
longer, then the loop-invariant has to imply the post-condition. Since we are
interested in total correctness, we also want to prove (correct) termination, i.e.

Pre(α)⇒ the program yields a defined value. (T)

Usually, (correct) termination of (W) means that its while-loop terminates after
a finite number of iterations. However, our instantiations of (W) use a specific
partial operation point on relations, as we will see in later sections. Therefore, a
proof of (T) requires, besides the termination of the while-loop, the verification
that each application of point yields a defined value.

Automated Verification of Relational While-Programs 179

Unfortunately, it is well known that termination is undecidable. However, in
specific cases the termination of while-loops can be proven by measure functions.
A measure function δ maps program states into a Noetherian pre-order such that,
with the above notations, Pre(α) and B(α,x) imply δ(E(α,x)) < δ(x). By
this, every execution of the loop-body strictly decreases the measure and, hence,
termination of the while-loop is guaranteed. In this paper, we will not only show
how proofs of partial correctness can be automatised, we will also show that,
under some circumstances, total correctness proofs can be supported.

3.2 Reflexive-Transitive Closure

The first algorithm we verify with the help of Prover9 is an algorithm for com-
puting the reflexive-transitive closure R∗ for a given relation R. It is obtained by
transforming the functional program of [6] into the following while-program (P1).
In the program (P1) a (partial) operation point is assumed to be at hand that
selects a point from a non-empty vector. The operation point is deterministic.
In RelView the deterministic selection of a point via the pre-defined operation
point is done using the internal enumeration of the universe X .

C, v := I,O;
while v �= R;L do

let p = point(R;L ∩ v);
C, v := C ∪ C ;p;pT ;R;C, v ∪ p od

(P1)

The program (P1) uses two variables: C for computing the result and v, a vector,
for looping through all points of the rangeR;L ofR. To enhance readability, it uses
a let-clause.1. The selected point point(R;L ∩ v) is denominated with the letter
p for its threefold use in the subsequent assignment. If, in case of set-theoretic
relations, v models the subset V of the universeX , then the chosen point pmodels
an element x of the set X \ V that possesses at least one successor w.r.t. R, and
the subrelation p;pT ;R of R consists precisely of those pairs (y, z) of R, for which
y = x holds. Although the program (P1) is deterministic, in principle it does not
matter which element x is chosen, as long as it was not handled before and has at
least one successor. For the verification we only need the following properties (3)
specifying p as a point contained in the vector R;L ∩ v .

p;L = p L;p = L p;pT ⊆ I p ⊆ R;L ∩ v . (3)

There is no requirement on the input relation R. So, the pre-condition Pre(R)
equals true. The post-condition Post(R,C) depends on the input R and the
(output) variable C and is C = R∗, since we want to compute the reflexive-
transitive closure of R. Transferring an idea of [6] to the imperative paradigm, we
obtain the conjunction of the two equations of (4) as loop-invariant Inv(R,C, v).

C = (R ∩ v)∗ v = v ;L (4)

1 We consider the let-clause as syntactical suger only, since the replacement of each
occurrence of p in the body of the while-loop of (P1) by point(R;L ∩ v) and the
removal of the let-clause transforms (P1) into the schematic form (W).

180 R. Berghammer, P. Höfner, and I. Stucke

Table 1. Auxiliary Facts for Verification

Formula Running Time

p;L = p ∧ L;p = L ∧ p;pT ⊆ I ⇒ R ∩ p = p;pT ;R 73 s

p;L = p ∧ L;p = L ∧ p;pT ⊆ I ⇒ (R ∩ p);L;(R ∩ p) ⊆ R ∩ p;L 248 s
S ;L;S ⊆ S ⇒ (R ∪ S)∗ = R∗ ∪R∗ ;S ;R∗ 184 s

The first equation is best described in the Boolean matrix model of relations. It
says that C equals the reflexive-transitive closure of the relation (matrix), that
is obtained from R by replacing those rows by zero-rows (all entries are zero)
where v consists of zeros only.

As discussed in the previous section, it suffices to verify the proof obligations
(PO1) to (PO3) to show the partial correctness of the program (P1). Prover9
shows the corresponding instantiation of (PO1) in no time (0 s). Proving the
corresponding instantiation of (PO3) is as simple and does not cost time either.
In contrast to these cases proving the corresponding instantiation of (PO2), i.e.,
the maintenance of the loop-invariant, is more complicated. Here, the main goal
is to show that under the assumptions of (3) and v �= R;L it holds

C = (R ∩ v)∗ ⇒ C ∪C ;p;pT ;R;C = (R ∩ (v ∪ p))∗ . (5)

Unfortunately, Prover9 is not able to prove the implication (5) from scratch
within 1000 s. It does not have sufficient knowledge about the Kleene star. The
theorem prover needs additional properties of this operation as input. Adding
auxiliary laws, such as star-monotonicity does not help. One needs further spe-
cific knowledge about the Kleene star in relation algebra. In [6] the laws listed in
Table 1 are used to prove the correctness of the functional program. If these three
laws are added, then Prover9 proves (5) and the entire instantiation of (PO2)
within 1 s. Luckily, the additional laws can all be proven fully automatically. The
running times are presented in Table 1.

The proof of (5) is by far not trivial (even with the additional properties),
but definitely shows some limitations of our approach. It cannot be expected
that all proofs can be automated. In fact, it is well known that theorem proving
in the area of relation algebra is undecidable. However, Prover9 (or any other
automated theorem prover) can assist to get rid of proofs of low or medium
complexity. The user can then concentrate on the more complicated proofs, such
as the maintenance of the loop-invariant of the algorithm under consideration.
As we will show in the next section, sometimes even all proofs can be automated.
A longer discussion about lessons learned is given in Section 4.

So far we have established partial correctness only. However, we can even
show total correctness with the help of Prover9. To prove total correctness, we
have to show that the while-loop of the program (P1) terminates and each of its
point-calls is defined. We use the values of the variable v as measure function
and use Prover9 to verify the inclusion

v ⊆ R;L (6)

as well as the universally quantified implication

∀p : p;L = p ∧ L;p = L ∧ p;pT ⊆ I ∧ p ⊆ R;L ∩ v ⇒ v ⊂ v ∪ p . (7)

Automated Verification of Relational While-Programs 181

With the help of the inclusion (6) and contraposition it is easy to prove that
R;L ∩ v �= O if v �= R;L: From R;L ∩ v = O we get R;L ⊆ v ⊆ R;L and this
yields v = R;L. As a consequence, each call point(R;L∩ v) in the program (P1)
is defined. The formula (7) states that under the assumptions of (3) the vector
v grows strictly. If the universe X is finite, then (6) and (7) together imply that
the while-loop terminates, since v is strictly enlarged by every execution of its
body but it cannot exceed R;L. The two properties (6) and (7) constitute again
a loop-invariant and, using Prover9, it can successfully be treated in the same
fashion as the previous loop-invariant (4). We summarise the results in Table 2.

3.3 Topological Sorting of Cycle-Free Relations

A topological sorting of a cycle-free relation R is a linear order relation that con-
tains R. The relational program we consider in this section stems from [4] and is
the relational version of Kahn’s well-known algorithm for computing topological
sortings (see [18]). It uses two variables, S for computing the result and v as
auxiliary vector variable for the while-loop, and looks as follows:

S, v := I,O;
while v �= L do

let p = point(v ∩ (RT ∩ I); v);
S, v := S ∪ v ;pT, v ∪ p od

(P2)

Similar to program (P1), program (P2) also uses a let-clause to improve read-
ability. It introduces p as a name for the point chosen from the vector v ∩
(RT ∩ I); v via the operation point. If R and v are set-theoretic relations and the

vector v models the subset V of the universe X , then the vector v ∩ (RT ∩ I); v
models the set of minimal elements of the set X \ V . So, via the variable v the
program (P2) constructs a chain

∅ ⊂ {x1} ⊂ {x1, x2} ⊂ {x1, x2, x3} ⊂ . . . ⊂ {x1, x2, . . . , xn} = X (8)

of subsets of X , where for all i ∈ {0, . . . , n−1} the set {x1, . . . , xi+1} is obtained
from the set {x1, . . . , xi} by adding a minimal element of X \ {x1, . . . , xi}. As

Table 2. Running Times for Termination Proofs

Formula Running Time

O ⊆ R;L 0 s
(3) ∧ v ⊆ R;L ⇒ v ∪ p ⊆ R;L 1 s

(3) ∧ v �= R;L ⇒ v ⊆ v ∪ p 2 0 s
(3) ∧ v �= R;L ⇒ v �= v ∪ p 0 s

2 In this example Prover9 finds a proof, but outputs “SEARCH FAILED” followed by
“Exiting with 1 proof”. A close inspection of the proof logs shows that such situations
occur if negative clauses are included in the goals. Then the output is misleading,
since in such cases Prover9 did find a proof, but thought it had to keep searching.

182 R. Berghammer, P. Höfner, and I. Stucke

Table 3. Invariants for Topological Sorting

Name Invariant Name Invariant

Inv0(v) v ;L ⊆ v Inv4(S) I ⊆ S
Inv1(S, v) S ;v ⊆ v Inv5(S) S ∩ ST ⊆ S

Inv2(S, v) S ∪ ST = v ;vT ∪ I Inv6(S) S ;S ⊆ S

Inv3(R,S, v) R ∩ v ;vT ⊆ S Inv7(R, v) R;v ⊆ v

before this chain can be used to prove termination later on, if X is finite. Simul-
taneously to the chain (8) the program (P2) creates another chain

I = S0 ⊂ S1 ⊂ . . . ⊂ Sn (9)

of relations, using the variable S. For all i ∈ {0, . . . , n}, the relation Si is a
topological sorting of the input R if both are restricted to {x1, . . . , xi}. Because
of the initialisation of S, outside of this set Si consists of loops (x, x) only.

Before we treat the automated verification of the above program, we have to

be more precise about the choice of p. If p is a point satisfying p ⊆ (RT ∩ I); v ,
then R;p ⊆ v ∪ p follows by the use of the Schröder equivalences (2) (see [4]).
As a consequence, we assume the following properties for p:

p;L = p L;p = L p;pT ⊆ I p ⊆ v R;p ⊆ v ∪ p (10)

A topological sorting requires a cycle-free relation as input. Since cycle-freeness
of R relation-algebraically can be specified as R;R∗ ⊆ I , we take this formula as
pre-condition Pre(R). In case of a finite universe X we then get that the relation
RT∩ I is progressively finite in the sense of [22]. Hence, v ⊆ (RT∩ I); v implies
v = O. By contraposition we obtain that v �= O implies v �⊆ (RT ∩ I); v and

this is equivalent to the fact that v �= L implies v ∩ (RT ∩ I); v �= O. So, in the
finite case or, more generally, the Noetherian case (since Noetherian relations
are precisely those the transposes of which are progressively finite), there exists
a p that satisfies the properties of (10), i.e., all calls of point in the program (P2)
are defined.

The conjunction of the formulae R ⊆ S, I ⊆ S, S ;S ⊆ S, S ∩ ST ⊆ I, and S ∪
ST = L forms the post-condition Post(R,S) and the loop-invariant Inv(R,S, v)
consists of a conjunction of eight formulae, which are shown in Table 3.

The formula Inv0(v) specifies v as a vector and Inv2(S, v) to Inv6(S) con-
stitute the relation-algebraic formalisation of the above described relationship
between the sets of the chain (8) and the relations of the chain (9). The remain-
ing two formulae Inv1(S, v) and Inv7(R, v) specify that the set, modelled by v,
is predecessor-closed w.r.t. S and R, respectively.

As before, we use Prover9 to verify all proof obligations. This time there are
no problems at all, and all verification tasks could be fully automated without
interactions. The establishment of the loop-invariant as well as the verification
of the post condition (proof obligations (PO1) and (PO3)) takes no time; the
running times of the maintenance of the invariance are shown in Table 4. This
finishes the proof of partial correctness.

Automated Verification of Relational While-Programs 183

We can again use Prover9 to verify total correctness. In fact the proofs are
nearly identical to the ones for the program (P1).

3.4 Equivalence of Logical and Relation-Algebraic Specifications

In the previous two sections we have automatically proven the total correctness of
two relational while-programs. One reason why we could use automated theorem
provers is that we are able to write program specifications and loop-invariants
as relation-algebraic formulae. However, often specifications and program prop-
erties are not given in a relation-algebraic manner, but in predicate logic. For
example, the post-condition of the program (P2), which characterises a topo-
logical sorting S of R, in first-order logic is the conjunction of the following
formulae:

∀x, y : (x, y) ∈ R⇒ (x, y) ∈ S
∀x : (x, x) ∈ S
∀x, y, z : (x, y) ∈ S ∧ (y, z) ∈ S ⇒ (x, z) ∈ S
∀x, y : (x, y) ∈ S ∧ (y, x) ∈ S ⇒ x = y
∀x, y : (x, y) ∈ S ∨ (y, x) ∈ S .

(11)

These formulae are standard predicate logic in combination with set theory. For
example, the latter three characterise S as transitive, antisymmetric, and total
(sometimes also called complete); hence as a linear order. The formulae of (11)
are, in the same order, equivalent to R ⊆ S, I ⊆ S, S ;S ⊆ S, S ∩ ST ⊆ I, and
S ∪ ST = L, respectively.

In this section we show that Prover9 can also be used to verify such equiva-
lences. By this we close the gap between specifications written in predicate logic
and specifications written in relation algebra, as we used them earlier. To do
so, we have to define some fragments of set theory in Prover9. We define a new
predicate in(x, y,R), where R is a relation and x, y range over the universe of R.
Semantically, we want to have that in(x,y,R) iff (x, y) ∈ R. Hence in(x, y,R)
models the membership property. The predicate in needs additional axioms for
the relation-algebraic operations ∪, ∩, , ;, T and the constants L, O, and I; all
being straight forward. For example, union and transposition are defined as

all R all S (in(x,y,(R \/ S)) <-> in(x,y,R) | in(x,y,S)).

all R (in(x,y,R^) <-> in(y,x,R)).

Table 4. Running Times for Proof Obligation (PO2)

Formula Running Time

v �= L ∧ (10) ∧ Inv(R,S, v) ⇒ Inv0(v ∪ p) 0 s

v �= L ∧ (10) ∧ Inv(R,S, v) ⇒ Inv1(S ∪ v ;pT, v ∪ p) 22 s

v �= L ∧ (10) ∧ Inv(R,S, v) ⇒ Inv2(S ∪ v ;pT, v ∪ p) 3 s

v �= L ∧ (10) ∧ Inv(R,S, v) ⇒ Inv3(R,S ∪ v ;pT, v ∪ p) 1 s
v �= L ∧ (10) ∧ Inv(R,S, v) ⇒ Inv4(S ∪ v ;pT) 0 s

v �= L ∧ (10) ∧ Inv(R,S, v) ⇒ Inv5(S ∪ v ;pT) 43 s

v �= L ∧ (10) ∧ Inv(R,S, v) ⇒ Inv6(S ∪ v ;pT) 24 s
v �= L ∧ (10) ∧ Inv(R,S, v) ⇒ Inv7(R, v ∪ p) 0 s

184 R. Berghammer, P. Höfner, and I. Stucke

Table 5. Running Times for the Verification of the Formulae of (11)

Formula Running Time

(∀x, y : (x, y) ∈ R ⇒ (x, y) ∈ S) ⇔ R ⊆ S 0 s
(∀x : (x, x) ∈ S) ⇔ I ⊆ S 0 s

(∀x, y, z : (x, y) ∈ S ∧ (y, z) ∈ S ⇒ (x, z) ∈ S) ⇔ S ;S ⊆ S 0 s

(∀x, y : (x, y) ∈ S ∧ (y, x) ∈ S ⇒ x = y) ⇒ S ∩ ST ⊆ I 1 s

(∀x, y : (x, y) ∈ S ∧ (y, x) ∈ S ⇒ x = y) ⇐ S ∩ ST ⊆ I 0 s

(∀x, y : (x, y) ∈ S ∨ (y, x) ∈ S) ⇔ S ∪ ST = L 2.5 s

The universal relation L can be defined as in(x,y,L) and similar the other two
constants O and I can be defined. This combines the algebraic and the logical
point of view on relations. In the same manner we can specify inclusion and
equality on relations:

all R all S (R <= S <-> (all x all y (in(x,y,R) -> in(x,y,S)))).

all R all S (R == S <-> (all x all y (in(x,y,R) <-> in(x,y,S)))).

With an input file containing all facts about the predicate in – the full input
file can be found again in the appendix – we have verified that the five logical
formulae in (11) in fact are equivalent to their relation-algebraic counterparts.
Unfortunately, our experiments show that Prover9 does not always find a proof
or needs long running times. This is due to two reasons: (a) proving equivalences
is often hard, not only for theorem provers, but also for human beings, and (b)
Prover9 does not have further knowledge about the operators (as above). Hence,
Prover9 needs to derive all facts needed, but it might also derive useless facts,
such as “towers” of transpositions. By the latter we mean that Prover9 searches
the search space and derives formulae such as

(x, y) ∈ R ⇔ (x, y) ∈ RTT ⇔ (x, y) ∈ RTTTT

⇔ . . .

Splitting equivalences into two implications is an easy solution for problem (a).
Moreover, this strategy can easily be automated by a preparation step while
generating the input file for Prover9. Often this improves the running times of
Prover9 drastically. For problem (b) there are two different approaches. The first
one requires the addition of auxiliary lemmas, as we did in Section 3.2. However,
for the proofs presented in this section there is a more generic way. When aiming
at the proof for the formula

(∀x, y : (x, y) ∈ R⇒ (x, y) ∈ S) ⇔ R ⊆ S,

it is unlikely that Prover9 requires facts about the operations ∪, ∩, , or T.
Hence the corresponding axioms can be dropped. A quick check with Mace4 can
show whether one of the skipped equivalences is needed – this is not the case for
our experiments. Using the latter strategy, all but one of the above mentioned
five equivalences can be proven in nearly no time. Only one equivalence needs
to be split into implications. The results are summarised in Table 5.

Automated Verification of Relational While-Programs 185

4 Lessons Learned

In the present paper, we aimed at proof automation and proof assistance for the
assertion-based verification of simple relational while-programs. Overall the ex-
periments performed have been successful and our experience was often positive.
However, there are some lessons to be learned when following this approach. The
most important ones are discussed in this section.

All automated theorem proving systems depend on the axioms, given as input.
If there are too few, many auxiliary facts need to be derived on the fly; if there are
too many, the search space explodes and the system probably will not terminate.
When starting our experiments, we used a minimal set of axioms only. We noticed
that this set was far too small. So, we added a couple of further well-known
laws, such as monotonicity and (sub-)distributivity laws – all these facts can be
proven automatically by Prover9; see [16]. It turned out that we found a good
set of axioms. With this extended set, our second example could be verified fully
automatically and the first one only failed for one goal, which could be proven
after we added the three laws of Table 1.

Although Prover9 helps a lot, it cannot be expected that a proof for every
(true) fact can be found. It is well known that full automatisation is undecidable
for relation algebra. Moreover, many researcher often spent years to find single
proofs of difficult theorems – how could an automatic tool like Prover9 do it
within a couple of minutes? However, theorem provers can help in verifying
proofs of low or medium complexity. Those proofs often occur if induction on
the structure of certain objects is used. As a consequence, a researcher can leave
the easy theorems to the tool and can concentrate on “hard” tasks and the basic
strategies for their proofs.

When experimenting, often hypotheses appear which are supposed to be true,
but in fact are false. If, as in our case, counterexample generators (here Mace4)
work on the same input files, they can be used to falsify hypotheses. We some-
times believed that a loop-invariant or another property is true, but in fact a
certain formula was missing – this saves time of the researcher.

If a property is defined by a list of formulae, such as in our examples to be
a point, then the definition of a corresponding predicate makes things much
more readable. The same holds for the definition of auxiliary operations via cer-
tain properties. During our investigations we noticed that Prover9 unfolds such
definitions rather late to keep the sets of formulae it has to treat small. Unfortu-
nately, this strategy may lead to very large running times and a proof even may
fail since certain rules cannot be applied. In such situations an unfolding of the
definitions by the user (or by a preprocessing tool) led to success.

Since Prover9 does not support types, during all our experiments we have
been responsible for the correct typing. We usually work within heterogeneous
relation algebra in the sense of [22,23]. Therefore, typing was no problem and
the rare typing errors immediately have been discovered and corrected with the
help of Mace4 or RelView experiments.

186 R. Berghammer, P. Höfner, and I. Stucke

5 Conclusion and Outlook

In this paper, we have shown that program verification can sometimes be achieved
by the use of automated theorem provers. In particular, we have followed an
approach that automatically verifies imperative programs for relation-based dis-
crete structures by combining relation algebra, the assertion-based technique
and the automated theorem prover Prover9. By this, we have been able to prove
the correctness of a relational program for determining the reflexive-transitive
closure and of a relational topological sorting program. We have also treated the
automatic verification of the equivalence of the common logical and the relation-
algebraic specifications of the properties used in our example (and elsewhere in
a similar context).

So far we have only considered relations as data structures. These data struc-
tures can be used for algorithms working on many discrete structures, for in-
stance those mentioned in the introduction. However, relation algebra is lim-
ited and cannot, for example, reason about words, regular expressions, paths in
graphs, and weighted graphs. Reasoning on these structures is often done by
calculations on (variants of) Kleene algebra. Since Kleene algebra is also suited
for automated theorem provers (see e.g., [15]), we plan to extend our class of
algorithms to Kleene-algebraic data structures.

Presently, we manually generate the loop-invariants. In doing so, the main
formulae (e.g. Inv2(S, v) to Inv6(S) in case of topological sorting) constitute for-
malisations of the ideas behind the algorithms and are frequently obtained via
suitable generalisations of the post-conditions. Based on them, the auxiliary for-
mulae (the remaining ones in case of topological sorting) are usually discovered
when trying to verify that the main formulae are maintained by the loop-bodies.
For the latter, the tools Mace4 (for generating counterexamples) and RelView
(for program evaluation, animation, and visualisation of relations) proved to be
very useful. Under this point of view, our approach consists in the computer-
supported application of the fundamental principle that “a program and its cor-
rectness proof should be developed hand-in-hand with the proof usually leading
the way” (cf. [13], p. 164).

If program verification is done using the level of informality common to usual
human-produced mathematical proofs, then the facts specified by the above
mentioned auxiliary formulae may be overlooked and this may lead to subtle
errors. We believe that our approach, as all computer-aided formal methods
of programming, leads to results with a much greater mathematical certainty.
Hence it increases the confidence.

Although the generation of loop-invariants is in general hard (or even infea-
sible), techniques for automatically testing and generating loop-invariants and
intermediate assertions have been developed since the middle of the 1970s. They
are tailored to specific applications and assume a specific structure of the pro-
grams and the used assertions. The applied techniques frequently stem from
program analysis and computer algebra; see e.g., [21,19]. Apart from automati-
cally testing loop-invariants via Mace4 and RelView, presently we do not use
such ideas. However, the automated testing and generation of loop-invariants

Automated Verification of Relational While-Programs 187

and intermediate assertions in case of relational programs is part of future work.
We hope that algebraic expressions support such tasks, in particular in cases
where algebra leads to nice properties and clear structures.

As we have mentioned in Section 4, we usually work within heterogeneous
relation algebra where each relation has a distinct type. For reasons of efficiency,
in such a setting a vector usually has a type X↔1, with 1 as a specific single-
ton set, i.e., corresponds to a Boolean column vector. To get along with such
situations and to benefit from the advantages of types, w.r.t. the preventation
and detection of errors, the extension of our approach to heterogeneous relation
algebra is planned for the future, too.

Acknowledgement. We thank the anonymous referees for their valuable com-
ments that helped to improve the paper. NICTA is funded by the Australian
Government through the Department of Communications and the Australian
Research Council through the ICT Centre of Excellence Program.

References

1. Berghammer, R.: Combining relational calculus and the Dijkstra-Gries method for
deriving relational programs. Information Sciences 119, 155–171 (1999)

2. Berghammer, R., Hoffmann, T.: Deriving relational programs for computing kernels
by reconstructing a proof of Richardson’s theorem. Science of Computer Program-
ming 38, 1–25 (2000)

3. Berghammer, R., Hoffmann, T.: Relational depth-first-search with applications.
Information Sciences 139, 167–186 (2001)

4. Berghammer, R.: Applying relation algebra and Rel View to solve problems on
orders and lattices. Acta Informatica 45, 211–236 (2008)

5. Berghammer, R., Struth, G.: On automated program construction and verifica-
tion. In: Bolduc, C., Desharnais, J., Ktari, B. (eds.) MPC 2010. LNCS, vol. 6120,
pp. 22–41. Springer, Heidelberg (2010)

6. Berghammer, R., Fischer, S.: Simple rectangle-based functional programs for com-
puting reflexive-transitive closures. In: Kahl, W., Griffin, T.G. (eds.) RAMiCS
2012. LNCS, vol. 7560, pp. 114–129. Springer, Heidelberg (2012)

7. Bibel, W., Schmitt, P.: Automated deduction: A basis for applications. Applied
Logic Series. Kluwer (1998)

8. Chin, L.H., Tarski, A.: Distributive and modular laws in the arithmetic of relation
algebras. Univ. of California Publ. Math. (new series) 1, 341–384 (1951)

9. Dang, H.H., Höfner, P.: First-order theorem prover evaluation w.r.t. relation- and
Kleene algebra. In: Berghammer, R., Möller, B., Struth, G. (eds.) Relations and
Kleene Algebra in Computer Science – Ph.D. Programme at RelMiCS 10/AKA
05. Technical Report 2008-04, Institut für Informatik, Universität Augsburg, 48-52
(2008)

10. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Communications of the ACM 18, 453–457 (1975)

11. Dijkstra, E.W.: A discipline of programming. Prentice-Hall (1976)
12. Foster, S., Struth, G., Weber, T.: Automated engineering of relational and algebraic

methods in Isabelle/HOL (invited Tutorial). In: de Swart, H. (ed.) RAMiCS 2011.
LNCS, vol. 6663, pp. 52–67. Springer, Heidelberg (2011)

188 R. Berghammer, P. Höfner, and I. Stucke

13. Gries, D.: The science of computer programming. Springer (1981)
14. Hattensperger, C., Berghammer, R., Schmidt, G.: RALF – A relation-algebraic

formula manipulation system and proof checker. In: Nivat, M., Rattray, C., Rus,
T., Scollo, G. (eds.) Algebraic Methodology and Software Technology. Workshops
in Computing, pp. 407–408. Springer (1993)

15. Höfner, P., Struth,G.: Automated reasoning inKleeneAlgebra. In: Pfenning, F. (ed.)
CADE 2007. LNCS (LNAI), vol. 4603, pp. 279–294. Springer, Heidelberg (2007)

16. Höfner, P., Struth, G.: On automating the calculus of relations. In: Armando,
A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195,
pp. 50–66. Springer, Heidelberg (2008)

17. Kahl, W.: Calculational relation-algebraic proofs in Isabelle/Isar. In: Bergham-
mer, R., Möller, B., Struth, G. (eds.) RelMiCS/Kleene-Algebra Ws 2003. LNCS,
vol. 3051, pp. 178–190. Springer, Heidelberg (2004)

18. Kahn, A.B.: Topological sorting of large networks. Communications of the ACM 5,
558–562 (1962)

19. Kovács, L.: Invariant generation for P -solvable loops with assignments. In: Hirsch,
E.A., Razborov, A.A., Semenov, A., Slissenko, A. (eds.) CSR 2008. LNCS,
vol. 5010, pp. 349–359. Springer, Heidelberg (2008)

20. MacCaull, W., Or�lowska, E.: Correspondence results for relational proof systems
with application to the Lambek calculus. Studia Logica 71(3), 389–414 (2002)

21. Müller-Olm, M., Seidl, H.: Computing polynomial program invariants. Information
Processing Letters 91(5), 233–244 (2004)

22. Schmidt, G., Ströhlein, T.: Relations and graphs, Discrete mathematics for com-
puter scientists. EATCS Monographs on Theoretical Computer Science. Springer
(1993)

23. Schmidt, G.: Relational mathematics. Encyclopedia of Mathematics and its Appli-
cations, vol. 132. Cambridge University Press (2010)

24. Schumann, J.: Automated theorem proving in software engineering. Springer (2001)
25. Sinz, C.: System description: ARA – An automated theorem prover for relation al-

gebras. In: McAllester, D. (ed.) CADE-17. LNCS (LNAI), vol. 1831, pp. 177–182.
Springer, Heidelberg (2000)

26. Tarski, A.: On the calculus of relations. Journal of Symbolic Logic 6(3), 73–89
(1941)

27. Tarski, A., Givant, S.: A formalization of set theory without variables, vol. 41.
AMS Colloquium Publications (1987)

28. von Oheimb, D., Gritzner, T.F.: RALL: Machine-supported proofs for relation
algebra. In: McCune, W. (ed.) CADE 1997. LNCS (LNAI), vol. 1249, pp. 380–394.
Springer, Heidelberg (1997)

29. Weidenbach, C., Schmidt, R.A., Hillenbrand, T., Rusev, R., Topic, D.: System
description: SPASS version 3.0. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI),
vol. 4603, pp. 514–520. Springer, Heidelberg (2007)

30. Rel View homepage: http://www.informatik.uni-kiel.de/~progsys/relview/
(accessed April 30, 2013)

31. McCune, W.W.: Prover9 and Mace4., http://www.cs.unm.edu/~mccune/prover9
(accessed April 30, 2013)

A Prover9 Templates

This appendix contains two templates to be used with Prover9. The first one
specifies relation algebra.

http://www.informatik.uni-kiel.de/~progsys/relview/
http://www.cs.unm.edu/~mccune/prover9

Automated Verification of Relational While-Programs 189

% LANGUAGE SPECIFICATION

op(500, infix, "\/"). % union

op(490, infix, "/\"). % intersection

op(700, infix, "<="). % inclusion

op(480, postfix, "*"). % composition (not Kleene star)

op(300, postfix, "’"). % complementation

op(300, postfix, "^"). % transposition

% AXIOMS

formulas(sos).

% axioms of Boolean algebra %

%commutativity

x \/ y = y \/ x.

x /\ y = y /\ x.

%associativity

x \/ (y \/ z) = (x \/ y) \/ z.

x /\ (y /\ z) = (x /\ y) /\ z.

%absorpotion

x \/ (y /\ x) = x.

x /\ (y \/ x) = x.

% ordering

x <= y <-> x \/ y = y.

x <= y <-> x /\ y = x.

%distributivity

x /\ (y \/ z) = (x /\ y) \/ (x /\ z).

x \/ (y /\ z) = (x \/ y) /\ (x \/ z).

%constants

L = x \/ x’.

O = x /\ x’.

% composition %

x * (y * z) = (x * y) * z.

x * I = x.

I * x = x.

% Schroeder/Dedekind %

x* y /\ z <= (x /\ z* y^) * (y /\ x^* z).

x* y <= z <-> x^ * z’<= y’.

x* y <= z <-> z’ * y^ <= x’.

% standard axioms for finite iteration (Kleene star) %

%unfold laws

I \/ x * rtc(x) = rtc(x).

I \/ rtc(x) * x = rtc(x).

%induction

x * y \/ z <= y -> rtc(x) * z <= y.

y * x \/ z <= y -> z * rtc(x) <= y.

end_of_list.

% CONJECTURE

formulas(goals).

%lemma to be proved

end_of_list.

190 R. Berghammer, P. Höfner, and I. Stucke

Although Prover9 accepts capital letters as variable symbols, such as Q, R,
and S, this template uses the small letters x, y, and z for variables. The reason
for this renaming is that the latter variable names are automatically qualified
by Prover9, i.e., they can be used without using the keyword all.

The second template establishes the relation between local and relation-
algebraic specifications (see Section 3.4).

% LANGUAGE SPECIFICATION %--as above--%

% AXIOMS

formulas(sos).

% in()-predicate

%operations

all R all S (in(x,y,R \/ S) <-> (in(x,y,R) | in(x,y,S))).

all R all S (in(x,y,R /\ S) <-> (in(x,y,R) & in(x,y,S))).

all R all S (in(x,y,R * S) <-> exists z (in(x,z,R) & in(z,y,S))).

all R (in(x,y,R’) <-> -(in(x,y,R))).

all R (in(x,y,R^) <-> in(y,x,R)).

%constants

in(x,y,I) <-> x=y.

-(in(x,y,O)).

in(x,y,L).

%inclusion and equality

all R all S (R == S <-> (R <= S & S <= R)).

all R all S (R <= S <-> (all x all y (in(x,y,R) -> in(x,y,S)))).

end_of_list.

% CONJECTURE %--as above--%

On Faults and Faulty Programs�

Ali Mili1, Marcelo F. Frias2, and Ali Jaoua3

1 New Jersey Institute of Technology, USA
2 Instituto Tecnológico de Buenos Aires (ITBA), and CONICET, Argentina

3 Qatar University, Qatar
ali.mili@njit.edu, mfrias@itba.edu.ar, jaoua@qu.edu.qa

Abstract. A fault is an attribute of a program that precludes it from
satisfying its specification; while this definition may sound clear-cut, it
leaves many details unspecified. An incorrect program may be corrected
in many different ways, involving different numbers of modifications.
Hence neither the location nor the number of of faults may be defined
in a unique manner; this, in turn, sheds a cloud of uncertainty on such
concepts as fault density, and fault forecasting. In this paper, we present
a more precise definition of a program fault, that has the following prop-
erties: it recognizes that the same incorrect behavior may be remedied
in more than one way; it recognizes that removing a fault does not nec-
essarily make the program correct, but may make it less incorrect (in a
sense to be defined); it characterizes fault removals that make the pro-
gram less incorrect, as opposed to fault removals that may remedy one
aspect of program behavior at the expense of others; it recognizes that
isolating a fault in a program is based on implicit assumptions about
the remaining program parts; it identifies instances when a fault may be
localized in a program with absolute certainty.

Keywords: faults, faulty programs, correctness, relative correctness, re-
finement, contingent fault, definite fault, fault removal, monotonic fault
removal.

1 Introduction: Faults, an Evasive Concept

In [ALRL04, Lap04], Avizienis et. al. present a comprehensive survey of im-
portant concepts in dependable and secure computing, including definitions of
these concepts, an investigation of their relevant attributes, and a discussion of
the means that can be deployed to affect these attributes; this refines earlier
work produced by Laprie [Lap91, Lap95]. At the center of these studies lies a
hierarchy of concepts that includes: failure, error, and fault. A failure of a sys-
tem is the event when the system fails to deliver the services that it is intended
to provide; an error of the system is a deviation of the system’s state from its
intended value (a precursor to a possible failure); a fault of the system is the

� Acknowledgement: This publication was made possible by a grant from the Qatar
National Research Fund, NPRP04-1109-1-174. Its contents are solely the responsi-
bility of the authors and do not necessarily represent the official views of the QNRF.

P. Höfner et al. (Eds.): RAMiCS 2014, LNCS 8428, pp. 191–207, 2014.
c© Springer International Publishing Switzerland 2014

192 A. Mili, M.F. Frias, and A. Jaoua

adjudged or hypothesized cause of an error. Interpreting these definitions in the
specific context of software, we find that we can easily define a software failure,
as the event when a program fails to behave according to its specification. From
this definition, we can define software errors and software faults as follows:

– A software error is the event when the state of the program deviates from
its expected value at a given stage in the execution of the program.

– A software fault is a feature of a program that causes it to generate errors
in some circumstances.

The definition of an error assumes that we have a precise characterization of
correct states at each stage of the computation; and the definition of a fault
assumes that we have a precise specification of each program part. Neither of
these assumptions is legitimate, as they both refer to a detailed hypothetical
design of the program, that has no official existence (except possibly in the
mind of the designer), hence has not been vetted and documented. In practice
all we have in general is the overall specification of the software product.

Also, we find that in practice, the same program malfunction can be blamed
on a number of possible faulty statements, and can be corrected in a number of
different ways, involving different numbers of modifications. This makes it difficult
to define what a fault is, and difficult to assign precise meanings to such common
concepts as fault density, fault forecasting, fault removal, etc. In this paper, we
propose an approach to define faults, on the basis of the following premises:

– The definition of a fault in a program depends primarily on two parameters:
• The specification of the program, which determines the standard that
we use to judge correct behavior;

• The structure of the program, which determines, depending on its level of
granularity, the precision with which we wish to localize / isolate faults.

– To the extent that what precludes a program from being correct may be a
combination of statements, a single statement, or even no statement at all
(e.g. a missing statement), we ought to define a fault in such a way that it
does not refer to a single statement, but may refer in general to any program
part or a combination of program parts.

– To the extent that a faulty program behavior may be remedied in more
than one way, designating a program part as faulty is often a discretionary
decision, contingent upon assumptions about other parts of the program.

– There are cases when a program part can be deemed to be faulty regardless of
other parts; we refer to these situations as definite faults, and we characterize
them mathematically.

– Implicit in the concept of a fault is the idea that the program would be
better off without it; to give meaning to the property of being better off,
we introduce the concept of relative correctness, which we define formally;
also, we highlight interesting relationships between relative correctness and
traditional refinement.

– Removing a fault does not necessarily make a program correct, since there
may be other faults elsewhere; but it ought to make it less incorrect/ or more

On Faults and Faulty Programs 193

correct, as we alluded above. Using this property, we introduce the concept
of monotonic fault removal.

In section 2 we briefly present elements of relational mathematics, then a simple
framework for program analysis. In sections 3 and 4 we define, respectively,
contingent faults, i.e. faults that are contingent upon hypotheses on other parts
of the program, and definite faults, i.e. faults that preclude the correctness of
the program regardless of what assumptions one makes about other program
components. We conclude in section 5 with some insights and prospects.

2 A Framework for Program Analysis

2.1 Relational Notations

In this section, we introduce some elements of relational mathematics that we
use in the remainder of the paper to carry out our discussions. Dealing with
programs, we represent sets using a programming-like notation, by introducing
variable names and associated data type (sets of values). For example, if we
represent set S by the variable declarations

x : X ; y : Y ; z : Z,
then S is the Cartesian product X × Y × Z. Elements of S are denoted in
lower case s, and are triplets of elements of X , Y , and Z. Given an element
s of S, we represent its X-component by x(s), its Y -component by y(s), and
its Z-component by z(s). A relation on S is a subset of the Cartesian product
S × S; given a pair (s, s′) in R, we say that s′ is an image of s by R. Special
relations on S include the universal relation L = S × S, the identity relation
I = {(s, s′)|s′ = s}, and the empty relation φ = {}. Operations on relations (say,
R and R′) include the set theoretic operations of union (R ∪ R′), intersection
(R∩R′), difference (R\R′) and complement (R). They also include the relational
product, denoted by (R ◦R′), or (RR′, for short) and defined by:

RR′ = {(s, s′)|∃s′′ : (s, s′′) ∈ R ∧ (s′′, s′) ∈ R′}.

The power of relation R is denoted by Rn, for a natural number n, and defined
by R0 = I, and for n > 0, Rn = R ◦ Rn−1. The reflexive transitive closure of
relation R is denoted by R∗ and defined by R∗ = {(s, s′)|∃n ≥ 0 : (s, s′) ∈ Rn}.
The converse of relation R is the relation denoted by �R and defined by

�R = {(s, s′)|(s′, s) ∈ R}.

Finally, the domain of a relation R is defined as the set dom(R) = {s|∃s′ :
(s, s′) ∈ R}, and the range of relation R is defined as the domain of �R. A
relation R is said to be reflexive if and only if I ⊆ R, antisymmetric if and only
if (R ∩ �R) ⊆ I, and transitive if and only if RR ⊆ R. A relation is said to be a
partial ordering if and only if it is reflexive, antisymmetric, and transitive. Also,
a relation R is said to be total if and only if I ⊆ R �R, and a relation R is said to
be deterministic (or: a function) if and only if �RR ⊆ I. A relation R is said to

194 A. Mili, M.F. Frias, and A. Jaoua

be a vector if and only if RL = R; a vector on space S is a relation of the form
R = A × S, for some subset A of S; we use vectors to represent subsets of S,
and we may by abuse of notation write s ∈ R to mean s ∈ A.

2.2 Relational Semantics

For the purposes of our discusions, we consider a simple programming notation
that includes variable declarations, in the syntax discussed above, as well as a
number of C-like executable statements. The semantics of variables declarations
are simply to define the state space of the program, in the way we discussed
above; as for the semantics of executable statements, we define them by means
of a relation that captures the effect of the execution on the state of the program.
Given a program or program part g, we let its semantics be represented by [g]
and defined by: [g]= {(s, s′)|if execution of g starts in state s then it terminates
normally in state s′}.

We present the following executable statements, along with their semantic
definition.

– Assignment Statements have the form s=E(s), where s is a shorthand for
the program variables, and E(s) is an expression that involves the program
variables. We define the semantics of assignment statements as follows:
[s = E(s)] = {(s, s′)|s ∈ def(E) ∧ s′ = E(s)},
where def(E) is the set of states where expression E(s) can be evaluated.

– Sequence has the form {g1; g2}; its semantics is defined by:
[g1; g2] = [g1] ◦ [g2].

– Alternation has the form {if (t) {g1} else {g2}} and the following se-
mantic definition:
[{if(t){g1}else{g2}}] = T ∩ [g1] ∪ T ∩ [g2],
where T = {(s, s′)|t(s)}.

– Conditional has the form {if (t) {g1}} and the following semantic defini-
tion: [{if (t) {g1}}]=T ∩ [g1] ∪ T ∩ I.

– Iteration has the form {while (t) {b}} and the following semantic defini-
tion:
[{while(t){b}}] = (T ∩ [b])∗ ∩ �T .

– The skip statement is written as skip and its semantics is defined as the
identity relation I on S. This statement is useful for our purposes as a
placeholder for faults that result from missing statements.

As a notational convention, we use lower case letters (possibly indexed) to rep-
resent programs or program parts, and we use the same letters in upper case to
represent the relational semantic denotation of these programs or progrma parts.
Using these semantic rules, we can represent a C-like program by a relational
expression, at an arbitrary level of abstraction. For illustration, we consider the
following program, taken from [GSAGvG11] (with some modifications):

On Faults and Faulty Programs 195

#include <iostream> line 1

void count (char q[]) {int let, dig, other, i, l; char c; 2

i=0; let=0; dig=0; other=0; l=strlen(q); // body init 3

while (i<l) { // cond t 4

c = q[i]; // body b0 5

if (’A’<=c && ’Z’>c) let+=2; // cond c1, body b1 6

else 7

if (’a’<=c && ’z’>=c) let+=1; // cond c2, body b2 8

else 9

if (’0’<=c && ’9’>=c) dig+=1; // cond c3, body b3 10

else 11

other+=1; // body b4 12

i++;} // body inc 13

printf ("%d %d %d\n", let, dig, other);} // body p 14

At a top level, we can view this as an initialized loop, and represent it by the
following relational expression:

COUNT = INIT ◦ ((T ∩B)∗ ∩ �T) ◦ P.

At this level of abstraction, the whole loop body is viewed as a monolith; if we
want finer grained fault localization, we may want to look into the structure of
B, and we find:

B = B0 ◦NEST ◦ INC,

where NEST represents the semantics of the nested if-then-else statement in
the middle of the loop body. If we want to refine the fault localization to a finer
grain scale, we further decompose relation NEST , as follows:

NEST = (C1 ∩B1) ∪ C1 ∩ ((C2 ∩B2) ∪ C2 ∩ ((C3 ∩B3) ∪C3 ∩B4)).

We can refine this decomposition further if we wish to distinguish between the
conjuncts of the ”if” conditions; for example, if we let C11 and C12 be the
vectors defined by the conditions (’A’<=c) and (’Z’>c), then we can write:

C1 = C11 ∩ C12.

More generally, we consider that we can capture the semantics of any program
g by means of a relational expression of the form

G = θ(G1, G2, G3, ...Gn),

where each term Gi of the expression represents a program part (statement,
condition, compound statement, etc), whose scale depends on the precision we
wish to achieve in localizing faults. Before we define the concept of fault, we
need to discuss correctness and relative correctness; these are the subject of the
next section.

196 A. Mili, M.F. Frias, and A. Jaoua

2.3 Correctness and Relative Correctness

We define a partial ordering between relations under the name refinement as
follows.

Definition 2.1. Refinement, due to [BEM92]. Let R and R′ be two rela-
tions on set S. We say that R refines relation R′ (and we write: R 2 R′) if and
only if: RL ∩R′L ∩ (R ∪R′) = R′.

Intuitively, R refines R′ if and only if it has a larger domain than R′, and for
all elements in the domain of R′, the set of images by R is a subset of the set
of images by R′. We admit without proof that this relation is a partial ordering
between relations, and we refer to it as the refinement ordering. The following
Proposition stems readily from the definition, hence is presented without proof.

Proposition 2.2. If R and R′ have the same domain, then R refines R′ if and
only if R ⊆ R′; on the other hand, if R and R′ are deterministic, then R refines
R′ if and only if R′ ⊆ R.

In the following definition, we use the refinement ordering to define the property
of correctness, from which we infer (a first approximation) of the concept of fault.
For the sake of simplicity, we limit our discussions in this paper to deterministic
programs, whose relational semantics are captured by a function.

Definition 2.3. Correctness. Given a program g on space S, whose function
is denoted by G, and given a relation R on S, we say that g is correct with respect
to R if and only if G refines R. Program g is said to be faulty with respect to R
if and only if it is not correct with respect to R.

Of course, defining faulty programs as non-correct programs is incomplete: first,
we are interested in ways to localize faults on as small a scale as possible; second,
we want to characterize the stepwise progression of a faulty program from a faulty
state to a fault-free state. The following definition gives us the means to these
effects.

Definition 2.4. Relative Correctness. Given a relation R on space S and
two programs g and g’ on space S, we say that g is more-correct than g’ with
respect to R if and only if

(G ∩R)L ⊇ (G′ ∩R)L.

Also, we say that g is strictly-more-correct than g’ with respect to R if and only
if

(G ∩R)L ⊃ (G′ ∩R)L.

Intuitive interpretation of this definition: Given that G represents the function
of a deterministic program, (G∩R)L represents (by a vector) the set of (initial)
states for which G delivers a correct (with respect to R) final state. A program
is all the more correct with respect to a specification R that this set is larger;

On Faults and Faulty Programs 197

a simple illustration is given in Figure 1. Note that being more-correct does not
(necessarily) mean being a superset, nor (necessarily) having a larger domain,
as shown by this Figure. Note also that the relation more-correct if reflexive and
transitive but is not antisymmetric: two programs g and g′ can be in relation
with each other and still be distinct; in particular, all correct programs with
respect to a specification R are in more-correct relation with each other.

6 6 6 6 6 6

5 5 5 5 5 5

4 4 4 4 4 4

3 3 3 3 3 3

2 2 2 2 2 2

1 1 1 1 1 1

�����������

����������

�����������

����������

�����������

����������

�����������

����������

������������������������������

����������

����������

����������

									

R g g’

Fig. 1. Program g is more-correct with respect to R than program g’

The following Proposition presents some results about relative correctness,
and its relation to correctness and refinement.

Proposition 2.5. Let R be a relation on set S and let g and g’ be programs on
space S. We have the following propositions:

1. Program g is correct with respect to R if and only if (R ∩G)L = RL.
2. If program g is correct with respect to R, then it is more-correct than any

program g’ with respect to R.
3. If program g is correct with respect to R, and program g’ is not, then g is

strictly-more-correct than g’ with respect to R.
4. If and only if G refines G′, program g is more-correct than program g’ with

respect to any specification R.

Proof. We consider the clauses of this Proposition in turn.

1. This result is due to [MDM94]. Its interest, for our purposes, is to show that
correctness is an extreme case of relative correctness: Among all candidate
programs for correctness with respect to R, those that maximize the expres-
sion (R ∩ G)L are correct; because (R ∩ G)L is by construction a subset
of RL, the maximum value it may take is RL, and it does so for correct
programs.

2. This results immediately from the first item: From (R ∩ G)L = RL (by
hypothesis) and from (R∩G′)L ⊆ RL (by construction) we infer (R∩G)L ⊆
(R ∩G′)L, whence g is more-correct than g’.

198 A. Mili, M.F. Frias, and A. Jaoua

3. If g’ is not correct, then (by item 1), (R∩G′)L �= RL, hence (by construction)
(R ∩ G′)L ⊂ RL; substituting RL by (R ∩ G)L, we find that g is strictly-
more-correct than g’.

4. Proof of Sufficiency: If G refines G′ then, by Proposition 2.2, G is a super-
set of G′ (since we assume that G and G′ are deterministic). We infer, by
construction, that (R ∩ G)L ⊇ (R ∩ G′)L, for any relation R; whence g is
more-correct than g’ with respect to R.
Proof of Necessity: To prove that G refines G′, it suffices to prove that G is
a superset of G′ (since they are both deterministic); to do so, it suffices to
prove that G∩G′ is the same as G′; to prove that two functions (in this case
G ∩G′ and G′) are identical, it suffices to prove that G ∩G′ ⊆ G′, and that
G′L ⊆ (G ∩G′)L. The first clause stems from set theory; the second clause
stems from the hypothesis that g is more-correct than g’ with respect to
any specification R, by taking R = G′.

qed

Clause 4 of this Proposition is of particular interest to us, because it portrays
refinement as an extreme case of relative correctness; or, conversely, that rela-
tive correctness is a pointwise case of refinement. Whereas relative correctness
is a tripartite relationship (involving G, G′ and R), refinement is a bipartite
relationship (involving only G and G′, and quantifying universally over R).

Whereas so far we have analyzed programs as monoliths, in the next section
we consider their finer grained structure, so as to analyze their faults at an
arbitrarily small scale.

3 Faults and Fault Removals

3.1 Faults, An Evasive Concept

We use the sample program introduced in section 2.2 to illustrate the difficulty
of characterizing and enumerating faults.

#include <iostream> line 1

void count (char q[]) {int let, dig, other, i, l; char c; 2

i=0; let=0; dig=0; other=0; l=strlen(q); // body init 3

while (i<l) { // cond t 4

c = q[i]; // body b0 5

if (’A’<=c && ’Z’>c) let+=2; // cond c1, body b1 6

else 7

if (’a’<=c && ’z’>=c) let+=1; // cond c2, body b2 8

else 9

if (’0’<=c && ’9’>=c) dig+=1; // cond c3, body b3 10

else 11

other+=1; // body b4 12

i++;} // body inc 13

printf ("%d %d %d\n", let, dig, other);} // body p 14

On Faults and Faulty Programs 199

Upon looking at this program, one may be tempted to consider that condition c1

and assignment b1 are faulty, but as we discussed in section 1, faults are defined
with respect to specifications. Hence, we begin by writing down some sample
specifications, then discuss faults accordingly. We define the following sets:

– αA =′ A′ . . .′ Z ′.
– αa =′ a′ . . .′ z′.
– ν =′ 0′ . . .′ 9′.
– σ = {′+′,′−′,′=′, ...′/′}, the set of all the ascii symbols.

We let list〈T 〉 denote the set of lists of elements of type T, and we let #A, #a,
#ν and #σ be the functions that to each list l assign (respectively) the number
of upper case alphabetic characters, lower case alphabetic characters, numeric
digits and symbols; also, we let #α be defined as #α(l) = #a(l) + #A(l), for
an arbitrary list l. Before we write possible specifications against which we may
analyze this program, we must first define its space. We let the space of this
program be defined by all the variables declared in line 2. Also, by virtue of
the include statement of line 1, we add a variable of type stream, that serves
as the stream variable of the output file. We let this variable be named os (for
output stream), we assume (for the purposes of our example) that the stream is
a sequence of natural numbers, and we define the following operations:

– Tail: if os is not empty, then tail(os) is the most recently added number
written onto os.

– Rest: if os is not empty, then rest(os) is the stream obtained by removing
the tail of os.

– n-th Tail: if os has at least n elements, then tailn(os) is defined as
tail(restn−1(os)).

– Append: given a stream os and a natural number n, we let os ⊕ n be the
stream obtained by appending n to os.

Using these notations, we can write the following specifications on S:

– R0 = {(s, s′)|q ∈ list〈αA ∪αa ∪ ν ∪ σ〉 ∧ os′ = os⊕#α(q)⊕#ν(q)⊕#σ(q)}.
– R1 = {(s, s′)|q ∈ list〈αa ∪ ν ∪ σ〉 ∧ os′ = os⊕#α(q)⊕#ν(q)⊕#σ(q)}.
– R2 = {(s, s′)|q ∈ list〈αA ∪ ν ∪ σ〉 ∧ os′ = os⊕#α(q)⊕#ν(q)⊕#σ(q)}.
– R3 = {(s, s′)|q ∈ list〈αA∪ν∪σ\{′Z ′}〉∧os′ = os⊕#α(q)⊕#ν(q)⊕#σ(q)}.
– R4 = {(s, s′)|q ∈ list〈αA ∪ ν ∪ σ〉 ∧ tail2(os′) = #ν(q) ∧ tail(os′) = #σ(q)}.
– R5 = {(s, s′)|q ∈ list〈αA ∪ αa ∪ ν ∪ σ〉 ∧ tail2(os′) = #ν(q)}.

We briefly analyze this program with respect to the specifications put forth
above:

– R0: Condition c1 ought to be changed to (’A’<=c && ’Z’>=c) and state-
ment b1 ought to be changed to let+=1. Alternatively, we can change condi-
tion c1 to (’A’<=c && ’Z’>=c), change statement b2 to let+=2 and change
statement p (line 14) to printf("%d %d %d n", let/2, dig, other);. Al-
ternatively, we can change condition c1 to (’A’<=c && ’Z’>=c), change
statement b2 to let+=2 and add the missing statement let=let/2; between
lines 13 and 14.

200 A. Mili, M.F. Frias, and A. Jaoua

– R1: The program is correct with respect to specification R1, hence it has no
faults.

– R2: Condition c1 ought to be changed to (’A’<=c && ’Z’>=c) and state-
ment b1 ought to be changed to let+=1. Alternatively, we can change state-
ment p (line 14) to printf("%d %d %d n", let/2, dig, other);. Alter-
natively, we can change condition c1 to (’A’<=c && ’Z’>=c), and add the
missing statement let=let/2; between lines 13 and 14.

– R3: Statement b1 ought to be changed to let+=1. Alternatively, we can
change statement p (line 14) to printf("%d%d %d n",let/2,dig,other);.
Alternatively, we can add the missing statement let=let/2; between lines
13 and 14.

– R4: Condition c1 ought to be changed to (’A’<=c && ’Z’>=c). Alterna-
tively, we can change statement b4 (line 12) to if (symbol(c)) other+=1;;
this prevents occurrences of ’Z’ from being counted as symbols.

– R5: The program is correct with respect to specification R5, hence it has no
faults.

The foregoing discussion highlights the extent to which fault diagnosis is depen-
dent on the specification; most importantly, it highlights the fact that, for a given
specification, neither the number nor the location of the possible corrections is
determined. A definition of faults must acknowledge this non-determinacy and
make provisions for it.

3.2 Contingent Faults

Definition 3.1. Contingent Faults. Let g be a program on space S, and let
θ(G1, G2, G3, ...Gn) be a relational representation of program g at a given level of
granularity. We say that Gi is a fault of program g with respect to specification R
if and only if there exists a relation G′i on S such that θ(G1, G2, G3, ..., G

′
i, ...Gn)

is strictly-more-correct with respect to R than θ(G1, G2, G3, ..., Gi, ...Gn).

We refer to Gi as a contingent fault because, as we have discussed in the previous
section, the same faulty program behavior may be remedied in more ways than
one; hence the choice of replacing Gi by G

′
i is to some extent discretionary. We

choose to consider Gi faulty if we assume for the time being that the other terms
of the expression are not under suspicion (a somewhat arbitrary decision). An-
other reason why faults, as defined herein, are deemed contingent: the structure
of the program, as represented by the expression θ(G1, G2, G3, ..., Gi, ...Gn), is
not under suspicion; rather individual terms of the expression are. If we wanted
to question the structure of the program rather than its components, then we
need to represent the program at a coarser level of granularity, in such a way as to
encompass the program structures that we are questioning. Note that by replac-
ing Gi by G

′
i we are not necessarily making the program correct, since the other

components too may be faulty; we are merely making it strictly-more-correct.
As to the question of why we choose the strict ordering (strictly-more-correct)
rather than the loose ordering (more-correct): choosing the latter would make

On Faults and Faulty Programs 201

every component of the relational expression a potential fault (taking G′i = Gi);
even a correct program would be full of faults.

As an illustration of this definition, we consider the sample program g in-
troduced in section 2.2 and specification R0 introduced in section 3.1. Given
that (R0 ∩ G)L represents the set of initial states on which program g satisfies
specification R0, we find:

(R0 ∩G)L = {(s, s′)|q ∈ list〈αa ∪ ν ∪ σ〉}.

Indeed, program g satisfies specification R0 only so long as there are no up-
per case alphabetic characters in q: indeed, all occurences of upper case letters
between ’A’ and ’Y’ increase let by the wrong value (2 instead of 1) and all
occurences of ’Z’ erroneously increase variable other rather than variable let. If
we let g′ be the program obtained from g by replacing statement b1 (let+=2)
by statement b1′ (let+=1), then we find:

(R0 ∩G′)L = {(s, s′)|q ∈ list〈(αA \ {′Z ′}) ∪ αa ∪ ν ∪ σ〉}.

Clearly, (R0 ∩ G′)L ⊃ (R0 ∩ G)L. Hence statement b1 (let+=1) is a fault in g
with respect to specification R0.

3.3 Monotonic Fault Removal

Just because there exists a relation G′i that makes θ(G1, G2, G3, ..., G
′
i, ...Gn)

strictly-more-correct with respect to R than θ(G1, G2, G3, ..., Gi, ...Gn) does not
mean that we can find it easily. It is all too common for an analyst to identify
a fault, replace it by another statement, only to find that the program is not
better off; it may have improved the program’s behavior on some inputs, but
made it worse on others. Whence the following definition.

Definition 3.2. Monotonic Fault Removal. Let g be a program on space S,
whose expression is θ(G1, G2, G3, ..., Gi, ...Gn) and let Gi be a contingent fault in
g. We say that the substitution of Gi by G

′
i is a monotonic fault removal if and

only if program g′ defined by θ(G1, G2, G3, ..., G
′
i, ...Gn) is strictly-more-correct

than g.

We consider again program g introduced in section 2.2, and specification R0

introduced in section 3.1. We consider the following versions of program g:

g01 The program obtained from g when we replace (let+=2) by (let+=1).
g10 The program obtained from g when we replace (’Z’>c) by (’Z’>=c).
g11 The program obtained from g when we replace (let+=2) by (let+=1) and

(’Z’>c) by (’Z’>=c).

We compute the expression (R0 ∩G)L for each candidate program, and find the
following:

– (R0 ∩G)L = {(s, s′)|q ∈ list〈αa ∪ ν ∪ σ〉}.
– (R0 ∩G01)L = {(s, s′)|q ∈ list〈(αA \ {′Z ′}) ∪ αa ∪ ν ∪ σ〉}.

202 A. Mili, M.F. Frias, and A. Jaoua

– (R0 ∩G10)L = {(s, s′)|q ∈ list〈αa ∪ ν ∪ σ〉}.
– (R0 ∩G11)L = {(s, s′)|q ∈ list〈αA ∪ αa ∪ ν ∪ σ〉}.

Figure 2 illustrates the more-correct relationships between progrms g, g01, g10,
and g11, with respect to specification R0; each ordering relationship is labeled
with the corresponding substitution. Note that the transition from g to g11
via g01 is uniformly monotonic whereas the transition from g to g11 via g10 is
not uniformly monotonic, even though the final result (g11) is the same. Do all
substitutions have to be monotonic? We argue that while it would be ideal to
ensure that each substitution is monotonic, it is sufficient to ensure that any
substitution that is not monotonic is part of a sequence of substitutions that,
together, produce a monotonic transition from a faulty program to a strictly-
more-correct program.

g

g01

g11

g10

�

�

�
�

�
�

�
�

�
�

�
�

�
�

let+=2→let+=1

’Z’>c→’Z’>=c

let+=2→let+=1

’Z’>c→’Z’>=c

Fig. 2. Monotonic and Non Monotonic Fault Removals

4 Definite Faults

So far, we have defined contingent faults, which are considered faulty under two
assumptions: first, that the structure of the program is not in question, but the
components of the structure are; second, that the selected (as faulty) component
is in question but the other components are not. Yet there are cases when we
do not get to choose which components to question and which components to
absolve. Whence the following definition.

Definition 4.1. Definite Faults. We let g be a program on space S, and we
let θ(G1, G2, G3, ..., Gi, ...Gn) be its relational expression. We say that Gi is a
definite fault in g with respect to specification R if and only if for all G1, G2,
G3, ... Gi−1, Gi+1, ... Gn, θ(G1, G2, G3, ..., Gi, ...Gn) does not refine R.

In other words, the only way to satisfy specification R is to alter Gi (hence Gi

is definitely faulty). We know of two cases that are easy to characterize: a pre-
processor component that loses injectivity by destroying critical state information
whose preservation is mandated by the specification; and a post-processor com-
ponent whose range of images is smaller than what the specification mandates.

On Faults and Faulty Programs 203

4.1 Definite Faults: Loss of Injectivity

We consider space S defined as the set of naturals, and we let R be the following
relation on S:

R = {(s, s′)|s′ = 5 + s mod 6} .

We let g be a program of the form g = {g1; g2; }, and we consider a number
of possibilities for g1:

– g1 = {s = s mod 6;}. Then, g2 may be {s = s+5;}.
– g1 = {s = s+6;}. Then, g2 may be {s = 5 + s mod 6;}.
– g1 = {s = s+5;}. Then, g2 may be {s = 5 + (s-5) mod 6;}.
– g1 = {s = s mod 12;}. Then, g2 may be {s = 5 + s mod 6;}.

But if we choose g1 = {s = s mod 3;}, then no program g2 can salvage
the state of the program and produce a correct outcome. Unlike the first four
examples, the fifth example of g1 has caused a loss of injectivity beyond what
R can tolerate. In this case, we find that g1 is definitely faulty. To establish this
result, we introduce a lemma, that is due to [DJM+93, FDM96].

Lemma 4.2. Right Divisibility. The relational equation in X: QX 2 R, ad-
mits a solution in X if and only if R and Q satisfy the following condition:

RL ⊆ QL ∧ �Q(R ∩RL)L = L .

We refer to this condition as the condition of right divisibility of R by Q;
i.e., it is the condition under which the relational equation above (which seeks
to divide R by Q on the right) admits a solution in X . The Proposition below
stems readily from this Lemma.

Proposition 4.3. Definite Fault, for loss of injectivity. We consider a
relation R on space S and a program g on S of the form g = {g1; g2}. If R
and G1 do not satisfy the right divisibility condition (with G1 as Q), then g1 is
definitely faulty with respect to R.

We check briefly that G1 = {(s, s′)|s′ = s mod 3} does not, indeed, satisfy
the right divisibility condition with specification R = {(s, s′)|s′ = 5+ s mod 6}.
Because G1 is total, the first conjunct is vacuously satisfied, hence we focus on
the second conjunct. Because R is total, the second conjunct can be written as:

�G1RL = L. We find:

�G1 = {(s, s′)|s = s′ mod 3}. R = {(s, s′)|s′ �= 5 + s mod 6}.

�G1R = {(s, s′)|∃t : s = t mod 3 ∧ s′ �= 5 + t mod 6}.

�G1R = {(s, s′)|∀t : s �= t mod 3 ∨ s′ = 5 + t mod 6}
= {(s, s′)|∀t : s = t mod 3⇒ s′ = 5+ t mod 6}.

204 A. Mili, M.F. Frias, and A. Jaoua

We find that for s = 0, no s′ can be found that satisfies the condition of this

relation; hence s = 0 is not in the domain of this relation. Hence �G1RL �= L.
Relation R is not right divisible by G1; therefore g1 is definitely faulty. Function
G1 causes a loss of injectivity because whereas R divides the input domain into
six equivalence classes (according to the value of s mod 6), G1 divides it into
three classes, thereby causing an irretrievable loss of state information: knowing
the mod of s by 3 does not enable us to compute the mod of s by 6.

4.2 Definite Faults: Loss of Surjectivity

We consider space S defined as the set of naturals, and we let R be the following
relation on S:

R = {(s, s′)|s′ = s2 mod 6} .

We let g be a program of the form g = {g1; g2;}, and we consider a number
of possibilities for g2:

– g2 = {s = s mod 6;}. Then g1 may be {s = s*s;}.
– g2 = {s = (s+5) mod 6;}. Then g1 may be {s = s*s - 5;}.

But if we choose g2 = {s = s mod 3}, then there is nothing that function g1
can do to make up for the loss of surjectivity inflicted by g2. Unlike the first two
examples, the third example of g2 has caused a loss of surjectivity beyond what
R can tolerate (the range of R is the interval [0..5] whereas the range of G2 is
[0..2]). In this case, we find that g2 is definitely faulty. To establish this result,
we use a Lemma, due to [DJM+93, FDM96].

Lemma 4.4. Left Divisibility. The relational equation in X: XQ 2 R, �XL ⊆
QL, admits a solution in X if and only if R and Q satisfy the following condition:

RL ⊆ (R�Q ∩ L�Q)L .

We refer to this condition as the condition of left divisibility of R by Q; i.e.,
it is the condition under which the relational equation above (which seeks to
divide R by Q on the left) admits a solution in X . The Proposition below stems
readily from this Lemma.

Proposition 4.5. Definite Fault, for loss of surjectivity. We consider a
relation R on space S and a program g on S of the form g = {g1; g2;}. If R
and G2 do not satisfy the right divisibility condition (with G2 as Q), then g2 is
definitely faulty with respect to R.

We check briefly that in program g = {g1; g2;}, component g2 defined by
g2 = {s = s mod 3;} is definitely faulty with respect to specification R =
{(s, s′)|s′ = s2 mod 6}. To this effect, we check the condition of Lemma 4.4,

On Faults and Faulty Programs 205

with Q = G2 = {(s, s′)|s′ = s mod 3}. Because R and G2 are both total, the
condition of left divisibility can be simplified into:

R�G2L = L .

We find:

R = {(s, s′)|s′ �= s2 mod 6}.�G2 = {(s, s′)|s = s′ mod 3}.

R�G2 = {(s, s′)|∃t : t �= s2 mod 6 ∧ t = s′ mod 3}.

R�G2 = {(s, s′)|∀t : t = s2 mod 6 ∨ t �= s′ mod 3}.

Let s be 2; then the predicate defining this relation can be written as:

∀t : t = 4 ∨ t �= s′ mod 3 .

The only way to make this formula valid is to find s′ such that s′ mod 3 = 4.
But the function mod 3 takes only values 0, 1 and 2. Hence no s′ satisfies this

condition. We have found an element s that has no image by relation R�G2. Hence

R�G2L �= L. Hence g2 is definitely faulty, due to a loss of surjectivity (the range
of G2 is so small thet G1G2 cannot possibly refine R).

5 Conclusion

5.1 Summary

In this paper, we have commented on the evasive nature of faults, and have pro-
posed a definition of faults that reflects most of the attributes that we associate
with the concept. To this effect, we have introduced a number of related notions,
that are relevant to the analysis of faults in programs, namely:

– The concept of relative correctness which characterizes a program that is
more correct than an original faulty program, while not necessarily being
correct.

– The concept of a contingent fault, that designates a component of a program
as being faulty while absolving other parts of the program.

– The condition of a monotonic fault removal, that ensures that a substitution
of a faulty component by a modified component brings the program closer
to being correct.

– The concept of a definite fault, that characterizes a program component
that single-handedly precludes the program from being correct, regardless of
other program components.

– Two formally characterizable definite faults, one that results from loss of
injectivity, and one that results from loss of surjectivity, with respect to the
specification.

206 A. Mili, M.F. Frias, and A. Jaoua

5.2 Theoretical Extensions

We envision two theoretical extensions to this work:

– Extending the results of this paper to non-deterministic programs. A propo-
sition given in [DJM+93] provides that if relation G refines R (i.e. if a
non-dterministic program g is correct with respect to specification R) then

RL = κ(R,G)L, where κ(R,G) = R�G ∩ L�G. It turns out that for deter-
ministic relation G, κ(R,G)L = (R ∩G)L. This may be a starting point for
revisiting our results, using κ(R,G)L instead of (R ∩G)L.

– Generalizing the definition of a fault to multiple components rather than a
single component. There are cases when a program is incorrect (hence has
faults), yet no single relation in its expression may be modified to obtain a
more-correct program.

5.3 Applications

Within the field of automated fault removal a number of techniques have been
identified. These techniques include some sort of mutation procedure to generate
fix candidates, which are subsequently analyzed in order to determine whether
they constitute an actual fix. An exponent of this class is the article [DW10],
where mutators like those offered by the tool muJava [MOK05] are used in or-
der to generate mutants of the source faulty code. A test suite is used in order
to remove those mutants that fail tests from the suite and accept mutants in
which all tests pass. In [GMK11] Gopinath et. al. propose a technique based on
constraint satisfaction using SAT (instead of testing as in [DW10]). Mutations
are employed (actually a few program mutators are supported), and mutants are
accepted whenever no faults can be detected resorting to bounded verification
using the analysis tool JForge [DYJ08]. In [JM11] Jose et. al. reduce fault lo-
calization to a MAX-SAT (maximal satisfiable subset) problem, and mutations
of the located faults are used in order to find fix candidates. A candidate is ac-
cepted if the execution of the fault localization algorithm on the candidate does
not locate any faults. All these articles have something in common: they do not
elaborate on the notion of fault, but rather directly reduce fault removal to gen-
erating any correct mutation. In particular, potential fixes are those that first
introduce new faults, and subsequently fix both the old and the newly added
faults. We are exploring ways to streamline the selection of the fix candidates by
means of the criterion of relative correctness; the main challenge here is to find
ways to determine whether a mutant is more-correct than the original, using
local information; this is currently under investigation.

Acknowledgement. The authors are very grateful to the anonymous reviewers
for their valuable insights and feedback, which have contributed to the content
and presentation of this paper.

On Faults and Faulty Programs 207

References

[ALRL04] Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.E.: Basic Concepts
and Taxonomy of Dependable and Secure Computing. IEEE Transac-
tions on Dependable and Secure Computing 1, 11–33 (2004)

[BEM92] Boudriga, N., Elloumi, F., Mili, A.: The Lattice of Specifications: Ap-
plications to a Specification Methodology. Formal Aspects of Comput-
ing 4, 544–571 (1992)

[DW10] Debroy, V., Wong, W.E.: Using Mutations to Automatically Suggest
Fixes for Faulty Programs. In: Proceedings, ICST, pp. 65–74 (2010)

[DYJ08] Dennis, G., Yessenov, K., Jackson, D.: Bounded Verification of Voting
Software. In: Shankar, N., Woodcock, J. (eds.) VSTTE 2008. LNCS,
vol. 5295, pp. 130–145. Springer, Heidelberg (2008)

[DJM+93] Desharnais, J., Jaoua, A., Mili, F., Boudriga, N., Mili, A.: A Relational
Division Operator: The Conjugate Kernel. Theoretical Computer Sci-
ence 114, 247–272 (1993)

[FDM96] Frappier, M., Desharnais, J., Mili, A.: A Calculus of Program Construc-
tion by Parts. Science of Computer Programming 6, 237–254 (1996)

[GSAGvG11] Gonzalez-Sanchez, A., Abreu, R., Gross, H.-G., van Gemund, A.: Pri-
oritizing Tests for Fault Localization through Ambiguity Group Reduc-
tion. In: Proceedings, Automated Software Engineering, Lawrence, KS
(2011)

[GMK11] Gopinath, D., Malik, M.Z., Khurshid, S.: Specification Based Program
Repair Using SAT. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS
2011. LNCS, vol. 6605, pp. 173–188. Springer, Heidelberg (2011)

[JM11] Jose, M., Majumdar, R.: Cause Clue Clauses: Error Localization Using
Maximum Satisfiability. In: Procedings, PLDI (2011)

[Lap95] Laprie, J.C.: Dependability —Its Attributes, Impairments and Means.
In: Predictably Dependable Computing Systems, pp. 1–19. Springer
(1995)

[Lap91] Laprie, J.C.:Dependability:BasicConcepts andTerminology: inEnglish,
French, German, Italian and Japanese. Springer, Heidelberg (1991)

[Lap04] Laprie, J.C.: Dependable Computing: Concepts, Challenges, Directions.
In: Proceedings, COMPSAC (2004)

[MOK05] Ma, Y.S., Offutt, J., Kwon, Y.R.: Mu Java: An Automated Class Mu-
tation System. Software Testing, Verification and Reliability 15, 97–133
(2005)

[MDM94] Mili, A., Desharnais, J., Mili, F.: Computer Program Construction.
Oxford University Press, New York (1994)

Parameterised Bisimulations: Some Applications

S. Arun-Kumar and Divyanshu Bagga

Department of Computer Science and Engineering
Indian Institute of Technology Delhi

Hauz Khas, New Delhi 110 016, India
{sak,divyanshu}@cse.iitd.ac.in

Abstract. In [AK06] the first author had generalised the notion of bisimulation
on labelled transition systems to that of a parameterised relation whose param-
eters were a pair of relations on the observables of a system. In this paper we
present new results which show that notions of parameterised bisimilarity may
be defined to capture congruences in process algebras. In particular, we show
that observational congruence may be obtained as a parameterised bisimulation,
thereby providing a co-inductive characterisation for the same. In another ap-
plication, parameterisation is employed to prove that amortised bisimilarity is
preserved under recursion in CCS by resorting to a generalisation of the so-
called “upto”-technique. We then extend the framework to a name passing cal-
culus and show that one can capture (hyper-)bisimulations in the fusion calculus
[Vic98] as a parameterised (hyper-)bisimulation. However this involves giving
a behaviourally equivalent alternative semantics for the fusion calculus, which is
necessary for defining parameterised bisimulations in the fusion calculus and also
allows for more natural definitions of bisimulations.

1 Introduction

In [AK06] the notion of bisimilarity was generalised to a bisimilarity relation induced
by a pair of relations on the underlying set of observables. The notion was referred to
as parameterised bisimilarity. Many of the well-known bisimilarity and pre-bisimilarity
relations in the literature are special cases of this generalised notion. Further it was
also shown that many of the nice properties that these bisimilarity relations exhibited
were essentially inherited from the corresponding properties in the inducing relations.
In particular, it was shown that a parameterised bisimilarity relation is a preorder (resp.
equivalence) if and only if the inducing relations are themselves preorders (resp. equiv-
alences). A generalised version of Park’s induction principle also holds. Finally an ef-
ficient on-the-fly algorithm was described for computing parameterised bisimilarity for
finite-state labelled transition systems.

In this paper we explore compatible parameterised bisimilarity relations (e.g. con-
gruences and precongruences) in the context of process algebras. We present three very
different applications using formulations of parameterised bisimilarity.

Inspired by the axiomatization of observational congruence by Bergstra and Klop
[BK85] it was shown in [SAK09] that all parameterised bisimilarities which are pre-
orders (resp. equivalences) are also precongruences (resp. congruences) on process
graphs provided there are no “empty observables”. Loosely speaking, in the context

P. Höfner et al. (Eds.): RAMiCS 2014, LNCS 8428, pp. 208–225, 2014.
c© Springer International Publishing Switzerland 2014

Parameterised Bisimulations: Some Applications 209

of weak-bisimilarity, the silent action τ of CCS is an empty observable whereas in
the context of strong bisimilarity it is not. The proofs in [SAK09] which axiomatized
(pre-)congruences that did not involve empty observables, were as lengthy as those in
[BK85]. But what eluded a solution therein was a coinductive characterization of obser-
vational congruence. The first application we present in this paper is the characteriza-
tion of observational congruence as a parameterised bisimilarity. The characterization
requires a careful analysis and definition of a certain kind of weak transition to capture
observational congruence in the presence of empty observables.

In [KAK05] a cost-based notion called amortised bisimilarity was defined on a CCS-
like language. The set of actions was augmented with a set of visible actions to which
costs were associated. While it was possible to show fairly easily that amortised bi-
similarity was preserved by most of the operators of CCS, the issue of whether it is
preserved under recursion was left open. The second application we present is a proof
that recursion does preserve amortised bisimilarity. However this proof requires casting
amortised bisimilarity in the form of an equivalent parameterised bisimilarity and using
a generalisation of the “upto”-technique used by Milner and Sangiorgi [SM92] to prove
that the recursion operator preserves the equivalent parameterised bisimilarity.

We devote the last section of this paper to extending the theory of parameterised
bisimulations to a name-passing calculus. We argue that the meaning of the actions
and thus the transitions in name-passing calculi change according to the names being
passed. This dynamic update in the meaning of actions needs to be incorporated in
the definition of parameterised bisimulations for name-passing calculi. We will use the
fusion calculus [Vic98] to develop a general theory of parameterised bisimulations.
The notion of "fusion" as an equivalence relation on names comes in quite handy while
defining parameterised versions of bisimilarity in a name-passing calculus. We will
however, need to give an alternative but equivalent operational semantics for the fusion
calculus which allows for a more natural definition of bisimulations and which, we
argue is necessary in order to define parameterised bisimulations.

2 Parameterised Bisimulations

A labelled transition system (LTS) L is a triple 〈P,O,−→〉, where P is a set of process
states or processes, O is a set of observables and −→ ⊆ P × O × P is the transition
relation. We use the notation p

a−→ q to denote (p, a, q) ∈−→ and refer to q as a
(strong) a-successor of p. The set of a-successors of p is denoted Succpa. q is a successor
of p if it is an a-successor for some observable a. A state q is reachable from p if either
p = q or q is reachable from some successor of p. An LTS of the form 〈P,O,−→〉
may also be thought of as one of the form 〈P,O+,−→〉 such that for any as ∈ O+,
p

as−→ q iff for some p′, p a−→ p′ and p′ s−→ q. The notion of successor may be
appropriately defined. Further by introducing the transition p

ε−→ p we may think of L
also as an LTS of the form 〈P,O∗,−→〉. A rooted labelled transition system is a 4-tuple
〈P,O,−→, p0〉 where 〈P,O,−→〉 is an LTS and p0 ∈ P a distinguished initial state.
In general we will consider the set of states of such an LTS as consisting only of those
states that are reachable from the initial state. The term “process” will be used to refer
to a process state in an LTS, as also to the sub-LTS rooted at that state and containing

210 S. Arun-Kumar and D. Bagga

all the states and transitions reachable from that given state. Since an arbitrary disjoint
union of LTSs is also an LTS, we shall often refer to P as the set of all processes. For
each p ∈ P, Reach(p) denotes the set of all reachable states of p.

Other notational conventions we use are the following.

– ≡ denotes the identity relation on a set. It may be used in the context of observables,
processes and also sets of processes.

– ◦ denotes relational composition i.e. for R ⊆ A × B and S ⊆ B × C, R ◦ S =
{(a, c) | ∃b : aRbSc}.

– R−1 denotes the converse of the relation R.
– �

U denotes the powerset of a set U .
– |s| denotes the length of a sequence s.
– 0 ∈ P is a process that is incapable of performing any observable action.
– Substitutions are applied in prefix form; two substitutions are composed using the

relational composition operator ◦ so that {x/y} ◦ {y/z} = {x/z}.

2.1 (ρ, σ)-Bisimulations

Definition 1. Let P be the set of processes and let ρ and σ be binary relations on O.
A binary relation R ⊆ P × P is a (ρ, σ)-induced bisimulation or simply a (ρ, σ)-
bisimulation if pRq implies the following conditions for all a, b ∈ O.

p
a−→ p′ ⇒ ∃b, q′[aρb ∧ q b−→ q′ ∧ p′Rq′]

q
b−→ q′ ⇒ ∃a, p′[aσb ∧ p a−→ p′ ∧ p′Rq′]

The largest (ρ, σ)-bisimulation (under set containment) is called (ρ, σ)-bisimilarity
and denoted �(ρ,σ). A (≡,≡)-induced bisimulation will sometimes be called a natural
bisimulation1. B(ρ,σ) denotes the set of all (ρ, σ)-bisimulations.

Proposition 1. (from [AK06]). Let ρ and σ be binary relations on O and let R and S
be binary relations on the set P of processes.

1. If R is a (ρ, σ)-bisimulation and pRq then so is S = R ∩ (Reach(p)× Reach(q)).
2. p �(ρ,σ) q iff pRq for some R ∈ B(ρ,σ). !�

In Proposition 2 and Theorem 1 we quote important properties of (ρ, σ)-bisimulations.
The reader is referred to [AK06] for some of the proofs.

Proposition 2. (Properties). Let R :p �(ρ,σ) q denote that R is a (ρ, σ)-bisimulation
containing the pair (p, q).

1. Point-wise Extension Let ρ∗ and σ∗ on O∗ be respectively the point-wise exten-
sions of the relations ρ and σ on O. Then R is a (ρ, σ)-bisimulation iff it is a
(ρ∗, σ∗)-bisimulation. Further,

1 A strong bisimulation on CCS processes with O = Act is an example of a natural
bisimulation.

Parameterised Bisimulations: Some Applications 211

– R : p �(ρ,σ) q iff R : p �(ρ∗,σ∗) q and
– �(ρ,σ) = �(ρ∗,σ∗) .

2. Monotonicity. If ρ ⊆ ρ′ and σ ⊆ σ′ then every (ρ, σ)-bisimulation is also a
(ρ′, σ′)-bisimulation and hence �(ρ,σ) ⊆ �(ρ′,σ′).

3. Inversion.
– R : p�(ρ,σ)q implies R−1 : q�(σ−1,ρ−1)p

– �−1(ρ,σ) = �(σ−1,ρ−1).
4. Composition. �(ρ1,σ1) ◦ �(ρ2,σ2) ⊆ �(ρ1◦ρ2,σ1◦σ2) since R1 : p�(ρ1,σ1)q and

R2 : q�(ρ2,σ2)r implies R1 ◦R2 : p�(ρ1◦ρ2,σ1◦σ2)r.
5. Reflexivity. If ρ and σ are both reflexive then the identity relation ≡ on P is a

(ρ, σ)-bisimulation and consequently �(ρ,σ) is reflexive.
6. Symmetry. If ρ and σ are both symmetric, the converse of each (ρ, σ)-bisimulation

is a (σ, ρ)-bisimulation. In addition, if ρ = σ then �(ρ,σ) is a symmetric relation.
7. Transitivity. If ρ and σ are both transitive then the relational composition of (ρ, σ)-

bisimulations is a (ρ, σ)-bisimulation, and �(ρ,σ) is also transitive.
8. Preorder characterisation. �(ρ,σ) is a preorder iff ρ and σ are both preorders.
9. Equivalence characterisation. �(ρ,σ) is an equivalence iff ρ and σ are both pre-

orders and σ = ρ−1.
10. If ρ is a preorder then �(ρ,ρ−1) is an equivalence. !�

Theorem 1. Let �P×P be the set of all binary relations on processes. Then

1. 〈B(ρ,σ),∪, ∅〉 is a commutative submonoid of 〈�P×P,∪, ∅〉.
2. �(ρ,σ) is a preorder if 〈B(ρ,σ), ◦,≡〉 is a submonoid of 〈�P×P, ◦,≡〉. !�

3 On Observational Congruence

In this section we present a characterization of Milner’s observational congruence re-
lation ≈+ for divergence-free finite-state CCS agents2 as a parameterised bisimilarity.
We achieve this by deriving an LTS which is observationally equivalent to the origi-
nal LTS and show that observational congruence on CCS processes is a parameterised
bisimilarity on the new LTS. In doing so we obtain a coinductive characterization of
observational congruence.

Let L = 〈P, Act,→〉 be the usual LTS defined by divergence-free finite-state CCS
agents. A process q is a μ-derivative (or a weak μ-successor) of p if p

μ
=⇒ q i.e. for

some m,n ≥ 0, p
τmμτn

−→ q for any μ ∈ Act. Similarly, q is a derivative of p if it is a
μ-derivative for some μ ∈ Act. For any s ∈ Act∗, let ŝ ∈ A denote the sequence of
visible actions obtained by removing all occurrences of τ in s. Given s, t ∈ Act∗, we
define s =̂ t if ŝ = t̂. Recall from [Mil89] that

– Observational Equivalence (denoted≈) is the largest symmetric relation on P such

that for all μ ∈ Act, if p
μ−→ p′ then there exists q′ such that q

μ̂
=⇒ q′ and p′ ≈ q′.

Moroever≈ = �(=̂,=̂) (from [AK06]).

2 That is pure CCS agents without replication.

212 S. Arun-Kumar and D. Bagga

– Observational Congruence (denoted as ≈+) is the largest symmetric relation on P
such that for all μ ∈ Act, if p

μ−→ p′ then there exists q′ such that q
μ

=⇒ q′ and
p′ ≈ q′.

It may be seen from the definition that≈+ is contained in≈. While≈ is easily shown to
be the parameterised bisimilarity �(=̂,=̂) on L, a formulation of ≈+ as parameterised
bisimilarity is trickier. This difficulty comes from the fact that any parameterised bi-
simulation is defined coinductively while observational congruence is defined in litera-
ture everywhere in terms of observational equivalence (Note that in the above definition,
observational congruence(≈+) is defined in terms of observational equivalence(≈)). It
is well known that τ.τ.0 ≈+ τ.0 since they both have observationally equivalent τ -
successors. However τ.0 �≈+ 0 because the preemptive power of the τ action may be
used to distinguish them in choice contexts. We present a coinductive characterization
of observational congruence as our first application.

Keeping the above requirement in mind, we define an LTS L† = 〈P, Act.τ∗,−→†〉
derived from L such that Act.τ∗ = {μτn | μ ∈ Act, n ≥ 0} and p μτn−−−→† p

′ iff there

exists n ≥ 0 and processes p0, · · · , pn such that p
μ−→ p0 ≈ τ−→ p1 ≈ τ−→ · · · ≈ τ−→

pn ≡ p′ and there does not exists any pn+1 such that p′ ≈ τ−→ pn+1. (Note: We use
p ≈ τ−→ q to denote p

τ−→ q and p ≈ q here). Since Act+ = (Act.τ∗)+ we may
identify L† with L+

† = 〈P, Act+,−→+
† 〉 where −→+

† denotes one or more transitions
via −→†. We can prove that the LTS L† is observationally equivalent to the original
LTS L for divergence-free3 finite state processes through the following lemma. The
proof of the lemma uses induction on the number of derivatives modulo observational
equivalence that a process can have, where the finite state assumption helps. We refer
the reader to Appendix A for the detailed proof.

Lemma 1. If p is a finite state agent then

1. For all α ∈ Act+ if p α−→†+ p′ then p
α−→ p′.

2. For all α ∈ Act+ if p
α−→ p′ then there exists α′ with α′ =̂ α such that p α′−→†+ p′′

and p′ ≈ p′′. !�

The main idea behind defining L† was to always ensure that no μ-derivative of any
process p in L† has any τ -derivative which could be weakly bisimilar to itself. This
helps us in ensuring that for any two observationally congruent processes, their deriva-
tives in L† are observationally congruent to each other as well. For example, both τ.τ.0
and τ.0 have 0 as their only derivative in L†. Thus, we can now define a parameterised
bisimulation on L† and show that it defines observational congruence. We refer the
reader to Appendix A for the detailed proof of the following theorem.

Theorem 2. For all divergence-free finite-state CCS agents p, q we have p �(=̂+,=̂+) q

in L+
† iff p ≈+ q, where =̂+ is the restriction of =̂ to Act+. !�

3 Divergence-freeness gurantees that there are no infinite τ chains so that we do not lose any
behaviour when defining L†.

Parameterised Bisimulations: Some Applications 213

4 Amortised Bisimulations [KAK05]

In [KAK05] the notion of amortised bisimulations was introduced. The bisimilarity so
defined uses priced actions to compare “functionally related” processes in terms of the
costs incurred in the long run. The notion generalises and extends the “faster than”
preorder defined by Vogler and Lüttgen in [LV06].

Amortised bisimulation is defined on the language of CCS, where in addition to the
normal set of actions Act there is a set of priced actions CA as well. Priced actions
cannot be restricted or relabelled and (since they do not have complements) cannot take
part in synchronisation. They are assigned a cost by a function c : CA → N. This cost
function is extended to A = CA ∪ Act by assigning a zero cost to all actions in Act.
For any a ∈ A, ca denotes the cost of a. The usual interleaving semantics of CCS is
assumed.

Definition 2. Let ρ ⊆ A×A such that ρ is the identity relation when restricted to Act.
A family of relations R = {Ri| i ∈ N} is called a strong amortised ρ-bisimulation,
if whenever (p, q) ∈ Ri for some i ∈ N,

p
a−→ p′ ⇒ ∃b, q′[aρb ∧ q b−→ q′ ∧ p′Rjq

′]

q
b−→ q′ ⇒ ∃a, p′[aρb ∧ p a−→ p′ ∧ p′Rjq

′]

where j = i + cb − ca. Process p is said to be amortised cheaper (more cost effi-
cient) than q (denoted p ≺ρ

0 q or simply p ≺ρ q) if pR0q for some strong amortised
ρ-bisimulation R. Further, p is said to be amortised cheaper than q up to credit i
(denoted p ≺ρ

i q) if (p, q) ∈ Ri. The index i gives the maximum credit which p requires
to bisimulate q.

One problem that has vexed the authors of [KAK05] is that of proving that amortised
ρ-bisimilarity is preserved under recursion when ρ is known to be a preorder (it may
not work otherwise), since standard techniques are not easily available for bisimulations
defined as families of relations on processes.

We therefore characterise amortised bisimilarity as a parameterised one. We define
C to be the set of states where each state is of the form m : p where m ∈ N. The
intuition is that the state remembers the total cost incurred so far in reaching the current
state. The following rule defines state transitions (−→C) in terms of the transitions of a
process.

p
a−→ p′ ⇒ m : p

(a,n)−→C n : p′, where n = m+ ca

The set of observables is O = A × N and the LTS of interest is 〈C,O,−→C〉. The
following theorem provides the required characterisation of amortised ρ-bisimilarity.

Theorem 3. Let γρ = {((a,m), (b, n)) | aρb,m ≤ n}. Then m : p �(γρ,γρ) m : q iff
p≺ρq, for all m ∈ N. !�

214 S. Arun-Kumar and D. Bagga

The use of Theorem 3 in conjunction with the inheritance properties (Proposition 2)
simplifies various proofs of properties of ≺ρ by rendering them in a more convenient
form in terms of �(γρ,γρ) on C. Some notable examples are parts of Proposition 3,
Lemma 4 and Proposition 5 in [KAK05]. For instance when ρ is a preorder, so is γρ
and hence �(γρ,γρ) is a preorder too.

By Proposition 1.2, to show that a pair of processes is bisimilar it is necessary and
sufficient to find a bisimulation containing the pair. However, it actually suffices to find
a small relation (containing the pair) which by itself is not a bisimulation, but could
be completed by relational composition with bisimilarity to yield a bisimulation. Such
relations have been (awkwardly) called “upto”-relations [SM92]. But such a completion
may not exist unless the underlying relations are preorders on the observables (see fact
4 and Theorem 5 below).

Definition 3. Let ρ, σ be relations on observables. A relation S ⊆ P×P is said to be
a potential (ρ, σ)-bisimulation if �(ρ,σ)◦ S◦�(ρ,σ) is a (ρ, σ)-bisimulation.

Fact 4.

1. If ρ and σ are both transitive then every (ρ, σ)-bisimulation is also a potential
(ρ, σ)-bisimulation.

2. If ρ and σ are both preorders and R is a potential (ρ, σ)-bisimulation, then so are
R◦�(ρ,σ) and �(ρ,σ)◦R. !�

A generalisation of a sufficiency condition which may be used in proving that recur-
sion preserves bisimilarity is the following (see [Mil89] and [AKH92]).

Theorem 5. Let ρ and σ both be preorders and R a relation such that (p, q) ∈ R
implies the following conditions for all a, b ∈ O,

– p
a−→ p′ ⇒ ∃b ∈ O, q′[aρb ∧ q b−→ q′ ∧ (p′, q′) ∈ �(ρ,σ)◦R◦�(ρ,σ)],

– q
b−→ q′ ⇒ ∃a ∈ O, p′[aσb ∧ p a−→ p′ ∧ (p′, q′) ∈ �(ρ,σ)◦R◦�(ρ,σ)].

Then R is a potential (ρ, σ)-bisimulation. !�

For CCS expressions e and f , e ≺ρ f and m : e �(γρ,γρ) n : f if under any uni-
form substitution of processes for the free process variables the resulting processes
(respectively states) are related likewise (see [Mil89] for a technically more accurate
definition).

Theorem 3 may now be used in conjunction with Theorem 5 to render the problem
as one of preserving the �(γρ,γρ) relation under recursion on C.

Theorem 6. Let e and f be guarded CCS expressions and x a free process variable. If
ρ is a preorder and e ≺ρ f then rec x[e] ≺ρ rec x[f].

Proof outline: For simplicity we assume x may be the only process variable free in e
and f . Let Em = m : e, Fn = n : f , p = rec x[e], q = rec x[f], P0 = 0 : p and
Q0 = 0 : q. We have (by Theorem 3) rec x[e] ≺ρ rec x[f] iff P0 �(γρ,γρ) Q0. Further
since ρ is a preorder, both γρ and �(γρ,γρ) are also preorders onA and C respectively.

Parameterised Bisimulations: Some Applications 215

Consider the following relation on C.

S = {(m : {p/x}g, n : {q/x}g) | FV (g) ⊆ {x},m ≤ n}

P0 ≡ 0 : {p/x}x and Q0 ≡ 0 : {q/x}x. So (P0, Q0) ∈ S. It then suffices to show that
S is a potential (γρ, γρ)-bisimulation. It may be shown by transition induction ([Mil89],
[AKH92]) that for all (P,Q) ∈ S if P

α−→C P ′, α ∈ O, then there exist Q′ and β such

that αγρβ, Q
β−→C Q′ and P ′ S◦ �(γρ,γρ) Q

′. Similarly if Q
β−→C Q′, β ∈ O, then

we have for some P ′ and α with αγρβ, that P
α−→C P ′ and P ′ �(γρ,γρ) ◦S Q′. By

theorem 5, S is a potential (γρ, γρ)-bisimulation. !�

5 Parameterised Bisimulations in Name-Passing Calculi

Extending parameterised bisimulations to a value passing calculus requires more work
in the theory of parameterised bisimulations. One cannot simply define a static rela-
tion on the labels of the transitions in a value passing calculus to define parameterised
bisimulations over it. This is because the meanings of the labels/actions of the pro-
cesses in a value passing calculus such as the π-calculus change dynamically based
on the values passed over the input and output ports. For example, consider an agent
p ≡ u(x)|(u(y).y.0) in the π-calculus[MPW92a, MPW92b], which is one of the most
well known name-passing calculi. Suppose we wish to define a parameterised bisimula-
tion using a relation ρ which relates the action y with z, i.e. y ρ z. Then by the semantics
of the π-calculus, the value x is passed for y over the port u, which is given in the form
of the transition u(x)|(u(y).y.0) τ−→ {x/y}y.0 ≡ x.0. Since the name y has now
been identified with x according to the semantics of the π-calculus, the parameterised
bisimulation must take this into account and should relate action x with z, since y was
related to z. Formulating a theory of parameterised bisimulations which allows the dy-
namic update of the parameter relations on actions in accordance with the semantics of
the value passing calculus is the challenging part which we will address in this section.

In this paper we will use the Fusion Calculus[Vic98] as our name-passing calculus
of choice to describe the theory of parameterised bisimulations for value passing cal-
culi. The most important reason in doing so is the explicit identification of names in
the fusion calculus using equivalence relations called "fusions" instead of using sub-
stitutions to reflect the impact of communications. This explicit equivalence makes it
possible for us to give a generalized theory of parameterised bisimulations which is not
possible using substitution effects. To see this, consider a simple example of an action
t(u, a). Suppose we have a relation on names ρ such that u ρ v, a ρ b and t ρ t. Then
one can extend the relation ρ to relate the action t(u, a) with t(v, b). However, consider
the case where some name w has been identified with both u and a, via some interac-
tions between communication actions. Then the action t(w,w) should be ρ-related to
t(v, b), however it is not possible to obtain this relationship by applying a substitutive
effect on t(w,w), which will replace w with a unique name, which may be either u
or a. We need to consider the equivalence relation on names which identifies w with
both u and a, in order to be able to relate t(w,w) with t(u, a) under ρ. Thus represent-
ing the identification of names as a result of communication by an equivalence relation

216 S. Arun-Kumar and D. Bagga

on names is necessary to develop a general theory of parameterised bisimulations for
name-passing calculi. The fusion calculus helps us in this regard as it represents the
effects of communications by "fusion" actions which define equivalence relations on
names.

Although the semantics of the fusion calculus does define equivalence relations on
names via "fusion" actions, bisimulations in the fusion calculus are still defined in terms
of the substitutive effects of fusions. As mentioned above, we would like the definitions
of parameterised bisimulations to be independent of the substitutive effects. We there-
fore provide a modified operational semantics of the fusion calculus, which makes the
effect of fusion actions explicit and allows for the definitions of bisimulations in a more
natural manner without the use of any substitutive effects. We devote the next subsec-
tion to providing the details of the modified semantics for the fusion calculus with a
brief comparision with the original semantics [Vic98].

5.1 An Alternative Operational Semantics for the Fusion Calculus

Assume an infinite set of namesN ranged over by u, v, . . . , z. Let x̃ denote a (possibly
empty) finite sequence of names x1, . . . , xn. Then the syntax of fusions (ranged over by
ϕ), free actions (ranged over by α) and that of agents (processes) in the fusion calculus
is given by the following BNF.

ϕ ::= {x̃ = ỹ}
α ::= ux̃ | ūx̃ | ϕ
p, q, r ::= 0 | α.q | q + r | q|r | (x)q

where ux̃ and ūx̃ are polyadic versions of input and output respectively (collectively
called communication actions with u and ū called subjects and x̃ the objects of the
communication) and ϕ is a fusion action. A fusion represented by {x̃ = ỹ} (for se-
quences of names of equal length) is the smallest equivalence relation such that xi = yi
for 1 ≤ i ≤ n. Thus ϕ ranges over total equivalence relations overN with only finitely
many non-singular classes. For any name z and equivalence ϕ, ϕ\z is the equivalence
(ϕ∩ (N −{z})2)∪{(z, z)} obtained from ϕ by deleting all occurrences of the name z.
We denote the empty fusion (the identity relation) by 1. The set of names occurring in
an action α is denoted as n(α). The name x is said to be bound in (x)q. We write (x̃)q
for (x1) · · · (xn)q. An action is either a fusion action or a communication action of the
form (z̃)ux̃ where z̃ = z1, . . . , zn, n ≥ 0 and each zi ∈ x̃. A communication action is
bound if n > 0. There are no bound fusion actions.We will denote the set of all actions
by Act (ranged over by α, β, γ) and the set of all agents P. We denote sequences of
actions by bold Greek letters α,β,γ.

So far, the above description given for actions and processes in the fusion calculus is
identical to that given in Victor’s thesis[Vic98]. In a departure from Victor’s treatment,
we associate an Environment or “shared state” in the operational semantics of a process.
This environment may be seen as the accumulation of the “side effects” of the fusion
actions during transitions. Every action and hence a sequence of actions has a side
effect, which is the creation of an equivalence on names. We define a function on action
sequences which captures this side effect.

Parameterised Bisimulations: Some Applications 217

Definition 4.

E(α) =

⎧⎨⎩ϕ⊕ E(α′) if α = ϕ.α′

E(α′) if α = α.α′

1 if α = ε

where α is a communication action and ϕ ⊕ ϕ′ = (ϕ ∪ ϕ′)∗ denotes the smallest
equivalence relation containing both ϕ and ϕ′.

We formally define the environment or the shared state which is created during pro-
cess execution in the following definition. We also define their substitutive effects which
allow us to reduce an environment and process pair to a single process. Substitutive ef-
fects are important when we need to compare our bisimulations with the one’s defined
by Victor’s semantics.

Definition 5. Let Env, referred to as the set of environments, be the set of all equiv-
alence relations on N defined by a finite set of pairs of non-identical names. Thus an
environmentψ ∈ Env is an equivalence relation on names and it is extended to actions
as follows.

– (ỹ1).u.x̃1 ψ (ỹ2).v.x̃2 iff |ỹ1| = |ỹ2|, |x̃1| = |x̃2|, ỹ1 ψ ỹ2, x̃1 ψ x̃2 and u ψ v.
– {ỹ1 = x̃1} ψ {ỹ2 = x̃2} iff |ỹ1| = |ỹ2|, |x̃1| = |x̃2|, ỹ1 ψ ỹ2 and x̃1 ψ x̃2.

Definition 6. A substitutive effect of an environment ψ is a substitution θ such that
∀x, y we have xψy if and only if θ(x) = θ(y) and ∀x, y if θ(x) = y then xψy.

PREFL
−

α.p
α→ p

PREFR
−

(ψ,α.p)
α→ (ψ ⊕ ψ(α), p)

SUML
p

α→ p′

p+ q
α→ p′

SUMR
(ψ, p)

α→ (ψ′, p′)

(ψ, p+ q)
α→ (ψ′, p′)

PARL
p

α→ p′

p|q α→ p′|q
PARR

(ψ, p)
α→ (ψ′, p′)

(ψ, p|q) α→ (ψ′, p′|q)
PASSL

p
α−→ p′

(z)p
α−→ (z)p′

, z �∈ n(α) PASSR
(ψ, p)

α−→ (ψ′, p′)

(ψ, (z)p)
α−→ (ψ′, (z)p′)

, z �∈ n(α)

SCOPEL
p

ϕ−→ p′, zϕx, x �= z

(z)p
ϕ\z−→ p′{x/z}

SCOPER
(ψ, p)

ϕ−→ (ψ ⊕ ϕ, p′), zϕx, x �= z

(ψ, (z)p)
ϕ\z−→ (ψ ⊕ (ϕ\z), p′{x/z})

OPENL
p

(ỹ)ax̃−→ p′, z ∈ x̃− ỹ, a �∈ {z, z̄}
(z)p

(zỹ)ax̃−→ p′
OPENR

(ψ, p)
(ỹ)ax̃−→ (ψ, p′), z ∈ x̃− ỹ, a �∈ {z, z̄}

(ψ, (z)p)
(zỹ)ax̃−→ (ψ, p′)

COML
p

ux̃−→ p′, q
ūỹ−→ q′, |x̃| = |ỹ|

p|q {x̃=ỹ}−→ p′|q′

(ψ, p)
ux̃−→ (ψ, p′), (ψ, q)

v̄ỹ−→ (ψ, q′),
|x̃| = |ỹ|, u ψ v

COMR
(ψ, p|q) {x̃=ỹ}−→ (ψ ⊕ {x̃ = ỹ}, p′|q′)

Fig. 1. Original (L) and alternative (R) SOS rules (modulo structural congruence)

The left half of figure 1 shows the original operational semantics of the fusion calcu-
lus (modulo structural congruence)[Vic98]. The right half is the alternative operational

218 S. Arun-Kumar and D. Bagga

semantics based on our notion that the state of process execution should be represented
by an environment-process pair. An α denotes a free action in the rules. Every agent
according to this semantics executes in an environment (possibly the identity denoted
by 1) defined and regulated by scope. It should be noted that all the transitions allowed
by the rules in the original semantics hold in the alternative semantics as well, except
that the new semantics defines the transition on an environment-process pair. Thus, any
transition that an agent p can perform under the rules of the original semantics also
holds for (ψ, p) for any environment ψ. In fact, the COM rule in figure 1 allows more
transitions in our semantics by specifying possible synchronizations between previously
fused names. We illustrate this difference with the following example.

Example 1. Consider a process r ≡ ua.a.0|ūb.b̄.0. Then by the semantics of fig-
ure 1 the following sequence of transitions can be derived starting with the identity
environment 1.

(1, ua.a.0|ūb.b̄.0) {a=b}−→ ({a = b}, a.0|b̄.0) 1−→ ({a = b},0)

The second transition obtained by the interaction of a with b̄ was made possible by
the COMR rule as a and b have been fused, but it would not have been possible in the
original semantics. However while defining behavioral relations the second transition is
indeed taken into account by virtue of a substitutive effect of the first transition (which
will either substitute a for b or vice-versa)[Vic98]. Thus even though the new semantics
yields more transitions for the processes when compared with the original semantics, it
still models the same intended behavior with the added advantage that we do not have
to rely on any substitutions while defining bisimulations.

The following lemmas help in establishing the equivalence of behavior as given by
original semantics using substitutive effect and the modified semantics using
environments.

Lemma 2. ([Bag11]) Let θ1 be a substitutive effect of ψ1 and s be a substitutive effect
of θ1(ψ2). Then s ◦ θ1 is a substitutive effect of ψ1 ⊕ ψ2 = ψ. !�

Lemma 3. ([Bag11]) For any ψ ∈ Env and x, z ∈ N such that xψz, we have

(ψ, p)
α−→ (ψ ⊕ E(α), p′) iff (ψ\x, {z/x}p) {z/x}α−→ (ψ ⊕ E(α)\x, {z/x}p′) !�

Since the main focus of this paper is on the results concerning parameterised bisimula-
tions, we will limit our discussion to behaviours as described by the modified semantics.
We refer the reader to [Bag11] for a formal proof of equivalence upto bisimilarity of
the two semantics.

5.2 Parameterised Bisimulations in the Fusion Calculus

We first give the definition of bisimulations for the fusion calculus according to the
original semantics[Vic98] before defining parameterised bisimulations for the modified
semantics. In order to do so, we must first extend the transition relation for processes
defined by Victor’s semantics to Act∗ by incorporating substitutive effects of the tran-
sitions.

Parameterised Bisimulations: Some Applications 219

Definition 7. For all p ∈ P, we have p
ε−→ p and for all α = α.α′ where α,α′ ∈

Act∗, we have p
α−→ p′ iff there exists some p′′ ∈ P such that p

α−→ p′′ and (θp′′) θα′
−→

p′ where θ is some substitutive effect of E(α).

Definition 8. A relationR is a strong bisimulation if pRq implies ∀α,β ∈ Act∗,

p
α−→ p′ ⇒ ∃q′ : q α−→ q′ ∧ (θαp

′)R(θαq
′)

q
β−→ q′ ⇒ ∃p′ : p β−→ p′ ∧ (θβp

′)R(θβq
′)

where θπ is a substitutive effect ofE(π) with π = α,β. ∼̇ denotes strong bisimilarity.

As we argued before, the meanings of the actions in value passing calculi change in
accordance with the names identified by transitions. In the fusion calculus, this iden-
tification of names is represented by the environment. This equivalence on names is
taken into account using substitutive effects when defining bisimulations for the fusion
calculus. With the modified semantics we can incorporate the effect of the environment
more easily by arguing that given any state (ψ, p), any computation α performed by
process p should be considered exactly identical to a computation α′ if αψα′ holds,
where ψ is extended point-wise to actions. Let ρ be a relation on actions which deter-
mines which computations should be considered ρ-related for the purpose of defining
parameterised bisimulations. Then an action sequence β should be considered ρ-related
to another action sequence α if there exist action sequences α′ and β′ such that αψα′,
βψβ′ and α′ρβ′. Equivalently, given an environment ψ, an action sequence β should
be considered ρ-related to another action sequence α iff α ψ ◦ ρ ◦ ψ bmβ holds.
With this formalisation of “ρ-relatedness” we modify our standard definition of (ρ, σ)-
bisimulations to define a generalised (ρ, σ)-bisimulation for the fusion calculus.

Definition 9. Let ρ, σ ⊆ Act2. A relation G ⊆ (Env × P)2 is a generalised (ρ, σ)-
bisimulation if (ψ, p) G (ω, q) implies for all α1,β2 ∈ Act∗,

(ψ, p)
α1−→ (ψ′, p′)⇒ ∃α2 : α1ρ

′α2, (ω
′, q′) : (ω, q) α2−→ (ω′, q′)∧(ψ′, p′) G (ω′, q′)

(ω, q)
β2−→ (ω′, q′) ⇒ ∃β1 : β1σ

′β2, (ψ
′, p′) : (ψ, p)

β1−→ (ψ′, p′)∧(ψ′, p′) G (ω′, q′)

where ρ′ = ψ ◦ ρ ◦ ω and σ′ = ψ ◦ σ ◦ ω.

While comparing processes, we may claim that they are related only if they display
related behaviours under the same environment. This leads to the following definition
of bisimulation.

Definition 10. A generalised (ρ, σ)-bisimulation G is a (ρ, σ)-bisimulation if for all
ψ, ω ∈ Env and p, q ∈ P, (ψ, p) G (ω, q) implies ψ = ω. We refer the largest (ρ, σ)-
bisimulation as (ρ, σ)-bisimilarity (denoted �(ρ,σ)).

To be able to relate the parameterised bisimulations (Definition 10) with the bisimula-
tions already defined for fusion calculus (Definition 8), we need to define a mapping
from states to processes since our bisimulations are defined for states. This motivates
the definition of the following translation relation.

220 S. Arun-Kumar and D. Bagga

Definition 11. Let the relation T ⊆ States × P called the translation relation be
defined by (ψ, p)Tp′ if and only if there exists θ a substitutive effect of ψ, such that
θp = p′.

Proposition 1. Let T be the translation relation given in Definition 11. Then T ◦ ∼̇ ◦
T−1 is a generalised (≡,≡)-bisimulation (Definition 10), where ∼̇ is strong bisimila-
rity (Definition 8).

Proof. Let (ψ, p)T ◦ ∼̇ ◦T−1(ω, q). Then by definition of the translation relation, for
some substitutive effect θψ of ψ and θω of ω we must have θψp ∼̇ θωq. Let (ψ, p)

α−→
(ψ′, p′) where ψ′ = ψ ⊕ E(α). Then by Lemma 3, θψp

θψ(α)−→ θψp
′ which implies

that there exists q′′ ∈ P such that θωq
θψ(α)−→ q′′ and θ(θψ(p

′))∼̇θ(q′′), where θ is a
substitutive effect of θψ(α). Now by converse of Lemma 3 there must exist q′ ∈ P and

β ∈ Act∗ such that (ω, q)
β−→ (ω′, q′) where ω′ = ω ⊕ E(β), θω(β) = θψ(α) and

θω(q
′) = q′′. Now by Lemma 2, θ ◦ θψ is a substitutive effect of ψ′ and θ ◦ θω is a

substitutive effect of ω′ . Hence we have (ω, q)
β−→ (ω′, q′) where αψ◦ ≡ ◦ωβ and

(ψ′, p′)T ◦ ∼̇ ◦T−1(ω′, q′). A similar proof may be given for a transition of q. !�

Proposition 2. Let δ be a one to one function mapping environments to substitutions
such that δ(ψ) is a substitutive effect of ψ, for any ψ ∈ Env. Given δ, we define a
sub-relation S of the translation relation T such that (ψ, p) S q iff (δ(ψ))p = q. Then
S−1 ◦�(≡,≡) ◦ S ⊆ ∼̇.

Proof. Let pS−1 ◦ �(≡,≡) ◦ Sq. Then for some ψ, p′, q′ we have (ψ, p′)�(≡,≡)(ψ, q′)
where (δ(ψ))p′ = p and (δ(ψ))q′ = q (by definition of S). Suppose p

γ−→ pd. Then
by Lemma 3, we have (ψ, p′) α−→ (ψ′, p′′) where (δ(ψ))p′′ = pd, δ(ψ)(α) = γ and

ψ′ = ψ⊕E(α). Then by definition of �(≡,≡), there must exist β such that (ψ, q′)
β−→

(ψ′, q′′) where αψ◦ ≡ ◦ψβ and (ψ′, p′′)�(≡,≡)(ψ′, q′′). Since αψ◦ ≡ ◦ψβ, we have

(δ(ψ))(α) = γ = (δ(ψ))(β). Thus we have q
γ−→ qd where qd = (δ(ψ))q′′. Now let

s be any substitutive effect of γ = δ(ψ)(α), then by Lemma 2, s ◦ δ(ψ) is a substi-
tutive effect of ψ′ = ψ ⊕ E(α). Furthermore we can choose s and δ(ψ′) to be such
that s ◦ δ(ψ) = δ(ψ′). We thus have s(pd) S−1 ◦�(≡,≡) ◦ S s(qd) (as (δ(ψ))p′′ = pd,
(ψ′, p′′)�(≡,≡)(ψ′, q′′) and (δ(ψ))q′′ = qd). A similar proof may be given for a transi-
tion of q. !�

Corollary 1. �(≡,≡) = T ◦ ∼̇ ◦T−1, where ∼̇ is strong bisimilarity (Definition 8).

Proof. It follows from Proposition 2 that S−1 ◦�(≡,≡) ◦S ⊆ ∼̇ for some S ⊆ T. Since
◦ is monotonic in each argument with respect to the ⊆ ordering, we get �(≡,≡) ⊆
S ◦ ∼̇ ◦ S−1 ⊆ T ◦ ∼̇ ◦T−1. The reverse containment follows from Proposition 1. !�

5.3 Parameterised Hyperbisimulations

A (ρ, σ)-bisimulation as defined above only compares two states under identical en-
vironments. However we are actually interested in comparing processes and not the

Parameterised Bisimulations: Some Applications 221

states in which they operate. Intuitively speaking, two processes may be considered
equivalent only if they are equivalent under all environments. Hence we need to extend
(ρ, σ)-bisimulations to a bisimulation based ordering defined over processes.

Definition 12. A relation H ⊆ P2 is a (ρ, σ)-hyperbisimulation iff for all p, q ∈ P,
pH q implies for all ψ ∈ Env, there is a (ρ, σ)-bisimulation G such that (ψ, p)G(ψ, q).
The largest (ρ, σ)-hyperbisimulation called (ρ, σ)-hyperbisimilarity is denoted�(ρ,σ).

The concept of hyperbisimulations is unique to fusion calculus and it was originally
defined by Victor in his work as the largest congruence contained within bisimula-
tion. A very important property of interest for hyperbisimulations in the fusion calculus
is the property of substitution closure which is necessary if one wishes to prove that
hyperbisimilarity is a congruence.

Definition 13. A relation ρ is conservative iff ∀α,β if αρβ then E(α) = E(β). It is
substitution-closed iff ∀x, y,α,β if αρβ then ({x/y}α)ρ({x/y}β).

The following result (see [Bag11] for a proof) shows that substitution-closure on pro-
cesses can also be derived from certain properties of the relations on actions for param-
eterised hyperbisimulations.

Corollary 2. ([Bag11]) If ρ and σ are both conservative and substitution closed rela-
tions on actions then for all ψ ∈ Env and θ such that θ is a substitutive effect of ψ
we have (ψ, p)�(ρ.σ)(ψ, q) if and only if (1, θp)�(ρ,σ)(1, θq). Furthermore if p�(ρ,σ)q
then for all substitutions θ we have (θp)�(ρ,σ)(θq). !�

Our motivation in defining hyperbisimulations is the same as Victor’s, i.e. hyper-
bisimulations should relate processes which have the same behaviour in all contexts.
However we have defined hyperbisimulations as the natural lifting of bisimulations,
which are relations defined over states, to relations defined over processes, whereas in
[Vic98] hyperbisimulation is used to define the largest congruence contained in bisimu-
lations defined on original semantics and is obtained by closing the relation under all
substitutions.

Definition 14. A strong bisimulation (Definition 8) R is a strong hyperbisimulation
iff it is substitution-closed i.e. for all substitutions θ, if pRq then (θp)R(θq). We denote
the largest strong hyperbisimulation, called strong hyperbisimilarity, by ∼.

The reason we choose to call the relation defined in Definition 12 as parameterised
hyperbisimulation is because the relation defined by us turns out to be identical to the
hyperbisimulations defined by Victor using the original semantics, as shown by the
following result.

Corollary 3. �(≡,≡) =∼ i.e. strong hyperbisimilarity (Definition 14), equals parame-
terised (≡,≡)-hyperbisimilarity (Definition 12).

Proof. By Definition 14, p ∼ q iff for all substitutions θ we have θp ∼̇ θq. By Corollary
1 and noting that (1, p)Tp holds for all processes p, we have θp ∼̇ θq if and only
if (1, θp)�(≡,≡)(1, θq). Let ψ be any environment such that θ is a substitutive effect
of ψ, then by Corollary 2, we have (ψ, p)�(≡,≡)(ψ, q). Since the result holds for all
substitutions θ and hence for all environments ψ which have θ as its substitutive effect,
by Definition 12, we have p�(≡,≡)q . Each step of the proof is reversible, hence the
converse also holds. !�

222 S. Arun-Kumar and D. Bagga

6 Concluding Remarks

Some applications of parameterisation to the algebraic theory of bisimulations on pro-
cess algebras were presented in this paper. While parameterisation has led to a more
general notion of bisimulation, we have gone further in this paper by generalising this
notion for name-passing calculi. In a manner similar to our earlier results, one can show
that the properties of parameterised bisimulations for the value-passing calculus may be
derived from the properties of the relations defined on actions, thereby providing a gen-
eralized framework for the study of bisimulations in value-passing calculi. In particular,
one can show that the monotonicity, inversion, symmetry and reflexivity properties as
shown in Proposition 2 also hold for these bisimulations, by simply noting that if ρ is
symmetric or reflexive then so is ψ ◦ ρ ◦ψ and (ψ ◦ ρ ◦ψ)−1 = ψ ◦ ρ−1 ◦ψ. Also if one
were to limit oneself to processes which can be represented in a non-value passing cal-
culus like CCS, then the Definition 10 reduces to Definition 1. Therefore it strengthens
our confidence that Definition 10 is the correct generalization of parameterised bisimu-
lations to value passing calculus.

A more general proof can be given along the lines of corollary 3 to show that anal-
ogous notions such as weak (hyper-)bisimulations, efficiency preorder [AKH92] and
elaborations [AKN95] over fusion calculus agents are special cases of (ρ, σ)−(hyper-
)bisimulations by choosing ρ and σ appropriately. Further work may be done on in-
vestigating and extending the earlier results given for parameterised bisimulations, for
example the axiomatization of parameterised bisimulations given in [SAK09], to the
more generalised framework given for name passing calculus presented in this paper.

Acknowledgement. The research presented in this paper was partly sponsored by EADS Corp.
We are thankful to the suggestions of anonymous reviewers who helped improve this paper. We
are also thankful to Shibashis Guha for his careful review and suggestions.

References

[AKH92] Arun-Kumar, S., Hennessy, M.: An efficiency preorder for processes. Acta Infor-
matica 29, 737–760 (1992)

[AKN95] Arun-Kumar, S., Natarajan, V.: Conformance: A precongruence close to bisimila-
rity. In: Structures in Concurrency Theory, pp. 55–68. Springer (1995)

[AK06] Arun-Kumar, S.: On bisimilarities induced by relations on actions. In: Fourth IEEE
International Conference on Software Engineering and Formal Methods, SEFM
2006, pp. 41–49. IEEE (2006)

[Bag11] Bagga, D.: Parametrised bisimulations for the fusion calculus. Master’s the-
sis, Department of Computer Science and Engineering, IIT Delhi (2011),
http://www.cse.iitd.ac.in/~bagga/bag11.html

[BK85] Bergstra, J.A., Klop, J.W.: Algebra of communicating processes with abstraction.
Theoretical Computer Science 37, 77–121 (1985)

[KAK05] Kiehn, A., Arun-Kumar, S.: Amortised bisimulations. In: Wang, F. (ed.) FORTE
2005. LNCS, vol. 3731, pp. 320–334. Springer, Heidelberg (2005)

[LV06] Lüttgen, G., Vogler, W.: Bisimulation on speed: A unified approach. Theoretical
Computer Science 360, 209–227 (2006)

http://www.cse.iitd.ac.in/~bagga/bag11.html

Parameterised Bisimulations: Some Applications 223

[Mil89] Milner, R.: Communication and concurrency. Prentice-Hall, Inc. (1989)
[MPW92a] Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I. Information

and Computation 100, 1–40 (1992)
[MPW92b] Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, II. Information

and Computation 100, 41–77 (1992)
[PV98] Parrow, J., Victor, B.: The fusion calculus: Expressiveness and symmetry in mobile

processes. In: Proceedings of the Thirteenth Annual IEEE Symposium on Logic in
Computer Science, pp. 176–185. IEEE (1998)

[SM92] Sangiorgi, D., Milner, R.: The problem of “Weak Bisimulation up to". In: Cleave-
land, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 32–46. Springer, Heidelberg
(1992)

[SAK09] Singh, P., Arun-Kumar, S.: Axiomatization of a Class of Parametrised Bisimilarities.
Perspectives in Concurrency Theory. Universities Press, India (2009)

[Vic98] Victor, B.: The fusion calculus: Expressiveness and symmetry in mobile processes.
PhD thesis, Uppsala University (1998)

A Appendix: Observational Congruence Proof

We provide the proofs for the observational equivalence of the derived LTS L† with
the original LTS L (see Lemma 1 in paper) and the observational congruence as pa-
rameterised bisimulation in L† (see Theorem 2 in paper) here. The formal proof of the
results mentioned in the paper requires the proof of various other lemmas, which makes
the proof quite lengthy but it ensures that we cover all the details, thus making them
necessary.

Definition A1. LetL = 〈P, Act,→〉 be the usual LTS defined by divergence-free finite-
state CCS agents. We define an LTS L† = 〈P, Act.τ∗,−→†〉 derived from L such that

Act.τ∗ = {μτn | μ ∈ Act, n ≥ 0} and p μτn−−−→† p
′ iff there exists n ≥ 0 and processes

p0, · · · , pn such that p
μ−→ p0 ≈ τ−→ p1 ≈ τ−→ · · · ≈ τ−→ pn ≡ p′ and there does not

exists any pn+1 such that p′ ≈ τ−→ pn+1. (Note: We use p ≈ τ−→ q to denote p
τ−→ q

and p ≈ q here).

Since Act+ = (Act.τ∗)+ we may identify L† with L+
† = 〈P, Act+,−→+

† 〉 where

−→+
† denotes one or more transitions via −→†. We formally define the set of all weak

μ-successors of p as the set Derpμ, i.e. Derpμ = {p′|p μ
=⇒ p′, μ ∈ Act}. We define the

following preorder on these sets.

Definition A2. Derpμ
⊂≈ Derqμ if for every p′ ∈ Derpμ there exists q′ ∈ Derqμ such that

p′ ≈ q′ and Derpμ
⊂
�≈ Derqμ if Derpμ

⊂≈ Derqμ and there exists q′ ∈ Derqμ such that p′ �≈ q′

for every p′ ∈ Derpμ. Derpμ
⊂⊃≈ Derqμ if Derpμ

⊂≈ Derqμ and Derqμ
⊂≈ Derpμ.

From Definition A2 it follows that p ≈ q iff Derpa
⊂⊃≈ Derqa for every a ∈ Act \ {τ}

and p ≈+ q iff Derpμ
⊂⊃≈ Derqμ for each μ ∈ Act. The following lemma follows from

the preemptive power of the τ action.

Lemma A1. For any processes p, p′ ∈ P , if p
τ

=⇒ p′ then Derp
′

μ
⊂≈ Derpμ for every

μ ∈ Act. Further, if p �≈ p′ implies Derp
′

ν
⊂
�≈ Derpν for some ν ∈ Act.

224 S. Arun-Kumar and D. Bagga

Proof. Let p′′ ∈ Derp
′

μ for some μ ∈ Act, then p
τ

=⇒ p′
μ

=⇒ p′′ (by definition of

Derp
′

μ), hence p
μ

=⇒ p′′. Thus we also have p′′ ∈ Derpμ. Since p′′ was arbitrary, we have

Derp
′

μ
⊂≈ Derpμ for all μ ∈ Act. now if p �≈ p′ implies ∃ν ∈ Act such that p

ν
=⇒ p′′ but

� ∃p′′′ such that p′ ν
=⇒ p′′′ and p′′ ≈ p′′′ (by definition of ≈). Clearly p′′ ∈ Derpν hence

Derp
′

ν
⊂
�≈ Derpν for some ν ∈ Act. !�

Lemma A2. If p is a finite state agent then

1. p
τ

=⇒ p′ implies p τn−−→† p′′ ≈ p′ for some n > 0, and

2. for any a ∈ Act \ {τ}, p a
=⇒ p′ implies p τmaτn−−−−−→†+ p′′ ≈ p′ for some m,n ≥ 0.

Proof. (part 1)
Let p

τ
=⇒ p′ then we must have p τn−−→† q for some n > 0 such that either q ≈ p′

or q τ+−−→† q′
τ

=⇒ q′′ such that q′′ ≈ p′ and q′ �≈ p. In case 1 the result holds. In

case 2 we clearly have by Lemma A2, for all μ ∈ Act we have Derq
′

μ
⊂≈ Derpμ and

there exists ν ∈ Act such that Derq
′

ν
⊂
�≈ Derpν . By using finite state agent assumption i.e.∑

μ∈Act

|Derpμ| is finite, applying above logic inductively with
∑

μ∈Act

|Derpμ| as induction

variable we have our result.
(part 2)
Let p

a
=⇒ p′ for some a ∈ Act \ {τ}. Then we have the following two cases:

– case 1: p
τ−→ p1

a
=⇒ p′

by part 1, in this case we have p τ+−−→† q such that q ≈ p1. Hence q
a

=⇒ q′ such

that q′ ≈ p′ (by definition of q ≈ p1). now if q
τ−→ q′′ a

=⇒ q′ then q τ+−−→† r such

that r ≈ q′′ (by part 1) but r �≈ p (by definition of L† and since p
τ+

→2
† r). Then

by claim A2 we have
∑

μ∈Act

|Derrμ| <
∑

μ∈Act

|Derpμ| and r
a

=⇒ r′ such that r′ ≈ p′.

Thus under finite state assumption we can only have this case finitely many times
and eventually we will get case 2.

– Case 2: p
a−→ p1 ⇒ p′

Then by definition of L† we must have a q such that p
a.τ∗
→† q such that q ≈ p1

. Since q ≈ p1, we have q ⇒ q′ ≈ p′. Now either q ≈ p′ in which case we
are done or else we have q

τ⇒ q′ ≈ p′ and q �≈ p′. Then by part 1 we will have

q τ+−−→† r ≈ q′ ≈ p′. !�

The following lemma shows that the LTS L† is observationally equivalent to the
original LTS L.

Lemma A3. If p is a finite state agent then

1. For all α ∈ Act+ if p α−→†+ p′ then p
α−→ p′.

2. For all α ∈ Act+ if p
α−→ p′ then there exists α′ with α′ =̂α such that p α′−→†+ p′′

and p′ ≈ p′′.

Parameterised Bisimulations: Some Applications 225

Proof. The (1) result follows straightforward from the definition of L†, since every
transition in L† is defined only if the corresponding transition exists in L. We prove (2)
by induction on the length of α. Base case of induction, i.e. α = a ∈ Act, follows
trivially from the definition of L†. We assume by induction hypothesis that for all α
such that |α| = k and k ≥ 1, if p

α→ p′ then there exists α′ ∈ Act+ such that α̂′ = α̂

and p
α′

→+
† p
′′ and p′ ≈ p′′. Now Let |α| = k + 1 then α = γ.a where |γ| = k, k ≥ 1.

Now if p
α→ p′ then there exists a q such that p

γ→ q and q
a−→ p′. By IH now there

must exist γ′ ∈ Act+ such that γ̂′ = γ̂ and p
γ′

→+
† q′ and q ≈ q′. Since q ≈ q′ and

q
a−→ p′ implies q′ a

=⇒ p′′′ such that p′ ≈ p′′′. Then by Lemma A2, there must exist p′′

such that q′ τ
n.a.τm

→† p′′ for some n,m ≥ 0 and p′′ ≈ p′′′ ≈ p′ . Thus we have p
α′

→+
† p
′′

and p′ ≈ p′′ where α′ = γ′.τn.a.τm. !�

Theorem A1. For all divergence-free finite-state CCS agents p, q we have p�(=̂+,=̂+) q

in L+
† iff p ≈+ q, where =̂+ is the restriction of =̂ to Act+

Claim A1. Observational Congruence,≈+ is a (=̂+, =̂+)−bisimulation in L†+

Proof. Let p ≈+ q. Then for some α ∈ Act+ such that p
α

→+
† p
′ we must have p

α→ p′

(by Lemma A3). Since p ≈+ q, there must exist a q′ and β ∈ Act+ such that α̂ = β̂

and q
β→ q′ and p′ ≈ q′. Now by Lemma A3 there must exist β′ ∈ Act+ such that

α̂ = β̂ = β̂′ and q
β′

→+
† q′′ and q′ ≈ q′′. i.e. q

β′
→ q′′ and p′ ≈ q′′. Now by our

definition for L†+ there does not exists any τ child of p′ and q′′ which are bisimilar to
them, hence p′ or q′′ cant do a ε transition to match a τ transition for the other process

and still reach bisimilar states. Hence p′ ≈+ q′′. Hence we have q
β′

→+
† q
′′ and p′ ≈+ q′′

and α̂ = β̂′. Since α was arbitrary, this holds for all α. We can show the result for all
transitions of q in the similar way. Hence we have≈+ as a (=̂+, =̂+)−bisimulation by
definition.

Claim A2. (=̂+, =̂+)−bisimulation in L†+ is a observational congruence upto weak
bisimulation.

Proof. Let p�(=̂+,=̂+)q in L†+. Then for some α ∈ Act+ such that p
α→ p′ there must

exist α′ ∈ Act+ such that α̂′ = α̂ and p
α′

→+
† p
′′ and p′ ≈ p′′ (by Lemma A3)

Hence there exists β ∈ Act+ such that α̂′ = β̂ and q
β

→+
† q′ and p′′�(=̂+,=̂+)q

′.

Therefore, q
β→ q′ and α̂ = β̂ and p′ ≈ p′′�(=̂+,=̂+)q

′ where β ∈ Act+.Since α
was arbitrary, this holds for all α. We can show the result for all transitions of q in the
similar way. Hence proved. !�

A Point-Free Relation-Algebraic Approach

to General Topology

Gunther Schmidt

Fakultät für Informatik, Universität der Bundeswehr München
85577 Neubiberg, Germany
gunther.schmidt@unibw.de

Abstract. In advanced functional programming, researchers have in-
vestigated the existential image, the power transpose, and the power
relator, e.g. It will be shown how the existential image is of use when
studying continuous mappings between different topologies relationally.
Normally, structures are compared using homomorphisms and sometimes
isomorphisms. This applies to group homomorphisms, to graph homo-
morphisms and many more. The technique of comparison for topological
structures will be shown to be quite different. Having in mind the crypto-
morphic versions of neighborhood topology, open kernel topology, open
sets topology, etc., this seems important.

Lifting concepts to a relational and, thus, algebraically manipulable
and shorthand form, shows that existential and inverse images must here
be used for structure comparison. Applying the relational language Titu-
Rel to such topological concepts allows to study and also visualize them.

Keywords: relational mathematics, homomorphism, topology, existen-
tial image, continuity.

1 Prerequisites

We will work with heterogeneous relations and provide a general reference to
[Sch11a], but also to the earlier [SS89, SS93]. Our operations are, thus, binary
union “∪”, intersection “∩”, composition “ ; ”, unary negation “ ”, transpo-
sition or conversion “ T ”, together with zero-ary null relations “ ”, universal
relations “ ”, and identities “ ”. A heterogeneous relation algebra

– is a category wrt. composition “; ” and identities ,
– has as morphism sets complete atomic boolean lattices with ∪, ∩, , , ,⊆,
– obeys rules for transposition T in connection with the latter two concepts

that may be stated in either one of the following two ways:

Dedekind rule:
R;S ∩ Q ⊆ (R ∩ Q;ST); (S ∩ RT;Q)

Schröder equivalences:
A;B ⊆ C ⇐⇒ AT;C ⊆ B ⇐⇒ C;BT ⊆ A

The two rules are equivalent in the context mentioned. Many rules follow out
of this setting; not least for the concepts of a function, mapping or ordering,
e.g. that mappings f may be shunted, i.e. that A;f ⊆ B ⇐⇒ A ⊆ B;f T.

P. Höfner et al. (Eds.): RAMiCS 2014, LNCS 8428, pp. 226–241, 2014.
c© Springer International Publishing Switzerland 2014

A Point-Free Relation-Algebraic Approach to General Topology 227

1.1 Quotient Forming

Whoever has a multiplication operation is inclined to ask for division. Division
of relations with common source is indeed possible to the following extent:

R;X = S has a solution X precisely when S ⊆ R;RT;S,

or else when S = R;RT;S. Among all solutions of R;X = S the greatest is RT;S.

Often this is turned into the operation R\S := RT;S of forming the left residuum
— as in division allegories. An illustration of the left residuum is as follows:

S =

J
a
n

F
eb

M
a
r

A
p
r

M
ay

J
u
n

J
u
l

A
u
g

S
ep

O
ct

N
ov

D
ec

US
French

German
British
Spanish

⎛
⎜⎜⎜⎝

0 0 0 1 0 1 1 1 0 1 0 0
1 0 0 1 0 0 1 0 0 1 0 0
1 1 0 0 1 1 0 1 0 0 0 1
1 1 0 0 0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1 0 0 0 0

⎞
⎟⎟⎟⎠

R =

A K Q J 1
0

9 8 7 6 5 4 3 2

US
French

German
British
Spanish

⎛
⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 1 1 0 1 0 1 0
0 1 1 0 0 0 0 1 0 0 0 0 1
0 0 0 1 0 0 1 0 0 1 1 0 1

⎞
⎟⎟⎟⎠

J
a
n

F
eb

M
a
r

A
p
r

M
ay

J
u
n

J
u
l

A
u
g

S
ep

O
ct

N
ov

D
ec

A
K
Q
J

10
9
8
7
6
5
4
3
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 1 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 1 0 1 1 1 0 0 0 0
1 1 0 0 1 1 0 1 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

R\S
Left residua show how columns of the relation R below the fraction backslash

are contained in columns of the relation S above, i.e., some sort of subjunction.
As an often used term built upon residua, the symmetric quotient of two

relations with common source has been introduced as syq(R,S) := RT;S ∩RT
;S.

The illustration of the symmetric quotient is as follows:

R =

A K Q J 1
0

9 8 7 6 5 4 3 2

US
French

German
British
Spanish

⎛
⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 1 1 0 1 0 1 0
0 1 1 0 0 0 0 1 0 0 0 0 1
0 0 0 1 0 0 1 0 0 1 1 0 1

⎞
⎟⎟⎟⎠

S =

J
a
n

F
eb

M
a
r

A
p
r

M
ay

J
u
n

J
u
l

A
u
g

S
ep

O
ct

N
ov

D
ec

US
French

German
British
Spanish

⎛
⎜⎜⎜⎝

0 0 0 1 0 1 1 1 0 1 0 0
1 0 0 1 0 0 1 0 0 1 0 0
1 1 0 0 1 1 0 1 0 0 0 1
1 1 0 0 0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1 0 0 0 0

⎞
⎟⎟⎟⎠

J
a
n

F
eb

M
a
r

A
p
r

M
ay

J
u
n

J
u
l

A
u
g

S
ep

O
ct

N
ov

D
ec

A
K
Q
J

10
9
8
7
6
5
4
3
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

syq(R,S)

228 G. Schmidt

The symmetric quotient shows which columns of the left are equal to columns
of the right relation in syq(R,S), with S conceived as the denominator.

It is extremely helpful that the symmetric quotient enjoys certain cancellation
properties. These are far from being broadly known. Just minor side conditions
have to be observed. In any of the following propositions correct typing is as-
sumed. What is more important is that one may calculate with the symmetric
quotient in a fairly traditional algebraic way. Proofs may be found in [Sch11a].

1.1 Proposition. Arbitrary relations A,B satisfy in analogy to a · b
a
= b

i) A;syq(A,B) = B ∩ ;syq(A,B),
ii) syq(A,B) surjective =⇒ A;syq(A,B) = B.

The analogy holds except for the fact that certain columns are “cut out” or are
annihilated when the symmetric quotient fails to be surjective — meaning that
certain columns of the first relation fail to have counterparts in the second.

1.2 Proposition. Arbitrary relations A,B,C satisfy in analogy to b
a
· c
b
= c

a

i) syq(A,B);syq(B,C) = syq(A,C) ∩ syq(A,B);

= syq(A,C) ∩ ;syq(B,C)
ii) If syq(A,B) is total, or if syq(B,C) is surjective, then

syq(A,B);syq(B,C) = syq(A,C).

1.2 Domain Construction

The relational language TituRel (see [Sch03, Sch11b]) makes use of characteri-
zations up to isomorphism and bases domain constructions on these. This applies
to the obvious cases of direct products (tuple forming) with projections named
π, ρ and direct sums (variant handling). If any two heterogeneous relations π, ρ
with common source are given, they are said to form a direct product if

πT;π = , ρT;ρ = , π;πT ∩ ρ;ρT = , πT;ρ = .

Thus, the relations π, ρ are mappings, usually called projections. Along with
the direct product, we automatically have the Kronecker product of any two
relations and (when sources coincide) the strict fork operator for relations,

(R©× S) := π;R;π′T ∩ ρ;S;ρ′T and (P ©< Q) := P ;π′T ∩ Q;ρ′T.

In a similar way, any two heterogeneous relations ι, κ with common target are
said to form the left, respectively right, injection of a direct sum if

ι; ιT = , κ;κT = , ιT; ι ∪ κT;κ = , ι;κT = .

A Point-Free Relation-Algebraic Approach to General Topology 229

TituRel then enables the construction of natural projections to a quotient
modulo an equivalence and the extrusion of a subset out of its domain, so as to
have both of them as “first-class citizens” among the domains considered — not
just as “dependent types”.

Here, we include the direct power. Any relation ε satisfying

syq(ε, ε) ⊆ , syq(ε,R) surjective for every relation R starting in X

is called a membership relation and its codomain the direct power of X .

DirPow x

Member x
2X

ε : X −→ 2X
X

Y

R

ε

syq (ε,R)

X2

Above it is indicated how this is represented in the language. One will observe the
1st-order style of the definition — however quantifying over relations. Classically,
the characterisation of the powerset requires 2nd-order.

One will also observe the fractal structure in the following example of a mem-
bership relation, together with an interesting interplay between subsets U , their
ordering Ω := εT;ε, and elements like e in the powerset:

U = ε;e e = syq(ε, U)

{} {a
}

{b
}

{a
,b
}

{c
}

{a
,c
}

{b
,c
}

{a
,b
,c
}

{d
}

{a
,d
}

{b
,d
}

{a
,b
,d
}

{c
,d
}

{a
,c
,d
}

{b
,c
,d
}

{a
,b
,c
,d
}

a
b
c
d

⎛⎜⎝0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

⎞⎟⎠
⎛⎝0

1
0
1

⎞⎠
(0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0) = eT

{} {a
}

{b
}

{a
,b
}

{c
}

{a
,c
}

{b
,c
}

{a
,b
,c
}

{d
}

{a
,d
}

{b
,d
}

{a
,b
,d
}

{c
,d
}

{a
,c
,d
}

{b
,c
,d
}

{a
,b
,c
,d
}

{}
{a}
{b}

{a,b}
{c}

{a,c}
{b,c}

{a,b,c}
{d}

{a,d}
{b,d}

{a,b,d}
{c,d}

{a,c,d}
{b,c,d}

{a,b,c,d}

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Then the direct product together with the direct power allow in particular to
define join and meet in the powerset concisely as

M := syq((ε©< ε) , ε) J := syq((ε©< ε) , ε),

which then satisfies such nice formulae as

(ε©< ε) ;M = ε
syq(X, (ε©< ε));M = syq(X, ε).

230 G. Schmidt

2 Recalling Concepts of Topology

Now we apply the techniques mentioned for topological structures. Topology may
be defined via open or closed sets, neighborhoods, transition to open kernels, etc.
We show that at least the neighborhood version — in the form given by Felix
Hausdorff — shows an inherently “linear” configuration, which is apt to being
formulated using relations.

We recall (see [Fra60]) that a set X endowed with a system U(p) of subsets for
every p ∈ X — called neighborhoods — is a topological structure, provided

i) p ∈ U for every neighborhood U ∈ U(p),
ii) if U ∈ U(p) and V ⊇ U , then V ∈ U(p),
iii) if U1, U2 ∈ U(p), then U1 ∩ U2 ∈ U(p) and X ∈ U(p),
iv) for every U ∈ U(p) there is a V ∈ U(p) so that U ∈ U(y) for all y ∈ V .

The same shall now be expressed with membership ε, conceiving U as a relation

ε : X −→ 2X and U : X −→ 2X .

At other occasions, it has been shown that condition (iv), e.g., can semi-formally
be lifted step by step to a relational form:

For every U ∈ U(p) there is a V ∈ U(p) such that U ∈ U(y) for all y ∈ V .

∀p, U : U ∈ U(p) →
(
∃V : V ∈ U(p) ∧

(
∀y : y ∈ V → U ∈ U(y)

))
∀p, U : UpU →

(
∃V : UpV ∧

(
∀y : εyV → UyU

))
∀p, U : UpU →

(
∃V : UpV ∧ ∃y : εyV ∧ UyU

)
∀p, U : UpU →

(
∃V : UpV ∧ εT;UV U

)
∀p, U : UpU →

(
U ;εT;U

)
pU

U ⊆ U ;εT;U

One could see how the lengthy verbose or the predicate logic formula is traced
back to a “lifted” relational version free of quantifiers, that employs a residuum.
Such algebraic versions should be preferred in many respects. They support proof
assisting systems and may be written down in the language TituRel so as to
evaluate terms built with them and, e.g., visualize concepts of this paper. An
example of a neighborhood topology U and the basis of its open sets:

U =

{} {a
}

{b
}

{a
,b
}

{c
}

{a
,c
}

{b
,c
}

{a
,b
,c
}

{d
}

{a
,d
}

{b
,d
}

{a
,b
,d
}

{c
,d
}

{a
,c
,d
}

{b
,c
,d
}

{a
,b
,c
,d
}

a
b
c
d

⎛
⎜⎝
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

⎞
⎟⎠

A Point-Free Relation-Algebraic Approach to General Topology 231

This, together with a transfer of the other properties to the relational level,
and using ε derived from the source of U gives rise to the lifting of the initial
Hausdorff definition, thus making it point-free as in:

2.1 Definition. A relation U : X −→ 2X will be called a neighborhood
topology if the following properties are satisfied:

i) U ; = and U ⊆ ε,
ii) U ;Ω ⊆ U ,
iii) (U ©< U) ;M⊆ U ,
iv) U ⊆ U ;εT;U .

Correspondingly, lifting may be executed for various other topology concepts.
We start with the mapping to open kernels, assuming Ω := εT;ε to represent the
powerset ordering.

2.2 Definition.We call a relation K : 2X −→ 2X amapping-to-open-kernel
topology, if

i) K is a kernel forming, i.e., K ⊆ ΩT, Ω;K ⊆ K;Ω, K;K ⊆ K,
ii) ε;KT is total,
iii) (K©× K) ;M =M;K.

Conditions (i) obviously request that K maps to subsets of the original one,
is isotonic, and is idempotent. Condition (iii) requires K and M to commute:
One may obtain kernels of an arbitrary pair of subsets first and then form their
intersection, or, equivalently, start intersecting these subsets and then getting
the kernel.

2.3 Proposition. The following operations are inverses of one another:

i) Given any neighborhood topology U , the construct K := syq(U , ε) is a
kernel-mapping topology.

ii) Given any kernel-mapping topology K, the construct U := ε;KT results in a
neighborhood topology.

We cannot give the full proof for reasons of space, but indicate a part of it: The
K defined in (i) is certainly a mapping, due to cancellation KT;K ⊆ syq(ε, ε) = ,
and, since forming the symmetric quotient with ε on the right side of syq gives
a total relation by definition of a membership relation.

232 G. Schmidt

U(K(U)) = ε; [syq(U , ε)]T = ε;syq(ε,U) = U since syq(ε,X) is surjective

K(U(K)) = syq(ε;KT, ε) = K;syq(ε, ε) = K; = K since K is a mapping

It remains the obligation to prove

U ; = ,
U ⊆ ε,
U ;Ω ⊆ U ,
(U ©< U) ;M⊆ U ,
U ⊆ U ;εT;U .

⇐⇒

K ⊆ ΩT,
Ω;K ⊆ K;Ω,
K;K ⊆ K,
ε;KT; = ,
(K©× K) ;M =M;K.

A third form of a topology definition runs as follows:

2.4 Definition. A binary vector OV along 2X will be called an open set
topology provided

i) syq(ε,) ⊆ OV syq(ε,) ⊆ OV ,
ii) v ⊆ OV =⇒ syq(ε, ε;v) ⊆ OV for all vectors v ⊆ 2X ,
iii) MT

; (OV ©> OV) ⊆ OV .

With (i), and are declared to be open. The vector v in (ii) determines a
set of open sets conceived as points in the powerset. It is demanded that their
union be open again. According to (iii), intersection (meet M) applied to two
(i.e., finitely many) open sets must be open.

One may also study the membership restricted to open sets εO := ε ∩ ;OT

V .

All these topology concepts are “cryptomorphic”. This term has sometimes been
used when the “same” concept is defined and axiomatized in quite different ways
as here via U ,K,OV , e.g. Nevertheless, the transitions below allow to prove
equivalence as it is schematically indicated above for U ,K. The transitions below
may be written down in TituRel so as to achieve the version intended. In
particular, OV and OD are distinguished, although they are very similar, namely
“diagonal matrix” vs. “column vector” to characterize a subset.

U %→ K := syq(U , ε) : 2X −→ 2X

K %→ U := ε;KT : X −→ 2X .

OD %→ U := ε;OD;Ω

OD %→ OV := OD;

K,U ,OV %→ OD := ∩ εT;U = ∩ OV ; = KT;K

A Point-Free Relation-Algebraic Approach to General Topology 233

One may, thus, obtain the same topology in different forms as it is shown below
for the example given before Definition 2.1:

{} {a
}

{b
}

{a
,b
}

{c
}

{a
,c
}

{b
,c
}

{a
,b
,c
}

{d
}

{a
,d
}

{b
,d
}

{a
,b
,d
}

{c
,d
}

{a
,c
,d
}

{b
,c
,d
}

{a
,b
,c
,d
}

a
b
c
d

⎛⎜⎝0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

⎞⎟⎠

{} {a
}

{b
}

{a
,b
}

{c
}

{a
,c
}

{b
,c
}

{a
,b
,c
}

{d
}

{a
,d
}

{b
,d
}

{a
,b
,d
}

{c
,d
}

{a
,c
,d
}

{b
,c
,d
}

{a
,b
,c
,d
}

a
b
c
d

⎛⎜⎝0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

⎞⎟⎠

{} {a
}

{b
}

{a
,b
}

{c
}

{a
,c
}

{b
,c
}

{a
,b
,c
}

{d
}

{a
,d
}

{b
,d
}

{a
,b
,d
}

{c
,d
}

{a
,c
,d
}

{b
,c
,d
}

{a
,b
,c
,d
}

a
b
c
d

⎛⎜⎝0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

⎞⎟⎠
{} {a
}

{b
}

{a
,b
}

{c
}

{a
,c
}

{b
,c
}

{a
,b
,c
}

{d
}

{a
,d
}

{b
,d
}

{a
,b
,d
}

{c
,d
}

{a
,c
,d
}

{b
,c
,d
}

{a
,b
,c
,d
}

{}
{a}
{b}

{a,b}
{c}

{a,c}
{b,c}

{a,b,c}
{d}

{a,d}
{b,d}

{a,b,d}
{c,d}

{a,c,d}
{b,c,d}

{a,b,c,d}

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ε U εO := ε ∩ ;OT
V = ε;K ∩ ε K := syq(U , ε) indicating OD as diagonal

By the way, there exists also a kernel-forming that doesn’t lead to a topology; it
is not intersection-closed as can be seen from the subsets {a, b} and {b, d} with
intersection {d}:

K =

{} {a
}

{b
}

{a
,b
}

{c
}

{a
,c
}

{b
,c
}

{a
,b
,c
}

{d
}

{a
,d
}

{b
,d
}

{a
,b
,d
}

{c
,d
}

{a
,c
,d
}

{b
,c
,d
}

{a
,b
,c
,d
}

{}
{a}
{b}

{a,b}
{c}

{a,c}
{b,c}

{a,b,c}
{d}

{a,d}
{b,d}

{a,b,d}
{c,d}

{a,c,d}
{b,c,d}

{a,b,c,d}

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

3 Continuity

For a mathematical structure, one routinely defines its structure-preserving map-
pings. Traditionally, this is handled under the name of a homomorphism; it may
be defined for relational structures as well as for algebraic ones (i.e., those where

234 G. Schmidt

structure is described by mappings as for groups, e.g.) in more or less the sa-
me standard way; it is available for a homogeneous as well as a heterogeneous
structure.

One might naively be tempted to study also the comparison of topologies with
the concept of homomorphism; however, this doesn’t work.

The continuity condition turns out to be a mixture of going forward and
backwards as we will see. We recall the standard definition of continuity.

T

For two given neighborhood topologies U ,U ′ on setsX,X ′, one calls a mapping
f : X −→ X ′

f continuous :⇐⇒ For every point p ∈ X and every U ′ ∈ U ′(f(p)),
there exists a U ∈ U(p) such that f(U) ⊆ U ′.

A first example of a continuous mapping shows two open set bases, arranged as
columns of matrices R1, R2, and the mapping f :

R1 =

a
lp
h
a

b
et
a

g
a
m
m
a

d
el
ta

1
2
3
4
5

⎛
⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 1
0 0 1 0

⎞
⎟⎟⎟⎠ f =

a b c d e

1
2
3
4
5

⎛
⎜⎜⎜⎝

0 1 0 0 0
0 0 0 1 0
1 0 0 0 0
1 0 0 0 0
0 0 1 0 0

⎞
⎟⎟⎟⎠ R2 =

a
lp
h
a
2

b
et
a
2

g
a
m
m
a
2

a
b
c
d
e

⎛
⎜⎜⎜⎝

1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

⎞
⎟⎟⎟⎠

A Point-Free Relation-Algebraic Approach to General Topology 235

The following is another example of a continuous mapping. Again two open set
bases are arranged as columns of matrices R1, R2 and shown together with the
mapping f :

R1 =

a
lp
h
a

b
et
a

g
a
m
m
a

d
el
ta

ep
si
lo
n

1
2
3
4
5

⎛
⎜⎜⎜⎝

1 0 0 0 0
0 1 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 1 1

⎞
⎟⎟⎟⎠ f =

a b c d e

1
2
3
4
5

⎛
⎜⎜⎜⎝

0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎠ R2 =

a
lp
h
a
2

b
et
a
2

g
a
m
m
a
2

d
el
ta
2

ep
si
lo
n
2

et
a
2

a
b
c
d
e

⎛
⎜⎜⎜⎝

0 0 0 1 0 0
1 0 0 1 1 0
0 1 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 1

⎞
⎟⎟⎟⎠

Now follows a third example of a continuous mapping, using the same style.

R1 =

a
lp
h
a

b
et
a

g
a
m
m
a

d
el
ta

ep
si
lo
n

1
2
3
4
5

⎛
⎜⎜⎜⎝

0 0 0 1 0
0 0 0 0 1
0 0 1 0 0
1 1 1 0 0
0 1 0 0 0

⎞
⎟⎟⎟⎠ f =

a b c d

1
2
3
4
5

⎛
⎜⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎟⎠ R2 =

a
lp
h
a
2

b
et
a
2

g
a
m
m
a
2

d
el
ta
2

a
b
c
d

⎛
⎜⎝
1 0 0 0
0 0 0 1
0 0 1 0
0 1 1 0

⎞
⎟⎠

According to our general policy, we should try to lift the continuity definition to
a point-free relational level. However, one soon sees that this requires that we
employ the concept of an existential and of an inverse image.

236 G. Schmidt

3.1 Existential and Inverse Image

The lifting of a relation R to a corresponding relation ϑR on the powerset level
has been called its existential image; cf. [Bd96]. (There exist also the power
transpose ΛR and the power relator ζR.)

Assuming an arbitrary relation R : X −→ Y together with membership rela-
tions ε : X −→ 2X and ε′ : Y −→ 2Y on either side one calls

ϑ := ϑ
R
:= syq(RT;ε, ε′) = εT;R;ε′ ∩ εT;R;ε′,

its existential image. The inverse image is obtained when taking the
existential image of the transposed relation.

It turns out, according to [Bd96, Sch11a], that ϑ is

– (lattice-)continuous wrt. the powerset orders Ω = εT;ε,

– multiplicative: ϑ
Q;R

= ϑ
Q

;ϑ
R
,

– preserves identities: ϑ
X
= 2X ,

– R may be re-obtained from ϑR as R = ε;ϑR;ε′
T

.

It also satisfies, according to [dRE98, Sch11a], the following simulation pro-
perty. R and its existential image as well as its inverse image simulate each
other via ε, ε′:
εT;R = ϑ

R
;ε′T ε′T;RT = ϑ

RT
;εT.

T

The existential image and the inverse image also satisfy formulae with respect
to the powerset orderings:

i) Ω′;ϑfT ⊆ ϑfT ;Ω if f is a mapping,

ii) Ω;ϑ
T

fT = ϑ
f

;Ω′ if f is a mapping.

The proof cannot be given in the present limited environment.

A Point-Free Relation-Algebraic Approach to General Topology 237

R =

a b c d

1
2
3
4
5

⎛⎜⎜⎝
0 1 0 1
1 0 0 0
0 0 1 0
0 0 0 1
1 0 1 0

⎞⎟⎟⎠ ϑR =
{} {a
}

{b
}

{a
,b
}

{c
}

{a
,c
}

{b
,c
}

{a
,b
,c
}

{d
}

{a
,d
}

{b
,d
}

{a
,b
,d
}

{c
,d
}

{a
,c
,d
}

{b
,c
,d
}

{a
,b
,c
,d
}

{}
{1}
{2}

{1,2}
{3}

{1,3}
{2,3}

{1,2,3}
{4}

{1,4}
{2,4}

{1,2,4}
{3,4}

{1,3,4}
{2,3,4}

{1,2,3,4}
{5}

{1,5}
{2,5}

{1,2,5}
{3,5}

{1,3,5}
{2,3,5}

{1,2,3,5}
{4,5}

{1,4,5}
{2,4,5}

{1,2,4,5}
{3,4,5}

{1,3,4,5}
{2,3,4,5}

{1,2,3,4,5}

⎛⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎞⎟⎟⎠
The inverse image is obviously not the transpose of the existential image.

ϑRT =

{} {1
}

{2
}

{1
,2
}

{3
}

{1
,3
}

{2
,3
}

{1
,2
,3
}

{4
}

{1
,4
}

{2
,4
}

{1
,2
,4
}

{3
,4
}

{1
,3
,4
}

{2
,3
,4
}

{1
,2
,3
,4
}

{5
}

{1
,5
}

{2
,5
}

{1
,2
,5
}

{3
,5
}

{1
,3
,5
}

{2
,3
,5
}

{1
,2
,3
,5
}

{4
,5
}

{1
,4
,5
}

{2
,4
,5
}

{1
,2
,4
,5
}

{3
,4
,5
}

{1
,3
,4
,5
}

{2
,3
,4
,5
}

{1
,2
,3
,4
,5
}

{}
{a}
{b}

{a,b}
{c}

{a,c}
{b,c}

{a,b,c}
{d}

{a,d}
{b,d}

{a,b,d}
{c,d}

{a,c,d}
{b,c,d}

{a,b,c,d}

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0
0 1 0 0
0 1
0 1 0 0
0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

3.2 Lifting the Continuity Condition

With the inverse image, we will manage to lift the continuity definition to a
point-free relational level.

238 G. Schmidt

3.1 Definition. Consider two neighborhood topologies U : X −→ 2X and
U ′ : X ′ −→ 2X′

as well as a mapping f : X −→ X ′. We call

f U-continuous :⇐⇒ f ;U ′ ⊆ U ;ϑT

fT .

An equivalent version f ;U ′;ϑfT ⊆ U is obtained by shunting the mapping ϑfT .

The semi-formal development of the point-free version out of the predicate-
logic form is rather tricky. It is interesting to observe that one must not quantify
over subsets U, V ; one should always move to quantifying over elements u, v in
the powerset:

For every p ∈ X , every V ∈ U ′(f(p)), there is a U ∈ U(p) so that f(U) ⊆ V .

∀p ∈ X : ∀V ∈ U ′(f(p)) : ∃U ∈ U(p) : f(U) ⊆ V

∀p ∈ X : ∀v ∈ 2X′
: U ′f(p),v →

(
∃u : Upu ∧

[
∀y : εyu → ε′f(y),v

])
∀p : ∀v : (f ;U ′)pv →

(
∃u : Upu ∧

[
∀y : εyu → (f ;ε′)yv

])
∀p : ∀v : (f ;U ′)pv →

(
∃u : Upu ∧ ∃y : εyu ∧ (f ;ε′)yv

)
∀p : ∀v : (f ;U ′)pv →

(
∃u : Upu ∧ εT;f ;ε′uv

)
∀p : ∀v : (f ;U ′)pv →

(
U ;εT;f ;ε′

)
pv

f ;U ′ ⊆ U ;εT;f ;ε′

This was the main step. It remains to show relation-algebraically that this
sharpens even to f ;U ′ ⊆ U ;syq(ε, f ;ε′) = U ;ϑT

fT :

U ;εT;f ;ε′ ⊆ U ;εT;f ;ε′;ϑfT ;ϑT

fT because ϑfT is total

= U ;εT;f ;ε′;syq(f ;ε′, ε);ϑT

fT by definition of ϑfT

⊆ U ;εT;ε;ϑT

fT cancellation

= U ;εT;ε;ϑT

fT since ϑfT is a mapping
= U ;Ω;ϑT

fT = U ;ϑT

fT Def. 2.1.ii

3.3 Remark on Comparison of Structures in General

Comparison of structures via homomorphisms or structure-preserving mappings
is omnipresent in mathematics and theoretical computer science, be it for groups,
lattices, modules, graphs, or others. Most of these follow a general schema.

Φ

Ψ

1

1

1 2

2

2

Two “structures” of whatever kind shall be given by a relation R1 : X1 −→ Y1
and a relation R2 : X2 −→ Y2. With mappings Φ : X1 −→ X2 and Ψ : Y1 −→ Y2

A Point-Free Relation-Algebraic Approach to General Topology 239

they shall be compared, and we may ask whether these mappings transfer the
first structure “sufficiently nice” into the second one.
The standard mechanism is to call the pair Φ, Ψ a homomorphism from R1 to
R2, if R1;Ψ ⊆ Φ;R2. The two Φ, Ψ constitute an isomorphism, if Φ, Ψ as well
as ΦT, Ψ T are homomorphisms.

If any two elements x, y are related by R1, so are their images Φ(x), Ψ(y) by
R2:

∀x ∈ X1 : ∀y ∈ Y1 : (x, y) ∈ R1 → (Φ(x), Ψ(y)) ∈ R2.

This concept is also suitable for relational structures; it works in particular
for a graph homomorphism Φ,Φ — meaning X1 = X2, e.g. — as in the following
example of a graph homomorphism, i.e., a homomorphism of a non-algebraic
structure.

R1 =

⎛
⎜⎜⎜⎜⎝

a b c d e

a 1 0 0 0 1
b 0 0 0 1 0
c 0 0 0 1 0
d 0 0 0 0 0
e 0 0 1 1 0

⎞
⎟⎟⎟⎟⎠

Φ =

⎛
⎜⎜⎜⎜⎝

w x y z

a 0 1 0 0
b 0 0 1 0
c 0 0 0 1
d 0 0 0 1
e 0 0 1 0

⎞
⎟⎟⎟⎟⎠

R2 =

⎛
⎜⎜⎝

w x y z

w 0 0 1 0
x 0 1 1 1
y 0 0 0 1
z 0 0 0 1

⎞
⎟⎟⎠

We recall the rolling of homomorphisms when Φ, Ψ are mappings as in

R1;Ψ ⊆ Φ;R2 ⇐⇒ R1 ⊆ Φ;R2;Ψ T ⇐⇒ ΦT;R1 ⊆ R2;Ψ T ⇐⇒ ΦT;R1;Ψ ⊆ R2

If relations Φ, Ψ are not mappings, one cannot fully execute this rolling; there
remain different forms of (bi-)simulations as explicated in [dRE98].

This is where the continuity condition fails. One cannot “roll” in this way and
has just the two forms given above.

3.4 Cryptomorphy of the Continuity Conditions

Once we have the lifted relation-algebraic form for a neighborhood topology
that uses the inverse image, we will immediately extend it to the other topology
versions.

3.2 Definition. Given two sets X,X ′ with topologies, we consider a mapping
f : X −→ X ′ together with its inverse image ϑfT : 2X′ −→ 2X . Then we say
that f is

240 G. Schmidt

i) K-continuous :⇐⇒ KT
2
;ϑfT ⊆ ε2T;f T;ε1;KT

1,
ii) ODcontinuous :⇐⇒ OD2;ϑfT ⊆ ϑfT ;OD1,
iii) OV -continuous :⇐⇒ ϑT

fT
;O′V ⊆ OV ,

iv) εO-continuous :⇐⇒ f ;εO2
;ϑfT ⊆ εO1 .

The easiest access is to the open sets version with OV : Inverse images of open
sets have to be open again. Continuity with regard to kernel mapping is an ugly
condition — that may be new.

All these versions of continuity can be shown to be equivalent, so that there
is an obligation to prove f is U-continuous ⇐⇒
f is K-continuous ⇐⇒ f is OD-continuous ⇐⇒
f is OV -continuous ⇐⇒ f is εO-continuous

For economy of proof, we formulate this slightly differently: An immediate
equivalence is proved, followed by a long cyclic proof.

3.3 Proposition. The various continuity conditions mean essentially the same:

i) U-continuous ⇐⇒ K-continuous
ii) U-continuous =⇒ OD-continuous
iii) OD-continuous =⇒ OV -continuous
iv) OV -continuous =⇒ εO-continuous
v) εO-continuous =⇒ U-continuous

Proof : i) f ;U2;ϑfT ⊆ U1 = ε1;KT
1 assumption and expansion of U1

⇐⇒ f ;ε2;KT
2
;ϑfT ;K1 ⊆ ε1 expanding U2 and shunting

⇐⇒ ε2
T;f T;ε1 ⊆ KT

2
;ϑfT ;K1 Schröder rule

⇐⇒ KT
2
;ϑfT ;K1 ⊆ ε2T;f T;ε1 negated

⇐⇒ KT
2
;ϑfT ⊆ ε2T;f T;ε1;KT

1 shunting again

ii) εT
2
;U2 ⊆ εT

2
;f T;f ;U2 = εT

2
;f T;f ;U2 = ϑfT ;εT

1
;f ;U2

⊆ ϑfT ;εT
1
;U1;ϑT

fT = ϑfT ;εT
1
;U1;ϑT

fT

=⇒ OD2 = ∩ εT
2
;U2 ⊆ ϑfT ;ϑT

fT ∩ ϑfT ;εT
1
;U1;ϑT

fT

= ϑfT(∩ εT
1
;U1);ϑT

fT = ϑfTOD1;ϑT

fT

iii) ϑT

fT
;OV2 = ϑT

fT
;OD2; = ϑT

fT
;OD

T

2
; ⊆ OD

T

1
;ϑT

fT
; = OD1;ϑ

T

fT
; ⊆ OD1; = OV1

iv) f ;εO2
;ϑfT = f ; (ε2 ∩ ;OT

V2
);ϑfT = (f ;ε2 ∩ f ; ;OT

V2
);ϑfT

= (ε1;ϑT

fT ∩ ;OT

V2
);ϑfT

= ε1 ∩ ;OT

V2
;ϑfT [Sch11a, Prop. 5.4]

⊆ ε1 ∩ ;OT

V1
= εO1

v) f ;U2;ϑfT = f ;εO2
;Ω2;ϑfT

⊆ f ;εO2
;ϑfT ;Ω1

⊆ εO1
;Ω1 assumption

= U1

A Point-Free Relation-Algebraic Approach to General Topology 241

4 Conclusion

This article is part of a more extended ongoing research concerning relational
methods in topology and in programming. Other attempts are directed towards
simplicial complexes, e.g., for pretzels with several holes, the projective plane, or
knot decompositions. An important question is whether it is possible to decide
orientability, e.g., of a manifold without working on it globally. Compare this with
the classic philosophers problem. Modelling the actions of the dining philosophers
is readily available. One will be able to work on the state space based on 10
philosophers or 15. However, this doesn’t scale up, so that local work is necessary.
This work is intended to enhance such studies concerning communication and
protocols.

Acknowledgement. The author gratefully acknowledges fruitful email discus-
sions with Michael Winter as well as the encouraging remarks of the unknown
referees.

Literatur

[Bd96] Bird, R.S., de Moor, O.: Algebra of Programming. Prentice-Hall International
(1996)

[dRE98] de Roever, W.-P., Engelhardt, K.: Data Refinement: Model-Oriented Proof
Methods and their Comparison. Cambridge Tracts in Theoretical Computer
Science, vol. 47. Cambridge University Press (1998)

[Fra60] Franz, W.: Topologie I. Sammlung Göschen 1181. Walter de Gruyter (1960)
[SS89] Schmidt, G., Ströhlein, T.: Relationen und Graphen. Mathematik für Infor-

matiker. Springer (1989) ISBN 3-540-50304-8, ISBN 0-387-50304-8
[SS93] Schmidt, G., Ströhlein, T.: Relations and Graphs— Discrete Mathematics for

Computer Scientists. EATCS Monographs on Theoretical Computer Science.
Springer (1993) ISBN 3-540-56254-0, ISBN 0-387-56254-0

[Sch03] Schmidt, G.: Relational Language. Technical Report 2003-05, Fakultät
für Informatik, Universität der Bundeswehr München, 101 pages (2003),
http://mucob.dyndns.org:30531/~gs/Papers/LanguageProposal.html

[Sch11a] Schmidt, G.: Relational Mathematics, Encyclopedia of Mathematics and its
Applications, vol. 132, 584 p. Cambridge University Press (2011) ISBN 978-
0-521-76268-7

[Sch11b] Schmidt, G.: TituRel: Sprache für die Relationale Mathematik. Technical
Report 132, Arbeitsberichte des Instituts für Wirtschaftsinformatik, Uni-
versität Münster, 11 pages (2011), http://mucob.dyndns.org:30531/~gs/
Papers/Raesfeld2011ExtendedAbstract.pdf

http://mucob.dyndns.org:30531/~gs/Papers/LanguageProposal.html
http://mucob.dyndns.org:30531/~gs/Papers/Raesfeld2011ExtendedAbstract.pdf
http://mucob.dyndns.org:30531/~gs/Papers/Raesfeld2011ExtendedAbstract.pdf

A Mechanised Abstract Formalisation
of Concept Lattices

Wolfram Kahl⋆

McMaster University, Hamilton, Ontario, Canada
kahl@cas.mcmaster.ca

Abstract. Using the dependently-typed programming language Agda,
we formalise a category of algebraic contexts with relational homomor-
phisms presented by [Jip12, Mos13]. We do this in the abstract setting of
locally ordered categories with converse (OCCs) with residuals and direct
powers, without requiring meets (as in allegories) or joins (as in Kleene
categories). The abstract formalisation has the advantage that it can be
used both for theoretical reasoning, and for executable implementations,
by instantiating it with appropriate choices of concrete OCCs.

1 Introduction

Formal concept analysis (FCA) [Wil05] typically starts from a context (E,A,R)
consisting of a set E of entities (or “objects”), a set A of attributes, and an
incidence relation R from entities to attributes. In such a context, “concepts”
arise as “Galois-closed” subsets of E respectively A, and form complete “concept
lattices”.

In a recent development, M. A. Moshier [Mos13] defined a novel relational
context homomorphism concept that gives rise to a category of contexts that is
dual to the category of complete meet semilattices. This is in contrast with the
FCA literature, which typically derives the context homomorphism concept from
that used for the concept lattices, as for example in [HKZ06], with the notable
exception of Erné, who studied context homomorphisms consisting of pairs of
mappings [Ern05].

Jipsen [Jip12] published the central definitions of Moshier’s [Mos13] approach,
and developed it further to obtain categories of context representations of not
only complete lattices, but also different kinds of semirings.

We now set out to mechanise the basis of these developments, and for the sake
of reusability we abstract the sets and relations that constitute contexts to ob-
jects and morphisms of suitable categories and semigroupoids. Besides the mech-
anised formalisation itself, our main contribution is the insight that Moshier’s
relational context category can be formalised in categories of “abstract relations”
where neither meet (intersection) nor join (union) are available, and that a large
part of this development does not even require the presence of identity relations.

⋆ This research is supported by the National Science and Engineering Research Council
of Canada, NSERC.

P. Höfner et al. (Eds.): RAMiCS 2014, LNCS 8428, pp. 242–260, 2014.
© Springer International Publishing Switzerland 2014

A Mechanised Abstract Formalisation of Concept Lattices 243

Overview

We start with an introduction to essential features of the dependently-typed
programming language and proof checker Agda2 (in the following just referred
to as Agda) and an overview of our RATH-Agda formalisation of categoric
abstractions of functions and relations in Sect. 3.

Since formal concept analysis concentrates on subsets of the constituent sets
of the contexts we are interested in, we formalise an abstract version of element
relations corresponding to the direct powers of [BSZ86, BSZ89] or the power alle-
gories of [FS90], directly in the setting of locally ordered semigroupoids with con-
verse (OSGCs) in Sect. 4. Adding also residuals to that setting (Sect. 5) proves
sufficient for the formalisation of the “compatibility conditions” of Moshier’s
relational context homomorphisms, in Sect. 6. Defining composition of these ho-
momorphisms requires making identity relations available, that is, moving from
semigroupoids to categories; locally ordered categories with converse (OCCs)
and residuals and a power operator are sufficient to formalise the context cat-
egory, in Sect. 7. We conclude with additional discussion of the merits of our
abstract formalisation.

The Agda source code from this project, including the modules discussed in
this paper, are available on-line at http://relmics.mcmaster.ca/RATH-Agda/.

2 Agda Notation

This paper reports on a development in the dependently typed functional pro-
gramming language and proof assistant Agda [Nor07] based on Martin-Löf type
theory. Since Agda has been designed with a clear focus on both readability and
writability, we present all mathematical content (except some informal analogies)
in Agda notation, as an excerpt of the actual mechanically checked development.

Many Agda features will be explained when they are first used; here we only
summarise a few essential aspects to make our use of Agda as the mathematical
notation in the remainder of this paper more widely accessible.

Syntactically and “culturally”, Agda frequently seems quite close to Haskell.
However, the syntax of Agda is much more flexible: Almost any sequence of
non-space characters is a legal lexeme, permitting the habit of choosing variable
names for properties that abbreviate for example their left-hand sides, as for
example Λ�∈˘ ∶ ... → Λ0 R � ∈ ˘ ≈ R in Sect. 4 below, or names for proof
values that reflect their type, e.g., x≈y ∶ x ≈ y. Infix operators, and indeed mixfix
operators of arbitrary arity, have names that contain underscore characters “ ” in
the positions of the first explicit arguments; below we use a binary infix operator
≈ for morphism equality in semigroupoids and categories, and the “circumfix”
operator [] in Sect. 7.

Braces “{. . . }” in a function type “{name ∶ type1} → type2 → ...” declare the
first argument to be implicit ; a function (say, “f”) with this type can have this
implicit argument supplied in three ways:

http://relmics.mcmaster.ca/RATH-Agda/

244 W. Kahl

– “f v2” supplies the explicit second argument v2 explicitly, and thereby sup-
plies the name argument implicitly, which requires that the type checker can
determine its value uniquely;

– “f {v1} v2” supplies the name argument explicitly by position, since it is the
first implicit argument;

– “f {name = v1} v2” supplies the name argument explicitly by name, which is
useful when earlier implicit arguments can be inferred by the type checker.

Such implicit argument positions are usually declared for arguments that supply
the types to other arguments and can therefore be inferred from the latter; the
use of implicit arguments in Agda largely corresponds to general mathematical
practice.

Since Agda is strongly normalising and has no undefined values, the underly-
ing semantics is quite different from that of Haskell. In particular, since Agda is
dependently typed, it does not have Haskell’s distinction between terms, types,
and kinds (the “types of the types”). The Agda constant Set0 corresponds to the
Haskell kind *; it is the type of all “normal” datatypes and is at the bottom
of the hierarchy of type-theoretic universes in Agda. Universes Set ! are distin-
guished by universe indices for which we use names like ! !1 !a !i ∶ Level, where
Level is an opaque special-purpose variant of the natural numbers; we write its
maximum operator as _⊍_. This universe polymorphism is essential for being
able to talk about both “small” and “large” categories or relation algebras, and
we always choose our Level parameters so as to enable maximal reusability of
our definitions. (We include full Level information in all our types, although it
does not essentially contribute to our development.)

Since types in Agda may be uninhabited, predicates use Set ! as result type.
For example, we define the predicate isIdentity ∶ {A ∶ Obj} →Mor A A→ Set !k
below so that the application “ isIdentity F” denotes the type of proofs that
F ∶ Mor A A is an identity morphism, which means that isIdentity F is an in-
habited type if and only if F is an identity morphism.

3 Semigroupoids, Categories, OSGCs, OCCs

In [Kah11b], we presented a relatively fine-grained modularisation of sub-theories
of division allegories, following our work on using semigroupoids to provide the
theory of finite relations between infinite types, as they frequently occur as data
structures in programming [Kah08], and on collagories [Kah11a] (“distributive
allegories without zero morphisms”). In this section, we present two monolithic
definitions that provide appropriate foundations for most of the discussion in
this paper. Each of these two definitions bundles a large number of theories of
the RATH-Agda libraries summarised in [Kah11b].

We show here a monolithic definition of semigroupoids (i.e., “categories with-
out identity morphisms”), which can be used as an alternative to the one within
the fine-grained theory hierarchy of [Kah11b]. We make no provisions for user-
defined equality on objects, so Obj is a Set. Morphisms have equality _≈_; for

A Mechanised Abstract Formalisation of Concept Lattices 245

any two objects A and B we have Hom A B ∶ Setoid j k, with the standard
library providing an implementation of the standard type-theoretic concept of
setoid as a carrier set together with an equivalence relation that is considered as
equality on the carrier, much like the equality test == provided by the class Eq
in Haskell.1 In [Kah11b] and in the Agda development [Kah14] underlying the
Agda theories for the later sections of this paper, only the Levels and Obj are
parameters of the Semigroupoid type; for making the presentation in this section
easier to follow, we choose to have also Hom as a parameter of the Semigroupoid′

type.

record Semigroupoid′ {!i !j !k ∶ Level} {Obj ∶ Set !i}
(Hom ∶ Obj→ Obj→ Setoid !j !k)
∶ Set (!i ⊍ !j ⊍ !k) where

Mor ∶ Obj→ Obj→ Set !j
Mor = λ A B→ Setoid.Carrier (Hom A B)
infix 4 _≈_; infixr 9 _�_
≈ = λ {A} {B} → Setoid._≈_ (Hom A B)
field _�_ ∶ {A B C ∶ Obj} →Mor A B→Mor B C →Mor A C

�-cong ∶ {A B C ∶ Obj} {f1 f2 ∶ Mor A B} {g1 g2 ∶ Mor B C}
→ f1 ≈ f2 → g1 ≈ g2 → f1 � g1 ≈ f2 � g2

�-assoc ∶ {A B C D ∶ Obj} {f ∶ Mor A B} {g ∶ Mor B C} {h ∶ Mor C D}
→ (f � g) � h ≈ f � (g � h)

Using the infix declarations above, we in particular make morphism composition
� have higher precedence than morphism equality, which allows us to mostly
follow mathematical parenthesisation conventions. Function application, written
as juxtaposition (here only occurring in Mor A B etc.) has higher precedence than
any infix/mixfix operator, and associates to the left: “Mor A B” is “(Mor A) B”,
while the infixr declaration above specifies that morphism composition associates
to the right: “f � g � h” is “f � (g � h)”.

In semigroupoids, we define the identity property as conjunction (implemented
as pair type _×_) of the two one-sided identity properties; the pair components
will later be extracted using the projections proj1 and proj2:

isLeftIdentity isRightIdentity isIdentity ∶ {A ∶ Obj}
→Mor A A→ Set (!i ⊍ !j ⊍ !k)

isLeftIdentity {A} I = {B ∶ Obj} {R ∶ Mor A B} → I � R ≈ R
isRightIdentity {A} I = {B ∶ Obj} {R ∶ Mor B A} → R � I ≈ R
isIdentity I = isLeftIdentity I × isRightIdentity I

1 We can write f ≈ g for two morphisms from carrier set Mor A B of the hom-setoid
Hom A B since the object arguments A and B of _≈_ are declared implicit and can
be derived from the type of f and g.

The type of congruence of composition, �-cong, is declared using a telescope in-
troducing the seven named arguments A, B, C, f1, f2, g1, and g2 (here all implicit),
which can be referred to in later parts of the type. The resulting dependent func-
tion type corresponds to “dependent products” frequently written using � in other
presentations of type theory.

246 W. Kahl

A Category has the following additional fields for identity morphisms and identity
properties:

field Id ∶ {A ∶ Obj} →Mor A A
leftId ∶ {A ∶ Obj} → isLeftIdentity (Id {A})
rightId ∶ {A ∶ Obj} → isRightIdentity (Id {A})

As context for the remaining sections, we now show a monolithic definition
of ordered semigroupoids with converse (OSGC). As argued in [Kah04], we
approach allegories and Kleene categories via common primitives providing a
local ordering on homsets. Restricting ourselves to this common core turns out
to be sufficient for the current paper, where we will not need to add meets or
joins in the local homsets orderings.

In locally ordered categories, “homsets” are partial orders, so an OSGC first
of all contains a semigroupoid that uses for its “homsets” the underlying setoids.
The local poset ordering relations are again collected into a global parameterised
relation, ⊑. We also add the involutory converse operator _˘ as a postfix oper-
ator, and give it higher precedence than all binary operators.

record OSGC′ {!i !j !k1 !k2 ∶ Level} {Obj ∶ Set !i}
(Hom ∶ Obj→ Obj→ Poset !j !k1 !k2)
∶ Set (!i ⊍ !suc (!j ⊍ !k1 ⊍ !k2)) where

field semigroupoid ∶ Semigroupoid′ (λ A B→ posetSetoid (Hom A B))
open Semigroupoid′ semigroupoid hiding (semigroupoid)
infix 4 _⊑_; infix 10 _˘
⊑ = λ {A} {B} → Poset._≤_ (Hom A B)
field

�-monotone ∶ {A B C ∶ Obj} {f f’ ∶ Mor A B} {g g’ ∶ Mor B C}
→ f ⊑ f’ → g ⊑ g’→ f � g ⊑ f’ � g’

_˘ ∶ {A B ∶ Obj} →Mor A B→Mor B A
˘˘ ∶ {A B ∶ Obj} {R ∶ Mor A B} → (R ˘) ˘ ≈ R
˘-involution ∶ {A B C ∶ Obj} {R ∶ Mor A B} {S ∶ Mor B C}

→ (R � S) ˘ ≈ S ˘ � R ˘
˘-monotone ∶ {A B ∶ Obj} {R S ∶ Mor A B} → R ⊑ S → R ˘ ⊑ S ˘

Without identities, we frequently need the (one- and two-sided) sub- and super-
identity properties, all of type {A ∶ Obj} → (p ∶ Mor A A) → Set (!i ⊍ !j ⊍ !k2):

isLeftSubidentity {A} p = {B ∶ Obj} {R ∶ Mor A B} → p � R ⊑ R
isRightSubidentity {A} p = {B ∶ Obj} {S ∶ Mor B A} → S � p ⊑ S
isSubidentity p = isLeftSubidentity p × isRightSubidentity p
isLeftSuperidentity {A} p = {B ∶ Obj} {R ∶ Mor A B} → R ⊑ p � R
isRightSuperidentity {A} p = {B ∶ Obj} {S ∶ Mor B A} → S ⊑ S � p
isSuperidentity p = isLeftSuperidentity p × isRightSuperidentity p

With these, we can define, already in OSGCs, the following standard relation-
algebraic properties, all of type {A B ∶ Obj} →Mor A B→ Set (!i ⊍ !j ⊍ !k2):

A Mechanised Abstract Formalisation of Concept Lattices 247

isUnivalent R = isSubidentity (R ˘ � R)
isTotal R = isSuperidentity (R � R ˘)
isMapping R = isUnivalent R × isTotal R
isInjective R = isSubidentity (R � R ˘)
isSurjective R = isSuperidentity (R ˘ � R)
isBijective R = isInjective R × isSurjective R

Total and univalent morphisms (in Rel, these are the total functions) are called
mappings ; for morphisms that are known to be mappings we define the depen-
dent sum type Mapping containing the morphism and a proof of its mapping
properties:

recordMapping (A B ∶ Obj) ∶ Set (!i ⊍ !j ⊍ !k2) where
field mor ∶ Mor A B

prf ∶ isMapping mor

The mappings of an OSGC S form a semigroupoid MapSG S where the mor-
phisms from A to B are the Mappings of S, that is, Mor (MapSG S) A B =
Mapping S A B.

Adding the identities of Category to an OSGC results in an ordered category
with converse (OCC); mappings of an OCC C form the category MapCat C,
and the OSGC versions of univalence, totality, . . . are equivalent to the more
habitual OCC versions R ˘ � R ⊑ Id etc.

In the remainder of this paper, and in the context of a given OSGS S or
OCC C, we append subscript “1” to material taken from MapSG S, respectively
MapCat C, in particular for equality _≈1_ and composition _�1_ of mappings.

4 Power Operators in Ordered Semigroupoids with
Converse

In the following, the minimal setting is a ordered semigroupoid with converse
(OSGC), with equality _≈_ and inclusion _⊑_ and composition _�_ of mor-
phisms. In an OSGC, morphisms are naturally considered as a generalisation of
relations, not just functions.

Total functions, called mappings, are a derived concept in OSGCs (see the end
of the previous section); the induced semigroupoid of mappings (base morphisms
together with univalence and totality proofs) has equality _≈1_ and composition
�1.

A power operator consists of the following items:

P ∶ Obj→ Obj -- power object operator
∈ ∶ {A ∶ Obj} →Mor A (P A) -- membership “relation”
Λ ∶ {A B ∶ Obj} →Mor A B→Mapping A (P B) -- “power transpose”

“Power transpose” maps a “relation” R ∶ Mor A B to a “set-valued function”
Mapping A (P B).

248 W. Kahl

The following axioms need to be satisfied; these are the two sides of one
logical equivalence used by Bird and de Moor [BdM97, Sect. 4.6] to axiomatize
the power allegories of Freyd and Scedrov [FS90, 2.4]:

Λ⇒∈ ∶ {A B ∶ Obj} {R ∶ Mor A B} {f ∶ Mapping A PB}
→ f ≈1 Λ R
→Mapping.mor f � ∈ ˘ ≈ R

∈⇒Λ ∶ {A B ∶ Obj} {R ∶ Mor A B} {f ∶ Mapping A PB}
→Mapping.mor f � ∈ ˘ ≈ R
→ f ≈1 Λ R

Throughout this paper, we will use the convention that subscript “0” abbreviates
an application of Mapping.mor, but we explicitly show only this first definition
following this pattern:

Λ0 ∶ Mor A B→Mor A PB
Λ0 R = Mapping.mor (Λ R)

From the power axioms, we derive the following laws (given objects A and B);
the first is used as axiom by Freyd and Scedrov [FS90, 2.4]:

Λ�∈˘ ∶ {R ∶ Mor A B} → Λ0 R � ∈ ˘ ≈ R
Λ-�∈˘ ∶ {f ∶ Mapping A (P B)} → Λ (Mapping.mor f � ∈ ˘) ≈1 f
Λ-cong ∶ {R1 R2 ∶ Mor A B} → R1 ≈ R2 → Λ R1 ≈1 Λ R2

˘�Λ ∶ {R ∶ Mor A B} → R ˘ � Λ0 R ⊑ ∈

We can define the function that returns, for each “set”, the set containing all its
“elements”:

IdP ∶ {A ∶ Obj} →Mapping (P A) (P A)
IdP = Λ (∈ ˘)

If there is an identity “relation” on P A, then IdP {A} is equal to that identity,
as one would expect. However, without assuming identities, we only succeeded
to show that IdP {A} is a right-identity for mappings.

For any two power operators, we obtain mappings between P1 A and P2 A that
compose to IdP1, respectively IdP2. Therefore, if the base OSGC has identities,
then that makes the two power operators isomorphic, and more generally, we
have that power operators in OCCs are unique up to natural isomorphisms.

In the context of a power operator, a “power order” is an indexed relation on
power objects satisfying conditions appropriate for a “subset relation”:

record IsPowerOrder (Ω ∶ {A ∶ Obj} →Mor (P A) (P A))
∶ Set (!i ⊍ !j ⊍ !k1 ⊍ !k2) where

field ∈�Ω ∶ {A ∶ Obj} → ∈ � Ω {A} ⊑ ∈
Ω-universal ∶ {A ∶ Obj} {R ∶ Mor (P A) (P A)} → ∈ � R ⊑ ∈ → R ⊑ Ω

(The first condition ∈ � Ω ⊑ ∈ could be replaced with the converse implication of
the second, namely R ⊑ Ω → ∈ � R ⊑ ∈.) A power operator together with a power
order gives rise to existence of all right residuals (which, with converse, in turn
implies existence of all left residuals), see Appendix A for the proof.

A Mechanised Abstract Formalisation of Concept Lattices 249

5 Power Orders via Residuals

The right-residual Q / S, “Q under S”, of two morphisms Q ∶ Mor A B and
S ∶ Mor A C is the largest solution in X of the inclusion Q � X ⊑ S; formally, it is
defined by:

/ ∶ {A B C ∶ Obj} →Mor A B→Mor A C →Mor B C
/-cancel-outer ∶ {A B C ∶ Obj} {S ∶ Mor A C} {Q ∶ Mor A B} → Q � (Q / S) ⊑ S
/-universal ∶ {A B C ∶ Obj} {S ∶ Mor A C} {Q ∶ Mor A B} {R ∶ Mor B C}

→ Q � R ⊑ S → R ⊑ Q / S

The last of these can be understood as an implication axiom /-universal, stating:
“If Q � R ⊑ S, then R ⊑ Q / S”. Technically, it is a function taking, after six
implicit arguments, one explicit argument, say “p”, of type Q � R ⊑ S, and then
the application /-universal p is of type (i.e., a proof for) R ⊑ Q / S. For concrete
relations, Q / S relates b with c if and only if for all a with aQb we have aSc.

In the presence of converse, right residuals produce left residuals (S / R, “S
over R”) and vice versa, so it does not matter whether we assume one or both.

Adding residuals to the base OSGC enables the standard definition of the “set”
inclusion relation [BSZ89, FS90] (for which we also easily show IsPowerOrder Ω):

Ω ∶ {A ∶ Obj} →Mor (P A) (P A)
Ω = ∈ / ∈

This is transitive, and “as reflexive as we can state” without identities:

Ω-trans ∶ {A ∶ Obj} → Ω � Ω ⊑ Ω {A}
Ω-trans = /-cancel-middle
IdP⊑Ω ∶ {A ∶ Obj} →Mapping.mor IdP ⊑ Ω {A}
IdP⊑Ω′ = /-universal (⊑-begin
∈ � IdP0

≈˘⟨ �-cong1 ˘˘ ⟩
(∈ ˘) ˘ � Λ0 (∈ ˘)
⊑⟨ ˘�Λ ⟩
∈�)

(Here the argument proof to /-universal is presented in calculational style, which
technically uses mixfix operators ⊑-begin_, _≈˘⟨_⟩_, _⊑⟨-⟩_, _� with carefully
arranged precedences to produce a fully formal “proof term with type annota-
tions”. This technique goes back to Augustsson and Norell [Aug99, Nor07], and
in its present form essentially comes from Danielsson’s Agda standard library
[D+13]. The first step above contains an application of ˘˘ ∶ (R ˘) ˘ ≈ R, applied
via �-cong1 at the first argument of the composition, but in backwards direction,
which is expressed by the ˘ in _≈˘⟨_⟩_. The expansion of the definition of
IdP0, that also happens in the first step, does not need to be mentioned, since
for Agda, both expressions are the same via normalisation.)

250 W. Kahl

The following property, shown using residual and power properties, will be
useful below:

Λ0�Ω˘ ∶ {A B ∶ Obj} {R ∶ Mor A B} → Λ0 R � Ω ˘ ≈ R / ∈ ˘
Λ0�Ω˘ {R = R} = ≈-begin
Λ0 R � (∈ / ∈) ˘
≈⟨ �-cong2 /-˘ ⟩
Λ0 R � (∈ ˘ / ∈ ˘)
≈⟨ /-outer-�-≈ Λ-mapping ⟩
(Λ0 R � ∈ ˘) / ∈ ˘
≈⟨ /-cong1 Λ�∈˘ ⟩
R / ∈ ˘ �

6 Contexts in OSGCs with Powers and Residuals

A context in our abstract setting consists of two objects together with a mor-
phism of the base “relation”-OSGC:

record AContext ∶ Set (!i ⊍ !j) where
field ent ∶ Obj -- “entities”

att ∶ Obj -- “attributes”
inc ∶ Mor ent att -- “incidence”

In such a context, the incidence “relation” inc induces “concepts” as sets inc ↑ p
of attributes shared by a set p ∶ P ent of entities, and sets inc ↓ q of entities
sharing all attributes in q ∶ P att, set-theoretically defined in the following way:

inc ↑ p = {a ∶ att ∣ ∀e ∈ p . e inca} and inc ↓ q = {e ∶ ent ∣ ∀a ∈ q . e inca} .

We define the general operators _↑ and _↓ as postfix operators, so they need to
be separated from their argument by a space:

_↑ ∶ {A B ∶ Obj} →Mor A B→Mapping (P A) (P B)
R ↑ = Λ (∈ / R)
_↓ ∶ {A B ∶ Obj} →Mor A B→Mapping (P B) (P A)
R ↓ = Λ (∈ / (R ˘))

The fact that these form a Galois connection, set-theoretically

p ⊆ R ↓ q ⇔ q ⊆ R ↑ p for all p ∶ P A and q ∶ P B,

can now be stated as a simple morphism equality and shown by algebraic calcu-
lation using residual and power properties:

Galois-↓-↑ ∶ {A B ∶ Obj} {R ∶ Mor A B} → Ω � (R ↓0) ˘ ≈ R ↑0 � Ω ˘
Galois-↓-↑ {A} {B} {R} = ≈-begin
Ω � Λ0 (∈ / R ˘) ˘

A Mechanised Abstract Formalisation of Concept Lattices 251

≈˘⟨ ˘-involutionRightConv ⟩
(Λ0 (∈ / R ˘) � Ω ˘) ˘
≈⟨ ˘-cong Λ0�Ω˘ ⟩
((∈ / R ˘) / ∈ ˘) ˘
≈⟨ /˘-˘ ⟩
∈ / (∈ / R ˘) ˘
≈⟨ /-cong2 /˘-˘ ⟩
∈ / (R / ∈ ˘)
≈⟨ //-≈ ⟩
(∈ / R) / ∈ ˘
≈˘⟨ Λ0�Ω˘ ⟩
Λ0 (∈ / R) � Ω ˘ �

For the composed operators _↑↓ and _↓↑, with R ↑↓ = R ↑ �1 R ↓ and R ↓↑ =
R ↓ �1 R ↑, the closure properties follow via further, partially lengthy calculations.

For a “set-valued relation” R ∶ Mor X (P A), the “set-valued function” Lub R
can be understood as mapping each “element” x of X to the union of all sets that
R relates with x; this union contains an “element” a of A if and only if R � ∈ ˘
relates x with a. From this “relation”, Lub R is obtained as its power transpose,
and similarly Glb for the intersection instead of union:

Lub Glb ∶ {X A ∶ Obj} (R ∶ Mor X (P A)) →Mapping X (P A)
Lub R = Λ (R � ∈ ˘)
Glb R = Λ (R ˘ / ∈ ˘)

The properties of “mapping unions to intersections” and vice versa can now be
defined as follows, for objects A and B, and f ∶ Mapping (P B) (P A):

Lub-cocontinuous f = ∀ {X ∶ Obj} (Q ∶ Mor X (P B))
→ Lub Q �1 f ≈1 Glb (Q � Mapping.mor f)

Glb-cocontinuous f = ∀ {X ∶ Obj} (Q ∶ Mor X (P B))
→ Glb Q �1 f ≈1 Lub (Q � Mapping.mor f)

Both of the operators _↑ and _↓ are Lub-cocontinuous, as can be shown in
somewhat lengthy calculations, of which we show only the first — this contains
three levels of nested calculations, indented precisely according to level, and uses
in the reasons several different infix transitivity combinators following a common
naming pattern, including _⟨≈˘⊑⟩_ ∶ {...} → y ≈ x→ y ⊑ z→ x ⊑ z:

↓-Lub-cocontinuous ∶ {A B ∶ Obj} (R ∶ Mor A B) → Lub-cocontinuous (R ↓)
↓-Lub-cocontinuous R {X} Q = ≈-begin
Λ0 (Q � ∈ ˘) � Λ0 (∈ / (R ˘))
≈⟨ ∈⇒Λ {f = Λ (Q � ∈ ˘) �1 Λ (∈ / (R ˘))} (≈-begin
(Λ0 (Q � ∈ ˘) � Λ0 (∈ / (R ˘))) � ∈ ˘
≈⟨ �-assoc ⟨≈≈⟩ �-cong2 Λ�∈˘ ⟩
Λ0 (Q � ∈ ˘) � (∈ / (R ˘))
≈⟨ /-inner-� Λ-mapping ⟩

252 W. Kahl

(∈ � Λ0 (Q � ∈ ˘) ˘) / (R ˘)
≈⟨ /-cong1 (˘-involutionRightConv ⟨≈˘≈⟩ ˘-cong Λ�∈˘) ⟨≈≈˘⟩ /-˘ ⟩
(R / (Q � ∈ ˘)) ˘
≈⟨ ˘-cong (⊑-antisym
(/-universal (⊑-begin
(R / (Q � ∈ ˘)) � Q � Λ0 (∈ / R ˘)
⊑⟨ �-assocL ⟨≈⊑⟩ �-monotone1 /-cancel-�-inner ⟩
(R / ∈ ˘) � Λ0 (∈ / R ˘)
⊑⟨ �-cong1 /˘-˘ ⟨≈˘⊑⟩ ˘�Λ ⟩
∈�))

(/-universal (⊑-begin
(∈ / (Q � Λ0 (∈ / R ˘))) � (Q � ∈ ˘)
⊑⟨ �-assocL ⟨≈⊑⟩ �-monotone1 /-cancel-�-inner ⟩
(∈ / Λ0 (∈ / R ˘)) � ∈ ˘
⊑⟨ �-monotone2 (proj1 Λ-total ⟨⊑≈⟩ �-assoc) ⟩
(∈ / Λ0 (∈ / R ˘)) � Λ0 (∈ / R ˘) � Λ0 (∈ / R ˘) ˘ � ∈ ˘
⊑⟨ �-assocL ⟨≈⊑⟩ �-monotone1 /-cancel-outer ⟩
∈ � Λ0 (∈ / R ˘) ˘ � ∈ ˘
≈⟨ �-assocL ⟨≈≈˘⟩ �-cong1 ˘-involutionRightConv ⟩
(Λ0 (∈ / R ˘) � ∈ ˘) ˘ � ∈ ˘
≈⟨ �-cong1 (˘-cong Λ�∈˘) ⟩
(∈ / R ˘) ˘ � ∈ ˘
⊑⟨ �-cong1 /˘-˘ ⟨≈⊑⟩ /-cancel-outer ⟩
R�))) ⟩

(∈ / (Q � Λ0 (∈ / R ˘))) ˘
≈⟨ /-˘ ⟩
(Q � Λ0 (∈ / (R ˘))) ˘ / ∈ ˘�) ⟩
Λ0 ((Q � Λ0 (∈ / (R ˘))) ˘ / ∈ ˘)�

However, the closest we can have to Glb-cocontinuous (R ↑) is the following
(where the final → has also been proven in the opposite direction):

↑-Glb-cocontinuous ∶ {A B X ∶ Obj} (R ∶ Mor A B) (Q ∶ Mor X (P A))
→ (∈ / Q) / R ≈ (Q � (∈ / R))
→ Glb Q �1 (R ↑) ≈1 Lub (Q � Mapping.mor (R ↑))

The reason for the general failure of Glb-cocontinuity is that if Q is not total,
the resulting empty intersections on the left-hand side may be mapped by R ↑ to
arbitrary sets, but on the right-hand side, the resulting empty unions are always
the empty set. In particular in the power-allegory induced by any topos, if we set
Q = � (the “empty relation”) and R = ⊺ (the “universal relation”), then we have:
(∈ / Q) / R ≈ (∈ / �) / ⊺ ≈ ⊺ /≈ � ≈ � � (∈ / ⊺) ≈ Q � (∈ / R)

A Mechanised Abstract Formalisation of Concept Lattices 253

For composition of context homomorphisms, we will require Lub-cocontinuity
of G ↓ �1 Y ↑ �1 F ↓ in the following situation:

A2 A3

�
�
��F �Y

�
�
��
G

E1 E2

Due to the fact that Y ↑ is not necessarily Glb-cocontinuous, context homo-
morphisms require additional “compatibility” conditions to enable the following
calculation, which closely follows [Mos13], to go through:

↓↑↓-Lub-cocontinuous ∶ {E1 E2 A2 A3 ∶ Obj}
→ (F ∶ Mor E1 A2) (Y ∶ Mor E2 A2) (G ∶ Mor E2 A3)

→ (F-trgCompat ∶ Y ↓↑ �1 F ↓ ≈1 F ↓)
→ (G-srcCompat ∶ G ↓ �1 Y ↑↓ ≈1 G ↓)
→ Lub-cocontinuous (G ↓ �1 Y ↑ �1 F ↓)

↓↑↓-Lub-cocontinuous F Y G F-trgCompat G-srcCompat Q = ≈1-begin
Lub Q �1 G ↓ �1 Y ↑ �1 F ↓
≈1⟨ �-assocL ⟨≈≈⟩ �-cong1 (↓-Lub-cocontinuous G Q) ⟩
Glb (Q � G ↓0) �1 Y ↑ �1 F ↓
≈1⟨ �-cong1 (Glb-cong (�-cong2 G-srcCompat ⟨≈˘≈⟩ �-assocL3+1)) ⟩
Glb ((Q � G ↓0 � Y ↑0) � Y ↓0) �1 Y ↑ �1 F ↓
≈1⟨ �-cong1 (↓-Lub-cocontinuous Y (Q � G ↓0 � Y ↑0)) ⟨≈˘≈⟩ �-assoc ⟩
Lub (Q � G ↓0 � Y ↑0) �1 Y ↓ �1 Y ↑ �1 F ↓
≈1⟨ �-cong2 (�-assocL ⟨≈≈⟩ F-trgCompat) ⟩
Lub (Q � G ↓0 � Y ↑0) �1 F ↓
≈1⟨ ↓-Lub-cocontinuous F (Q � G ↓0 � Y ↑0) ⟨≈≈⟩ Glb-cong �-assoc3+1 ⟩
Glb (Q � G ↓0 � Y ↑0 � F ↓0)�1

A context homomorphism, following Moshier [Mos13] and Jipsen [Jip12], in-
cludes the compatibility properties used above. In order to be able to refer to
the fields of the source and target contexts X and Y with qualified names like
X.ent instead of AContext.ent X, we need to use the “module nature” of records
in Agda and define local module names for X and Y. (In the following, we will
omit these local module definitions for the sake of brevity, and since there will
be no danger of confusion.)

record AContextHom (X Y ∶ AContext) ∶ Set (!i ⊍ !j ⊍ !k1 ⊍ !k2) where
private module X = AContext X

module Y = AContext Y
field mor ∶ Mor X.ent Y.att

srcCompat ∶ mor ↓ �1 X.inc ↑↓ ≈1 mor ↓
trgCompat ∶ Y.inc ↓↑ �1 mor ↓ ≈1 mor ↓

254 W. Kahl

If we now have three contexts X, Y, and Z connected by two context homomor-
phisms F ∶ AContextHom X Y and G ∶ AContextHom Y Z, then we define:

G↓�Y↑�F↓ ∶ Mapping (P Z.att) (P X.ent)
G↓�Y↑�F↓ = G.mor ↓ �1 Y.inc ↑ �1 F.mor ↓

X.att Y.att Z.att

X.inc
�

�
�
�
�
���

F.mor Y.inc
�

�
�
�
�
���

G.mor Z.inc
�

X.ent Y.ent Z.ent

Applying ↓↑↓-Lub-cocontinuous, we obtain that the mapping G↓�Y↑�F↓ is Lub-
cocontinuous just like F.mor ↓ ∶ Mapping (P Y.att) (P X.ent) and G.mor ↓ ∶
Mapping (P Z.att) (P Y.ent), but we are still missing a way to extract a _↓-pre-
image of type Mor X.ent Z.att.

7 Abstract Context Categories in OCCs with Powers and
Residuals

It turns out that adding identities is sufficient for obtaining a partial inverse to
the operator _↓. The key is that Λ Id ∶ Mapping A (P A) can be understood as
mapping each “element” a ∶ A to the singleton “set” {a} ∶ P A.

The “relation” singletons A relates a “subset of A” with all singletons contained
in it:

singletons ∶ {A ∶ Obj} →Mor (P A) (P A)
singletons = ∈ ˘ � Λ0 Id

Applying Lub to this produces the identity mapping on P A:

Lub-singletons ∶ {A ∶ Obj} → Lub (singletons {A}) ≈1 Id1 {P A}
Lub-singletons {A} = ≈1-begin
Λ ((∈ ˘ � Λ0 Id) � ∈ ˘)
≈1⟨ Λ-cong (�-assoc ⟨≈≈⟩ �-cong2 Λ�∈˘) ⟩
Λ (∈ ˘ � Id {A})
≈1⟨ Λ-cong (rightId ⟨≈≈˘⟩ leftId) ⟨≈≈⟩ Λ-�∈˘ {f = Id1 {P A}} ⟩
Id1 {P A} �1

The operator [] has the opposite type of _↓, and [f] relates a with b if and
only if a ∈ f{b}:

[] ∶ {A B ∶ Obj} →Mapping (P B) (P A) →Mor A B
[f] = (Λ0 Id � Mapping.mor f � ∈ ˘) ˘

A Mechanised Abstract Formalisation of Concept Lattices 255

We always have [R ↓] ≈ R:

[↓] ∶ {A B ∶ Obj} (R ∶ Mor A B) → [R ↓] ≈ R
[↓] R = ≈-begin
(Λ0 Id � Λ0 (∈ / (R ˘)) � ∈ ˘) ˘
≈⟨ ˘-cong (�-cong2 Λ�∈˘) ⟩
(Λ0 Id � (∈ / (R ˘))) ˘
≈⟨ ˘-cong (/-inner-� Λ-mapping) ⟩
((∈ � (Λ0 Id) ˘) / (R ˘)) ˘
≈⟨ /˘-˘ ⟩
R / ((∈ � (Λ0 Id) ˘) ˘)
≈⟨ /-cong2 ˘-involutionRightConv ⟩
R / (Λ0 Id � ∈ ˘)
≈⟨ /-cong2 Λ�∈˘ ⟨≈≈⟩ /-Id ⟩
R

�
For the opposite composition, [f] ↓ ≈1 f, we need Lub-cocontinuity of f:

[]↓ ∶ {A B ∶ Obj} (f ∶ Mapping (P B) (P A))
→ Lub-cocontinuous f → [f] ↓ ≈1 f

[]↓ f f-cocontinuous = ≈1-begin
[f] ↓
≈1⟨ ≈-refl ⟩
Λ (∈ / ([f] ˘))
≈1⟨ Λ-cong (/-cong2 (˘˘ ⟨≈≈⟩ �-assocL)) ⟩
Λ (∈ / (Mapping.mor (Λ Id �1 f) � ∈ ˘))
≈1˘⟨ Λ-cong (/-cong2 (�-cong1 ˘˘)) ⟩
Λ (∈ / ((Λ0 Id � Mapping.mor f) ˘ ˘ � ∈ ˘))

≈1˘⟨ Λ-cong (/-cong1 ˘-involutionLeftConv
⟨≈≈⟩ /-flip (˘-isBijective (Mapping.prf (Λ Id �1 f)))) ⟩

Λ ((∈ ˘ � Λ0 Id � Mapping.mor f) ˘ / ∈ ˘)
≈1˘⟨ Λ-cong (/-cong1 (˘-cong �-assoc)) ⟩
Glb (singletons � Mapping.mor f)
≈1˘⟨ f-cocontinuous singletons ⟩
Lub singletons �1 f
≈1⟨ �-cong1 Lub-singletons ⟨≈≈⟩ leftId ⟩
f

�1

The last two steps represent the argument of [Mos13] that “If f sends unions to
intersections, its behavior is determined by its behavior on singletons.”

256 W. Kahl

Using the instance

[��]↓ ∶ [G↓�Y↑�F↓] ↓ ≈1 G↓�Y↑�F↓
[��]↓ = []↓ G↓�Y↑�F↓
(↓↑↓-Lub-cocontinuous F.mor Y.inc G.mor F.trgCompat G.srcCompat)

for the morphism composition at the end of Sect. 6, we obtain well-definedness:

�� ∶ (F ∶ AContextHom X Y) (G ∶ AContextHom Y Z) → AContextHom X Z
F �� G = record
{mor = [G↓�Y↑�F↓]
; srcCompat = ≈1-begin
[G↓�Y↑�F↓] ↓ �1 X.inc ↑ �1 X.inc ↓
≈1⟨ �-cong1 ([��]↓ F G) ⟨≈≈⟩ �-assoc3+1 ⟩
G.mor ↓ �1 Y.inc ↑ �1 F.mor ↓ �1 X.inc ↑ �1 X.inc ↓
≈1⟨ �-cong22 F.srcCompat ⟩
G.mor ↓ �1 Y.inc ↑ �1 F.mor ↓
≈1˘⟨ [��]↓ F G ⟩
[G↓�Y↑�F↓] ↓�1

; trgCompat = ... -- analogously
}

Context homomorphism equality F ≋ G is defined as the underlying morphism
equality F.mor ≈ G.mor. The left- and right-identity properties of the composition
�� reduce, via [↓], to srcCompat respectively trgCompat due to the fact that
the identity context homomorphism on X has X.inc as mor, and the associativity
proof also turns into a surprisingly short calculation:

X1
F� X2

G� X3
H� X4

ACH-assoc ∶ ...→ (F �� G) �� H ≋ F �� (G �� H)
ACH-assoc {X1} {X2} {X3} {X4} {F} {G} {H} = [] -cong
{f1 = H.mor ↓ �1 X3.inc ↑ �1 FG.mor ↓}
{f2 = GH.mor ↓ �1 X2.inc ↑ �1 F.mor ↓}
(≈1-begin
H.mor ↓ �1 X3.inc ↑ �1 FG.mor ↓
≈1⟨ �-cong22 ([��]↓ F G) ⟩
H.mor ↓ �1 X3.inc ↑ �1 G.mor ↓ �1 X2.inc ↑ �1 F.mor ↓
≈1⟨ �-assocL3+1 ⟨≈≈˘⟩ �-cong1 ([��]↓ G H) ⟩
GH.mor ↓ �1 X2.inc ↑ �1 F.mor ↓�1)

where FG = F �� G ; GH = G �� H

With this, a Category of AContexts with AContextHoms as morphisms is easily
defined and checked by Agda.

A Mechanised Abstract Formalisation of Concept Lattices 257

8 Conclusion

A “natural”, more direct formalisation of contexts would allow arbitrary Sets
(or possibly Setoids) of entities and attributes, exactly as in the mathematical
definition:

record Context (!e !a !r ∶ Level) ∶ Set (!suc (!e ⊍ !a ⊍ !r)) where
field ent ∶ Set !e -- “entities”

att ∶ Set !a -- “attributes”
inc ∶ Re! !r ent att -- “incidence”

Although this has the advantage of additional universe polymorphism, it appears
that the compatibility conditions force all the sets and relations to the same
levels:

record Hom {!S !r ∶ Level} (A B ∶ Context !S !S !r) ∶ Set (!S ⊍ !suc !r) where
private module A = Context A

module B = Context B
field mor ∶ Re! !r A.ent B.att

srcCompat ∶ A.inc ↑↓ ○○ mor ↓ ≈⌊ P B.att !r � P A.ent ⌋ mor ↓
trgCompat ∶ mor ↓ ○○ B.inc ↓↑ ≈⌊ P B.att !r � P A.ent ⌋ mor ↓

An important disadvantage of this approach is that, for example, quotient con-
texts will have entity and attribute sets that lack many of the interfaces that
would be useful for programming, for example serialisation.

In contrast, using our abstract approach makes it possible to instantiate the
base OCC differently for different purposes:

– For theoretical investigations, using OCCs of setoids (or even of Sets) as defined
in Relation.Binary.Heterogeneous.Categoric.OCC of the RATH-Agda libraries
[Kah11b] provides all the flexibility of the general mathematical setting, but
without useful execution mechanisms.

– For data processing applications, that is, “for programming”, using implemen-
tation-oriented OCCs as for example that of SULists mentioned in [Kah12]
provides additional interfaces and correct-by-construction executable imple-
mentations.

Beyond the theoretically interesting fact that context categories can be for-
malised in OCCs with residuals and powers, this paper also demonstrated that
such an essentially theoretical development can be fully mechanised and still be
presented in readable calculational style, where writing is not significantly more
effort than a conventional calculational presentation in LATEX.

In comparison with similar developments in Isabelle/HOL [Kah03], the use
of Agda enables a completely natural mathematical treatment of categories,
nested calculational proofs, and direct use of theories as modules of executable
programs.

258 W. Kahl

Acknowledgements. I am grateful to the anonymous referees for their con-
structive comments, and to Musa Al-hassy for numerous useful suggestions for
improving readability.

References

[Aug99] Augustsson, L.: Equality proofs in Cayenne (1999),
http://tinyurl.com/Aug99eqproof (accessed January 3, 2014)

[BSZ86] Berghammer, R., Schmidt, G., Zierer, H.: Symmetric Quotients. Technical
Report TUM-INFO 8620, Technische Universität München, Fakultät für
Informatik, 18 p. (1986)

[BSZ89] Berghammer, R., Schmidt, G., Zierer, H.: Symmetric Quotients and Domain
Constructions. Inform. Process. Lett. 33, 163–168 (1989)

[BdM97] Bird, R.S., de Moor, O.: Algebra of Programming. International Series in
Computer Science, vol. 100. Prentice Hall (1997)

[D+13] Danielsson, N.A. et al.: Agda Standard Library, Version 0.7 (2013),
http://tinyurl.com/AgdaStdlib

[Ern05] Erné, M.: Categories of Contexts (2005) (preprint),
http://www.iazd.uni-hannover.de/~erne/preprints/CatConts.pdf

[FS90] Freyd, P.J., Scedrov, A.: Categories, Allegories. North-Holland Mathemat-
ical Library, vol. 39. North-Holland, Amsterdam (1990)

[HKZ06] Hitzler, P., Krötzsch, M., Zhang, G.-Q.: A Categorical View on Algebraic
Lattices in Formal Concept Analysis. Fund. Inform. 74, 301–328 (2006)

[Jip12] Jipsen, P.: Categories of Algebraic Contexts Equivalent to Idempotent
Semirings and Domain Semirings. In: [KG12], pp. 195–206

[Kah03] Kahl, W.: Calculational Relation-Algebraic Proofs in Isabelle/Isar. In:
Berghammer, R., Möller, B., Struth, G. (eds.) RelMiCS/AKA 2003. LNCS,
vol. 3051, pp. 178–190. Springer, Heidelberg (2004)

[Kah04] Kahl, W.: Refactoring Heterogeneous Relation Algebras around Ordered
Categories and Converse. J. Relational Methods in Comp. Sci. 1, 277–313
(2004)

[Kah08] Kahl, W.: Relational Semigroupoids: Abstract Relation-Algebraic Interfaces
for Finite Relations between Infinite Types. J. Logic and Algebraic Pro-
gramming 76, 60–89 (2008)

[Kah11a] Kahl, W.: Collagories: Relation-Algebraic Reasoning for Gluing Construc-
tions. J. Logic and Algebraic Programming 80, 297–338 (2011)

[Kah11b] Kahl, W.: Dependently-Typed Formalisation of Relation-Algebraic Abstrac-
tions. In: de Swart, H. (ed.) RAMiCS 2011. LNCS, vol. 6663, pp. 230–247.
Springer, Heidelberg (2011)

[Kah12] Kahl, W.: Towards Certifiable Implementation of Graph Transformation via
Relation Categories. In: [KG12], pp. 82–97

[KG12] Kahl, W., Griffin, T.G. (eds.): RAMiCS 2012. LNCS, vol. 7560. Springer,
Heidelberg (2012)

[Kah14] Kahl, W.: Relation-Algebraic Theories in Agda — RATH-Agda-2.0.0. Me-
chanically checked Agda theories available for download, with 456 pages lit-
erate document output (2014), http://RelMiCS.McMaster.ca/RATH-Agda/

http://tinyurl.com/Aug99eqproof
http://tinyurl.com/AgdaStdlib
http://www.iazd.uni-hannover.de/~erne/preprints/CatConts.pdf
http://RelMiCS.McMaster.ca/RATH-Agda/

A Mechanised Abstract Formalisation of Concept Lattices 259

[Mos13] Moshier, M.A.: A Relational Category of Polarities (2013) (unpublished
draft)

[Nor07] Norell, U.: Towards a Practical Programming Language Based on Depen-
dent Type Theory. PhD thesis, Department of Computer Science and En-
gineering, Chalmers University of Technology (2007)

[Wil05] Wille, R.: Formal Concept Analysis as Mathematical Theory of Concepts
and Concept Hierarchies. In: Ganter, B., Stumme, G., Wille, R. (eds.)
Formal Concept Analysis. LNCS (LNAI), vol. 3626, pp. 1–33. Springer,
Heidelberg (2005)

A Power Orders Give Rise to Right Residuals

In the context of an OSGC with a power operator, presence of a power implies that
all right residuals exist, with Q / S = �0 (Q ˘) � � � (�0 (S ˘)) ˘. We use the following
additional power operator lemmas:

∈��˘ ∶ {R ∶ Mor A B} → ∈ � (�0 R) ˘ ≈ R ˘
��-˘ ∶ {Q ∶ Mor B A} → Q � �0 (Q ˘) ⊑ ∈

module PowerRightRes (� ∶ {A ∶ Obj} →Mor (P A) (P A))
(isPowerOrder ∶ IsPowerOrder �) where
open IsPowerOrder isPowerOrder
rightResOp ∶ RightResOp orderedSemigroupoid
rightResOp = record
{_/_ = λ {A} {B} {C} Q S → �0 (Q ˘) � � � (�0 (S ˘)) ˘
; /-cancel-outer = λ {A} {B} {C} {S} {Q} → ⊑-begin

Q � �0 (Q ˘) � � � (�0 (S ˘)) ˘
⊑⟨ �-assocL ⟨≈⊑⟩ �-monotone1 ��-˘ ⟩
∈ � � � (�0 (S ˘)) ˘

⊑⟨ �-assocL ⟨≈⊑⟩ �-monotone1 ∈�� ⟩
∈ � (�0 (S ˘)) ˘

≈⟨ ∈��˘ ⟨≈≈⟩ ˘˘ ⟩
S

�
; /-universal = λ {A} {B} {C} {S} {Q} {R} Q�R⊑S→ ⊑-begin

R
⊑⟨ proj1 �-total ⟨⊑≈⟩ �-assoc ⟩
�0 (Q ˘) � (�0 (Q ˘)) ˘ � R

⊑⟨ �-monotone22 (proj2 �-total) ⟩
�0 (Q ˘) � (�0 (Q ˘)) ˘ � R � �0 (S ˘) � (�0 (S ˘)) ˘

⊑⟨ �-monotone2 (�-assocL3+1 ⟨≈⊑⟩ �-monotone1 (�-universal (⊑-begin
∈ � (�0 (Q ˘)) ˘ � R � �0 (S ˘)

≈⟨ �-assocL ⟨≈≈⟩ �-cong1 (∈��˘ ⟨≈≈⟩ ˘˘) ⟩

260 W. Kahl

Q � R � �0 (S ˘)
⊑⟨ �-assocL ⟨≈⊑⟩ �-monotone1 Q�R⊑S ⟨⊑⊑⟩ ��-˘ ⟩
∈

�))) ⟩
�0 (Q ˘) � � � (�0 (S ˘)) ˘

�
}

The standard definition of the power order via this right residual also returns the given
power order: ∈ / ∈ ≈ �.

A Sufficient Condition for Liftable Adjunctions

between Eilenberg-Moore Categories

Koki Nishizawa1 and Hitoshi Furusawa2

1 Department of Information Systems Creation, Faculty of Engineering,
Kanagawa University

nishizawa@kanagawa-u.ac.jp
2 Department of Mathematics and Computer Science, Kagoshima University

furusawa@sci.kagoshima-u.ac.jp

Abstract. This paper gives a sufficient condition for monads P , P ′ and
T to have an adjunction between the category of P -algebras over T -
algebras and the category of P ′-algebras over T -algebras. The leading
example is an adjunction between the category of idempotent semirings
and the category of quantales, where P is the finite powerset monad, P ′ is
the powerset monad, and T is the free monoid monad. The left adjoint of
this leading example is given by ideal completion. Applying our result, we
show that ideal completion also gives an adjunction between the category
of join semilattices over T -algebras and the category of complete join
semilattices over T -algebras for a general monad T satisfying certain
distributive law.

Keywords: Distributive law, absolute coequalizer, ideal, quantale, idem-
potent semiring.

1 Introduction

This paper gives a sufficient condition for monads P , P ′ and T to have an
adjunction between the category of P -algebras over T -algebras and the category
of P ′-algebras over T -algebras.

We have three leading examples. The first one is the adjunction whose right
adjoint is the forgetful functor from the category of complete join semilattices
to the category of join semilattices. This example can be regarded as the case
where P is the finite powerset monad, P ′ is the powerset monad, and T is the
identity monad on Set.

The second one is the adjunction whose right adjoint is the forgetful func-
tor from the category of quantales to the category of idempotent semirings. A
quantale is a complete join semilattice together with a monoid structure whose
associative multiplication distributes over arbitrary joins. An idempotent semi-
ring is a join semilattice together with a monoid structure whose associative
multiplication distributes over finite joins. In this example, P and P ′ are re-
spectively the same as P and P ′ of the first example, but T is the free monoid
monad.

P. Höfner et al. (Eds.): RAMiCS 2014, LNCS 8428, pp. 261–276, 2014.
c© Springer International Publishing Switzerland 2014

262 K. Nishizawa and H. Furusawa

In both of the two examples, left adjoints are defined by ideal completion. Our
main theorem does not only answer the reason why both of these left adjoints
are defined by the same construction, but also shows that ideal completion also
gives an adjunction between the category of join semilattices over T -algebras and
the category of complete join semilattices over T -algebras for a general monad
T satisfying a certain distributive law [NF12].

The third leading example is an adjunction between the category of complete
join semilattices and the category of pointed sets, whose right adjoint maps a
complete join semilattice to its underlying set with the least element. Its left
adjoint maps a set with a point to the set of all subsets containing the point.
This example can be regarded as the case where P ′ is the powerset monad and P
is the submonad which returns the set of all singleton subsets and the emptyset.

This paper is organized as follows: Section 2 defines monads for join semilat-
tices. Section 3 shows that a left adjoint between categories of algebras is defined
by absolute coequalizer construction. Section 4 shows that the ideal completion
gives the absolute coequalizer for join semilattices. Section 5 generalize results
in Section 3 for monads combined by distributive laws. Section 6 shows the ex-
ample for complete join semilattices and pointed sets. Section 7 summarizes this
work and discusses future work.

2 Monads for Join Semilattices

Definition 2.1. A join semilattice is a tuple (S,≤,
∨
) with a partially ordered

set (S,≤) and the join or the least upper bound
∨

A for a finite subset A of S.

A join semilattice S must have the least element 0 since the empty set ∅ is a
finite subset of S and

∨
∅ = 0.

SLat denotes the category whose objects are join semilattices and whose ar-
rows are homomorphisms between them. SLat is equivalent to the Eilenberg-
Moore category ℘f -Alg of the finite powerset monad ℘f , whose endofunctor
sends a set X to the set of finite subsets ℘f (X) = {A ⊆ X | |A| < ω} , whose
unit sends an element x in X to {x} in ℘f (X), and whose multiplication sends a
subset family α in ℘f (℘f (X)) to its union

⋃
α = {x | ∃X ∈ α, x ∈ X} in ℘f (X).

The forgetful functor from ℘f -Alg to Set has the left adjoint which sends a set
X to (℘f (X),

⋃
: ℘f (℘f (X)) → ℘f (X)). The counit for ℘f -algebra (S,

∨
) is∨

: (℘f (S),
⋃
)→ (S,

∨
).

Definition 2.2. A complete join semilattice is a tuple (S,≤,
∨
) with a partially

ordered set (S,≤) and the join or the least upper bound
∨

A for a subset A

of S.

We write CSLat for the category whose objects are complete join semilattices
and whose arrows are homomorphisms between them. CSLat is equivalent to the
Eilenberg-Moore category ℘-Alg of the powerset monad ℘, whose endofunctor
sends a set X to the set of all subsets ℘(X) = {A | A ⊆ X}, whose unit,
multiplication and counit are given in the same way as the finite powerset monad
℘f .

A Sufficient Condition for Liftable Adjunctions 263

Definition 2.3. Let P = (P, μP , ηP) and P ′ = (P ′, μP ′
, ηP

′
) be monads on C.

A monad map ι from P to P ′ is a natural transformation from P to P ′ satisfying
the following diagrams.

P
ι � P ′

�
�
�
�
�

ηP
′

�

Id

ηP

�
PP

Pι� PP ′
ιP ′� P ′P ′

P

μP

�

ι
� P ′

μP ′

�

Lemma 2.4. Let P = (P, μP , ηP) and P ′ = (P ′, μP ′
, ηP

′
) be monads on C. If

ι is a monad map from P to P ′, then, the following G is a functor from P ′-Alg
to P -Alg.

– For a P ′-algebra (c, p′), G(c, p′) = (c, p′ ◦ ιc).
– For a P ′-algebra homomorphism f : (c1, p

′
1)→ (c2, p

′
2), Gf = f .

We write − ◦ ι for the above functor G.

Example 2.5. Let P be the finite powerset monad ℘f . Let P
′ be the powerset

monad ℘. Let ιX be the inclusion from ℘f (X) to ℘(X). Then, ι is a monad map
from ℘f to ℘. The functor − ◦ ι is the forgetful functor from CSLat to SLat.

3 Left Adjoint by Absolute Coequalizers

The next theorem is a corollary of the Theorem 2(b) of Section 3.7 of the
book [BW85]. This theorem mentions the relationship between a monadic func-
tor and coequalizers. A functor is calledmonadic if it is equivalent to the forgetful
functor from the Eilenberg-Moore category of a monad.

Theorem 3.1. Let C,D,D′ be categories and G,U, U ′ be functors satisfying the
following conditions.

– G : D′ → D is a functor.
– A functor U : D → C has a left adjoint F (call its unit η and its counit ε).
– A functor U ′ : D′ → C has a left adjoint F ′ (call its unit η′ and its counit
ε′).

– U ◦G is natural isomorphic to U ′.
– U is monadic.

D′
G � D

��
�
�
�
�

U : monadic

C

U ′

�

264 K. Nishizawa and H. Furusawa

– For an object d in D, the following parallel pair has a coequalizer in D′.

F ′UFUd
F ′Uεd� F ′Ud

F ′UFUd
F ′UFη′Ud� F ′UFU ′F ′Ud

∼= ◦F ′UεGF ′Ud◦ ∼=� F ′U ′F ′Ud
ε′F ′Ud� F ′Ud

Then, G has a left adjoint which sends an object d in D to the codomain of the
above coequalizer.

An absolute coequalizer is a coequalizer which is preserved by any functor to
any other category.

Theorem 3.2 (Corollary of Beck’s theorem [Mac98]). If a functor
U ′ : D′ → C is monadic, then U ′ creates coequalizers of those parallel pairs
f, g in D′ for which U ′f, U ′g has an absolute coequalizer in C.

Example 3.3. The forgetful functor U ′ from CSLat to Set is monadic. Therefore,
it creates coequalizers of those parallel pairs f, g in CSLat for which U ′f, U ′g has
an absolute coequalizer in Set.

The following theorem appears essentially in the paper [Lin69]

Theorem 3.4. Let P = (P, μP , ηP) and P ′ = (P ′, μP ′
, ηP

′
) be monads on C.

Let ι be a monad map from P to P ′. For a P -algebra (c, p), let e(c,p) : P
′c →

E(c, p) be an absolute coequalizer of P ′p and μP ′
c ◦ P ′ιc in C.

P ′Pc
P ′p �

μP ′
c ◦ P ′ιc

� P ′c
e(c,p)� E(c, p)

Then, the functor − ◦ ι : P ′-Alg → P -Alg has a left adjoint L, where L(c, p) is
the P ′-algebra on E(c, p) created by the forgetful functor from P ′-Alg to C.

Proof. Let D = P -Alg and D′ = P ′-Alg in Theorem 3.1. Let U be the forgetful
functor from P -Alg to C. Let U ′ be the forgetful functor from P ′-Alg to C. The
composition of U and − ◦ ι is natural isomorphic to U ′. For a P -algebra (c, p),
U ′ sends the parallel pair in Theorem 3.1 to

U ′F ′Uε(c,p) = U ′F ′Up = U ′F ′p = P ′p

and
U ′ε′F ′U(c,p) ◦ U ′F ′Uε(−◦ι)F ′U(c,p) ◦ U ′F ′UFη′U(c,p)

= U ′ε′F ′U(c,p) ◦ U ′F ′Uε(P ′c,μP ′
c ◦ιP ′c)

◦ U ′F ′UFη′U(c,p)

= μP ′
c ◦ P ′(μP ′

c ◦ ιP ′c) ◦ P ′Pη′c
= μP ′

c ◦ P ′μP ′
c ◦ P ′P ′ηP ′

c ◦ P ′ιc
= μP ′

c ◦ P ′ιc .

These pairs have an absolute coequalizer e(c,p). Since U
′ is monadic, − ◦ ι has

the left adjoint L by Theorem 3.2 and Theorem 3.1. !�

A Sufficient Condition for Liftable Adjunctions 265

Theorem 3.5. If the assumptions of Theorem 3.4 hold and for all P -algebra
(c, p), e(c,p) has a right inverse r(c,p),

E(c, p)
r(c,p)� P ′c

�
�
�
�
�

Id
�
E(c, p)

e(c,p)

�

then L(c, p) is the pair of E(c, p) and the following P ′-structure map.

P ′E(c, p)
P ′r(c,p)� P ′P ′c

μP ′
c � P ′c

e(c,p)� E(c, p)

Proof. There exist a uniqueobject (E(c, p), p′) andauniquearrowf : (P ′c, μP ′
c)→

(E(c, p), p′) in P ′-Alg satisfyingU ′f = e(c,p) by Theorem 3.4. Since f is e(c,p) itself
and it is a P ′-algebra homomorphism, the following diagram commutes.

P ′E(c, p)

�
�
�
�
�

Id

�
P ′P ′c

P ′r(c,p)

�

P ′e(c,p)
� P ′E(c, p)

P ′c

μP ′
c

�

e(c,p)
� E(c,p)

p′

�

!�

By Theorem 3.4, the forgetful functor − ◦ ι from CSLat to SLat has a left
adjoint if Set has an absolute coequalizer of ℘(

∨
) : ℘(℘f (S)) → ℘(S) and⋃

: ℘(℘f (S))→ ℘(S) for a join semilattice (S,≤,
∨
).

4 Ideal Completion as Absolute Coequalizer

This section shows that Set has an absolute coequalizer of ℘(
∨
) and

⋃
for a join

semilattice (S,≤,
∨
).

Absolute coequalizers have a diagrammatic characterization [Par69].

Theorem 4.1. e : Y → Z is an absolute coequalizer of f0 : X → Y and f1 : X →
Y if and only if there exist s : Z → Y , finite arrows t1, · · · , tn : Y → X and a
sequence of binary digits j1, · · · , jn ∈ {0, 1} such that

266 K. Nishizawa and H. Furusawa

1. e ◦ f0 = e ◦ f1,
2. e ◦ s = Id,
3. fj1 ◦ t1 = Id (if n = 0, instead we need Id = s ◦ e),
4. f1−ji ◦ ti = fji+1 ◦ ti+1 for i = 1, 2, · · · , n− 1, and
5. f1−jn ◦ tn = s ◦ e.

The case n = 0 in the above characterization is trivial, since e must be iso-
morphic. The case n = 1 is known as the definition of a split coequalizer. This
section proves that ℘(

∨
) and

⋃
have an absolute coequalizer, by showing the

case n = 2.

Definition 4.2. Let S be a join semilattice. An ideal is a subset A of S such
that

– A is closed under finite join operation
∨
,

– A is closed downward under ≤.

Since an ideal A is closed under finite join, A must contain the least element∨
∅ = 0. Thus, ideals are not empty.
The set of ideals of a join semilattice S is denoted by I(S). For a subset A of

a join semilattice S, we write 〈A〉 for

{a ∈ S | ∃X ∈ ℘f (S). X ⊆ A, a ≤
∨

X} .

Lemma 4.3. For a subset A and an ideal I of a join semilattice S, 〈A〉 is an
ideal of S and 〈A〉 ⊆ I iff A ⊆ I. In other words, for a subset A of a join
semilattice S, 〈A〉 is the smallest ideal containing A.

The function 〈−〉 : ℘(S) → I(S) which sends A to 〈A〉 is called an ideal
completion. We write r for the inclusion function from I(S) to ℘(S).

Theorem 4.4. For a join semilattice S, 〈−〉 : ℘(S) → I(S) is an absolute co-
equalizer of ℘(

∨
) and

⋃
in Set.

℘(℘f (S))
℘(
∨
)�⋃� ℘(S)

〈−〉� I(S)

Proof. We define ℘f : ℘(S) → ℘(℘f (S)) and down : ℘(S) → ℘(℘f (S)) as fol-
lows.

℘f (A) = {X ∈ ℘f (S) | X ⊆ A}

down(A) = {{a, b} | a ∈ S, b ∈ A, a ≤ b}
We prove that the above diagrammatic characterization of absolute coequalizers
where f0 = ℘(

∨
), f1 =

⋃
, and e = 〈−〉, by taking s = r, n = 2, t1 = ℘f ,

t2 = down ◦ ℘(
∨
) ◦ ℘f , j1 = 1, and j2 = 0. That is, we show the following

equations.

1. 〈−〉 ◦ ℘(
∨
) = 〈−〉 ◦

⋃

A Sufficient Condition for Liftable Adjunctions 267

2. 〈−〉 ◦ r = Id

3.
⋃
◦℘f = Id

4. ℘(
∨
) ◦ ℘f = ℘(

∨
) ◦ down ◦ ℘(

∨
) ◦ ℘f

5.
⋃
◦down ◦ ℘(

∨
) ◦ ℘f = r ◦ 〈−〉

(1) Let α be an element of ℘(℘f (S)). We have 〈℘(
∨
)(α)〉 ⊆ 〈

⋃
α〉 as follows.

〈℘(
∨

)(α)〉 ⊆ 〈
⋃

α〉
⇐⇒ ℘(

∨
)(α) ⊆ 〈

⋃
α〉 (by Lemma 4.3)

⇐⇒
∨
X ∈ 〈

⋃
α〉 (∀X ∈ α)

⇐= X ⊆ 〈
⋃
α〉 (∀X ∈ α) (since an ideal is closed under finite join)

⇐⇒
⋃
α ⊆ 〈

⋃
α〉

⇐⇒ 〈
⋃
α〉 ⊆ 〈

⋃
α〉 (by Lemma 4.3)

Conversely, we have 〈
⋃
α〉 ⊆ 〈℘(

∨
)(α)〉 as follows.

〈
⋃

α〉 ⊆ 〈℘(
∨

)(α)〉
⇐⇒

⋃
α ⊆ 〈℘(

∨
)(α)〉 (by Lemma 4.3)

⇐⇒ X ⊆ 〈℘(
∨
)(α)〉 (∀X ∈ α)

⇐=
∨
X ∈ 〈℘(

∨
)(α)〉 (∀X ∈ α) (since an ideal is closed downward)

⇐⇒ ℘(
∨
)(α) ⊆ 〈℘(

∨
)(α)〉

⇐⇒ 〈℘(
∨
)(α)〉 ⊆ 〈℘(

∨
)(α)〉 (by Lemma 4.3)

Therefore, for each α ∈ ℘(℘f (S)), 〈℘(
∨
)(α)〉 = 〈

⋃
α〉.

(2) The inclusion function r : I(S) → ℘(S) is a right inverse of 〈−〉, because
an ideal I is the smallest ideal containing I itself.

I(S) r � ℘(S)

�
�
�
�
�

Id
�
I(S)

〈−〉

�

(3) The function ℘f is a right inverse of
⋃
: ℘(℘f (S)) → ℘(S), because a

subset A of S is represented by the union of all finite subsets of A.

℘(S)
℘f� ℘(℘f (S))

�
�
�
�
�

Id
�
℘(S)

⋃
�

268 K. Nishizawa and H. Furusawa

(4) The function down is a right inverse of ℘(
∨
) : ℘(℘f (S))→ ℘(S), because

a subset A of S satisfies ℘(
∨
)(down(A)) = {

∨
{a, b} | b ∈ A, a ≤ b} = A.

℘(S)
down� ℘(℘f (S))

�
�
�
�
�

Id
�

℘(S)

℘(
∨
)

�

Therefore, we have ℘(
∨
) ◦ down ◦ ℘(

∨
) ◦ ℘f = Id ◦ ℘(

∨
) ◦ ℘f = ℘(

∨
) ◦ ℘f .

(5) By the definition of 〈−〉, we have the following equation.

℘(S)
℘f� ℘(℘f (S))

℘(
∨
)� ℘(S)

down� ℘(℘f (S))

I(S)

〈−〉

�

r
� ℘(S)

⋃
�

!�

Example 4.5. By Theorem 4.4, Theorem 3.4, and Theorem 3.5, the forgetful
functor from CSLat to SLat has a left adjoint, which sends a join semilattice S
to (I(S),⊆,

∨
) satisfying

∨
α = 〈

⋃
α〉.

5 Liftable Adjunctions between Eilenberg-Moore
Categories

This section extends Theorem 3.4 to the theorem for quantales and idempotent
semirings.

Definition 5.1. An idempotent semiring, abbreviated as I-semiring is a tuple
(S,+, ·, 0, 1) with a set S, two binary operations + and ·, and 0, 1 ∈ S satisfying
the following properties:

– (S,+, 0) is an idempotent commutative monoid.
– (S, ·, 1) is a monoid.
– For all a, b, c ∈ S,

a · c+ b · c = (a+ b) · c
a · b+ a · c = a · (b + c)

0 · a = 0
a · 0 = 0

where the natural order ≤ is given by a ≤ b iff a+ b = b.

A Sufficient Condition for Liftable Adjunctions 269

We often abbreviate a · b to ab.
The natural order ≤ on an I-semiring is a join semilattice, where its join

operation is given by
∨
∅ = 0 and, for a finite subset A ⊆ S containing a,∨

A = a+ (
∨
A \ {a}).

Example 5.2. Let Σ be a finite set and Σ∗ the set of finite words (strings) over
Σ. Then, the finite power set ℘f (Σ

∗) of Σ∗ forms an I-semiring together with
the union, concatenation, empty set, and the singleton set of the empty word.

IS denotes the category whose objects are I-semirings and whose arrows are
homomorphisms between them.

Definition 5.3. A quantale S is an I-semiring satisfying the following proper-
ties: For each A ⊆ S and a ∈ S,

– the least upper bound
∨

A of A exists in S,

– (
∨

A)a =
∨
{xa | x ∈ A}, and

– a(
∨

A) =
∨
{ax | x ∈ A}.

So, a quantale is a complete I-semiring or an S-algebra [Con71]. Homomorphisms
between quantales are semiring homomorphisms preserving arbitrary joins.

Example 5.4. Let Σ be a finite set and Σ∗ the set of finite words (strings) over
Σ. Then, the power set ℘(Σ∗) of Σ∗ forms a quantale together with the union,
concatenation, empty set, and the singleton set of the empty word.

Qt denotes the category whose objects are quantales and whose arrows are
homomorphisms between them.

Remark 5.5. I-semirings need not be quantales. For example, an I-semiring
℘f (Σ

∗) is not a quantale since it is not closed under arbitrary unions.

We recall the notion of distributive laws between two monads [Bec69]. Maps be-
tween distributive laws can be defined in the 2-categorical way [Str72], however,
this paper defines them in the elementary way.

Definition 5.6 (distributive law). Let T = (T, μT , ηT) and P = (P, μP , ηP)
be monads on a category C. A distributive law θ of P over T is a natural
transformation from TP to PT satisfying the following diagrams.

TTP
Tθ� TPT

θT� PTT

TP

μT
P

�

θ
� PT

PμT

�

TP
θ � PT

�
�
�
�
�

PηT

�

P

ηTP

�

270 K. Nishizawa and H. Furusawa

TPP
θP� PTP

Pθ� PPT

TP

TμP

�

θ
� PT

μP
T

�

TP
θ � PT

�
�
�
�
�

ηPT

�

T

TηP

�

Definition 5.7. Let T, T ′, P, P ′ be monads on C. Let θ be a distributive law of
P over T . Let θ′ be a distributive law of P ′ over T ′. A morphism (τ, π) : θ → θ′ of
distributive laws consists of monad maps τ : T → T ′ and π : P → P ′ satisfying
the following diagram.

TP
θ � PT

T ′P

τP

�
P ′T

πT

�

T ′P ′

T ′π

�

θ′
� P ′T ′

P ′τ

�

Definition 5.8. Let P and T be monads on a categoryC. Let θ be a distributive
law of P over T . A P ◦θ T -algebra is a tuple (c, t, p) such that

– c is an object in C,
– The pair of c and t : Tc→ c is a T -algebra,
– The pair of c and p : Pc→ c is a P -algebra, and
– p ◦ Pt ◦ θc = t ◦ Tp.

TPc
θc � PTc

Pt � Pc

T c

Tp

�

t
� c

p

�

P ◦θ T -Alg denotes the category whose objects are P ◦θ T -algebras and whose
arrows are simultaneous T - and P -homomorphisms.

Lemma 5.9. Let T, P, P ′ be monads on C. Let θ be a distributive law of P over
T . Let θ′ be a distributive law of P ′ over T . Let ι be a monad map such that
(Id, ι) is a morphism (Id, ι) : θ → θ′ of distributive laws. The following G is a
functor from P ′ ◦θ′ T -Alg to P ◦θ T -Alg.

A Sufficient Condition for Liftable Adjunctions 271

– For a P ′ ◦θ′ T -algebra (c, t, p′), G(c, t, p′) = (c, t, p′ ◦ ιc).
– For a P ′ ◦θ′ T -algebra homomorphism f , Gf = f .

We write − ◦ ι for the above functor G.

Example 5.10. Let T = (−)∗ be the monad for finite sequences on Set. Then,
T -Alg is equivalent to the category Mon whose objects are monoids and whose
arrows are homomorphisms between them.

Let ℘f be the finite powerset monad (℘f ,
⋃
, {−}) on Set. Let ℘ be the powerset

monad (℘,
⋃
, {−}) on Set. There exists a distributive law θ of T over ℘f , and

there exists a distributive law θ′ of T over ℘ as follows.

θX(S1 · S2 · · · · · Sn) = {x1 · x2 · · · · · xn | x1 ∈ S1, x2 ∈ S2, . . . , xn ∈ Sn}

θ′X(S1 · S2 · · · · · Sn) = {x1 · x2 · · · · · xn | x1 ∈ S1, x2 ∈ S2, . . . , xn ∈ Sn}

Then, ℘f ◦θ T -Alg is equivalent to the category IS and ℘ ◦θ′ T -Alg is equiva-
lent to the category Qt. Let ιX be the inclusion function from ℘f (X) to ℘(X).
(Id, ι) : θ → θ′ is a morphism of distributive laws.

Lemma 5.11. The forgetful functor from P ◦θ T -Alg to C is monadic.

Example 5.12. The forgetful functor from Mon to Set, the forgetful functor from
IS to Set, and the forgetful functor from Qt to Set are monadic.

Lemma 5.13. The forgetful functor from P ◦θ T -Alg to T -Alg is monadic. The
left adjoint to this forgetful functor sends a T -algebra (c, t) to (Pc, P t ◦ θc, μP

c)
and a T -homomorphism f to Pf . The unit for a T -algebra (c, t) is ηPc : (c, t)→
(Pc, P t ◦ θc). The counit for a P ◦θ T -algebra (c, t, p) is p : (Pc, P t ◦ θc, μP

c) →
(c, t, p).

Example 5.14. The forgetful functor from IS to Mon and the forgetful functor
from Qt to Mon are monadic.

Theorem 5.15. Let T = (T, μT , ηT), P = (P, μP , ηP), and P ′ = (P ′, μP ′
, ηP

′
)

be monads on C. Let θ be a distributive law of P over T . Let θ′ be a dis-
tributive law of P ′ over T . Let ι be a monad map such that (Id, ι) is a mor-
phism (Id, ι) : θ → θ′ of distributive laws. For a P ◦θ T -algebra (c, t, p), let
e(c,p) : P

′c→ E(c, p) be an absolute coequalizer of P ′p and μP ′
c ◦ P ′ιc in C.

P ′Pc
P ′p �

μP ′
c ◦ P ′ιc

� P ′c
e(c,p)� E(c, p)

Then, the functor − ◦ ι : P ′ ◦θ′ T -Alg → P ◦θ T -Alg has a left adjoint L, where
L(c, t, p) is the P ′ ◦θ′ T -algebra on E(c, p) created by the forgetful functor from
P ′ ◦θ′ T -Alg to C.

272 K. Nishizawa and H. Furusawa

Proof. Let D = P ◦θ T -Alg and D′ = P ′ ◦θ′ T -Alg in Theorem 3.1. Let U be the
forgetful functor from P ◦θ T -Alg to T -Alg. Let U ′ be the forgetful functor from
P ′ ◦θ′ T -Alg to T -Alg. The composition of U and − ◦ ι is natural isomorphic to
U ′. For a P ◦θ T -algebra (c, t, p), the forgetful functor U ′ sends the parallel pair
in Theorem 3.1 to

U ′F ′Uε(c,t,p) = U ′F ′Up = U ′F ′p = P ′p

and
U ′ε′F ′U(c,t,p) ◦ U ′F ′Uε(−◦ι)F ′U(c,t,p) ◦ U ′F ′UFη′U(c,t,p)

= U ′ε′F ′U(c,t,p) ◦ U ′F ′Uε(P ′c,P ′t◦θ′
c,μ

P ′
c ◦ιP ′c)

◦ U ′F ′UFη′U(c,t,p)

= μP ′
c ◦ P ′(μP ′

c ◦ ιP ′c) ◦ P ′Pη′c
= μP ′

c ◦ P ′μP ′
c ◦ P ′P ′ηP ′

c ◦ P ′ιc
= μP ′

c ◦ P ′ιc .

Moreover, the forgetful functor from T -Alg to C sends these pairs to the same
arrows. They have an absolute coequalizer. The forgetful functor from P ′ ◦θ′ T -
Alg to C is monadic.

P ′ ◦θ′ T−Alg − ◦ ι� P ◦θ T−Alg
�
�
�
�
�

U ′
�

C

monadic

�
�

monadic
T−Alg

U

�

Therefore, − ◦ ι has the left adjoint L by Theorem 3.1 and Theorem 3.2. !�

Theorem 5.16. If the assumptions of Theorem 5.15 hold and for all P ◦θ T -
algebra (c, t, p), e(c,p) has a right inverse r(c,p),

E(c, p)
r(c,p)� P ′c

�
�
�
�
�

Id
�
E(c, p)

e(c,p)

�

then L(c, p) is the tuple of E(c, p) and the following P ′ ◦θ′ T -structure map.

TE(c, p)
Tr(c,p)� TP ′c

θ′c� P ′Tc
P ′t� P ′c

e(c,p)� E(c, p)

P ′E(c, p)
P ′r(c,p)� P ′P ′c

μP ′
c � P ′c

e(c,p)� E(c, p)

A Sufficient Condition for Liftable Adjunctions 273

Proof. There exist a unique object (E(c, p), t′, p′) and a unique arrow
f : (P ′c, P ′t ◦ θ′c, μP ′

c) → (E(c, p), t′, p′) in P ′θ′T -Alg satisfying U ′f = e(c,p) by
Theorem 5.15. Since f is e(c,p) itself and it is simultaneous a T -homomorphism
and a P ′-homomorphism, both of the following diagrams commute.

TE(c, p)

�
�
�
�
�

Id

�
TP ′c

T r(c,p)

�

Te(c,p)
� TE(c, p)

P ′Tc

θ′c

�

P ′c

P ′t

�

e(c,p)
� E(c,p)

t′

�

P ′E(c, p)

�
�
�
�
�

Id

�
P ′P ′c

P ′r(c,p)

�

P ′e(c,p)
� P ′E(c, p)

P ′c

μP ′
c

�

e(c,p)
� E(c,p)

p′

�

!�

Example 5.17. By Theorem 5.15, Theorem 5.16, and Theorem 4.4, the forgetful
functor from Qt to IS has a left adjoint, which sends an idempotent semiring
(S,+, ·, 0, 1) to (I(S),⊆,

∨
I , ·I , 1I) satisfying∨

I

α = 〈
⋃

α〉 , J ·I K = 〈{a · b | a ∈ J, b ∈ K}〉 , 1I = 〈{1}〉 .

6 Pointed Sets and Absolute Coequalizer

This section shows our third leading example, which is an adjunction between
the category of complete join semilattices and the category of pointed sets.

Definition 6.1. A pointed set is a set equipped with a chosen element, which is
called the base point. Homomorphisms between pointed sets are those functions
that map a base point to another.

We write Set∗ for the category whose objects are pointed sets and whose
arrows are homomorphisms between them. Let G be the functor from CSLat to
Set∗ which maps (S,≤,

∨
) to (S,⊥S) where ⊥S is the least element of S. G has

the left adjoint which sends a pointed set (X, x) to ({A ⊆ X | x ∈ A},⊆).
We show that the above adjunction is also given by Theorem 3.4. Set∗ is

equivalent to the Eilenberg-Moore category ℘≤1-Alg for the submonad ℘≤1 of

274 K. Nishizawa and H. Furusawa

the powerset monad ℘, whose endofunctor returns the set of all singleton subsets
and the emptyset.

℘≤1(X) = {A | A ⊆ X, |A| ≤ 1} = {{x} | x ∈ X} ∪ {∅}

Let (S, s) be a pointed set. It corresponds to the ℘≤1-algebra (S, αs) such that
αs({x}) = x and αs(∅) = s. We define ℘s∈(S), e(S,s), and r(S,s) as follows.

℘s∈(S) = {X ⊆ S | s ∈ X}
e(S,s) : ℘(S)→ ℘s∈(S)
e(S,s)(X) = X ∪ {s}
r(S,s) : ℘s∈(S)→ ℘(S)
r(S,s)(X) = X

Theorem 6.2. e(S,s) : ℘(S) → ℘s∈(S) is an absolute coequalizer of ℘(αs) and⋃
in Set.

℘(℘≤1(S))
℘(αs)�⋃� ℘(S)

e(S,s)� ℘s∈(S)

Proof. We define ℘≤1 : ℘(S) → ℘(℘≤1(S)) and ℘=1 : ℘(S) → ℘(℘≤1(S)) as
follows.

℘≤1(A) = {X ∈ ℘≤1(S) | X ⊆ A}

℘=1(A) = {{x} | x ∈ A}

We prove that the diagrammatic characterization of absolute coequalizers where
f0 = ℘(αs), f1 =

⋃
, and e = e(S,s), by taking s = r(S,s), n = 2, t1 = ℘≤1,

t2 = ℘=1 ◦ ℘(αs) ◦ ℘≤1, j1 = 1, and j2 = 0. That is, we show the following
equations.

1. e(S,s) ◦ ℘(αs) = e(S,s) ◦
⋃

2. e(S,s) ◦ r(S,s) = Id
3.
⋃
◦℘≤1 = Id

4. ℘(αs) ◦ ℘≤1 = ℘(αs) ◦ ℘=1 ◦ ℘(αs) ◦ ℘≤1
5.
⋃
◦℘=1 ◦ ℘(αs) ◦ ℘≤1 = r(S,s) ◦ e(S,s)

Let β be an element of ℘(℘≤1(S)). We have (1) as follows.

e(S,s)(℘(αs)(β))
= ℘(αs)(β) ∪ {s}
= {x | {x} ∈ β} ∪ {s | ∅ ∈ β} ∪ {s}
= {x | {x} ∈ β} ∪ {s}
= (
⋃
β) ∪ {s}

= e(S,s)(
⋃
β)

For X ∈ ℘s∈(S), we have (2) e(S,s)(r(S,s)(X)) = e(S,s)(X) = X ∪{s} = X , since
X contains s. For X ∈ ℘(S), we have (3)

⋃
(℘≤1(X)) =

⋃
{{x} | x ∈ X} = X .

A Sufficient Condition for Liftable Adjunctions 275

We have ℘(αs) ◦ ℘=1 = Id as follows.

℘(αs)(℘=1(X))
= ℘(αs)({{x} | x ∈ X})
= {αs({x}) | x ∈ X}
= {x | x ∈ X}
= X.

Therefore, (4) holds. We have (5) as follows.⋃
(℘=1(℘(αs)(℘≤1(X))))

= ℘(αs)(℘≤1(X))
= ℘(αs)({{x} | x ∈ X} ∪ {∅})
= {αs({x}) | x ∈ X} ∪ {αs(∅)}
= {x | x ∈ X} ∪ {s}
= X ∪ {s}
= e(S,s)(X)
= r(S,s)(e(S,s)(X))

!�

By the above theorem, we can get an adjunction between ℘-Alg and ℘≤1-Alg,
that is, an adjunction CSLat and Set∗.

For the free monoid monad T , there exists a distributive law θ′′ of T over ℘≤1
as follows.

θ′′X(S1 · S2 · · · · · Sn) = {x1 · x2 · · · · · xn | x1 ∈ S1, x2 ∈ S2, . . . , xn ∈ Sn}

If all of S1 · S2 · · · · · Sn are singletons, θ′′X(S1 · S2 · · · · · Sn) is also a singleton.
Otherwise, θ′′X(S1 · S2 · · · · · Sn) is the emptyset.

By Theorem 5.15, we can lift the above adjunction to an adjunction between
℘ ◦θ′ T -Alg and ℘≤1 ◦θ′′ T -Alg.

7 Conclusion and Future Work

Our main theorem is Theorem 5.15. It provided a sufficient condition for the
functor from P ′ ◦θ′ T -Alg to P ◦θ T -Alg to have a left adjoint. This result in-
cludes the cases of the forgetful functor from CSLat to SLat and the forgetful
functor from Qt to IS. In both cases, left adjoints are given by ideal completion.
Therefore, ideal completion can give an adjunction between the category of join
semilattices over T -algebras and the category of complete join semilattices over
T -algebras for a general monad T satisfying certain distributive law.

Our result also includes a different example from ideals. This example is an
adjunction between the category of complete join semilattices and the category
of pointed sets. It can be given by taking a submonad ℘≤1 of the powerset monad
as P .

276 K. Nishizawa and H. Furusawa

It is a future work to show that our main theorem includes other examples
than submonads of the powerset monad. For example, an adjunction between
the category of rings to the category of semirings might be given, when P is the
free commutative monoid monad, P ′ is the free commutative group monad, and
T is the free monoid monad.

Acknowledgements. We thank to the anonymous referees for their helpful
comments and suggestions. This work was supported by JSPS Grant Numbers
24700017 and 25330016.

References

[BW85] Barr, M., Wells, C.: Toposes, Triples and Theories, Grundlagen der Mathe-
matischen Wissenschaften, vol. 278. Springer (1985)

[Bec69] Beck, J.M.: Distributive laws. In: Seminar on Triples and Categorical Homol-
ogy Theory. Lecture Notes in Mathematics, vol. 80, pp. 119–140. Springer
(1969)

[Con71] Conway, J.H.: Regular Algebra and Finite Machines. Chapman and Hall
(1971)

[Lin69] Linton, F.E.J.: Coequalizers in categories of algebras. In: Seminar on Triples
and Categorical Homology Theory. Lecture Notes in Mathematics, vol. 80,
pp. 75–90. Springer (1969)

[Mac98] Mac Lane, S.: Categories for the Working Mathematician, 2nd edn. Springer
(1998)

[NF12] Nishizawa, K., Furusawa, H.: Ideal Completion of Join Semilattics over T-
Algebra. Bulletin of Tottori University of Environmental Studies 9, 91–103
(2012)

[Par69] Pare, R.: Absolute coequalizers. In: Category Theory, Homology Theory and
Their Applications. Lecture Notes in Mathematics, vol. 86, pp. 132–145.
Springer (1969)

[Str72] Street, R.: The formal theory of monads. Journal of Pure and Applied Alge-
bra 2, 149–168 (1972)

Higher-Order Arrow Categories

Michael Winter�

Department of Computer Science,
Brock University,

St. Catharines, Ontario, Canada, L2S 3A1
mwinter@brocku.ca

Abstract. Arrow and Goguen categories were introduced as a suitable
categorical and algebraic description of L-fuzzy relations, i.e., of relations
using membership values from an arbitrary complete Heyting algebra L
instead of truth values or elements from the unit interval [0, 1]. Higher-
order fuzziness focuses on sets or relations that use membership values
that are fuzzy themselves. Fuzzy membership values are functions that
assign to a each membership value a degree up to which the value is con-
sidered to be the membership degree of the element in question. In this
paper we want to extend the theory of arrow categories to higher-order
fuzziness. We will show that the arrow category of type (n+1)-fuzziness
is in fact the Kleisli category over the category of type n-fuzziness for a
suitable monad.

1 Introduction

The theory of relation algebras and allegories or Dedekind categories [3,9,10],
in particular, provides an algebraic framework to reason about relations. These
theories do not only cover binary relations between sets. They are also suitable
to reason about so-called L-relations. Such a relation uses multiple degrees of
membership from a lattice L for every pair. Formally, such a relation R between
sets A and B is a function R : A×B → L. However, not all aspects of L-relations
can be expressed in Dedekind categories. For example, an L-fuzzy relation can be
crisp, i.e., the membership value of every pair is either 0 (smallest element of L)
or 1 (greatest element of L). Even though several abstract notions of crispness in
Dedekind categories have been proposed [4,7,8], it was shown that this property
cannot be expressed in the language of allegories or Dedekind categories [15,21].
Therefore, Goguen and arrow categories were introduced adding two additional
operations to the theory of Dedekind categories. Several papers covered the
theory of those categories including applications to fuzzy controllers [5,16,17,18].

In this paper we are interested in extending the theory of arrow categories to
higher-order fuzziness. A higher-order, or type-2, fuzzy set or relation uses fuzzy
membership values, i.e., the degree of membership is itself fuzzy. This is modeled
by using functions L → L as the underlying lattice. Such a function provides for

� The author gratefully acknowledges support from the Natural Sciences and Engi-
neering Research Council of Canada.

P. Höfner et al. (Eds.): RAMiCS 2014, LNCS 8428, pp. 277–292, 2014.
c© Springer International Publishing Switzerland 2014

278 M. Winter

every degree of membership a degree up to which this is considered to be the
actual membership value. Relations based on those functions also establish an
arrow category, of course. We are interested in the relationship between type-1
(L-relations) and type-2 (L → L-relations) fuzziness. In our approach we use the
extension of an object A which is an abstract version of the Cartesian product
of A and the underlying lattice L [20]. It turns out that type-2 fuzziness can be
defined as an arrow category that is isomorphic to the Kleisli category induced
by a product functor based on the extension of objects. These concepts play
an important role in higher-order fuzzy controllers in which the type reducer
transforms type-2 sets or relations into type-1 entities.

The remainder of this paper is organized as follows. In Section 2 we will
provide the required background on Dedekind and arrow categories. Section
3 recalls a construction introduced in [20], called the extension of an object.
This construction will play an important role in our approach to higher-order
fuzziness. In Section 4 we will show that extension induces a monad structure. It
is also shown that the corresponding Kleisli category is an arrow category. This
category is used in Section 5 in order to define an abstract notion of a type-2
arrow category. Finally, Section 4 provides a conclusion and an outlook to future
work.

2 Dedekind and Arrow Categories

In this section we want to recall some basic notions from category, allegory theory
and the theory of arrow categories. For more details we refer the reader to [3,21].

We will write R : A → B to indicate that a morphism R of a category R
has source A and target B. We will use ; to denote composition in a category,
which has to be read from left to right, i.e., R;S means R first, and then S. The
identity morphism on A is denoted IA.

Suppose C is a category. Then a monad on C is a triple (F, η, μ) consisting of
a endo-functor F : C → C and two natural transformations η : I → F , i.e., from
the identity functor to F , and μ : F 2 → F , i.e., from the functor obtained by
applying F twice to F , so that the following two diagrams commute:

F (F (F (A)))
μF (A) ��

F (μA)

��

F (F (A))

μA

��

F (A)
F (ηA)��

IF (A) ����
��

��
��

�
F (F (A))

μA

��

F (F (A))
ηF (A)��

IF (A)��

F (F (A)) μA

�� F (A) F (A)

Monads allow one to define new categories based on the additional behavior
encoded in the functor. The Kleisli category CF has the same objects as C. A
morphism in CF from A to B is a morphism from A to F (B) in C. η acts as an
identity for the composition R;F S = R;F (S);μ.

Now we want to recall some fundamentals on Dedekind categories [9,10]. Cat-
egories of this type are called locally complete division allegories in [3].

Higher-Order Arrow Categories 279

Definition 1. A Dedekind category R is a category satisfying the following:

1. For all objects A and B the collection R[A,B] is a complete Heyting alge-
bra. Meet, join, the induced ordering, the least and the greatest element are
denoted by !,�, ,⊥⊥AB,��AB, respectively.

2. There is a monotone operation � (called converse) mapping a relation Q :
A→ B to Q� : B → A such that for all relations Q : A→ B and R : B → C

the following holds: (Q;R)
�
= R�;Q� and (Q�)

�
= Q.

3. For all relations Q : A → B,R : B → C and S : A → C the modular law
(Q;R) ! S Q; (R ! (Q�;S)) holds.

4. For all relations R : B → C and S : A→ C there is a relation S/R : A→ B
(called the left residual of S and R) such that for all X : A→ B the following
holds: X ;R S ⇐⇒ X S/R.

Notice that a complete Heyting algebra has an implication operation →, i.e.,
we have X Q → R iff X ! Q R. We will use the abbreviation Q ↔ R =
(Q→ R) ! (R→ Q) throughout the paper.

Throughout this paper we will use some basic properties of relations such as
⊥⊥�
AB = ⊥⊥BA,���

AB = ��BA, I
�
A = IA, the monotonicity of all operations, and the

fact that composition distributes over join from both sides without mentioning.
Notice that we have ��AA;��AB = ��AB;��BB = ��AB, but the general equation

��AB;��BC = ��AC does not necessarily hold [14]. If it does hold for all objects
A,B and C, then we call the Dedekind category uniform.

An important class of relations is given by maps.

Definition 2. Let R be a Dedekind category. The a relation Q : A→ B is called

1. univalent (or partial function) iff Q�;Q IB ,
2. total iff IA Q;Q�,
3. injective iff Q� is univalent,

4. surjective iff Q� is total,

5. a map iff Q is total and univalent.

It is well-known that Q is total iff Q;��BC = ��AC . We will use this and the
corresponding property for surjective relations without mentioning.

In the remainder of the paper we will often use lower case letter to indicate that
a relation is a map, i.e., we will use f if f is a map. In the following lemma we have
summarized some important properties of mappings and univalent relations. As
above a proof can be found in [2,11,12,13,14].

Lemma 1. Let R be a Dedekind category. Then we have for all Q : A→ B,R :
A→ C, S, T : B → C and maps f : B → C

1. Q; f R iff Q R; f�,
2. if Q is univalent, then Q; (S ! T) = Q;S !Q;T ,

3. if S is univalent, then (Q !R;S�);S = Q;S !R.

280 M. Winter

A relator is a functor between Dedekind categories that is monotonic (with
respect to) and preserves converse. Relators generalize functors on the sub-
category of mappings to the whole Dedekind category in a natural way.

A unit 1 is an object of a Dedekind category so that I1 = ��11 and ��A1 is total
for all objects A. A unit is an abstract version of a singleton set, and, hence, the
relational version of a terminal object. In the subcategory of mappings a unit
becomes a terminal object. This immediately shows that a unit is unique up to
isomorphism.

The abstract version of a cartesian product is given by a relational product.
Notice that a relational product is not a categorical product within the full
Dedekind category. However, it is a categorical product in the subcategory of
maps.

Definition 3. The relational product of two objects A and B is an object A×B
together with two relations π : A × B → A and ρ : A × B → B so that the
following equations hold

π�;π IA, ρ�; ρ IB , π�; ρ = ��AB, π;π� ! ρ; ρ� = IA×B.

A Dedekind category has products if the relational product for each pair of objects
exists.

We will use the abbreviations 〈Q,R〉 = Q;π�!R; ρ� and S×T = 〈π;S, ρ;T 〉,
i.e., S × T = π;S;π� ! ρ;T ; ρ�. Notice that the equations

〈Q,R〉; (S × T) = 〈Q;S,R;T 〉, 〈Q,R〉; 〈U, V 〉� = Q;U� !R;V �

only hold under certain assumptions. This fact is known as the sharpness (or
unsharpness) problem of relational products.

Given a complete Heyting algebra L an L-relation R between to sets A and
B is a function R : A×B → L. The values in L serve as degree of membership,
i.e., they indicate the degree of relationship between two elements from A and
B. Notice that regular binary relations between sets are a special case of L-
relations where L is the set B = {true, false} of truth values. The collection of all
L-relations between sets together with the standard definition of the operations
constitutes a Dedekind category, normally denoted by L-Rel. Within such a
category the underlying lattice L of membership values can be identified by the
scalar relations on an object.

Definition 4. A relation α : A → A is called a scalar on A iff α IA and
��AA;α = α;��AA.

The notion of scalars was introduced by Furusawa and Kawahara [7]. It is
equivalent to the notion of ideal elements, i.e., relations R : A→ B that satisfy
��AA;R;��BB = R. These relations were introduced by Jónsson and Tarski [6].

The language of Dedekind categories is too weak to grasp the notion of a
crisp relation [15,21]. A crisp relation is an L-relation that only uses 0 (least
element of L) and 1 (greatest element of L) as membership values. The Dedekind

Higher-Order Arrow Categories 281

category of crisp relations can be identified with the category of regular binary
relations. In order to add the notion of crispness to the theory of Dedekind
categories so-called arrow category were introduced [19,21]. The standard down-
arrow operation maps an L-relation R to the greatest crisp relation included
in R. Analogously, the standard up-arrow operation maps R to the least crisp
relation that includes R.

Definition 5. An arrow category A is a Dedekind category with ��AB �= ⊥⊥AB for
all objects A and B together with two operations ↑ and ↓ satisfying the following:

1. R↑, R↓ : A→ B for all R : A→ B.
2. (↑, ↓) is a Galois correspondence, i.e., Q↑ R iff Q R↓ for all Q,R : A→

B.
3. (R�;S↓)↑ = R↑�;S↓ for all R : B → A and S : B → C.
4. If α �= ⊥⊥AA is a non-zero scalar then α↑ = IA.

5. (Q !R↓)↑ = Q↑ !R↓ for all Q,R : A→ B.

A relation R : A→ B of an arrow category A is called crisp iff R↑ = R. The
collection of crisp relations is closed under all operations of a Dedekind category,
and, hence, forms a sub-Dedekind category of A.

Arrow categories are always uniform [21]. As a consequence all projections
are surjective as the computation

��CA = ��CB;��BA = ��CB; ρ
�;π ��CA×B;π

shows. In the remainder of the paper we will use these properties without men-
tioning.

The following lemma lists some further properties of relations in arrow cate-
gories that we will be using in the remainder of the paper. A proof can be found
in [21].

Lemma 2. Let A be an arrow category. Then we have for all Q,Qi : A → B
for i ∈ I and R : B → C

1. (
i∈I

Qi)
↓
=

i∈I
Q↓i ,

2. Q�↓ = Q↓�,
3. if R is crisp, then (Q;R)

↑
= Q↑;R.

3 Extension of an Object

The extension A� of an object A was introduced in [20]. This construction is
motivated by pairing each element of A with all membership values from L.
In addition to representing the membership values by ideals or scalars this con-
struction also allows to obtain those values as crisp points, i.e., as crisp mappings
p : 1→ 1�. For further details we refer to [20].

282 M. Winter

Later we will use the extension of an object to define an arrow category of type-
2 fuzziness. This will be done by defining a suitable Kleisli category. The whole
approach is based on the following simple idea. A type-2 L-relation, i.e., a L → L-
relation, between the sets A and B is a function R : A × B → (L → L). It is
well-known that such functions are isomorphic to functions fromA×(B×L)→ L.
Notice that the latter are L-relations from A to B�.

Definition 6. Let A be an object of an arrow category. An object A� together
with two relations ηA, νA : A→ A� is called the extension of A iff

1. ηA is crisp,
2. ��AA; νA = νA,
3. ηA; η

�
A = IA,

4. ν�A
� ! η�A ; ηA = IA� ,

5. Q�; η�A = ��BA for every relation Q : B → A,

where Q� : B → A� is defined by Q� = ((Q; ηA)↔ (��BA; νA))
↓
.

In order to explain the definition above in more detail we want to pro-
vide the concrete implementation of νA, ηA and the operation (.)�. The rela-
tion νA relates a value x to all pairs (y, d) by the degree d, and ηA relates
x with (x, d) by degree 1. For example, if A = {A,B,C} and L3 = {0,m, 1}
is the linear ordering on three elements with 0 m 1, then we obtain
A� = A×L3 = {(A, 0), (A,m), (A, 1), (B, 0), (B,m), (B, 1), (C, 0), (C,m), (C, 1)}.
The following matrices visualize the relations νA and ηA. Recall that the i-th
row (resp. column) of the matrix corresponds to the i-th element of A (resp. A�).
In addition, we added dividers in order to indicate the grouping within A� with
respect to one value of A:

νA =

(
0 m 1 | 0 m 1 | 0 m 1
0 m 1 | 0 m 1 | 0 m 1
0 m 1 | 0 m 1 | 0 m 1

)
ηA =

(
1 1 1 | 0 0 0 | 0 0 0 |
0 0 0 | 1 1 1 | 0 0 0 |
0 0 0 | 0 0 0 | 1 1 1 |

)
Now suppose Q : A→ A is the following relation

Q =

(
0 m 1
1 m 0
m 0 0

)
.

The relation Q� : A → A� is a crisp relation that relates u ∈ A to a pair
(x, d) ∈ A� iff u and x are related in Q with degree d, i.e., we obtain Q� : A→ A�

as

Q� =

(
1 0 0 | 0 1 0 | 0 0 1
0 0 1 | 0 1 0 | 1 0 0
0 1 0 | 1 0 0 | 1 0 0

)
.

For more details on those constructions and the axioms above we refer to [20].
The following theorem was shown in [20] and verifies that A� is indeed a

relational product.

Higher-Order Arrow Categories 283

Theorem 1. Let A be an arrow category with extensions and unit 1. Then the
extension A� of A together with the relations π := η�A and ρ := (ν�A ;��A1)

� is a
relational product of A and 1�.

In addition to the theorem above we recognize that both projections are crisp.
This will become an important property in defining the arrow operations in the
Kleisli category based on the extension of an object.

4 An Arrow Category Based on a Product Monad

It is well-known that an object B with a monoid structure leads to a monad
based on the functor P (X) = X×B. The monoid structure is essential to define
the monad operations as functions. The neutral element of the monoid is used
to define the embedding ηA : A → P (A), and the reduction μA : P (P (A)) →
P (A) uses the monoid operation in order to obtain one B element from the two
elements given. If η and μ are not required to be mappings, the monoid structure
is not needed, i.e., in the case of relations it is possible to define a monad without
requiring any monoid structure on B. In this section we will require that R is a
Dedekind category and L is an object of R so that the product A×L for every
object A exists. We define an endo-relator P : R → R by P (X) = X × L and
P (Q) = Q × IL. Furthermore, we define two morphisms ηA : A → P (A) and
μA : P (P (A)) → P (A) by ηA = π� and μA = π ! ρ; ρ�. Notice that μA is not
total, and that ηA is not univalent, i.e., both relations are not mappings.

Notice that the assumption that A × L exists for all L makes the products
sharp, i.e., the equations mentioned in Section 2 do hold. This is due to fact that
in this case certain additional products exist. For details we refer to [14].

Lemma 3. 1. μA is injective,
2. π�;μA = IP (A),

3. ρ�;μA = ρ�,
4. μA = 〈π;π, π; ρ ! ρ〉,
5. μA = μ�

P (A);P (μA; η
�
A),

6. ηA;P (ηA) = ηA; ηP (A),

7. P (η�A); η
�
A ; ηA = P (η�A ; ηA); η

�
P (A),

8. P (Q);μB = π;Q ! ρ; ρ� and μ�
A;P (Q);μB = Q ! ρ; ρ�,

9. P (Q) ! P (R) = P (Q !R).

Proof. 1. The assertion follows immediately from

μA;μ
�
A = (π ! ρ; ρ�); (π� ! ρ; ρ�)
 π;π� ! ρ; ρ�ρ; ρ�

 π;π� ! ρ; ρ�

= IP (A)

284 M. Winter

2. We obtain

π�;μA = π�; (π ! ρ; ρ�)
= IA ! π�; ρ; ρ� Lemma 1(3)

= IA. π�; ρ = ��AB and ρ total

3. Similar to the previous case we get

ρ�;μA = ρ�; (π ! ρ; ρ�)
= ρ�;π ! ρ� Lemma 1(3)

= ρ� ρ�;π = ��BA

4. From the computation

μA = π ! ρ; ρ�

= π; (π;π� ! ρ; ρ�) ! ρ; ρ�

= π;π;π� ! π; ρ; ρ� ! ρ; ρ� Lemma 1(2)

= π;π;π� ! (π; ρ ! ρ); ρ� Lemma 1(2)

= 〈π;π, π; ρ ! ρ〉

we obtain the assertion.

5. We immediately compute

μ�
P (A);P (μA; η

�
A) = (π� ! ρ; ρ�); ((μA; η

�
A)× IL)

= 〈IP (P (A)), ρ〉; ((μA; η
�
A)× IL)

= 〈μA; η
�
A , ρ〉

= μA;π;π
� ! ρ; ρ�

= μA; (π;π
� ! μ�

A; ρ; ρ
�) (1) and Lemma 1(2)

= μA; (π;π
� ! ρ; ρ�) (3)

= μA.

6. Consider the following computation

ηA;P (ηA) = π�; (π;π�;π� ! ρ; ρ�)
= π�;π� ! π�; ρ; ρ� Lemma 1(3)

= π�;π� ρ total

= ηA; ηP (A).

Higher-Order Arrow Categories 285

7. We calculate

P (η�A); η
�
A ; ηA = (π;π;π� ! ρ; ρ�);π;π�

= (π;π ! ρ; ρ�;π);π� Lemma 1(3)

= π;π;π� ρ total

= π;π;π� ! ρ; ρ�;π ρ total

= (π;π;π�;π� ! ρ; ρ�);π Lemma 1(3)

= P (η�A ; ηA); η
�
P (A).

8. We only show the second assertion. The other property follows analogously.
We obtain

μ�
A;P (Q);μB = (π� ! ρ; ρ�); (Q × IL); (π ! ρ; ρ�)

= 〈IP (A), ρ〉; (Q × IL); 〈IP (A), ρ〉�

= Q ! ρ; ρ�.
9. We have

P (Q) ! P (R) = π;Q;π� ! π;R;π� ! ρ; ρ�

= π; (Q !R);π� ! ρ; ρ� Lemma 1(2)

= P (Q !R).
This completes the proof. !�

The first theorem of this section shows that the definitions above lead to a
monad, and, hence, to a Kleisli category.

Theorem 2. Let R be a Dedekind category and L be an object of R so that the
product A× L exists for every object A. Then (P, η, μ) is a monad on R.

Proof. First of all, we verify that η is a natural transformation by calculating

ηA;P (Q) = π�; (Q× IL)

= Q;π� Lemma 1(3)

= Q; ηB.

Another computation shows that μ is also a natural transformation

μA;P (Q) = 〈π;π, π; ρ ! ρ〉; (Q × IL) Lemma 3(4)

= 〈π;π;Q, π; ρ ! ρ〉 Lemma 3(4)

= π;π;Q;π� ! (π; ρ ! ρ); ρ�

= π; (π;Q;π� ! ρ; ρ�) ! ρ; ρ� Lemma 1(2) twice

= π;P (Q) ! ρ; ρ�

= π;P (Q);π�;μB ! ρ; ρ�;μB Lemma 3(2,3)

= (π;P (Q);π� ! ρ; ρ�);μB Lemma 3(1) and 1(2)

= P (P (Q));μB .

286 M. Winter

The first commuting diagram follows from

P (μA);μA = (π;μA;π
� ! ρ; ρ�);μA

= π;μA;π
�;μA ! ρ; ρ�;μA Lemma 3(1) and 1(2)

= π;μA ! ρ; ρ� Lemma 3(2,3)

= π; (π ! ρ; ρ�) ! ρ; ρ�

= π;π ! (π; ρ ! ρ); ρ� Lemma 1(2) twice

= π;π;π�;μA ! (π; ρ ! ρ); ρ�;μA Lemma 3(2,3)

= (π;π;π� ! (π; ρ ! ρ); ρ�);μA Lemma 3(1) and 1(2)

= 〈π;π, π; ρ ! ρ〉;μA

= μP (A);μA. Lemma 3(4)

Finally, the following computations

P (ηA);μA = (π;π�;π� ! ρ; ρ�);μA

= π;π�;π�;μA ! ρ; ρ�;μA Lemma 3(1) and 1(2)

= π;π� ! ρ; ρ� Lemma 3(2,3)

= IP (A)

ηP (A);μA = π�;μA

= IP (A) Lemma 3(2)

verify that the second diagram commutes as well. !�

Recall that the composition in the Kleisli category RP is given by Q;P R =
Q;P (R);μC with η as identity. This Kleisli category can be made into a Dedekind
category by using the meet and join operation from R and the following defini-
tions of a converse and residual operation:

Q∪ = ηB ;μ
�
B;P (Q�), S/PR = S/(P (R);μC).

Theorem 3. Let R be a Dedekind category and L be an object of R so that the
product A × L exists for every object A. Then the Kleisli category RP together
with the operations defined above forms a Dedekind category.

Proof. First of all the converse operation is monotonic because P is a relator.
Furthermore, we have

(Q;P R)
∪

= ηC ;μ
�
C ;P ((Q;P R)

�)

= ηC ;μ
�
C ;P (μ�

C ;P (R�);Q�)

= ηC ;μ
�
C ;P (μ�

C);P (P (R�));P (Q�)

= ηC ;μ
�
C ;μ

�
P (C);P (P (R�));P (Q�) Monad property

Higher-Order Arrow Categories 287

= ηC ;μ
�
C ;P (R�);μ�

B ;P (Q�) μ natural transformation

= ηC ;μ
�
C ;P (R�);P (ηB ;μ

�
B);μ

�
B ;P (Q�) Lemma 3(5)

= ηC ;μ
�
C ;P (R�);P (ηB ;μ

�
B);P (P (Q�));μ�

A μ natural transformation

= R∪;P (Q∪);μ�
A

= R∪;P Q∪.

The final property of a converse operation is shown by

Q∪∪ = ηA;μ
�
A;P (Q∪�)

= ηA;μ
�
A;P (P (Q));P (μB; η

�
B)

= ηA;P (Q);μ�
P (B);P (μB; η

�
B) μ natural transformation

= Q; ηB;μ
�
P (B);P (μB; η

�
B) η natural transformation

= Q; ηB;μB Lemma 3(5)

= Q. Lemma 3(2)

The next computation verifies the modular law of Dedekind categories

Q;P R ! S
= Q;P (R);μC ! S
 Q; (P (R);μC !Q�;S)

= Q; (π;R ! ρ; ρ� !Q�;S) Lemma 3(8)

= Q; (π;R ! ρ; ρ� !Q�;S ! ρ; ρ�)
= Q; (P (R);μC ! μ�

B;P (Q�;S);μC) Lemma 3(8)

= Q; (P (R);μC ! μ�
B;P (Q�;S);μ�

P (C);P (μC);μC) Lemma 3(8)

= Q; (P (R);μC ! μ�
B;μ

�
P (B);P (P (Q�;S));P (μC);μC) μ nat. trans.

= Q; (P (R);μC ! P (ηB;μ
�
B);μP (B);μ

�
P (B);P (P (Q�;S));P (μC);μC)

Lemma 3(5)

 Q; (P (R);μC ! P (ηB;μ
�
B;P (Q�;S);μC);μC) Lemma 3(1)

= Q; (P (R) ! P (ηB;μ
�
B;P (Q�;S);μC));μC Lemma 3(1) & 1(2)

= Q; (P (R) ! P (Q∪;P S));μC

= Q;P (R !Q∪;P S);μC Lemma 3(9)

= Q;P (R !Q∪;P S).

Finally, the computation

X ;P R S ⇐⇒ X ;P (R);μC S

⇐⇒ X S/(P (R);μC)

⇐⇒ X S/PR

verifies that the residual does exist. !�

288 M. Winter

Our next goal is to show that RP is actually an arrow category. Therefore,
we define

Q⇑ = (Q; η�B ; ηB)
↑
, Q⇓ = (Q/(η�B ; ηB))

↓
.

In order to be able to proof the following theorem we have to require that the
projections are crisp, i.e., that π↑ = π and ρ↑ = ρ. In this case we will call
the product crisp. Notice that this requirement is not necessarily an additional
assumption [16].

Theorem 4. Let A be an arrow category and L be an object of A so that a crisp
product A×L exists for every object A. Then the Dedekind category AP together
with the operations defined above forms an arrow category.

Proof. First notice that η = π� is crisp. Therefore, we have

Q⇑ R ⇐⇒ (Q; η�B ; ηB)
↑
 R

⇐⇒ Q↑; η�B ; ηB R Lemma 2(3)

⇐⇒ Q↑ R/(η�B ; ηB)

⇐⇒ Q (R/(η�B ; ηB))
↓

⇐⇒ Q R⇓.

In order to show that (Q∪;P R⇓)⇑ = Q⇑∪;P R⇓ we show Q∪⇑ = Q⇑∪ and
(Q;P R

⇓)⇑ = Q⇑;P R⇓. Notice that RP is a Dedekind category so that I∪ = I,
i.e., we have (∗) ηA;μ�

A;P (η�A) = ηA. Now, we conclude

Q∪⇑ = (ηB ;μ
�
B;P (Q�); η�A ; ηA)

↑

= (ηB ; (ηA;P (Q);μB)
�; ηA)

↑

= (ηB ;Q
�; ηA)

↑
η left identity in monad

= ηB ;Q
↑�; ηA Lemma 2(3)

= ηB ; ηP (B);P (Q↑
�
) η natural transformation

= ηB ;P (ηB);P (Q↑
�
) Lemma 3(6)

= ηB ;μ
�
B;P (η�B);P (ηB);P (Q↑

�
) by (∗)

= ηB ;μ
�
B;P ((Q↑; η�B ; ηB)

�
)

= ηB ;μ
�
B;P (Q⇑

�
) Lemma 2(3)

= Q⇑∪.

Higher-Order Arrow Categories 289

In order to show the second property notice that μ is crisp and that P (Q) is
crisp for a crisp Q because the projections are crisp. Furthermore, from

Q⇓; η�B ; ηB; η
�
B ; ηB = Q⇓; η�B ; ηB ηB; η

�
B = IB

= (Q/(η�B ; ηB))
↓
; η�B ; ηB

 (Q/(η�B ; ηB)); η
�
B ; ηB

 Q

we conclude Q⇓; η�B ; ηB Q/(η�B ; ηB), and, hence, Q
⇓; η�B ; ηB Q⇓ since the

left-hand side is crisp. This implies (∗∗) Q⇓; η�B ; ηB = Q⇓ since ηB is surjective.
Now, we compute

(Q;P R
⇓)⇑ = (Q;P (R⇓);μC ; η

�
C ; ηC)

↑

= Q↑;P (R⇓);μC ; η
�
C ; ηC see above and Lemma 2(3)

= Q↑;P (R⇓; η�C ; ηC);μC ; η
�
C ; ηC by (∗∗)

= Q↑;P (R⇓; η�C); η
�
C ; ηC by (∗)

= Q↑;P (R⇓; η�C ; ηC); η
�
P (C) Lemma 3(7)

= Q↑;P (R⇓); η�P (C) by (∗∗)

= Q↑; η�B ;R
⇓ η natural transformation

= Q↑; η�B ;R
⇓; ηP (C);μC Lemma 3(2)

= Q↑; η�B ; ηB;P (R⇓);μC η natural transformation

= (Q; η�B ; ηB)
↑
;P (R⇓);μC Lemma 2(3)

= Q⇑;P R⇓

Suppose α �= ⊥⊥AA is a scalar in AP . We have to show that α⇑ = ηA because ηA
is the identity in the Kleisli category AP . From the fact that α is a scalar in AP

we get α ηA and α;P (��AP (A));μA = ��AP (A);P (α);μA. In order to proceed

we want to show that α; η�A is a non-zero scalar in A. First of all, we have

α; η�A ηA; η
�
A = IA. In addition, α; η�A = ⊥⊥AA implies α α; η�A ; ηA = ⊥⊥AP (A),

a contradiction. Last but not least, we obtain

α; η�A ;��AA = α;P (��AA); η
�
A η natural transformation

= α;P (��AP (A); ηA);μA; η
�
A by (∗)

= α;P (��AP (A));μA; η
�
A ηA surjective

= ��AP (A);P (α);μA; η
�
A assumption

= ��AA; ηA;P (α);μA; η
�
A ηA surjective

= ��AA;α; η
�
A . η left identity in monad

290 M. Winter

Since A is an arrow category we conclude (α; η�A)
↑
= IA. From this we compute

α⇑ = (α; η�A ; ηA)
↑

= (α; η�A)
↑
; ηA Lemma 2(3)

= ηA see above

In order to show the remaining property we fist compute

((Q !R⇓); η�B ; ηB)
↑ (Q; η�B ; ηB !R⇓; η

�
B ; ηB)

↑

= (Q; η�B ; ηB !R⇓)
↑
, by (∗∗)

(Q; η�B ; ηB !R⇓)
↑ ((Q !R⇓; η�B ; ηB); η

�
B ; ηB)

↑

= ((Q !R⇓); η�B ; ηB)
↑

by (∗∗)

The following two computations

(Q !R⇓)⇑ = ((Q !R⇓); η�B ; ηB)
↑

= (Q; η�B ; ηB !R⇓)
↑

see above

= (Q; η�B ; ηB)
↑ !R⇓ A arrow category

= Q⇑ !R⇓,

shows the remaining property of an arrow category. !�

5 Higher-Order Arrow Categories

In this section we want to combine the results from the previous sections in
order to obtain a suitable notion of a type-2 arrow category. First of all, the
combination of Theorem 1 and the Theorems 2-4 implies the following corollary.

Corollary 1. If A is an arrow category with extensions and a unit 1, then AP

is an arrow category.

We will use this construction in order to define a type-2 arrow category over
a ground (arrow) category.

Definition 7. Let A1 be an arrow category with extensions and a unit 1. An
arrow category A2 is called type-2 arrow category over A1 iff A2 is isomorphic
to the Kleisli category A1P .

It remains to show that the concrete arrow category of type-2 L-relations is
indeed a type-2 arrow category over the arrow category of L-relations.

Theorem 5. The arrow category (L → L)-Rel is a type-2 arrow category over
the arrow category L-Rel.

Higher-Order Arrow Categories 291

Proof. Notice that all categories do have the same objects. Therefore, it is
sufficient to provide the required isomorphism ϕ for relations only. We define
ϕ : ((L → L)− Rel)[A,B]→ (L − Rel)[A,B × L] by

(ϕAB(Q))(x, (y, d)) = Q(x, y)(d).

An easy verification shows that ϕ is indeed an isomorphism and maps the oper-
ations in (L → L) − Rel to the corresponding operation in the Kleisli category
L − RelP . We only show the case of the up-arrow operation here and omit the
other proofs due to lack of space. First we have

(ϕAB(Q); η�B ; ηB)(x, (y, d)) =
⊔
e∈L

ϕAB(Q)(x, (y, e)) =
⊔
e∈L

Q(x, y)(e)

so that (ϕAB(Q); η�B ; ηB)(x, (y, d)) �= 0 iff Q(x, y) �= 0 follows where 0 is the
constant function returning 0. We conclude

ϕAB(Q)⇑(x, (y, d)) =
{
1 iff (ϕAB(Q); η�B ; ηB)(x, (y, d)) �= 0
0 otherwise

}
=

{
1 iff Q(x, y) �= 0
0 otherwise

}
= Q↑(x, y)(d)

= ϕAB(Q
↑)(x, (y, d)). !�

6 Conclusion and Future Work

In this paper we extended the theory of arrow and Goguen categories to higher-
order fuzziness. Future work will concentrate on several aspects of this extended
theory. First of all, an adaption of the framework using arrow categories for fuzzy
controllers is of interest. Besides some general modifications and generalizations
the operations required for the so-called type reduction step are important. We
will investigate some general operations based on relational constructions such as
order-based operations and relational integration. In addition, the more specific
interval based operations are important in practical applications.

Another area for future research will focus on the implementation of this
extended theory in an interactive proof system such as Coq in order to develop
an environment that can be used for formal verification of software based on
fuzzy methods.

References

1. Castillo, O., Melin, P.: Type-2 Fuzzy Logic: Theory and Applications. STUDFUZZ,
vol. 223. Springer (2008)

2. Chin L.H., Tarski A.: Distributive and modular laws in the arithmetic of relation
algebras. University of California Press, Berkeley and Los Angeles (1951)

292 M. Winter

3. Freyd, P., Scedrov, A.: Categories, Allegories. North-Holland (1990)
4. Furusawa, H.: Algebraic Formalizations of Fuzzy Relations and Their Representa-

tion Theorems. PhD-Thesis, Department of Informatics, Kyushu University, Japan
(1998)

5. Furusawa, H., Kawahara, Y., Winter, M.: Dedekind Categories with Cutoff Oper-
ators. Fuzzy Sets and Systems 173, 1–24 (2011)

6. Jónsson, B., Tarski, A.: Boolean algebras with operators, I, II. Amer. J. Math. 73,
74, 891-939, 127–162 (1951, 1952)

7. Kawahara, Y., Furusawa, H.: Crispness and Representation Theorems in Dedekind
Categories. DOI-TR 143. Kyushu University (1997)

8. Kawahara, Y., Furusawa, H.: An Algebraic Formalization of Fuzzy Relations. Fuzzy
Sets and Systems 101, 125–135 (1999)

9. Olivier, J.P., Serrato, D.: Catégories de Dedekind. Morphismes dans les Catégories
de Schröder. C.R. Acad. Sci. Paris 290, 939–941 (1980)

10. Olivier, J.P., Serrato, D.: Squares and Rectangles in Relational Categories - Three
Cases: Semilattice, Distributive lattice and Boolean Non-unitary. Fuzzy Sets and
Systems 72, 167–178 (1995)

11. Schmidt G., Ströhlein T.: Relationen und Graphen. Springer (1989); English ver-
sion: Relations and Graphs. Discrete Mathematics for Computer Scientists. EATCS
Monographs on Theoret. Comput. Sci. Springer (1993)

12. Schmidt, G., Hattensperger, C., Winter, M.: Heterogeneous Relation Algebras. In:
Brink, C., Kahl, W., Schmidt, G. (eds.) Relational Methods in Computer Science.
Advances in Computer Science. Springer, Vienna (1997)

13. Schmidt, G.: Relational Mathematics. Encyplopedia of Mathematics and its Ap-
plications 132 (2011)

14. Winter, M.: Strukturtheorie heterogener Relationenalgebren mit Anwendung auf
Nichtdetermismus in Programmiersprachen. Dissertationsverlag NG Kopierladen
GmbH, München (1998)

15. Winter, M.: A new Algebraic Approach to L-Fuzzy Relations Convenient to Study
Crispness. INS Information Science 139, 233–252 (2001)

16. Winter, M.: Relational Constructions in Goguen Categories. In: de Swart, H. (ed.)
Participants Proceedings of the 6th International Seminar on Relational Methods
in Computer Science (RelMiCS), pp. 222–236. Katholieke Universiteit Brabant,
Tilburg (2001)

17. Winter, M.: Derived Operations in Goguen Categories. TAC Theory and Applica-
tions of Categories 10(11), 220–247 (2002)

18. Winter, M.: Representation Theory of Goguen Categories. Fuzzy Sets and Sys-
tems 138, 85–126 (2003)

19. Winter, M.: Arrow Categories. Fuzzy Sets and Systems 160, 2893–2909 (2009)
20. Winter, M.: Membership Values in Arrow Categories. Submitted to Fuzzy Sets and

Systems (October 2013)
21. Winter, M.: Goguen Categories - A Categorical Approach to L-fuzzy relations.

Trends in Logic 25 (2007)

Type-2 Fuzzy Controllers in Arrow Categories

Michael Winter1,�, Ethan Jackson1, and Yuki Fujiwara2

1 Department of Computer Science,
Brock University,

St. Catharines, Ontario, Canada, L2S 3A1
{mwinter,ej08ti}@brocku.ca

2 Kojima Laboratory,
Kobe University,

Kobe, Hyogo, Japan
yuki.fujiwara@kojimalab.com

Abstract. Arrow categories as a suitable categorical and algebraic de-
scription of L-fuzzy relations have been used to specify and describe
fuzzy controllers in an abstract manner. The theory of arrow categories
has also been extended to include higher-order fuzziness. In this paper we
use this theory in order to develop an appropriate description of type-2
fuzzy controllers. An overview of the relational representation of a type-1
fuzzy controller is given before discussing the extension to a type-2 con-
troller. We discuss how to model type reduction, an essential component
of any type-2 controller. In addition, we provide a number of examples
of general type reducers.

1 Introduction

Dedekind categories are a fundamental tool to reason about relations. In addition
to the standard model of binary relations these categories, and some related
structures such as allegories and relation algebras, also cover L-fuzzy relations,
i.e., relations in which every pair of elements is only related up to a certain
degree indicated by a membership value from the complete Heyting algebra L.
Formally, an L-fuzzy relation R (or L-relation for short) between a set A and a
set B is a function R : A × B → L. It was shown that certain notions such as
crispness cannot be expressed in Dedekind categories. Therefore, the theory of
arrow and Goguen categories has been established as an algebraic and categorical
framework to reason about these L-fuzzy relations [19].

Type-2 fuzzy sets, introduced by Zadeh [27], use membership degrees that
are themselves fuzzy sets, i.e., the lattice of membership degrees is the lattice
L → L of functions on the lattice L. This approach allows to describe uncertainty
in determining an exact membership value for an element of a fuzzy set. For
example, if x is in the type-2 L-fuzzy set A to a degree f , then we only know for
each membership degree d ∈ L that it is the degree of the membership of x in A

� The author gratefully acknowledges support from the Natural Sciences and Engi-
neering Research Council of Canada.

P. Höfner et al. (Eds.): RAMiCS 2014, LNCS 8428, pp. 293–308, 2014.
c© Springer International Publishing Switzerland 2014

294 M. Winter, E. Jackson, and Y. Fujiwara

up to the degree f(d). Since L → L is also a complete Heyting algebra, type-2
L-relations also form an arrow category. The abstract relationship between the
arrow category of L-relations and (L → L)-relations was investigated in [26]. In
addition, an abstract definition of a type-2 arrow category over a ground arrow
category has been provided.

The theory of arrow and Goguen categories has been studied intensively
[5,19,20,21,22,24]. In addition, the theory has been used to model and spec-
ify L-fuzzy controllers [23]. This allows formal reasoning about controllers as
well as stepwise refinement of a specification towards an implementation. In this
paper we want to model type-2 L-fuzzy controllers based on the theory of type-2
arrow categories. We will discuss some differences between the approaches to
type-1 vs. type-2 controllers. In particular, we will discuss type reducers and
several general methods useful in order to define them.

2 Mathematical Preliminaries

In this section we want to recall some basic notions from lattice, category and
allegory theory. For further details we refer to [1] and [4].

We will write R : A → B to indicate that a morphism R of a category R
has source A and target B. We will use ; to denote composition in a category,
which has to be read from left to right, i.e., R;S means R first, and then S.
The collection of all morphisms R : A→ B is denoted by R[A,B]. The identity
morphism on A is written as IA.

A distributive lattice L is called a complete Heyting algebra iff L is complete
and x!

⊔
M =

⊔
y∈M

(x!y) holds for all x ∈ L and M ⊆ L. Notice that complete

Heyting algebras have relative pseudo complements, i.e., for each pair x, y ∈ L
there is a greatest element x→ y with x! (x→ y) y. By x↔ y we abbreviate
the element x→ y ! y → x.

We will use the framework of Dedekind categories [11,12] throughout this
paper as a basic theory of relations. Categories of this type are called locally
complete division allegories in [4].

Definition 1. A Dedekind category R is a category satisfying the following:

1. For all objects A and B the collection R[A,B] is a complete Heyting alge-
bra. Meet, join, the induced ordering, the least and the greatest element are
denoted by !,�, ,⊥⊥AB,��AB, respectively.

2. There is a monotone operation � (called converse) mapping a relation Q :
A→ B to Q� : B → A such that for all relations Q : A→ B and R : B → C

the following holds: (Q;R)
�
= R�;Q� and (Q�)

�
= Q.

3. For all relations Q : A → B,R : B → C and S : A → C the modular law
(Q;R) ! S Q; (R ! (Q�;S)) holds.

4. For all relations R : B → C and S : A→ C there is a relation S/R : A→ B
(called the left residual of S and R) such that for all X : A→ B the following
holds: X ;R S ⇐⇒ X S/R.

Type-2 Fuzzy Controllers in Arrow Categories 295

As mentioned in the introduction, the collection of binary relations between
sets as well as the collection of L-relations between sets form a Dedekind cate-
gory. In the remainder of the paper we will sometimes use a matrix representation
in order to visualize examples in L-relations. For example, if R : A × B → L
with A = {a, b, c} and B = {1, 2, 3, 4} is a L-relation, then the situation can be
visualized by

R :=

⎛⎝1 k l 0
0 k m 0
0 1 l m

⎞⎠
0

k

l m

1

L := �
�

�
�

�
�

�
�

The matrix representation should be read as follows. The l in the first row of
the matrix indicates that the first element of A, the element a, is in relation R
to the third element of B, the element 3, to the degree l.

Based on the residual operation it is possible to define a right residual by
R\S = (S/R)

�
. This operation is characterized by

R;X S ⇐⇒ X R\S.

A symmetric version of the residuals is given by the symmetric quotient syQ(Q,R)
of two relations. This construction is defined by

syQ(Q,R) = (Q\R) ! (Q�/R�).

An order relation E : A → A is a relation that is reflexive, transitive, and
antisymmetric, i.e., it satisfies IA E, E;E E, and E ! E� IA. For a
given relation X : B → A it is possible to compute the least upper bound of all
elements related to one b ∈ B using the following construction

lubE(X) = (X�\E) ! ((X�\E)
�\E�).

The greatest lower bounds are computed by reversing the order, i.e., glbE(X) =
lubE�(X). For more details on these constructions we refer to [14,15,17,18].

Another important class of relations is given by maps.

Definition 2. Let R be a Dedekind category. Then a relation Q : A → B is
called

1. univalent (or a partial function) iff Q�;Q IB,
2. total iff IA Q;Q�,
3. injective iff Q� is univalent,
4. surjective iff Q� is total,
5. a map iff Q is total and univalent.

A relator is a functor between Dedekind categories that is monotonic (with
respect to) and preserves converses. Relators generalize functors on the sub-
category of mappings to the whole Dedekind category in a natural way.

296 M. Winter, E. Jackson, and Y. Fujiwara

The relational version of a terminal object is a unit. A unit 1 is an object of
a Dedekind category so that I1 = ��11 and ��A1 is total for all objects A. Notice
that a unit is a terminal object in the subcategory of mappings.

The abstract version of a Cartesian product is given by a relational product.
Similar to a unit a relational product is the relational version of the well-known
categorical construction of a product.

Definition 3. The relational product of two objects A and B is an object A×B
together with two relations π : A × B → A and ρ : A × B → B so that the
following equations hold

π�;π IA, ρ�; ρ IB , π�; ρ = ��AB, π;π� ! ρ; ρ� = IA×B.

Another important construction is based on forming the disjoint union of sets.

Definition 4. Let A and B be objects of a Dedekind category. An object A+B
together with two relations ι : A → A + B and κ : B → A + B is called a
relational sum of A and B iff

ι; ι� = IA, κ;κ� = IB, ι;κ� = ⊥⊥AB, ι�; ι � κ�;κ = IA+B .

Last but not least, a relational power is an abstract version of powersets, i.e.,
the set of all subsets of a set.

Definition 5. Let A be an object of a Dedekind category. An object P(A) to-
gether with a relation ε : A→ P(A) is called a relational power of A iff

syQ(ε, ε) IP(A), syQ(R�, ε) is total for every R : B → A.

Notice that syQ(R�, ε) is, in fact, a map that maps x to the set of elements
that x is related to in R.

In a Dedekind category one can identify the underlying lattice L of member-
ship values by the scalar relations on an object.

Definition 6. A relation α : A → A is called a scalar on A iff α IA and
��AA;α = α;��AA.

The notion of scalars was introduced by Furusawa and Kawahara [9] and
is equivalent to the notion of ideals, i.e., relations R : A → B that satisfy
��AA;R;��BB = R, which were introduced by Jónsson and Tarski [8].

The next definition introduces arrow categories, i.e., the basic theory for L-
relations.

Definition 7. An arrow category A is a Dedekind category with ��AB �= ⊥⊥AB for
all A, B and two operations ↑ and ↓ satisfying:

1. R↑, R↓ : A→ B for all R : A→ B
2. (↑,↓) is a Galois correspondence, i.e., we have Q↑ R iff Q R↓ for all

Q,R : A→ B.

Type-2 Fuzzy Controllers in Arrow Categories 297

3. (R�;S↓)↑ = R↑�;S↓ for all R : B → A and S : B → C
4. (Q !R↓)↑ = Q↑ !R↓ for all Q,R : A→ B

5. If αA �= ⊥⊥AA is a non-zero scalar then α↑A = IA.

A relation that satisfies R↑ = R, or equivalently R↓ = R, is called crisp.
Notice that the complete Heyting algebra of scalar relations on each object are
isomorphic.

If α is scalar (cf. Definition 6), then the relation (α\R)↓ is called the α-cut of
R. For L-relations this construction can be characterized as follows. The elements
x and y are in the (crisp) relation (α\R)↓ iff x and y are related in R by a degree
greater or equal to α.

In fuzzy theory t-norms and t-conorms are essential for defining new opera-
tions for fuzzy sets or relations. The corresponding notion for L-fuzzy relations is
given by complete lattice-ordered semigroups introduced in [6]. We refer to that
paper for more details on those operations. For the current paper we only need
to know how to define new composition, join, and meet operations for relations
based on such a semigroup operation. These operations play an important role
in any implementation of a fuzzy controller.

Definition 8. Let Q,R be relations, ⊗ ∈ {!,�, ; } such that Q ⊗ R is defined,
and ∗ the operation of a complete lattice-ordered semigroup on the set of scalar
relations. Then we define

Q⊗∗ R :=
⊔

α,β scalars

(α ∗ β); ((α\Q)
↓ ⊗ (β\R)↓).

Notice that the abstract definition above corresponds in the case of L-relations
to the well-known definitions. In particular, we have for L-relationsQ,R : A→ B
and S : B → C the following property

(Q !∗ R)(x, y) = Q(x, y) ∗R(x, y),

(Q;∗ S)(x, z) =
⊔
y∈B

Q(x, y) ∗ S(y, z).

A type-2 L-relationQ between A andB uses functions from L to L as member-
ship values, i.e., is a function Q : A×B → (L → L). Such a relation corresponds
to an L-relation R : A× (B ×L)→ L by Q(x, y)(d1) = d2 iff R(x, (y, d1)) = d2.
This correspondence motivates the abstract treatment of higher-order fuzziness
in the context of arrow categories. We need an abstract version of product B×L.
This is provided by the notion of an extension B� of an object B.

Definition 9. Let A be an object of an arrow category. An object A� together
with two relations ηA, νA : A→ A� is called the extension of A iff

1. ηA is crisp,
2. ��AA; νA = νA,
3. ηA; ηA

� = IA,

298 M. Winter, E. Jackson, and Y. Fujiwara

4. ν�A
�
! ηA�; ηA = IA� ,

5. Q�; ηA
� = ��BA for every relation Q : B → A,

where Q� = ((Q; ηA)↔ (��BA; νA))
↓.

The concrete implementation of νA, ηA and the operation Q� can be explained
as follows. The relation νA relates a value x to all pairs (y, d) by the degree d,
and ηA relates x with all (x, d) by degree 1. The relation Q� is a crisp relation
that relates u ∈ B to a pair (x, d) ∈ A� iff u and x are related in Q with degree
d.

In addition to the explanation above we want to provide an example that il-
lustrates the definition of an extension. Consider the sets A = {Joe,Peter, Jim}
and B = {Chrystler,BMW,VW,Hyundai}, the complete Heyting algebra L3

(see below) and the relation Q : A→ B, read as ’likes’, given by the following:

1

m

0

Q =

(
0 m 1 0
1 m 0 m
m 0 0 1

)

According to the first three entries of the first row of the matrix above, Joe
does not like Chrystler (degree 0), he likes BMW somewhat (degree m), and he
definitely likes VW (degree 1). The extension B� of B is the set B� = B×L3 =
{(Chrystler, 0), (Chrystler.,m), (Chrystler, 1), (BMW, 0), . . . , (Hyundai, 1)}. The
relations νB, ηB : B → B� and the relation Q� are displayed below. We added
dividers in order to indicate the grouping within Q� with respect to one value of
B:

νB =

(
0 m 1 | 0 m 1 | 0 m 1 | 0 m 1
0 m 1 | 0 m 1 | 0 m 1 | 0 m 1
0 m 1 | 0 m 1 | 0 m 1 | 0 m 1
0 m 1 | 0 m 1 | 0 m 1 | 0 m 1

)
ηB =

(
1 1 1 | 0 0 0 | 0 0 0 | 0 0 0
0 0 0 | 1 1 1 | 0 0 0 | 0 0 0
0 0 0 | 0 0 0 | 1 1 1 | 0 0 0
0 0 0 | 0 0 0 | 0 0 0 | 1 1 1

)

Q� =

(
1 0 0 | 0 1 0 | 0 0 1 | 1 0 0
0 0 1 | 0 1 0 | 1 0 0 | 0 1 0
0 1 0 | 1 0 0 | 1 0 0 | 0 0 1

)
For more details on those constructions and the axioms above we refer to [25].
The following theorem was shown in [25] and verifies that A� is indeed a

relational product.

Theorem 1. Let A be an arrow category with extensions and unit 1. Then the
extension A� of A together with the relations π := η�A and ρ := (ν�A ;��A1)

� is a
relational product of A and 1�.

The object 1� is another way of representing the membership values within
an arrow category. It has been shown in [25] that ν1\ν1 is an order relation on
1� that internalizes the order of membership values.

Based on the extension it is possible to define a monad structure on A. We
are interested in the Kleisli category induced by this monad. Recall that the

Type-2 Fuzzy Controllers in Arrow Categories 299

Kleisli category CF induced by a monad (F, η, μ) over C has the same objects as
C, the morphisms in CF from A to B are the morphisms of C from A to F (B),
and composition ;F and identities are given by f ;F g = f ;F (g);μ and η. The
following result was shown in [26].

Theorem 2. Let A be an arrow category with extensions with a unit 1. Further-
more, let π : A� → A and ρ : A� → 1� be the projections from Theorem 1. Then
the endo-relator P defined by P (A) = A� and P (Q) = π;Q;π� ! ρ; ρ� together
with the natural transformations ηA : A → A� and μA : A�� → A� defined by
ηA := π� and μA := π !ρ; ρ� forms a monad. Furthermore, the Kleisli category
AP with the lattice structure inherited from A and the operations

Q∪ := ηB ;μ
�
B;P (Q�), S/PR := S/(P (R);μC),

Q⇓ := (Q; ηB ; η
�
B)
↓
, Q⇑ := (Q/(η�B ; ηB))

↓
,

forms an arrow category.

The previous theorem is the basis for the following definition.

Definition 10. Let A1 be an arrow category with extensions. An arrow category
A2 is called type-2 arrow category over A1 iff A2 is isomorphic to the Kleisli
category A1P .

Due to the definition above the collections of objects in A1 and A2 are iso-
morphic. In the remainder of the paper we will identify them and assume that
A1 and A2 have the same objects. We will write R : A→i B for i = 1, 2 in order
to indicate from which category R is.

In order to explain the previous definition we want to illustrate the relation-
ship between (L → L)-relations to the Kleisli category based on the extension
by an example. Consider the following type-2 relation where L = {0,m, 1} with
0 m 1:

R : A→2 B =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

x f(x)
0 1
m 0
1 0

x f(x)
0 0
m 1
1 m

x f(x)
0 0
m m
1 1

x f(x)
0 0
m 0
1 1

x f(x)
0 m
m m
1 0

x f(x)
0 0
m m
1 m

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

This relation corresponds to the following type-1 relation between A and B�

R̃ : A→1 B
� =

(
1 0 0 0 1 m 0 m 1
0 0 1 m m 0 0 m m

)
.

Notice that we have grouped the columns in the matrix above that belong to
the same value in B (but different values in L). In the remainder of the paper
we use the notion R̃ to indicate the relation in A1 that is isomorphic to R as a
relation in A1P .

300 M. Winter, E. Jackson, and Y. Fujiwara

3 L-Fuzzy Controllers

In this section we want to recall the Mamdani approach to fuzzy controllers.
We will concentrate on the difference of type-1 vs. type-2 controllers in partic-
ular. Following a general overview we show how to model each component of a
controller in the theory of arrow categories. Notice that type-1 controllers were
already discussed in [23].

3.1 The Mamdani Approach to Fuzzy Controllers

In the Mamdani approach a fuzzy controller consists of several components [10].
In the case of a type-1 controller the general structure is visualized in Figure 1.
Notice that fuzzy values are only used inside the controller. The communication
with the actual process is based on crisp data.

Fuzzy Controller

Fuzzy values

Fuzzi-
fication

Decision
Module

Rule base

Defuzzi-
fication

Process

�
�

� � �

�
Crisp values

Fig. 1. Components of a type-1 fuzzy controller

The fuzzification component transforms crisp input into fuzzy values that can
be processed by the controller. The rule base hosts the rules of the system. The
decision module selects appropriate rules from the rule base and applies them to
the fuzzified input. Finally, the defuzzifier converts the fuzzy result into a crisp
value that can be used as input for the process.

A type-2 fuzzy controller adds one additional component to the model above
(cf. [2]). In addition, within a type-2 controller type-1 and type-2 fuzzy sets
and values are used. The structure of such a type-2 controller, including the
information about what kind of values are being used, is summarized in Figure
2.

The type reducer is responsible to transform type-2 fuzzy values coming from
the decision module into type-1 fuzzy values that can be passed to the defuzzifier.

The individual components of the controller will be discussed with more detail
in the following sections.

Type-2 Fuzzy Controllers in Arrow Categories 301

Type-2 Fuzzy Controller

Fuzzy values
Type-1/Type-2

Fuzzi-
fication

Decision
Module

Rule base
Type
Reducer

Defuzzi-
fication

Process

�
�

� Type-2�

Type-2 Type-1

�

�

�
Crisp values

Fig. 2. Components of a type-2 fuzzy controller

3.2 Linguistic Entities and Variables

A basic concept in any fuzzy controller is the use of linguistic entities. A linguistic
entity is an abstract notion usually phrased in natural language that represents
values like “extremely high speed”, “hot water”, “very heavy rain”, and so on. It
is important to notice that linguistic entities are often constructed from a basic
notion by applying a so-called linguistic modifier. For example, “very hot” is
based on the notion of “hot” which is then modified by the intensifying modifier
“very”.

Variables ranging over linguistic entities are called linguistic variables. Lin-
guistic variables and entities are normally used in the rules of the controller.
Within the mathematical model of a controller linguistic entities are interpreted
as suitable L-fuzzy sets, and linguistic variables as variables over those sets.

As usual in the theory of relations, we describe a subset of A by a relation
M : 1 → A, where 1 is the unit of the corresponding relational category. A
linguistic modifier now becomes an operation on relations. In this paper we
want to consider only one kind of modifiers. These modifiers originate from re-
lations that model approximate equalities. Such a relation Ξ indicates whether
two elements are approximately equal. Therefore, Ξ is reflexive IA Ξ and
symmetric Ξ� Ξ. However, Ξ is usually not transitive because this usually
leads to inconsistencies [3]. Given such an approximate equality and a fuzzy set
M : 1 → A, the operation M ;∗Ξ for some suitable lattice-ordered semigroup
operation ∗ weakens the notion represented by M . On the other hand, the op-
eration M $∗ Ξ, where $∗ is the residual operation with respect to ;∗, intensifies
the notion represented by M . For example, if Ξ is an approximate equality on
temperature degrees, then M ;∗Ξ has a wider range than M , and M $∗ Ξ has a
smaller range than M .

A weakening or intensifying modifier based on Ξ can be applied multiple
times to one fuzzy set to get even stronger (or weaker) results. We define
roughly0(Ξ,M) = M and roughlyi+1(Ξ,M) = roughlyi(Ξ,M);∗ Ξ as weak-

302 M. Winter, E. Jackson, and Y. Fujiwara

ening modifiers, and very0(Ξ,M) = M and veryi+1(Ξ,M) = veryi(Ξ,M)$∗Ξ
as intensifying modifiers.

In the case of type-2 controllers it becomes important to lift a type-1 approx-
imate equality, and, therefore, the corresponding weakening and intensifying
modifiers, to the type-2 world. This allows to reuse known concepts and rela-
tions. Suppose a relation Ξ1 : A →1 A is given. The idea to define a relation
Ξ2 : A →2 A is as follows. For each pair (x, y) ∈ A × A we define a function
f : L → L by f(d) = d ∗ Ξ1(x, y) with a suitable operation ∗. This operation
should provide an indication by what degree the given degree d and the value
Ξ1(x, y) are similar. In order to obtain a relational expression for this idea we
first consider

(��A1; ν1; ρ
�)(x, (y, d)) = (��A1; ν1)(x, d) Definition ρ = (ν�A ;��A1)

�

= ν1(∗, d)
= d. Definition ν1

Now, we combine the part above with Ξ1 by an ∗-based operation and obtain

(��A1; ν1; ρ
� !∗ Ξ1;π

�)(x, (y, d)) = (��A1; ν1; ρ
�)(x, (y, d)) ∗ (Ξ1;π

�)(x, (y, d))

= d ∗ Ξ1(x, y).

Overall for the given relation Ξ1 : A →1 A we obtain a relation Ξ2 : A →2 A
so that Ξ̃2 = Ξ1;π

� !∗ ��A1; ν1; ρ
�. Notice that it depends on the operation ∗

whether Ξ2 is also an approximate equality. For example, in order to obtain
a reflexive relation we need that 1 ∗ x = 1. A suitable choice is →, i.e., the
implication operation of the lattice.

3.3 Fuzzification

Fuzzification is the process of changing crisp values x to an L-fuzzy set F (x).
In our approach input values from A are interpreted by points, i.e., by crisp
functions x : 1 → A. The operation F often depends on the actual applica-
tion. Occasionally parameters of F or F itself is constantly modified in order
to validate the controller. However, a typical choice of F is simply a weakening
operation, i.e., F (x) = very1(x) for suitable choices of ∗ and Ξ. Notice that our
discussion in the previous section allows to obtain such a weakening operation
on the type-2 level from a given approximate equality on the type-1 level.

3.4 Rule Base

In this paper fuzzy controllers use rules of the form

if x is M, then y = N,

where x and y are linguistic variables considered as the input resp. as the output
and M and N are fuzzy sets representing linguistic entities. The collection of all

Type-2 Fuzzy Controllers in Arrow Categories 303

linguistic entities used in the if-parts of the rules can be considered as the input
set and the collection of linguistic entities used in the then-part of the rules as
the output set of the rule base. Since every linguistic entity is modeled by a copy
of the unit 1 and a rule base is finite, the input as well as the output of the rule
base are given by a suitable number of copies of the unit 1 + . . . + 1. The rule
base itself becomes a crisp relation between those objects. For example the rules
of the form

if x is M1, then y = N1,

if x is M2, then y = N1,

if x is M3, then y = N2

then the rule base is modeled by a relation R : 1 + 1 + 1→ 1 + 1 defined by

R := ι1
�; ι′1 � ι2�; ι′1 � ι3�; ι′2 =

⎛⎝1 0
1 0
0 1

⎞⎠
where ι1,ι2,ι3 resp. ι′1, ι′2 are the crisp injections from 1 to 1+1+1 resp. 1+1. In
general, if R(i) denotes the set of indices of output linguistic entities related by
the rule base to the input linguistic entity i, the relation R is of the form R =⊔
i∈I and j∈R(i)

ι�i ; ι
′
j . Recall that each linguistic entity is modeled by a relation.

In particular, each input linguistic entity is modeled by a relation Qi : 1 → A
(i ∈ I), and each output linguistic entity is modeled by a relation Sj : 1 → B
(j ∈ J). If we combine these relation with the relation R we obtain the core
T : A→ B as

T := (
⊔
i∈I

Qi
�; ιi);R; (

⊔
j∈J

ι′j ;Sj).

The core T is visualized in Figure 3. Notice that the composition operations in
the expression above can be generalized to ∗-based operations. However, replac-
ing one of the two is sufficient because replacing both compositions by a ∗-based
operation is redundant [23].

3.5 Decision Module

The decision module describes which rules and how they are applied to the
actual input of the controller. In our model this corresponds to the question
how to combine of the fuzzified input F (x) with the core of the controller T .
Usually, an optimistic view is taken towards computing the degree of activation
for a rule [23]. This corresponds to a ∗-based composition operation and leads
to the expression U(x) := F (x);∗ T . A pessimistic view would correspond to
a residual operation based on on ∗. However, this approach is barely taken in
actual implementations of fuzzy controllers [7].

304 M. Winter, E. Jackson, and Y. Fujiwara

A

Linguistic

Entities

(Input)
1

+

1

+

1

+

1

+
...

Q1

Q2

Q3

Q4

...

�
�

�
�

���

��������

						�

Linguistic

Entities

(Output)
1

+

1

+

1

+

1

+
...

S1

S2

S3

S4

...

�
�
�
�
���

						
�

�������
BR crisp

�
�

�

�
�

�

Fig. 3. Core of a fuzzy controller

3.6 Defuzzification

Defuzzification is the process by which fuzzy output from the decision module is
converted back to a crisp value. In our model this requires an operation that maps
an L-fuzzy relation U(x) : 1→ B to a crisp relation D(U(x)) : 1→ B. There are
several different operations used in concrete implementations of fuzzy controllers.
A lot of them are specific for the unit interval and cannot be generalized to
arbitrary lattices. However, there are also some general methods available. In
this paper we only want to provide one example. For further operations we refer
to [23]. Given an operation Θ, mapping each crisp x : 1 → A to a scalar Θ(x)
on B we define

D(U(x)) := (Θ(x)\U(x))
↓
.

An obvious choice for the operation Θ is Θ(x) = x;SA where SA IA is a
partial identity.

3.7 Type Reduction

The type reducer in a type-2 controller has to map the type-2 relation U(x) :
1→2 B to a type-1 relation R(U(x)) : 1→1 B. In this section we discuss several
possible operations. In order to do so we will assume that R : A →2 B is a
type-2 relation and that R̃ : A →1 B

� is the corresponding type-1 relation as
discussed in Section 2. We want to focus on general operations that do not make
any assumptions on the underlying lattice L. If we, for example, assume that L
is linear, then more specific operations become available.

Type-2 Fuzzy Controllers in Arrow Categories 305

Forming Suprema: A very simple operation is R(R) = R̃; η�B , i.e., is to com-

pose R̃ with η�B . In the concrete case we obtain

(R̃; η�B)(x, z) =
⊔

(y,d)∈B�

R̃(x, (y, d)) ! ηB(z, (y, d))

=
⊔
d∈L

R̃(x, (z, d)) Definition ηB

=
⊔
d∈L

R(x, z)(d),

i.e., this construction uses the supremum of all membership values in the function
R(x, z). This simple operation can be generalized by using π;π� ! ρ;S1� ; ρ

� :
B� →1 B

� with S1� I1� as a partial identity. In this case we define R(R) =

R̃; (π;π� !ρ;S1� ; ρ
�); η�B . For S1� = I1� we obviously get the original operation.

If S1� �= I1� is a crisp relation, then we exclude certain elements, i.e., we form
the supremum on selected elements only. A special case of this situation is given
when S1� is an atom. Then type reduction selects the membership degree of
the elements represented by S1� . Last but not least, if S1� is not crisp, then we
obtain a weighted supremum.

Relational Integration: Relational integration was introduced in [16]. This
construction generalizes the well-known Choquet and Sugeno integrals to non-
linear orderings in an algebraic fashion. These integrals have been used in many
applications. In terms of an aggregation function they behave nicely, i.e., they are
continuous, non-decreasing, and stable under certain interval preserving trans-
formations. In addition, if the underlying measure (or belief function) is additive,
they reduce to a weighted arithmetic mean. The relational integral is formed for
a map X : C → L that assigns to each criteria in C a value from the lattice
L. Forming such an integral is then based on a belief mapping (or relational
measure) μ : P(C) → L, i.e., a mapping that is monotonic with respect to the
subset order ε\ε and the order E of L and that preserves least and greatest
element. The situation is visualized in the following diagram:

P(C)
μ

�
��

��
��

�

ε\ε

��

C

ε

��

X
�� L E��

The integral (R)
∫
X ◦ μ : 1→ L is now defined by:

(R)

∫
X ◦ μ = lubE(��1C ; glbE(X � syQ(X ;E�;X�, ε);μ)).

306 M. Winter, E. Jackson, and Y. Fujiwara

The integral can be explained as follows. For a given element of C we form the
set of all those criteria with a higher (or equal) valuation (by X). The resulting
set is measured by μ. Now we take the meet of this value and the valuation of
the element itself. Finally, the least upper bound over all elements is taken. For
more details about relational measures and integrals we refer to [13,16,17].

The idea for applying relational integration for type reduction is as follows.
A map f : L → L can be seen as a valuation of the elements in L by itself.
The integral now aggregates these valuations into a single value. Unfortunately,
we cannot apply the relational integral directly because it is defined for a single
mapX only. In our situation we encounter multiple maps simultaneously that we
have to treat together but that we want to handle separately. In order to explain
and visualize the situation even better we will identify the isomorphic objects A�

and A×1� in this section. Now, consider the relation R̃� : A→1 (B×1�)×1�. We
can transform this relation into a map Y : (A×B)× 1� → 1� that is a valuation
of elements in 1� by elements from 1� for each pair in A×B. Y is defined by

Y := (π;π; R̃� ! (π; ρ;π� ! ρ; ρ�);π�); ρ.

The situation can be visualized by the following diagram:

(A×B)× 1�

π

��

ρ

��

Y

��
A×B

π

��

ρ �� B 1�

B × 1�

π

��
ρ

��!!!!!!!!!!

A
R̃�

�� (B × 1�)× 1�

π

�� ρ

��"""""""""""""""""

We need to compute the relational integral for each pair separately, i.e., we have
to define (R)

∫
AX ◦ μ in the general situation below:

P(C)
μ

��#
##

##
##

##

C

ε

��

L E��

A× C

ρ

��

π
��

X

�����������
A

(R)
∫
A
X◦μ

��

We define

(R)

∫
A

X ◦ μ = lubE(π
�; glbE(X � syQ(π;π� !X ;E�;X�, ε);μ)).

Type-2 Fuzzy Controllers in Arrow Categories 307

Notice that if A = 1, i.e., A × C is isomorphic to C, we obtain the original
definition since π = ��C1 in this case.

Given a relational measure μ : P(1�)→ 1� we define a type reducer by

R(R) = (R)

∫
A

((π;π; R̃� ! (π; ρ;π� ! ρ; ρ�);π�); ρ) ◦ μ.

4 Conclusion and Future Work

In this paper we have shown how to model type-1 and type-2 L-fuzzy controllers
in the framework of arrow categories. In addition to the general approach we
have investigated several operations suitable for lifting relations from type-1 to
type-2 and for type reduction.

Future work will concentrate on an implementation of the approach in an
interactive theorem prover such as Coq or Isabelle. Such an implementation
would allow to handle the specification and the implementation of a controller
within one system. Then it becomes possible to formally proof properties of the
controller within a formal system that supports semi-automatic reasoning.

References

1. Birkhoff, G.: Lattice Theory, 3rd edn., vol. XXV. American Mathematical Society
Colloquium Publications (1940)

2. Castillo, O., Melin, P.: Type-2 Fuzzy Logic: Theory and Applications. STUDFUZZ,
vol. 223. Springer (2008)

3. De Cock, M., Radzikowska, A.M., Kerre, E.E.: Modelling Linguistic Modifiers
Using Fuzzy-Rough Structures. In: Proceedings of IPMU 2000, vol. III, pp.
1735–1742 (2000)

4. Freyd, P., Scedrov, A.: Categories, Allegories. North-Holland (1990)
5. Furusawa, H., Kawahara, Y., Winter, M.: Dedekind Categories with Cutoff Oper-

ators. Fuzzy Sets and Systems 173, 1–24 (2011)
6. Goguen, J.A.: L-fuzzy sets. J. Math. Anal. Appl. 18, 145–157 (1967)
7. Gottwald, S.: Fuzzy Sets and Fuzzy Logic. Foundations of Application – from a

Mathematical Point of View. Vieweg (1993)
8. Jónsson, B., Tarski, A.: Boolean algebras with operators, I, II. Amer. J. Math. 73,

74, 891–939, 127-162 (1951, 1952)
9. Kawahara, Y., Furusawa, H.: Crispness and Representation Theorems in Dedekind

Categories. DOI-TR 143. Kyushu University (1997)
10. Mamdani, E.H., Gaines, B.R.: Fuzzy Reasoning and its Application. Academic

Press, London (1987)
11. Olivier, J.P., Serrato, D.: Catégories de Dedekind. Morphismes dans les Catégories

de Schröder. C.R. Acad. Sci. Paris 290, 939–941 (1980)
12. Olivier, J.P., Serrato, D.: Squares and Rectangles in Relational Categories - Three

Cases: Semilattice, Distributive lattice and Boolean Non-unitary. Fuzzy Sets and
Systems 72, 167–178 (1995)

13. Schmidt, G., Berghammer, R.: Relational measures and integration in preference
modeling. JLAP 76, 112–129 (2008)

308 M. Winter, E. Jackson, and Y. Fujiwara

14. Schmidt, G., Hattensperger, C., Winter, M.: Heterogeneous Relation Algebras. In:
Brink, C., Kahl, W., Schmidt, G. (eds.) Relational Methods in Computer Science.
Springer, Vienna (1997)

15. Schmidt, G., Ströhlein, T.: Relationen und Graphen. Springer (1989); English ver-
sion: Relations and Graphs. Discrete Mathematics for Computer Scientists. EATCS
Monographs on Theoret. Comput. Sci., Springer (1993)

16. Schmidt, G.: Relational Measures and Integration. In: Schmidt, R.A. (ed.)
RelMiCS/AKA 2006. LNCS, vol. 4136, pp. 343–357. Springer, Heidelberg (2006)

17. Schmidt, G.: Relational Mathematics. Encyplopedia of Mathematics and its Ap-
plications 132 (2011)

18. Winter, M.: Strukturtheorie heterogener Relationenalgebren mit Anwendung auf
Nichtdetermismus in Programmiersprachen. Dissertationsverlag NG Kopierladen
GmbH, München (1998)

19. Winter, M.: A new Algebraic Approach to L-Fuzzy Relations Convenient to Study
Crispness. INS Information Science 139, 233–252 (2001)

20. Winter, M.: Relational Constructions in Goguen Categories. In: de Swart, H. (ed.)
Participants Proceedings of the 6th International Seminar on Relational Methods
in Computer Science (RelMiCS), pp. 222–236. Katholieke Universiteit Brabant,
Tilburg (2001)

21. Winter, M.: Derived Operations in Goguen Categories. TAC Theory and Applica-
tions of Categories 10(11), 220–247 (2002)

22. Winter, M.: Representation Theory of Goguen Categories. Fuzzy Sets and Sys-
tems 138, 85–126 (2003)

23. Winter, M.: Goguen Categories - A Categorical Approach to L-fuzzy relations.
Trends in Logic 25 (2007)

24. Winter, M.: Arrow Categories. Fuzzy Sets and Systems 160, 2893–2909 (2009)
25. Winter, M.: Membership Values in Arrow Categories. Submitted to Fuzzy Sets and

Systems (October 2013)
26. Winter, M.: Higher-order arrow categories. In: Höfner, P., Jipsen, P., Kahl, W.,

Müller, M.E. (eds.) RAMiCS 2014. LNCS, vol. 8428, pp. 277–292. Springer,
Heidelberg (2014)

27. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate
reasoning - I. Information Sciences 8, 199–249 (1975)

Relation Algebra and RelView

Applied to Approval Voting

Rudolf Berghammer, Nikita Danilenko, and Henning Schnoor

Institut für Informatik
Christian-Albrechts-Universität Kiel

Olshausenstraße 40, 24098 Kiel, Germany
{rub,nda,schnoor}@informatik.uni-kiel.de

Abstract. In this paper we demonstrate how relation algebra and a
BDD-based tool can be combined to solve computational problems of
voting systems. We concentrate on approval voting and model this kind
of voting within relation algebra. Based on this, we then formally de-
velop relation-algebraic specifications of two important control problems
from their logical specifications. They can be transformed immediately
into the programming language of the BDD-based Computer Algebra
system RelView. Therefore, this tool can be used to solve the problems
and to visualize the computed results. The entire approach is extremely
formal but also very flexible. In combination with RelView it is espe-
cially appropriate for prototyping and experimentation, and as such very
instructive for educational purposes.

1 Introduction

For many years relation algebra in the sense of [14,15] has been used widely
by mathematicians and computer scientists as conceptual and methodological
base of their work. A first reason of its importance is that many fundamental
objects of discrete mathematics and computer science are relations (like orders),
can be seen as relations (like directed graphs), or can be easily modeled via
relations (like simple games). Another advantage of relation algebra is that it
allows very concise and exact problem specifications and, especially if combined
with predicate logic, extremely formal and precise calculations. This drastically
reduces the danger of making mistakes. A third reason for the use of relation
algebra is that it has a fixed and surprisingly small set of operations all of which
can be implemented efficiently and with reasonable effort on finite carrier sets.
Thus, a specific purpose Computer Algebra system for relation algebra can be
implemented with reasonable effort, too. At Kiel University we have developed
such a system, called RelView (see [3,17]). It uses reduced ordered binary de-
cision diagrams (ROBDDs) to implement relations very efficiently, provides an
own programming language with a lot of pre-defined operations, and has visu-
alization and animation facilities which are not easily found in other software
tools and which are most helpful e.g., for prototypic computations, experiment-
ing with difficult concepts, and for understanding and testing specifications and
programs.

P. Höfner et al. (Eds.): RAMiCS 2014, LNCS 8428, pp. 309–326, 2014.
c© Springer International Publishing Switzerland 2014

310 R. Berghammer, N. Danilenko, and H. Schnoor

Originally voting systems and related notions have been introduced in polit-
ical science and economics to investigate and model problems and phenomena
that may arise during the aggregation of a collective preference relation from
the preferences of a group of individuals. More recently they have also been
recognized as important in various areas of computer science like multi-agent
systems, planning, similarity search and the design of ranking algorithms. For
more references we refer to the overview papers [6,7].

A central notion of voting systems is that of a voting rule, which specifies
the preference aggregation. There is a list of such rules and it is known that
different rules may lead to different results; see [4,6,13] for example. An impor-
tant problem is the susceptibility of voting systems to manipulations. As in the
case of preference aggregation there are also several possibilities to manipulate.
Inspired by the seminal papers [1,2], in recent years computer scientists have
investigated the hardness of manipulations using methods of complexity the-
ory. For some rules and types of manipulation it has been shown that finding a
beneficial manipulation is NP-hard, for other rules and types of manipulation,
however, efficient algorithms exist to compute a beneficial manipulation. See e.g.,
[1,2,9], the overview paper [16], and the references of Section 3.2 of [6].

In this paper we apply relation algebra and the RelView tool to voting
systems. We concentrate on a specific rule known as approval voting. Here the
individual preferences are the sets of alternatives the single voters approve and
then collectively a is (weakly) preferred to b if the number of approvals of a is
equal or greater than the number of approvals of b. Furthermore, we only con-
sider two types of manipulation, known as constructive control by deleting and
adding voters, respectively. Here the assumption is that the authority conduct-
ing the election (usually called the chair) knows all individual preferences and
tries to achieve a specific result by a strategic manipulation of the set of vot-
ers. The chair’s knowledge of all individual preferences and the ability to delete
or add voters by ‘dirty tricks’ are worst-case assumptions that are not entirely
unreasonable in some settings, e.g., in case of governing boards, commissions of
political institutions, and meetings of members of a club.

First, we show how approval voting can be modeled by means of relation
algebra. Based on this, we then formally develop relation-algebraic specifications
of the above control problems from their specifications as formulae in predicate
logic. They can be transformed immediately into the programming language
of RelView and, hence, the tool can be used to compute solutions and to
visualize them. Because RelView has a very efficient ROBDD-implementation
of relations, the tool is able to deal with non-trivial examples as those mentioned
at the end of the preceding paragraph.

2 Relation-Algebraic Preliminaries

In this section we recall some preliminaries of (typed, heterogeneous) relation
algebra. For more details, see [14,15], for example.

Given two sets X and Y , we write R : X↔Y if R is a (typed, binary) relation
with source X and target Y , i.e., a subset of the direct product X×Y . If the two

Relation Algebra and RelView Applied to Approval Voting 311

sets X and Y of R’s type X↔Y are finite, then we may consider R as a Boolean
matrix. Since a Boolean matrix interpretation is well suited for many purposes
and also used by the RelView tool as the main possibility to visualize relations,
in the present paper we frequently use matrix terminology and notation. In
particular, we speak about the entries, rows and columns of a relation/matrix
and write Rx,y instead of (x, y) ∈ R or xR y. We assume the reader to be familiar
with the basic operations on relations, viz. RT (transposition), R (complement),
R∪S (union), R∩S (intersection) and R;S (composition), the predicate R ⊆ S
(inclusion) and the special relations O (empty relation), L (universal relation)
and I (identity relation). In case of O, L and I we overload the symbols, i.e., avoid
the binding of types to them.

For R : X↔Y and S : X↔Z, their symmetric quotient syq(R,S) : Y ↔Z

is defined by syq(R,S) = RT; S ∩ R
T
;S . From this definition we get

syq(R,S)y,z ⇐⇒ ∀x ∈ X : Rx,y ↔ Sx,z, (1)

for all y ∈ Y and z ∈ Z. This logical (usually called pointwise) specification of
symmetric quotients will be used several times in Section 3 to Section 5.

In the remainder of this section we introduce some additional relation-alge-
braic constructs concerning the modeling of direct products and sets. They will
also play an important role in Sections 3 to 5.

To model direct products X×Y of sets X and Y relation-algebraically, the
projection relations π : X×Y ↔X and ρ : X×Y ↔Y are the convenient means.
They are the relational variants of the well-known projection functions and,
hence, fulfill for all (x, y) ∈ X×Y , z ∈ X , and u ∈ Y the following equivalences.

π(x,y),z ⇐⇒ x = z ρ(x,y),u ⇐⇒ y = u (2)

The projection relations enable us to specify the well-known pairing operation
of functional programming relation-algebraically. The pairing (or fork) of the
relations R : Z↔X and S : Z↔Y is defined as relation [R,S]] = R;πT ∩
S; ρT : Z↔X×Y , where π and ρ are as above. From the properties (2) and this
definition we get that for all elements z ∈ Z and pairs (x, y) ∈ X×Y it holds

[R,S]]z,(x,y) ⇐⇒ Rz,x ∧ Sz,y. (3)

Having modeled direct products via the projection relations and introduced
the relation-algebraic version of pairing, we now show how to model sets and
important set-theoretic constructions within relation algebra.

Vectors are a first well-known means to model sets. For the purpose of this
paper it suffices to define them as relations r : X↔11 (we prefer lower case letters
in this context) with a specific singleton set 11 = {⊥} as target. Then relational
vectors can be considered as Boolean column vectors. To be consonant with
the usual notation, we always omit the second subscript, i.e., write rx instead
of rx,⊥. Then the vector r describes the subset Y of X if rx and x ∈ Y are
equivalent, for all x ∈ X . A point p : X↔11 is a specific vector with precisely
one 1-entry. Consequently, it describes a singleton subset {x} of X and we then

312 R. Berghammer, N. Danilenko, and H. Schnoor

say that it describes the element x of X . If r : X↔11 is a vector and Y the
subset of X it describes, then inj(v) : Y ↔X denotes the embedding relation of
Y into X . In Boolean matrix terminology this means that the relation inj(v) is
obtained from the identity relation I : X↔X by deleting all rows which do not
correspond to an element of Y , and pointwise this means that for all y ∈ Y and
x ∈ X it holds inj(r)y,x iff y = x. In conjunction with powersets 2X we will use
membership relations M : X↔ 2X and size comparison relations S : 2X↔ 2X .
Pointwise they are defined for all x ∈ X and Y, Z ∈ 2X as follows.

Mx,Y ⇐⇒ x ∈ Y SY,Z ⇐⇒ |Y | ≤ |Z| (4)

A combination of M with embedding relations allows a column-wise enumeration
of arbitrary subsets S of 2X . Namely, if the vector r : 2X↔11 describes the
subset S in the sense defined above and we define S = M; inj(r)T : X↔S, then
for all x ∈ X and Y ∈ S it holds Sx,Y iff x ∈ Y . In the Boolean matrix model
this means that the sets of S are precisely described by the columns of S, if the
columns are considered as vectors of type X↔11. Or, in other words, M; inj(r)T

deletes all columns from M which correspond to 0-entries of r. Finally, we will
use an operation filter that takes a vector v : 2X↔11 and a natural number k
as inputs and yields a vector filter(v, k) : 2X↔11 such that

filter(v, k)Y ⇐⇒ vY ∧ |Y | = k, (5)

for all Y ∈ 2X . Hence, if the vector v : 2X↔11 describes the subset S of 2X ,
then the vector filter(v, k) describes the subset {Y ∈ S | |Y | = k}.

As from now we assume all constructions of this section to be at hand. Each
of them is available in the programming language of the RelView tool via a
pre-defined operation (the only exception is filter, but it easily can be realized
via a pre-defined operation cardfilter with cardfilter(v, k)Y iff vY and |Y | < k,
for all Y ∈ 2X) and the implementing ROBDDs are comparatively small. E.g.,
a size-comparison relation S : 2X↔ 2X can be implemented by a ROBDD with
O(|X |2) nodes and for a membership relation M : X↔ 2X even O(|X |) nodes
suffice. For details, see [11,12].

3 A Relation-Algebraic Model of Approval Voting

In Computational Social Choice a voting system consists of a finite and non-
empty set N of voters (players, agents, individuals), a finite and non-empty set
A of alternatives (candidates), the individual preferences (choices, wishes) of
the voters, and a voting rule that aggregates the winners from the individual
preferences. A well-known voting rule is approval voting, see e.g., [5]. Here each
voter may approve (that is, vote for) as many alternatives as he wishes and
then the alternatives with the most approvals are defined as the winners of the
election. The rule is frequently favored if multiple alternatives may be elected
and used, for instance, by the Mathematical Association of America. At this
point we should also mention that during a workshop, held in France from July

Relation Algebra and RelView Applied to Approval Voting 313

30 to August 2, 2010, the participants (all experts in voting theory) elected the
best voting rule. First, they agreed to use approval voting as voting rule for the
election. Then among the 18 nominated voting rules approval voting won the
election. See [10] for details.

If Ai denotes the set of alternatives the voter i ∈ N approves, then a voting
system with approval voting as voting rule, in the remainder of the paper called
an approval election, can be specified formally as a triple (N,A, (Ai)i∈N). The
comparison of the alternatives with regard to the number of their approvals leads
to its dominance relation D : A↔A, that is defined pointwise by

Da,b ⇐⇒ |{i ∈ N | a ∈ Ai}| ≥ |{i ∈ N | b ∈ Ai}|, (6)

for all a, b ∈ A. In case of Da,b we say that a dominates b in (N,A, (Ai)i∈N).
From the dominance relation, finally, the set of winners of the approval election
is defined as {a ∈ A | ∀ b ∈ A : Da,b}. To treat approval elections with relation-
algebraic means, we first have to model them accordingly.

Definition 3.1. The relation P : N↔A is a relational model of the approval
election (N,A, (Ai)i∈N) iff Pi,a is equivalent to a ∈ Ai, for all i ∈ N and a ∈ A.

Hence, if P is a relational model of the approval election (N,A, (Ai)i∈N), then
the relationship Pi,a holds iff voter i approves alternative a, for all i ∈ N and
a ∈ A. Next, we present a small example for a relational model that will be used
during the next sections, too.

Example 3.1. We consider the following relation P in its RelView represen-
tation as a labeled 12 × 8 Boolean matrix, that is, as a matrix with 12 rows
and 8 columns and 1 and 0 as entries only. From the labels of the rows and the
columns, respectively, we see that the voters are the natural numbers from 1 to
12 and the alternatives are the 8 letters from a to h.

In a RelView matrix a black square means a 1-entry and a white square means
a 0-entry so that, for example, voter 1 approves the two alternatives a and e
and voter 2 approves the two alternatives b and f . I.e., we have A1 = {a, e} and
A2 = {b, f}.

In the remainder of the paper we always denote in case of an approval election
(N,A, (Ai)i∈N) its relational model by the letter P and its dominance relation
by the letter D. As a first result we show how the dominance relation can be
obtained from the relational model via symmetric quotients, the membership
relation M : N↔ 2N , and the size comparison relations S : 2N ↔ 2N .

314 R. Berghammer, N. Danilenko, and H. Schnoor

Theorem 3.1. For each approval election (N,A, (Ai)i∈N) and its dominance
relation D : A↔A we have

D = syq(P,M); ST; syq(P,M)T. (7)

Proof. In the first step we use property (1) and the first property of (4) to prove
for all alternatives c ∈ A and sets Z ∈ 2N the following equivalence.

syq(P,M)c,Z ⇐⇒ ∀ i ∈ N : Pi,c ↔ Mi,Z

⇐⇒ ∀ i ∈ N : Pi,c ↔ i ∈ Z
⇐⇒ {i ∈ N | Pi,c} = Z

Now, let a, b ∈ A be arbitrary alternatives. Then we can calculate as follows,
where the first step uses the pointwise specification (6) of D, the second step
applies that P is a relational model of (N,A, (Ai)i∈N), and in the fourth step
the above equivalence and the second property of (4) are used.

Da,b ⇐⇒ |{i ∈ N | a ∈ Ai}| ≥ |{i ∈ N | b ∈ Ai}|
⇐⇒ |{i ∈ N | Pi,a}| ≥ |{i ∈ N | Pi,b}|
⇐⇒ ∃X,Y ∈ 2N : {i ∈ N | Pi,a} = X ∧ {i ∈ N | Pi,b} = Y ∧ |X | ≥ |Y |
⇐⇒ ∃X ∈ 2N : syq(P,M)a,X ∧ ∃Y ∈ 2N : STX,Y ∧ syq(P,M)TY,b
⇐⇒ ∃X ∈ 2N : syq(P,M)a,X ∧ (ST; syq(P,M)T)X,b

⇐⇒ (syq(P,M); ST; syq(P,M)T)a,b

Finally, the definition of the equality of relations shows the desired result. �

It remains to specify the winners of an approval election relation-algebraically.
How this can be done by means of a vector is shown next.

Theorem 3.2. Based on the dominance relation D : A↔A and the universal
vector L : A↔11, the following vector win : A↔11 describes the set of winners
of an approval election (N,A, (Ai)i∈N) as a subset of A.

win = D ; L (8)

Proof. We take an arbitrary alternative a ∈ A and proceed as follows.

wina ⇐⇒ D ; L a ⇐⇒ ¬∃ b ∈ A : D a,b ∧ Lb ⇐⇒ ∀ b ∈ A : Da,b

As a consequence, the vector win describes the subset {a ∈ A | ∀ b ∈ A : Da,b}
of A as claimed. �

The relation-algebraic specifications (7) and (8) of Theorem 3.1 and Theorem
3.2, respectively, can be translated immediately into the programming language
of RelView. To give an impression of what the resulting code looks like, in
the following we present a relational program DomRel for the computation of
D and a relational function winVec for the computation of win. In DomRel the

Relation Algebra and RelView Applied to Approval Voting 315

application of the pre-defined operation On1 yields the empty vector O : N↔11.
An argument of such a type is necessary for the two pre-defined operations epsi
and cardrel to compute the relationsM : N↔ 2N and S : 2N ↔ 2N , respectively.
The pre-defined operation dom used in winVec realizes the composition of its
argument with an appropriate universal vector, i.e., yields a vector description
of the domain of its argument.

DomRel(P)

DECL M, S

BEG M = epsi(On1(P));

S = cardrel(On1(P))

RETURN syq(P,M) * S^ * syq(P,M)^

END.

winVec(P) = -dom(-DomRel(P)).

After the headline with the name and the formal parameter, in its declaration
part the program DomRel introduces two variables for relations, viz. M and S.
In the subsequent body, first M : N↔ 2N is computed and assigned to M and
then S : 2N ↔ 2N is computed and assigned to S. The final RETURN-clause of
the program is nothing else than the formulation of syq(P,M); ST; syq(P,M)T in
RelView-syntax, with *, ^, and - as symbols for the three relation-algebraic
operations of composition, transposition, and complementation, respectively. In

the same way, -dom(-DomRel(P)) is the RelView version of DomRel(P) ; L .

Example 3.2. If we apply DomRel and winVec to the relational model of ap-
proval election introduced in Example 3.1, then the tool depicts the results D
and win as shown in the following two pictures.

Hence, in case of our running example, the picture on the right shows that the
alternatives b, f , g and h are the winners. This fact also can be obtained from the
dominance relation on the left, since an alternative is a winner iff it dominates
each alternative, i.e., the corresponding row of D consists of 1-entries only.

4 Relation-Algebraic Solutions of Control Problems

There are several possibilities to manipulate elections. In the already mentioned
paper [2] the hardness of so-called constructive manipulations is investigated. By
such manipulations the chair of an election tries to make a specific alternative a∗

a winner, where it is assumed that he knows all the individual preferences. If the
chair’s manipulations shall prevent a∗ from winning, then they are called destruc-
tive. The complexity of certain destructive manipulations have been investigated

316 R. Berghammer, N. Danilenko, and H. Schnoor

in [9] for the first time. Manipulations that delete or add voters and alternatives,
respectively, are called control manipulations. In case of approval voting the fol-
lowing facts hold for them (see again [2,9]): Constructive control by deleting or
adding voters is computationally hard, contrary to the destructive control by
deleting or adding voters. For the latter there exist efficient algorithms. In case
of destructive control by deleting alternatives it is even impossible for the chair
to reach his goal and the same is true in case of constructive control by adding
alternatives. One says that approval voting is immune to these types of control.
For the remaining two types (constructive control by deleting alternatives and
destructive control by adding alternatives) there exist straight-forward efficient
manipulation algorithms.

In the following we combine relation algebra and RelView to compute solu-
tions for the two computationally hard control problems for approval voting. We
start with the constructive control by deleting voters. Usually, the task is for-
mulated as a minimization-problem: Given an approval election (N,A, (Ai)i∈N)
and a specific alternative a∗, determine a minimum set (w.r.t. size) of voters
Y such that the removal of Y from N makes a∗ a winner. To solve this task,
we reformulate it as a maximization-problem and ask for a maximum set (w.r.t.
size) of voters X such that a∗ wins in the approval election (X,A, (Ai)i∈X),
i.e., subject to the condition that only voters from X are allowed to vote. It is
obvious that from X then a desired Y is obtained via Y = N \X .

As a first step towards a solution of the new task we relation-algebraically
specify a vector that describes all candidate sets, that is, neglect the condition
that X has to be a maximum set. In the corresponding Theorem 4.1 besides
M : N↔ 2N and S : 2N ↔ 2N the first projection relation π : 2N×A↔ 2N of the
direct product 2N×A is used.

Theorem 4.1. Let (N,A, (Ai)i∈N) be an approval election, a∗ ∈ A be described
by the point p : A↔11, and the two relations E : 2N ↔ 2N and F : 2N ↔ 2N×A be
defined by E = syq(M ∩ P ; p; L,M), where L : 11↔ 2N , and F = syq(M, [M, P]]).
If we define the vector dcand : 2N ↔11 by

dcand = (E; (S ∩ S
T
);F ∩ πT); L , (9)

where L : 2N×A↔11, then we have for all X ∈ 2N that dcandX holds iff the
alternative a∗ wins in the approval election (X,A, (Ai)i∈X).

Proof. Let an arbitrary set X ∈ 2N be given. First, we show for all i ∈ N the
following property, where the assumption that a∗ ∈ A is described by p : A↔11
is used in the second step.

(P ; p)i ⇐⇒ ∃ a ∈ A : Pi,a ∧ pa ⇐⇒ ∃ a ∈ A : Pi,a ∧ a = a∗ ⇐⇒ Pi,a∗

Based on this equivalence, property (1), the first property of (4), and that the
relation P is a relational model of (N,A, (Ai)i∈N), in the next part we prove for
all sets Y ∈ 2N the subsequent equivalence.

Relation Algebra and RelView Applied to Approval Voting 317

EX,Y ⇐⇒ syq(M ∩ P ; p; L,M)X,Y

⇐⇒ ∀ i ∈ N : (M ∩ P ; p; L)i,X ↔ Mi,Y

⇐⇒ ∀ i ∈ N : (Mi,X ∧ (P ; p; L)i,X)↔ Mi,Y

⇐⇒ ∀ i ∈ N : (i ∈ X ∧ (P ; p)i)↔ i ∈ Y
⇐⇒ ∀ i ∈ N : (i ∈ X ∧ Pi,a∗)↔ i ∈ Y
⇐⇒ {i ∈ X | Pi,a∗} = Y

⇐⇒ {i ∈ X | a∗ ∈ Ai} = Y

Third, we additionally use property (3) and treat the relation F in a similar way,
i.e., calculate for all sets Z ∈ 2N and alternatives b ∈ A as follows.

FZ,(X,b) ⇐⇒ (syq(M, [M, P]])Z,(X,b)

⇐⇒ ∀ i ∈ N : Mi,Z ↔ [M, P]]i,(X,b)

⇐⇒ ∀ i ∈ N : i ∈ Z ↔ (Mi,X ∧ Pi,b)

⇐⇒ ∀ i ∈ N : i ∈ Z ↔ (i ∈ X ∧ Pi,b)

⇐⇒ Z = {i ∈ X | Pi,b}
⇐⇒ Z = {i ∈ X | b ∈ Ai}

Now we combine the last two results and obtain for all alternatives b ∈ A the
following equivalence, where the second property of (4) implies that the rela-

tionship (S ∩ S
T
)Y,Z holds iff |Y | < |Z|.

(E; (S ∩ S
T
);F)X,(X,b)

⇐⇒ ∃Y, Z ∈ 2N : EX,Y ∧ (S ∩ S
T
)Y,Z ∧ FZ,(X,b)

⇐⇒ ∃Y, Z ∈ 2N : EX,Y ∧ |Y | < |Z| ∧ FZ,(X,b)

⇐⇒ ∃Y, Z ∈ 2N : Y = {i ∈ X | a∗ ∈ Ai} ∧ Z = {i ∈ X | b ∈ Ai} ∧ |Y | < |Z|
⇐⇒ |{i ∈ X | a∗ ∈ Ai}| < |{i ∈ X | b ∈ Ai}|

Finally, we apply this result in combination with the first property of (2) and
calculate for the assumed set X ∈ 2N as follows.

dcandX ⇐⇒ (E; (S ∩ S
T
);F ∩ πT); LX

⇐⇒ ¬∃U ∈ 2N , b ∈ A : (E; (S ∩ S
T
);F ∩ πT)X,(U,b) ∧ L(U,b)

⇐⇒ ¬∃U ∈ 2N , b ∈ A : (E; (S ∩ S
T
);F)X,(U,b) ∧ π(U,b),X

⇐⇒ ¬∃U ∈ 2N , b ∈ A : (E; (S ∩ S
T
);F)X,(U,b) ∧ U = X

⇐⇒ ¬∃ b ∈ A : (E; (S ∩ S
T
);F)X,(X,b)

⇐⇒ ¬∃ b ∈ A : |{i ∈ X | a∗ ∈ Ai}| < |{i ∈ X | b ∈ Ai}|
⇐⇒ ∀ b ∈ A : |{i ∈ X | a∗ ∈ Ai}| ≥ |{i ∈ X | b ∈ Ai}|

The last formula of this calculation states that the alternative a∗ wins in the
approval election (X,A, (Ai)i∈X) and this concludes the proof. �

318 R. Berghammer, N. Danilenko, and H. Schnoor

In the second step towards a solution of our task we take the vector dcand of
Theorem 4.1 and specify with its help a further vector dsol that describes the
set of maximum sets of the set dcand described as a subset of 2N . Doing so, S
denotes again the corresponding size-comparison relation.

Theorem 4.2. Given the vector dcand : 2N ↔11 of the relation-algebraic speci-
fication (9), we specify a vector dsol : 2N ↔11 as follows.

dsol = dcand ∩ S
T
; dcand (10)

Then we have for all X ∈ 2N that dsolX holds iff X is a maximum set such that
the alternative a∗ ∈ A wins in the approval election (X,A, (Ai)i∈X).

Proof. We assume an arbitrary set X ∈ 2N and then calculate as given below,
using the second property of (4).

dsolX ⇐⇒ (dcand ∩ S
T
; dcand)X

⇐⇒ dcandX ∧ S
T
; dcand X

⇐⇒ dcandX ∧ ¬∃Y ∈ 2N : S Y,X ∧ dcandY

⇐⇒ dcandX ∧ ∀Y ∈ 2N : dcandY → SY,X
⇐⇒ dcandX ∧ ∀Y ∈ 2N : dcandY → |Y | ≤ |X |

Now the claim follows from Theorem 4.1. �

Hence, the vector dsol describes the set S of all solutions of our control problem
as a subset of 2N . It is rather troublesome to get from the vector dsol the solu-
tions of the control problem as ‘concrete’ sets or relational vectors. We have to
compare each 1-entry of dsol with the corresponding column of the membership
relation M : N↔ 2N . It is much simpler to apply the technique of Section 2
and to enumerate the set S column-wise via the relation M; inj(dsol)T : N↔S.
As we will demonstrate in a moment, such a representation also allows to iden-
tify immediately the minimum sets of voters the original version of the control
problem asks for.

The fundamental laws of relation algebra yield S
T
; dcand = dcandT; S

T

We used the right-hand expression of this equation to introduce the vector dsol
in the RelView program that follows from the relation-algebraic specification
(10). The reason for the new definition of dsol , instead of the original one,
is caused by the implementation of relations in RelView. Namely, a ROBDD-
implementation of relations implies that, compared with a simple Boolean matrix
implementation, transposition may become more costly. This is due to the fact
that it requires to exchange the variables for the encoding of the elements of
the source with the variables for the encoding of the elements of the target. But
in case of 11 as source or target transposition only means to exchange source
and target (in RelView: two numbers), the ROBDD of the relation remains
unchanged. See [12] for details.

Relation Algebra and RelView Applied to Approval Voting 319

Example 4.1. Using the just mentionedRelView program, we have solved the
constructive control problem via the removal of voters for the relational model
P of our running example and each of the 8 alternatives. The following series
of RelView pictures shows the corresponding column-wise enumerations of the
sets of solutions, where the first relation corresponds to the case a∗ = a, the
second one to the case a∗ = b, the third one to the case a∗ = c, and so on.

The universal vectors at position 2, 6, 7 and 8 show that the alternatives b, f ,
g and h win if all voters are allowed to vote, i.e., no voter has to be deleted to
ensure win. From the remaining two vectors at position 4 and 5 we obtain that
precisely the removal of voter 10 makes the alternatives d and e winning. To
ensure that the alternative a wins, at least two voters have to be deleted. Which
pairs suffice is depicted by the three columns of the Boolean matrix at position
1, viz. 2, 11 and 5, 11 and 6, 11. Finally, from the Boolean matrix at position 3
we see that at least four voters have to be deleted if the alternative c is intended
as a winner and there are 12 possibilities to reach this goal with deleting exactly
four voters.

In the remainder of the section we consider the constructive control by adding
voters. Here besides the original approval election and the specific alternative a∗

a second approval election is given such that the sets of alternatives coincide, the
sets of voters are disjoint, and the chair also knows all new individual preferences.
The task is then to determine a minimum set of new voters such that their
addition to the original ones makes a∗ a winner.

A relation-algebraic solution of this control problem is possible using Theorem
4.1. To be consonant with the notation used in it, we assume now that N denotes
the set of all voters, i.e., N = No ∪Na with No as the set of original voters and
Na as the set of additional (new) voters, and that P : N↔A is again the
relational model of the entire approval election. In terms of relation algebra P
is the relational sum (in the sense of [15]) Po + Pa of the relational models
Po : No↔A of the original election and Pa : Na↔A of the additional election.
Pointwise this means that P behaves like Po for all pairs with first component
from No and like Pa for all pairs with first component from Na. In RelView
the Boolean matrix of Po + Pa is formed by putting the matrices of Po and Pa

one upon another.

Example 4.2. We consider again our running example, that is, the relational
model of Example 3.1. As additional voters we assume the natural numbers from
13 to 20. The 20× 8 RelView matrix below shows the relational model of the

320 R. Berghammer, N. Danilenko, and H. Schnoor

entire election as an extension of the relational model of Example 3.1. As new
rows we have those labeled by 13 to 20. The 20× 1 RelView vector right of the
matrix describes the subset {1, 2, . . . , 12} of original voters.

For example, from row 13 of the Boolean matrix we see that the new voter
13 approves only alternative h and from row 15 we see that the new voter 15
approves no alternative.

How to solve the constructive control problem by adding voters is shown now.
In the corresponding Theorem 4.3 we use the membership relation M : N↔ 2N

and the size-comparison relation S : 2N ↔ 2N .

Theorem 4.3. Assume that the vector ori : N↔11 describes the set No of the
original voters as a subset of N , the point p : A↔11 describes a∗ ∈ A, and
dcand : 2N ↔11 is the vector of the relation-algebraic specification (9). If we
define a vector asol : 2N ↔11 by

asol = acand ∩ S
T
; acand , (11)

where acand = M
T
; ori ∩ dcand : 2N ↔11, then we have for all X ∈ 2N that

asolX holds iff X is a minimum set that contains No and the alternative a∗ wins
in the approval election (X,A, (Ai)i∈X).

Proof. Let an arbitrary set X ∈ 2N be given. Using that the vector ori describes
the subset No of N and the first property of (4), we get the following result.

M
T
; ori X ⇐⇒ ¬∃ i ∈ N : M

T

X,i ∧ ori i

⇐⇒ ¬∃ i ∈ N : M i,X ∧ ori i

⇐⇒ ∀ i ∈ N : i /∈ X → i /∈ No

⇐⇒ ∀ i ∈ N : i ∈ No → i ∈ X
⇐⇒ No ⊆ X

In combination with Theorem 4.1 the above equivalence implies that acandX

holds iff X is a set that contains No as subset and, furthermore, a∗ wins in
(X,A, (Ai)i∈X). That asolX holds iff X is a minimum set with these two prop-
erties can be shown as in the proof of Theorem 4.2. �

Relation Algebra and RelView Applied to Approval Voting 321

Besides asol = acand ∩ acandT; S
T
, we used acand = oriT; M

T
∩ dcand as

definition of the vector acand in the RelView program following from the
relation-algebraic specification (11) to avoid the costly transpositions of the size
comparison relation S and the membership relation M. In the following example
we demonstrate what this RelView program yields as results if the relation P
and the vector ori of Example 4.2 are taken as inputs. To enhance readability, we
apply the technique of Section 2 again and enumerate the solutions column-wise.
Furthermore, we intersect each such enumeration relation S : N↔S with the
relation ori ; L : N↔S, where L : 11↔S, since S∩ori ; L column-wise enumerates
the solutions of the original control problem.

Example 4.3. Again we have solved the constructive control problem via the
addition of voters for each of the eight alternatives. The following eight Rel-
View pictures show the corresponding column-wise enumerations of the sets of
voters which have to be added to ensure win.

The order of the pictures is as in Example 4.2. Hence, the empty vectors at
positions 2, 6, 7 and 8 show that the alternatives b, f , g and h win without any
additional voter (see again Example 3.2). To ensure that one of the alternatives
a, d or e wins, at least one least one voter in has to be added in each case. The
vectors at positions 1 and 5 show that in case of the alternatives a and e the only
possibilities are 16 and 18, respectively, and the matrix at position 4 shows that
in case of the alternative d there are two possibilities, viz. 19 and 14. Finally,
from the vector at position 3 we get that at least two voters have to be added to
ensure that the alternative c wins and the only possibility is to add 16 and 18.

Each approval election possesses winners. Furthermore, for each constructive
control problem by deleting voters there exist solutions. The extreme situation
is that all voters have to be deleted to ensure that the specific alternative a∗ wins.
Then the dominance relation equals the universal relation L : A↔A and, as a
consequence, all alternatives win. In contrast with constructive control by delet-
ing voters, in case of constructive control by adding voters it may be impossible
to make a∗ winning by adding new voters from the given set Na (for example,
this happens in the extreme case when a∗ does not win the original election and
Na is the empty set). Furthermore, it should be mentioned that the literature

322 R. Berghammer, N. Danilenko, and H. Schnoor

frequently also considers the so-called single winner variant of approval election.
Here a ∈ A dominates b ∈ A if |{i ∈ N | a ∈ Ai}| > |{i ∈ N | b ∈ Ai}| and a∗

wins if it dominates all other alternatives. In this approach it may happen that
no winners exist and both control problems we have considered are unsolvable
for some instances.

5 Alternative Approaches

In settings as mentioned at the beginning of the paper, a chair is usually able to
hide his manipulation only if the changes of the set of voters are not too large.
Assuming this, we next present an alternative relation-algebraic approach to
solve our control problems, where we restrict ourselves to the removal of voters.
The approach is based on the following generalization of Theorem 3.1 that,
besides the relations M : N↔ 2N and S : 2N ↔ 2N , uses the vector L : A↔11
(recall from Section 2 that L denotes the universal relation) and its transpose
LT : 11↔A.

Theorem 5.1. Let (N,A, (Ai)i∈N) be an approval election, a∗ ∈ A be described
by the point p : A↔11, and X ⊆ N be described by the vector v : N↔11. If we
define a relation C : A↔A by

C = syq(P ∩ v; LT,M); ST; syq(P ∩ v; LT,M)T, (12)

then for all X ∈ 2N we have that a∗ wins in the approval election (X,A, (Ai)i∈X)

iff p ⊆ C ; L .

Proof. Similar to the proof of Theorem 3.1 and using that X is described by v
as a subset of N , the following result can be shown for all b, c ∈ A.

Cb,c ⇐⇒ |{i ∈ X | b ∈ Ai}| ≥ |{i ∈ X | c ∈ Ai}|

Hence, C is the dominance relation of the approval election (X,A, (Ai)i∈X). Now
the claim follows from the calculation

p ⊆ C ; L ⇐⇒ ∀ b ∈ A : pb → C ; L b

⇐⇒ ∀ b ∈ A : b = a∗ → ¬∃ c ∈ A : C b,c ∧ Lc

⇐⇒ ∀ b ∈ A : b = a∗ → ∀ c ∈ A : Cb,c

⇐⇒ ∀ c ∈ A : Ca∗,c

using that the point p describes a∗ as an element of A. �

Assume that the point q : 2N ↔11 describes a set of voters as an element of 2N ,
where (N,A, (Ai)i∈N) is as above. Then the same set is described as a subset
of N by the vector M; q : N↔11, with M : N↔ 2N as membership relation.
See e.g., [15]. For a given k ∈ N with 0 ≤ k ≤ |N | this relationship allows
immediately to test whether there exists a set X of k voters that makes a∗

Relation Algebra and RelView Applied to Approval Voting 323

winning. We only have to run through all
(|N |

k

)
points q : 2N ↔11 with the

property q ⊆ filter(L, k), where the operation filter is as in specification (5) and
L : 2N ↔11, to compute in each case the relation C of the relation-algebraic

specification (12) with v given as v = M; q, and to test whether p ⊆ C ; L holds.
The vector v∗ of the first successful test describes a set X we are looking for. If
we start the tests with k = |N | and decrease k by 1 as long as the tests fail, then
v∗ even describes a maximum set X such that a∗ wins, i.e., a solution of the
control problem we presently consider. The just sketched approach can be easily
formulated in the programming language ofRelView using while-loops and pre-
defined operations such as point for the selection of a point point(r) : X↔11
that is contained in a non-empty vector r : X↔11.

Example 5.1. We consider the approval election (N,A, (Ai)i∈N) the relational
model of which is given by the 20× 8 RelView matrix of Example 4.2. I.e., we
have N = {1, . . . , 20} as set of voters, A = {a, . . . , h} as set of alternatives, and
A1 = {a, e}, A2 = {b, f}, . . . , A20 = {a, b, c, d} as the sets of alternatives the
single voters approve.

RelView computed that alternative d wins, the alternatives a, b and h win
if one voter is deleted, the alternatives c and g win if two voters are deleted,
and the alternatives e and f win if three voters are deleted. To demonstrate the
enormous improvement of efficiency for cases where only a few voters have to be
deleted, we present the running times for alternative f . They have been obtained
with the newest version of RelView (version 8.1, released September 2012 and
available free of charge via the Web site [17]) on an ordinary desktop PC with
CPU AMD Phenom II X4 810, 2.6 GHz and 16 GB RAM and running Linux.

With the approach of Section 4 it took 77.41 sec. to compute that f wins
precisely if one of the triples 4, 17, 20 or 8, 17, 20 or 12, 17, 20 is deleted, whereas
with the approach of this section the first solution 4, 17, 20 was found within
0.26 sec. only.

In this approach we basically use brute force on the powerset of the set of voters
to check whether the removal of a certain set of voters ensures that the alternative
a∗ wins. Now let us assume, that the powerset of the voters is given as a list,
such that the elements are sorted increasingly according to their cardinality. We
can then traverse this list from left to right until we find some set P , such that a∗

wins if all voters from P are removed. Since the list is sorted increasingly w.r.t.
cardinality we also have that the first set we find is a minimal (w.r.t. cardinality)
set as well, since any set with strictly smaller cardinality would have been found
earlier in the traversal.

This implementation idea fits well into the lazy functional language Haskell.
We used Haskell to implement this search based upon the following two compo-
nents. The outer component is a function that takes an alternative and a set of
voters and checks whether the removal of the set of voters results in the alterna-
tive being amongst the winners. This function is then applied to every element
of the “powerlist” and the search is stopped as soon as such a set is found.
The test is based upon a multiplication of a matrix with a vector which in this

324 R. Berghammer, N. Danilenko, and H. Schnoor

case results in complexity of O (|A| · |N |). (We use a näıve implementation of
the multiplication function, since our test cases are rather small and we want
to check performance on a prototypical level only.) The inner component uses
a technique from functional programming that is commonly used in the context
of memoization. The actual implementation is inspired by the tabulated compu-
tation of binomial coefficients [8]. Altogether the functional implementation is a
rather short program with a very good space behavior. It consumes less than 50
kB of memory for test cases with 40 voters.

Example 5.2. To give an impression on the running times of our Haskell pro-
gram, we consider the set N = {1, . . . , 40} of 40 voters and the set A = {a∗, b}
of two alternatives. Furthermore, for a given set I of voters we define the set
Ai = {b} for all i ∈ I and the set Ai = ∅ for all i ∈ N \ I. Clearly, the minimal
set of voters that has to be removed for a∗ to win is precisely the set I, since
removing I from N results in no votes at all and thus every alternative gets
exactly the same number of votes. Obviously, the set described above can be
computed in linear time (w.r.t. voters): since no voter has voted for alternative
a∗, we need to remove every voter who did vote and determining, whether a
voter has voted or not, can be computed in constant time. (We can assume that
the votes of a voter are stored in a list so that we merely need to check a list for
being empty.) Nevertheless we use the brute force approach since it allows us
to compare average and worst case behaviors of different implementations in a
simple fashion.

We have experimented with randomly generated sets I of specified cardinal-
ities k using again the PC mentioned in Example 5.1. Doing so, we ran the
program on random cases and on cases where the last possible set of a given
cardinality is the first that results in a∗ winning. The next table summarizes our
measurements (with the running times given in seconds).

k 1 2 3 4 5 6 7 8 9 10

random 0.01 0.01 0.01 0.1 0.66 4.24 23.79 109.76 433.21 1315.75

worst 0.01 0.02 0.04 0.32 2.03 11.61 60.38 248.68 948.64 3055.69

Clearly, removing a small number of voters comes with negligible running times
of only a couple of seconds, whereas removing 10 of 40 voters can take about 51
minutes already.

We also implemented the brute force solution as a C-program. To enumerate
all subsets of the set of voters, we used a very simple method, namely a for-
loop using an integer counter, where the bits in the binary representation are
interpreted as indicators whether a certain voter is an element of the currently
studied subset or not. In an election with two alternatives and randomly dis-
tributed votes we obtained the following running times (in seconds), depending
on the number n of voters:

Relation Algebra and RelView Applied to Approval Voting 325

n 20 25 26 27 28 29 30 31 32 33 34 35

time 0.2 8 16 34 50 144 293 590 1196 2445 5093 10359

The running time shows the expected exponential behaviour, where the running
time is roughly doubled for each additional voter.

6 Conclusion

In this paper we have used relation algebra to model approval voting and to
develop solutions for two hard control problems. All relation-algebraic specifi-
cations are algorithmic and can be evaluated by the ROBDD-based tool Rel-
View after a straightforward translation into the tool’s programming language.
To demonstrate the visualization facilities of RelView, we have used a small
running example. We also have compared its computational power with that of
conventional programming languages.

The correctness of all relation-algebraic specifications and, hence, also of the
corresponding RelView programs is guaranteed by the highly formal calcula-
tions. In the paper we have used the prevalent mathematical theorem-proof-style
to emphasize the results and to enhance readability. But, in fact, we have ob-
tained the results by developing them formally from the original logical speci-
fications. We regard this goal-oriented development of algorithms from logical
specifications, that are correct by construction, as the first main advantage of
our approach. As its second main advantage we regard its computer-support by
means of an appropriate tool. All results we have developed are expressed by
very short and concise RelView programs. Thus, these are easy to alter in case
of slightly changed specifications, e.g., if to win means to be a single winner.
Combining this with RelView’s possibilities for visualization and animation
allows to experiment with established as well as new concepts while avoiding
unnecessary overhead. This makes RelView very useful for scientific research,
since nowadays in computer science systematic experiments are accepted as a
means for obtaining new insights and results. In this regard the very efficient
ROBDD-implementation of relations is of immense help since it also allows to
experiment with non-trivial examples.

Acknowledgment. We thank the unknown referees for their comments and
suggestions. They helped to improve the paper.

References

1. Bartholdi III, J.J., Tovey, C.A., Trick, M.A.: The computational difficulty of ma-
nipulating an election. Social Choice and Welfare 6, 227–241 (1989)

2. Bartholdi III, J.J., Tovey, C.A., Trick, M.A.: How hard is it to control an election?
Mathematical and Computer Modeling 16, 27–40 (1992)

3. Berghammer, R., Neumann, F.: RelView – An OBDD-based Computer Algebra
system for relations. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC
2005. LNCS, vol. 3718, pp. 40–51. Springer, Heidelberg (2005)

326 R. Berghammer, N. Danilenko, and H. Schnoor

4. Brams, S.J., Fishburn, P.C.: Voting procedures. In: Arrow, K., Sen, A., Suzumara,
K. (eds.) Handbook of Social Choice and Welfare, vol. 1, pp. 173–236. North-
Holland (2002)

5. Brams, S.J., Fishburn, P.C.: Approval voting, 2nd edn. Springer (2007)
6. Brandt, F., Conitzer, V., Endriss, U.: Computational social choice. In: Weiss, G.

(ed.) Multiagent Systems, 2nd edn., pp. 213–283. MIT Press (2013)
7. Chevaleyre, Y., Endriss, U., Lang, J., Maudet, N.: A short introduction to com-

putational social choice. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W.,
Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 51–69.
Springer, Heidelberg (2007)

8. Fischer S.: Tabulated binomial coefficients,
http://www-ps.informatik.uni-kiel.de/~sebf/haskell/tabulated-binomial-

coefficients.lhs.html

9. Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: Anyone but him: The complexity
of precluding an alternative. Artificial Intelligence 171, 255–285 (2007)

10. Laslier, J.-F.: And the loser is . . . plurality voting. In: Felsenthal, D.S., Machover,
M. (eds.) Electoral Systems, Studies in Choice and Welfare, pp. 327–351. Springer
(2012)

11. Leoniuk, B.: ROBDD-based implementation of relational algebra with applications.
Dissertation, Universität Kiel (2001) (in German)

12. Milanese, U.: On the implementation of a ROBDD-based tool for the manipulation
and visualization of relations. Dissertation, Universität Kiel (2003) (in German)

13. Nurmi, H.: On the difficulty of making social choices. Theory and Decision 38,
99–119 (1998)

14. Schmidt, G., Ströhlein, T.: Relations and graphs, Discrete mathematics for com-
puter scientists. EATCS Monographs on Theoretical Computer Science. Springer
(1993)

15. Schmidt, G.: Relational mathematics. Encyclopedia of Mathematics and its Appli-
cations, vol. 132. Cambridge University Press (2010)

16. Walsh, T.: Is computational complexity a barrier to manipulation? Annals of Math-
ematics and Artificial Intelligence 62, 7–26 (2011)

17. http://www.informatik.uni-kiel.de/~progsys/relview

http://www-ps.informatik.uni-kiel.de/~sebf/haskell/tabulated-binomial-coefficients.lhs.html
http://www-ps.informatik.uni-kiel.de/~sebf/haskell/tabulated-binomial-coefficients.lhs.html
http://www.informatik.uni-kiel.de/~progsys/relview

Relational Lattices

Tadeusz Litak1,�, Szabolcs Mikulás2, and Jan Hidders3

1 Informatik 8, Friedrich-Alexander-Universität Erlangen-Nürnberg
Martensstraße 3, 91058 Erlangen, Germany

tadeusz.litak@gmail.com
2 School of Computer Science and Information Systems,
Birkbeck, University of London, WC1E 7HX London, UK

szabolcs@dcs.bbk.ac.uk
3 Delft University of Technology, Elektrotechn., Wisk. and Inform.,

Mekelweg 4, 2628CD Delft, The Netherlands
A.J.H.Hidders@tudelft.nl

Abstract. Relational lattices are obtained by interpreting lattice con-
nectives as natural join and inner union between database relations.
Our study of their equational theory reveals that the variety generated
by relational lattices has not been discussed in the existing literature.
Furthermore, we show that addition of just the header constant to the
lattice signature leads to undecidability of the quasiequational theory.
Nevertheless, we also demonstrate that relational lattices are not as in-
tangible as one may fear: for example, they do form a pseudoelementary
class. We also apply the tools of Formal Concept Analysis and investigate
the structure of relational lattices via their standard contexts.

Keywords: relational lattices, relational algebra, database theory, alge-
braic logic, lattice theory, cylindric algebras, Formal Concept Analysis,
standard context, incidence relation, arrow relations.

1 Introduction

We study a class of lattices with a natural database interpretation [Tro, ST06,
Tro05]. It does not seem to have attracted the attention of algebraists, even those
investigating the connections between algebraic logic and relational databases
(see, e.g., [IL84] or [DM01]).

The connective natural join (which we will interpret as lattice meet!) is one
of the basic operations of Codd’s (named) relational algebra [AHV95, Cod70].

� We would like to thank Vadim Tropashko and Marshall Spight for introducing the
subject to the third author (who in turn introduced it to the other two) and dis-
cussing it in the usenet group comp.databases.theory, Maarten Marx, Balder ten
Cate, Jan Paredaens for additional discussions and general support in an early phase
of our cooperation and the referees for the comments. The first author would also like
to acknowledge: a) Peter Jipsen for discussions in September 2013 at the Chapman
University leading to recovery, rewrite and extension of the material (in particular
for Sec. 5) and b) suggestions by participants of: TACL’09, ALCOP 2010 and the
Birmingham TCS seminar (in particular for Sec. 2.1 and 6).

P. Höfner et al. (Eds.): RAMiCS 2014, LNCS 8428, pp. 327–343, 2014.
c© Springer International Publishing Switzerland 2014

328 T. Litak, S. Mikulás, and J. Hidders

Incidentally, it is also one of its few genuine algebraic operations—i.e., defined
for all arguments. Codd’s “algebra”, from a mathematical point of view, is only a
partial algebra: some operations are defined only between relations with suitable
headers, e.g., the (set) union or the difference operator. Apart from the issues of
mathematical elegance and generality, this partial nature of operations has also
unpleasant practical consequences. For example, queries which do not observe
constraints on headers can crash [VdBVGV07].

It turns out, however, that it is possible to generalize the union operation to
inner union defined on all elements of the algebra and lattice-dual to natural join.
This approach appears more natural and has several advantages over the em-
bedding of relational “algebras” in cylindric algebras proposed in [IL84]. For ex-
ample, we avoid an artificial uniformization of headers and hence queries formed
with the use of proposed connectives enjoy the domain independence property
(see, e.g., [AHV95, Ch. 5] for a discussion of its importance in databases).

We focus here on the (quasi)equational theory of natural join and inner union.
Apart from an obvious mathematical interest, Birkhoff-style equational inference
is the basis for certain query optimization techniques where algebraic expressions
represent query evaluation plans and are rewritten by the optimizer into equiv-
alent but more efficient expressions. As for quasiequations, i.e., definite Horn
clauses over equalities, reasoning over many database constraints such as key
constraints and foreign keys can be reduced to quasiequational reasoning. Note
that an optimizer can consider more equivalent alternatives for the original ex-
pression if it can take the specified database constraints into account.

Strikingly, it turned out that relational lattices does not seem to fit any-
where into the rather well-investigated landscape of equational theories of lat-
tices [JR92, JR98]. Nevertheless, there were some indications that the consid-
ered choice of connectives may lead to positive results concerning decidabil-
ity/axiomatizability even for quasiequational theories. There is an elegant pro-
cedure known as the chase [AHV95, Ch. 8] applicable for certain classes of queries
and database constraints similar to those that can be expressed with the natural
join and inner union.

To our surprise, however, it turned out that when it comes to decidability,
relational lattices seem to have a lot in common with other “untamed” structures
from algebraic logic such as Tarski’s relation algebras or cylindric algebras. As
soon as an additional header constant H is added to the language, one can
encode the word problem for semigroups in the quasiequational theory using a
technique introduced by Maddux [Mad80]. This means that decidability of query
equivalence under constraints for restricted positive database languages does not
translate into decidability of corresponding quasiequational theories. However,
our Theorem 4.7 and Corollary 4.8 do not rule out possible finite axiomatization
results (except for quasiequational theory of finite structures) or decidability of
equational theory.1 And with H removed, i.e., in the pure lattice signature, the
picture is completely open. Of course, such a language would be rather weak
from a database point of view, but natural for an algebraist.

1 Note, however, that an extension of our signature to a language with EDPC or a
discriminator term would result in an undecidable equational theory.

Relational Lattices 329

We also obtained a number of positive results. First of all, concrete rela-
tional lattices are pseudoelementary and hence their closure under subalge-
bras and products is a quasivariety—Theorem 4.1 and Corollary 4.3. The proof
yields an encoding into a sufficiently rich (many-sorted) first-order theory with
finitely many axioms. This opens up the possibility of using generic proof as-
sistants like Isabelle or Coq in future investigations—so far, we have only used
Prover9/Mace4 to study interderivability of interesting (quasi)equations.2 We
have also used the tools of Formal Concept Analysis (Theorem 5.3) to inves-
tigate the dual structure of full concrete relational lattices and establish, e.g.,
their subdirect irreducibility (Corollary 5.4). Theorem 5.3 is likely to have fur-
ther applications—see the discussion of Problem 6.1.

The structure of the paper is as follows. In Section 2, we provide basic defi-
nitions, establish that relational lattices are indeed lattices and note in passing
a potential connection with category theory in Section 2.1. Section 3 reports
our findings about the (quasi)equational theory of relational lattices: the fail-
ure of most standard properties such as weakening of distributivity (Theorem
3.2), those surprising equations and properties that still hold (Theorem 3.4) and
dependencies between them (Theorem 3.5). In Section 4, we focus on quasiequa-
tions and prove some of most interesting results discussed above, both posi-
tive (Theorem 4.1 and Corollaries 4.2–4.4) and negative ones (Theorem 4.7 and
Corollaries 4.8–4.9). Section 5 analyzes standard contexts, incidence and arrow
relations [GW96] of relational lattices. Section 6 concludes and discusses future
work, in particular possible extensions of the signature in Section 6.1.

2 Basic Definitions

Let A be a set of attribute names and D be a set of domain values. For H ⊆ A,
a H-sequence from D or an H-tuple over D is a function x : H → D, i.e., an
element of HD. H is called the header of x and denoted as h(x). The restriction
of x to H ′ is denoted as x[H ′] and defined as x[H ′] := {(a, v) ∈ x | a ∈ H ′},
in particular x[H ′] = ∅ if H ′ ∩ h(x) = ∅. We generalize this to the projection of
a set of H-sequences X to a header H ′ which is X [H ′] := {x[H ′] | x ∈ X}. A
relation is a pair r = (Hr, Br), where Hr ⊆ A is the header of r and Br ⊆ HrD
the body of r. The collections of all relations over D whose headers are contained
in A will be denoted as R(D,A). For the relations r, s, we define the natural join
r��s, and inner union r⊕s:

r��s := (Hr ∪Hs, {x ∈ Hr∪HsD | x[Hr] ∈ Br and x[Hs] ∈ Bs})
r⊕s := (Hr ∩Hs, {x ∈ Hr∩HsD | x ∈ Br[Hs] or x ∈ Bs[Hr]})

In our notation, �� always binds stronger than ⊕ . The header constant H := (∅, ∅)
plays a special role: for any r, (Hr, Br)��H = (Hr, ∅) and hence r1 and r2 have
the same headers iff H��r1 = H��r2. Note also that the projection of r1 to Hr2

can be defined as r1 ⊕ (H��r2). In fact, we can identify H��r and Hr. We denote
(R(D,A), ��, ⊕ ,H) as RH(D,A), with LH denoting the corresponding algebraic
signature. R(D,A) is its reduct to the signature L := {��, ⊕}.
2 It is worth mentioning that the database inventor of relational lattices has in the
meantime developed a dedicated tool [Tro].

330 T. Litak, S. Mikulás, and J. Hidders

a b

1 1
2 2
3 2
3 3

��

b c

1 1
2 2
2 3
4 4

=

a b c

1 1 1
2 2 2
2 2 3
3 2 2
3 2 3

a b

1 1
2 2
3 2
3 3

⊕

b c

1 1
2 2
2 3
4 4

=

b

1
2
3
4

Fig. 1. Natural join and inner union. In this example, A = {a, b, c}, D = {1, 2, 3, 4}.

Lemma 2.1. For any D and A, R(D,A) is a lattice.

Proof. This result is due to Tropashko [Tro, ST06, Tro05], but let us provide an
alternative proof. Define Dom := A ∪ AD and for any X ⊆ Dom set

Cl(X) := X ∪ {x ∈ AD | ∃y ∈ (X ∩ AD). x[A −X] = y[A−X]}.

In other words, Cl(X) is the sum of X∩A (the set of attributes contained in X)
with the cylindrification of X∩AD along the axes in X∩A. It is straightforward
to verify Cl is a closure operator and hence Cl-closed sets form a lattice, with
the order being obviously ⊆ inherited from the powerset of Dom. It remains to
observe R(D,A) is isomorphic to this lattice and the isomorphism is given by

(H,B) %→ (A−H) ∪ {x ∈ AD | x[H] ∈ B}. !�

We call R(D,A) the (full) relational lattice over (D,A). We also use the al-
ternative name Tropashko lattices to honor the inventor of these structures. The
lattice order given by �� and ⊕ is

(Hr, Br) (Hs, Bs) iff Hs ⊆ Hr and Br[Hs] ⊆ Bs.

For classes of algebras, we use H, S,P to denote closures under, respectively,
homomorphisms, (isomorphic copies of) subalgebras and products. Let

RH
fin := S{RH(D,A) | D,A finite}, RH

unr := S{RH(D,A) | D,A unrestricted}

and let Rfin and Runr denote the lattice reducts of respective classes.

2.1 Relational Lattice as the Grothendieck Construction

Given D and A, a category theorist may note that

FAD : P⊇(A) & H −→ P(HD) ∈ Cat

FAD (H ⊇ H ′) := (HD ⊇ B %→ B[H ′] ⊆ H′D)

defines a quasifunctor assigning to an element of the powerset P⊇(A) (considered
as a poset with reverse inclusion order) the poset P(HD) considered as a small
category. Then one readily notes that R(D,A) is an instance of what is known as

Relational Lattices 331

the (covariant) Grothendieck construction/completion3 of FAD [Jac99, Definition

1.10.1] denoted as
∫ P⊇(A)

FAD . As such considerations are irrelevant for the rest
of our paper, for the time being we just note this category-theoretical connection
as a curiosity, but it might lead to an interesting future study.

3 Towards the Equational Theory of Relational Lattices

Let us begin the section with an open

Problem 3.1. Are SP(RH
unr) = HSP(RH

unr) and SP(Runr) = HSP(Runr)?

If the answer is “no”, it would mean that relational lattices should be con-
sidered a quasiequational rather than equational class (cf. Corollary 4.3 below).
Note also that the decidability of equational theories seems of less importance
from a database point of view than decidability of quasiequational theories. Nev-
ertheless, relating to already investigated varieties of lattices seems a good first
step. It turns out that weak forms of distributivity and similar properties (see
[JR92, JR98, Ste99]) tend to fail dramatically:

Theorem 3.2. Rfin (and hence Runr) does not have any of the following prop-
erties (see the above references or the proof below for definitions):

1. upper- and lower-semidistributivity,
2. almost distributivity and neardistributivity,
3. upper- or lower-semimodularity (and hence also modularity),
4. local distributivity/local modularity,
5. the Jordan–Dedekind chain condition,
6. supersolvability.

Proof. For most clauses, it is enough to observe thatR({0, 1}, {0})) is isomorphic
to L4, one of the covers of the non-modular lattice N5 in [McK72] (see also
[JR98]): a routine counterexample in such cases. In more detail:
Clause 1: Recall that semidistributivity is the property:
a⊕ b = a⊕ c implies a⊕ b = a⊕ (b��c).
Now take a to be H and b and c to be the atoms with the header {0}.

Clause 2: This is a corollary of Clause 1, see [JR92, Th 4.2 and Sec 4.3].
Clause 3: Recall that semimodularity is the property:

if a��b covers a and b, then a⊕ b is covered by a and b.
Again, take a to be H and b to be either of the atoms with the header {0}.

Clause 4: This is a corollary of Clause 3, see [Mae74].
Clause 5: Recall that the Jordan-Dedekind chain condition is the property that
the cardinalities of two maximal chains between common end points are equal.
This obviously fails in N5.

3 Note that to preserve the lattice structure of R(D,A) we cannot consider FA
D as a

functor into Set, which would yield a special case of the Grothendieck construction
known as the category of elements. Note also that we chose the covariant definition
on P⊇(A) rather than the contravariant definition on P(A) to ensure the order �
does not get reversed inside each slice P(HD).

332 T. Litak, S. Mikulás, and J. Hidders

Clause 6: Recall that for finite lattices, supersolvability [Sta72] boils down to
the existence of a maximal chain generating a distributive lattice with any other
chain. Again, this fails in N5. !�

Remark 3.3. Theorem 3.2 has an additional consequence regarding the notion
called rather misleadingly boundedness in some references (see e.g., [JR92, p.
27]): being an image of a freely generated lattice by a bounded morphism. We
use the term McKenzie-bounded, as McKenzie showed that for finite subdirectly
irreducible lattices, this property amounts to splitting the lattice of varieties
of lattices [JR92, Theorem 2.25]. Finite Tropashko lattices are subdirectly irre-
ducible (Corollary 5.4 below) but Clause 1 of Theorem 3.2 entails they are not
McKenzie-bounded by [JR92, Lemma 2.30].

Nevertheless, Tropashko lattices do not generate the variety of all lattices. The
results of our investigations so far on valid (quasi)equations are summarized by
the following theorems:

Theorem 3.4. Axioms of RH in Table 1 are valid in RH
unr (and consequently in

RH
fin). Similarly, axioms of R are valid in Runr (and consequently Rfin).

Table 1. (Quasi)equations Valid in Tropashko Lattices

Class RH in the signature LH:

all lattice axioms

AxRH1 H��x��(y⊕ z)⊕y��z = (H��x��y⊕ z)��(H��x��z⊕y)
AxRH2 x��(y⊕z) = x��(z⊕H��y)⊕x��(y⊕H��z)
AxRL1 x��y⊕x��z = x��(y��(x⊕z)⊕z��(x⊕y))

Class R in the signature L (without H):

all lattice axioms together with AxRL1 and

AxRL2 t��((x⊕y)��(x⊕z)⊕ (u⊕w)��(u⊕v)) =
= t��((x⊕y)��(x⊕z)⊕u⊕w��v)⊕ t��((u⊕w)��(u⊕v)⊕x⊕y��z)

(in LH, AxRL2 is derivable from AxRH1 and AxRH2 above)

Additional (quasi)equations derivable in RH and R:

Qu1 x⊕y = x⊕z ⇒ x��(y⊕ z) = x��y⊕x��z.
Qu2 H��(x⊕y) = H��(x⊕z) ⇒ x��(y⊕ z) = x��y⊕x��z.
Eq1 H��x��(y⊕ z) = H��x��y⊕H��x��z
Der1 H��x⊕x��y = x��(y⊕H��x)

Theorem 3.5. Assuming all lattice axioms, the following statements hold:

1. Axioms of R are mutually independent.

Relational Lattices 333

2. Each of the axioms of RH is independent from the remaining ones, with a
possible exceptions of AxRL1.

3. [PMV07] AxRL1 forces Qu1.
4. Qu2 together with Eq1 imply AxRL2.
5. Eq1 is implied by AxRH1. The converse implication does not hold even in

presence of AxRL1.
6. AxRH1 and AxRH2 jointly imply Qu2, although each of the two equations

separately is too weak to entail Qu2. In the converse direction, Qu2 implies
AxRH2 but not AxRH1.

7. AxRH1 implies Der1.

Proof. Clause 1: The example showing that the validity of AxRL2 does not
imply the validity of AxRL1 is the non-distributive diamond lattice M3, while
the reverse implication can be disproved with an eight-element model:

Clause 2: Counterexamples can be obtained by appropriate choices of the
interpretation of H in the pentagon lattice.
Clause 4: Direct computation.
Clause 5: The first part has been proved with the help of Prover9 (66 lines
of proof). The counterexample for the converse is obtained by choosing H to be
the top element of the pentagon lattice.
Clause 6: Prover9 was able to prove the first statement both in presence and
in absence of AxRL1, although there was a significant difference in the length
of both proofs (38 lines vs. 195 lines). The implication from Qu2 to AxRH2 is
straightforward. All the necessary counterexamples can be found by appropriate
choices of the interpretation of H in the pentagon lattice.
Clause 7: Substitue x for z and use the absorption law. !�

AxRL1 comes from [PMV07] as an example of an equation which forces the
Huntington property (distributivity under unique complementation). Qu1 is a
form of weak distributivity, denoted as CD∨ in [PMV07] and WD∧ in [JR98].

Problem 3.6. Are the equational theories of RH
unr and RH

fin equal?

Problem 3.7. Is the equational theory of RH
unr (Runr) equal to RH (R, respec-

tively)? If not, is it finitely axiomatizable at all?

If the answer to the last question is in the negative, one can perhaps attempt
a rainbow-style argument from algebraic logic [HH02].

4 Relational Lattices as a Quasiequational Class

In the introduction, we discussed why an axiomatization of valid quasiequations
is desirable from a DB point of view. There is also an algebraic reason: the class
of representable Tropashko lattices (i.e., the SP-closure of concrete ones) is a
quasivariety. This is a corollary of a more powerful result:

334 T. Litak, S. Mikulás, and J. Hidders

Theorem 4.1. RH
unr and Runr are pseudoelementary classes.

Proof. (sketch) Assume a language with sorts A, F , D and R. The connectives
of LH live in R, we also have a relation symbol inR : (F ∪ A) × R and a
function symbol assign : (F × A) %→ D. The interpretation is suggested by
the closure system used in the proof of Lemma 2.1. That is, A denotes A, F
denotes AD, D denotes D and R denotes the family of Cl-closed subsets of
Dom. Moreover, assign(f, a) denotes the value of the A-sequence denoted by f
on the attribute a and inR(x, r)—the membership of an attribute/sequence in
the closed subset of Dom denoted by r. One needs to postulate the following
axioms: “F and R are extensional” (the first via injectivity of assign, the second
via axioms on inR); “each element of R is Cl-closed”; “�� and ⊕ are genuine
infimum/supremum on R”. For RH

unr, we add an axiom “inR assigns no elements
of F and all elements of A (the latter means all attributes are irrelevant for the
element under consideration!) to H”. !�

Corollary 4.2. RH
unr and Runr are closed under ultraproducts.

Corollary 4.3. The SP-closures of RH
unr and Runr are quasiequational classes.

Corollary 4.4. The quasiequational, universal and elementary theories of RH
unr

and Runr are recursively enumerable.

Proof. The proof of Theorem 4.1 uses finitely many axioms. !�

Note that postulating that headers are finite subsets of A would break the
proof of Theorem 4.1: such conditions are not first-order. However, concrete
database instances always belong to RH

fin and we will show now that the de-
cidability status of the quasiequational theory of RH

unr and RH
fin is the same.

Moreover, an undecidability result also obtains for the corresponding abstract
class, much like for relation algebras and cylindric algebras—in fact, we build on
a proof of Maddux [Mad80] for CA3—and we do not even need all the axioms

of RH to show this! Let RH1 be the variety of LH-algebras axiomatized by the
lattice axioms and AxRH1. Let us list some basic observations:

Proposition 4.5.

1. RH
fin ⊂ RH

unr ⊂ SP(RH
unr) ⊆ RH ⊂ RH1.

2. Der1 holds in RH1.
3. AxRH1 holds whenever H is interpreted as the bottom of a bounded lattice.
4. AxRH1 holds for an arbitrary choice of H in a distributive lattice.

Proof. Clause 2 holds by clause 7 of Theorem 3.5. The remaining ones are
straightforward to verify. !�

Note, e.g., that interpreting H as ⊥ in AxRH2 would only work if the lattice
is distributive, so Clause 3 would not hold in general for AxRH2. In order to
state our undecidability result, we need first

Relational Lattices 335

Definition 4.6. Let e = (u0, u1, u2, e0, e1) be an arbitrary 5-tuple of variables.
We abbreviate u0��u1��u2 as u. For arbitrary L-terms s, t define

ce0 〈t〉 := u��(H��u1��u2⊕u��t),

ce1 〈t〉 := u��(H��u0��u2⊕u��t),

ce2 〈t〉 := u��(H��u0��u1⊕u��t),

s ◦e t := ce2
〈
ce1
〈
e0��ce2 〈s〉

〉
��ce0

〈
e1��ce2 〈s〉

〉〉
.

Let Tn(x1, . . . , xn) be the collection of all semigroup terms in n variables. When-
ever e = (xn+1, . . . , xn+5) define the translation τe of semigroup terms as fol-
lows: τe(xi) := xi for i ≤ n and τe(s ◦ t) := s ◦e t for any s, t ∈ Tn(x1, . . . , xn).

Whenever e is clear from the context, we will drop it to ensure readability.
Now we can formulate

Theorem 4.7. For any p0, . . . , pm, r0, . . . , rm, s, t ∈ Tn(x1, . . . , xn), the follow-
ing conditions are equivalent :

(I) The quasiequation

(Qu3) ∀x1, . . . , xn. (p0 = r0 & . . . & pm = rm ⇒ s = t)

holds in all semigroups (finite semigroups).
(II) For e = (xn+1, . . . , xn+5) as in Definition 4.6, the quasiequation

(Qu4)

∀x0, x1, . . . , xn+5. (τ
e(p0) = τe(r0)& . . . τe(pm) = τe(rm)&

& xn+4 = ce0 〈xn+4〉 & xn+5 = ce1 〈xn+5〉)⇒
⇒ τe(s) ◦e ce1 〈x0〉 = τe(t) ◦e ce1 〈x0〉))

holds in every member of RH
unr (every member of RH

fin).
(III) Qu4 above holds in every member of RH1 (finite member of RH1).

Proof. (I) ⇒ (III). By contraposition:
Take any A ∈ RH1 and arbitrarily chosen elements u0, u1, u2 ∈ A. In order

to use Maddux’s technique, we have to prove that for any a, b ∈ A and k, l < 3

(b) ck 〈ck 〈a〉〉 = ck 〈a〉,
(c) ck 〈a��ck 〈b〉〉 = ck 〈a〉 ��ck 〈b〉,
(d) ck 〈cl 〈a〉〉 = cl 〈ck 〈a〉〉
(we deliberately keep the same labels as in the quoted paper), where ck 〈a〉 is
defined in the same way as in Definition 4.6 above. We will denote by uk̂ the
product of ui’s such that i ∈ {0, 1, 2} − {k}. For example, u0̂ = u1��u2.

For (b):

L = u��(H��uk̂ ⊕u��(H��uk̂ ⊕u��a))

= u��(H��uk̂��(u⊕H��uk̂ ⊕u��a)⊕u��(H��uk̂ ⊕u��a)) by lattice laws

= u��(H��uk̂��u⊕H��uk̂ ⊕u��a)��(H��uk̂��(H��uk̂ ⊕u��a)⊕u) by AxRH1

= u��(H��uk̂ ⊕u��a)��(H��uk̂ ⊕u) by lattice laws

= u��(H��uk̂ ⊕u��a) by lattice laws

= R.

336 T. Litak, S. Mikulás, and J. Hidders

(c) is proved using a similar trick:

L = u��(H��uk̂ ⊕u��a��(H��uk̂ ⊕u��b))

= u��(H��uk̂��(u��a⊕H��uk̂ ⊕u��b)⊕u��a��(H��uk̂ ⊕u��b)) by lattice laws

= u��(H��uk̂��u��a⊕H��uk̂ ⊕u��b)��(H��uk̂��(H��uk̂ ⊕u��b)⊕u��a) by AxRH1

= u��(H��uk̂ ⊕u��b)��(H��uk̂ ⊕u��a) by lattice laws

= R.

(d) is obviously true for k = l, hence we can restrict attention to k �= l. Let j
be the remaining element of {0, 1, 2}. Thus,

L = u��(H��ul��uj ⊕u��(H��uk��uj ⊕u��a))

= u��(H��ul��uj ⊕ul��(H��uk��uj ⊕u��a)) by Der1

= u��(H��ul��uj��(ul ⊕H��uk��uj ⊕u��a)⊕ul��(H��uk��uj ⊕u��a)) by lattice laws

= u��(H��ul��uj ⊕H��uk��uj ⊕u��a)��(H��ul��uj��(H��uk��uj ⊕u��a)⊕ul) by AxRH1

= u��(H��ul��uj ⊕H��uk��uj ⊕u��a)��ul by lattice laws

= u��(H��ul��uj ⊕H��uk��uj ⊕u��a) by lattice laws

and in the last term, ul and uk may be permuted by commutativity. We then
obtain the right side of the equation via an analogous sequence of transformations
in the reverse direction, with the roles of uk and ul replaced.

The rest of the proof mimics the one in [Mad80]. In some detail: assume there
is e = (u0, u1, u2, e0, e1) ∈ A such that

(a) ce0 〈e0〉 = e0, c
e
1 〈e1〉 = e1

holds. Using (a)–(d) we prove that for every a, b ∈ A the following hold:

(i) ce1
〈
a ◦e b

〉
= a ◦e ce1 〈b〉,

(ii) a ◦e ce1 〈b〉 = ce1
〈
ce2 〈a〉 ��ce0

〈
ce2
〈
e0��e1��ce2

〈
ce1 〈b〉

〉〉〉〉
,

(iii) (a ◦e b) ◦e ce1 〈c〉 = a ◦e (b ◦e ce1 〈c〉),
(iv) ((a ◦e b) ◦e c) ◦e ce1 〈d〉 = (a ◦e (b ◦e c)) ◦e ce1 〈d〉.

Now pick A witnessing the failure of Qu4 together with e = (u0, u1, u2, e0, e1)
such that elements of e interpret variables (xn+1, . . . , xn+5) in Qu4. This means
(a) is satisfied, hence (i)–(iv) hold for every element of A. We define an equiva-
lence relation ≡ on A:

a ≡ b iff for all c ∈ A, a ◦e ce1 〈c〉 = b ◦e ce1 〈c〉.

We take ◦e to be the semigroup operation on A/ ≡. Following [Mad80], we
use (i)–(iv) to prove that this operation is well-defined (i.e., independent of the
choice of representatives) and satisfies semigroup axioms. It follows from the
assumptions that the semigroup thus defined fails Qu3.

Relational Lattices 337

(III) ⇒ (II). Immediate.
(II) ⇒ (I). In analogy to [Mad80], given a semigroup B = (B, ◦, u) failing

Qu3 and a valuation v witnessing this failure, consider R(B, {0, 1, 2}) with a
valuation w defined as follows:

w(x0) := ({0, 1, 2}, {{(0, v(r)), (1, a), (2, b)} | a, b ∈ B}),
w(xi) := ({0, 1, 2}, {{(0, a), (1, a ◦ v(xi)), (2, b)} | a, b ∈ B}), i ≤ n,

w(xn+i) := ({i}, {{(i, b)} | b ∈ B}), (0 < i ≤ 3),

w(xn+4) := ({0, 1, 2}, {{(0, a), (1, b), (2, b)} | a, b ∈ B}),
w(xn+5) := ({0, 1, 2}, {{(0, b), (1, a), (2, b)} | a, b ∈ B}).

It is proved by induction that

w(τe(t)) = ({0, 1, 2}, {{(0, a), (1, a ◦ v(t)), (2, b)} | a, b ∈ B})
(where e = (xn+1, . . . , xn+5)) for every t ∈ T (x1, . . . xn) and also

w(τ e(s) ◦e ce1 〈x0〉) =({0, 1, 2}, {{(0, a), (1, b), (2, c)} | a, b, c ∈ B, v(r) ◦ a = v(s)}),
w(τ e(r) ◦e ce1 〈x0〉) =({0, 1, 2}, {{(0, a), (1, b), (2, c)} | a, b, c ∈ B, v(r) ◦ a = v(r)}).

Any tuple whose value for attribute 0 is u belongs to the first relation, but not
to the second. Thus w is a valuation refuting Qu4. !�
Corollary 4.8. The quasiequational theory of any class of algebras between RH

fin
and RH1 is undecidable.

Proof. Follows from Theorem 4.7 and theorems of Gurevič [Gur66, GL84] and
Post [Pos47] (for finite and arbitrary semigroups, respectively). !�
Corollary 4.9. The quasiequational theory of RH

fin is not finitely axiomatizable.

Proof. Follows from Theorem 4.7 and the Harrop criterion [Har58]. !�
Problem 4.10. Are the quasiequational theories of Runr and Rfin (i.e., of lattice
reducts) decidable?

5 The Concept Structure of Tropashko Lattices

Given a finite lattice L with J(L) and M(L) being the sets of its, respectively,
join- and meet-irreducibles, let us follow Formal Concept Analysis [GW96] and
investigate the structure ofL via its standard context con(L) := (J(L),M(L), I≤),
where I≤ :=≤ ∩ (J(L) ×M(L)). Set

g ↙ m : g is ≤-minimal in {h ∈ J(L) | not h I≤m},
g ↗ m : m is ≤-maximal in {n ∈M(L) | not g I≤ n},
g ↗↙ m : g ↙ m& g ↗ m.

Let also↙↙ be the smallest relation containing↙ and satisfying the condition

338 T. Litak, S. Mikulás, and J. Hidders

g ↙↙ m, h↗ m and h↙ n imply g ↙↙ n;

in a more compact notation, ↙↙ ◦ ↗ ◦ ↙⊆↙↙. We have the following

Proposition 5.1. [GW96, Theorem 17] A finite lattice is

– subdirectly irreducible iff there is m ∈M(L) such that ↙↙⊇ J(L)× {m},
– simple iff ↙↙= J(L)×M(L).

Let us describe J(R(D,A)) and M(R(D,A)) for finite D and A. Set
ADomD,A := {adom(x) | x ∈ AD} where adom(x) := (A, {x}),
AAttD,A := {aatt(a) | a ∈ A} where aatt(a) := (A− {a}, ∅),
CoDomD,H := {codomH(x) | x ∈ HD} where codomH(x) := (H,HD − {x}),
CoAttD,A := {coatt(a) | a ∈ A} where coatt(a) := ({a}, {a}D),

JD,A := ADomD,A ∪ AAttD,A,
MD,A := CoAttD,A ∪

⋃
H⊆A

CoDomD,H .

It is worth noting that R(D,A) naturally divides into what we may call
boolean H-slices—i.e., the powerset algebras of HD for each H ⊆ A. Further-
more, the projection mapping from H-slice to H ′-slice where H ′ ⊆ H is a join-
homomorphism. Lastly, note that the bottom elements ofH-slices—i.e., elements
of the form (H, ∅)—and top elements of the form (H,HD) form two additional
boolean slices, which we may call the lower attribute slice and the upper attribute
slice, respectively. Both are obviously isomorphic copies of the powerset algebra
of A. The intention of our definition should be clear then:

– The join-irreducibles are only the atoms of the A-slice (i.e., the slice with
the longest tuples) plus the atoms of the lower attribute slice.

– The meet-irreducibles are much richer: they consists of the coatoms of all
H-slices (note MD,A includes H as the sole element of CoDomD,∅) plus all
coatoms of the upper attribute slice.

Let us formalize these two itemized points as

Theorem 5.2. For any finite A and D such that |D| ≥ 2, we have

JD,A = J(R(D,A)), (join-irreducibles)

MD,A = M(R(D,A)). (meet-irreducibles)

Proof. (join-irreducibles): To prove the ⊆-direction, simply observe that the
elements of JD,A are exactly the atoms of R(D,A). For the converse, note that

– every element in a H-slice is a join of the atoms of this slice, as each H-slice
has a boolean structure and in the boolean case atomic = atomistic,

– the header elements (H, ∅) are joins of elements of AAttD,A,
– the atoms of H-slices are joins of header elements with elements of AAttD,A.

Hence, no element of R(D,A) outside AAttD,A can be join-irreducible.

(meet-irreducibles): This time, the ⊇-direction is easier to show: MD,A in-
cludes the coatoms of the H-slices and the upper attribute slices. Hence, the

Relational Lattices 339

basic properties of finite boolean algebras imply all meet-irreducibles must
be contained in MD,A: every element of R(D,A) can be obtained as an in-
tersection of elements ofMD,A. For the ⊆-direction, it is clear that elements
of CoAttD,A are meet-irreducible, as they are coatoms of the whole R(D,A).
This also applies to H ∈ CoDomD,∅. Now take codomH(x) = (H,HD − {x})
for a non-empty H = {1, . . . , h} and x = (x1, . . . xh) ∈ HD and assume

codomH(x) = r��s for r, s �= codomH(x). That is, H = Hr ∪Hs and

HD − {x} = {y ∈ Hr∪HsD | y[Hr] ∈ Br and y[Hs] ∈ Bs}.

Note that wlog Hr � H and r ⊆ codomHr (z) for some z ∈ HrD; otherwise,
if both r and s were top elements of their respective slices, their meet would
be (H,HD). Thus HD − {x} ⊆ {y ∈ HD | y[Hr] �= z} and by contraposition

{y ∈ HD | y[Hr] = z} ⊆ {x}. (1)

This means that z = x[Hr]. But now take any i ∈ H −Hr, pick any d �= xi
(here is where we use the assumption that |D| ≥ 2) and set

x′ := (x1, . . . , xi−1, d, xi+1, . . . , xh).

Clearly, x′[Hr] = x[Hr] = z, contradicting (1). !�
Theorem 5.3. Assume D,A are finite sets such that |D| ≥ 2 and A �= ∅. Then
I≤ , ↙, ↗ and ↙↙ look for R(D,A) as follows:

r = adom(x) aatt(a) adom(x) aatt(a)

s = coatt(a) coatt(b) codomH(y) codomH(y)

r I≤ s always a �= b x[H] �= y a �∈ H

r ↙ s never a = b x[H] = y a ∈ H

r ↗ s never a = b x[H] = y never

r ↙↙ s never a = b always always

Proof (Sketch).
For the I≤ -row: this is just spelling out the definition of ≤ on R(D,A) as

restricted to JD,A ×MD,A.
For the ↙-row: the set of join-irreducibles consists of only of the atoms of the

whole lattice, hence ↙ is just the complement of ≤.
This observation already yields ↗⊆↙ and ↗↙=↗. The last missing piece

of information to define ↗ is provided by the analysis of restriction of ≤ to
MD,A ×MD,A:

for

r = coatt(a), s = coatt(b),

r ≤ s iff

never,

r = coatt(a), s = codomH(x), never,

r = codomH(x), s = coatt(a), a ∈ H,
r = codomH(x), s = codomH(y), never.

340 T. Litak, S. Mikulás, and J. Hidders

Finally, for ↙↙ we need to observe that composing ↙ with ↗ ◦ ↙ does not
allow to reach any new elements of CoAttD,A. As for elements of MD,A of the

form codomH(y), note that

∃h.(h↗ coatt(a)& h↙ codomH(y)) if a ∈ H, (2)

∃h.(h↗ codomHx(x)& h↙ codomHy (y)) if x[Hx ∩Hy] = y[Hx ∩Hy]. (3)

Furthermore, we have that

– for any x ∈ AD and any H ⊆ A, adom(x)↙ codomH(x[H]),
– for any a ∈ A and any x ∈ AD, aatt(a)↙ codomD(x).

Using (3), we obtain then that JD,A × {H} ⊆↙↙ and using (3) again—that

JD,A × {codomH(y)} ⊆↙↙ for any y ∈ AD and any H ⊆ A. !�

Corollary 5.4. If D,A are finite sets such that |D| ≥ 2 and A �= ∅, then
R(D,A) is subdirectly irreducible but not simple.

Proof. Follows immediately from Proposition 5.1 and Theorem 5.3. !�

6 Conclusions and Future Work

6.1 Possible Extensions of the Signature

Clearly, it is possible to define more operations on RH
unr than those present in

LH. Thus, our first proposal for future study, regardless of the negative result in
Corollary 4.8, is a systematic investigation of extensions of the signature. Let us
discuss several natural ones; see also [ST06, Tro].

The top element �� := (∅, {∅}). Its inclusion in the signature would be harmless,
but at the same time does not appear to improve expressivity a lot.

The bottom element ⊥⊥ := (A, ∅). Whenever A is infinite, including ⊥⊥ in the
signature would exclude subalgebras consisting of relations with finite headers—
i.e., exactly those arising from concrete database instances. Another undesirable
feature is that the interpretation of ⊥⊥ depends on A, i.e., the collection of all
possible attributes, which is not explicitly supplied by a query expression.

The full relation U := (A,AD) [Tro, ST06]. Its inclusion would destroy the
domain independence property (d.i.p.) [AHV95, Ch. 5] mentioned above. Note
that for non-empty A and D, U is a complement of H.

Attribute constants a := ({a}, ∅}), for a ∈ A. We touch upon an important dif-
ference between our setting and that of both named SPJR algebra and unnamed
SPC algebra in [AHV95, Ch. 4], which are typed : expressions come with an ex-
plicit information about their headers (arities in the unnamed case). Our expres-
sions are untyped query schemes. On the one hand, LH allows, e.g., projection of
r to the header of s: r⊕ (s��H), which does not correspond to any single SPJR ex-
pression. On the other hand, only with attribute constants we can write the SPJR
projection of r to a concrete header {a1, . . . , an}: πa1,...,an(r) := r⊕a1�� . . . ��an.

Relational Lattices 341

Unary singleton constants (a : d) := ({a}, {(a : d)}), for a ∈ A, d ∈ D. These are
among the base SPJR queries [AHV95, p. 58]. Note they add more expressivity
than attribute constants: whenever the signature includes (a : d) for some d ∈ D,
we have a = (a : d)��H. They also allow to define �� as �� = (a : d)⊕H and, more
importantly, the SPJR constant-based selection queries σa=d(r) := r��(a : d).

The equality constant Δ := (A, {x ∈ AD | ∀a, a′. x(a) = x(a′)}). With it, we
can express the equality-based selection queries : σa=b(r) := r��(Δ⊕ a��b). But the
interpretation of Δ violates d.i.p., hence we prefer the inner equality operator :

r := (Hr, {x ∈ HrD | ∃x′ ∈ r. ∃a′ ∈ Hr.∀a ∈ Hr. x(a) = x′(a′)}),

which also allows to define σa=b(r) as r��(r⊕a��b).

The header-narrowing operator r � s := (Hr−Hs, {x[Hr−Hs] | x ∈ Hr}). This
one is perhaps more surprising, but now we can define the attribute renaming

operators [AHV95, p. 58] as ρa �→b(r) := (r��(r⊕ a)��(b : d)) � a, where d ∈ D
is arbitrary. Instead of using �, one could add constants for elements aatt(a)
introduced in Section 5, but this would lead to the same criticism as ⊥⊥ above:
indeed, such constants would make ⊥⊥ definable as ⊥⊥ = aatt(a)��a.

Overall, one notices that just to express the operators discussed in [AHV95,
Ch. 4], it would be sufficient to add special constants, but more care is needed
in order to preserve the d.i.p. and similar relativization/finiteness properties.

The difference operator r− s := (Hr, {x ∈ Br | x /∈ Bs}). This is a very natural
extension from the DB point of view [AHV95, Ch. 5], which leads us beyond the
SPJRU setting towards the question of relational completeness [Cod70]. Here
again we break with the partial character of Codd’s original operator. Another
option would be (Hr∩s, {x ∈ Br[Hs] | x /∈ Bs[Hr]}), but this one can be defined
with the difference operator proposed here as (r⊕ s)− (s⊕ (r��H)).

6.2 Summary and Other Directions for Future Research

We have seen that relational lattices form an interesting class with rather sur-
prising properties. Unlike Codd’s relational algebra, all operations are total and
in contrast to the encoding of relational algebras in cylindric algebras, the do-
main independence property obtains automatically. We believe that with the
extensions of the language proposed in Section 6.1, one can ultimately obtain
most natural algebraic treatment of SPRJ(U) operators and relational query
languages. Besides, given how well investigated the lattice of varieties of lattices
is in general [JR92], it is intriguing to discover a class of lattices with a natural
CS motivation which does not seem to fit anywhere in the existing picture.

To save space and reader’s patience, we are not going to recall again all the
conjectures and open questions posed above, but without settling them we can-
not claim to have grasped how relational lattices behave as an algebraic class.
None of them seems trivial, even with the rich supply of algebraic logic tools

342 T. Litak, S. Mikulás, and J. Hidders

available in existing literature. A reference not mentioned so far and yet poten-
tially relevant is [Cra74]. An interesting feature of Craig’s setting from our point
of view is that it allows tuples of varying arity.

We would also like to mention the natural question of representability:

Problem 6.1 (Hirsch). Given a finite algebra in the signature LH (L), is it de-
cidable whether it belongs to SP(RH

unr), SP(RH
fin) (SP(Runr), SP(Rfin))?

We believe that the analysis of the concept structure of finite relational lattices
in Section 5 may lead to an algorithm recognizing whether the concept lattice
of a given context belongs to SP(RH

fin) (or SP(Rfin)). It also opens the door to a
systematic investigation of a research problem suggested by Yde Venema: duality
theory of relational lattices. See also Section 2.1 above for another category-
theoretical connection.

References

[AHV95] Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-
Wesley (1995)

[Cod70] Codd, E.F.: A Relational Model of Data for Large Shared Data Banks.
Commun. ACM 13, 377–387 (1970)

[Cra74] Craig, W.: Logic in Algebraic Form. Three Languages and Theories.
Studies in Logic and the Foundations of Mathematics, p. 72. North
Holland (1974)

[DM01] Düntsch, I., Mikulás, S.: Cylindric structures and dependencies in rela-
tional databases. Theor. Comput. Sci. 269, 451–468 (2001)

[GW96] Ganter, B., Wille, R.: Applied Lattice Theory: Formal Concept Analy-
sis. In: Grätzer, G. (ed.) General Lattice Theory, 2nd edn., Birkhäuser
(1996)

[Gur66] Gurevich, Y.: The word problem for certain classes of semigroups. Al-
gebra and Logic 5, 25–35 (1966)

[GL84] Gurevich, Y., Lewis, H.R.: The Word Problem for Cancellation Semi-
groups with Zero. The Journal of Symbolic Logic 49, 184–191 (1984)

[Har58] Harrop, R.: On the existence of finite models and decision procedures
for propositional calculi. Mathematical Proceedings of the Cambridge
Philosophical Society 54, 1–13 (1958)

[HH02] Hirsch, R., Hodkinson, I.: Relation Algebras by Games. Studies in Logic
and the Foundations of Mathematics, vol. 147. Elsevier (2002)

[IL84] Imieliński, T., Lipski, W.: The Relational Model of Data and Cylindric
Algebras. J. Comput. Syst. Sci. 28, 80–102 (1984)

[Jac99] Jacobs, B.: Categorical Logic and Type Theory. Studies in Logic and
the Foundations of Mathematics, vol. 141. North Holland, Amsterdam
(1999)

[JR92] Jipsen, P., Rose, H.: Varieties of Lattices. Lecture Notes in Mathematics,
vol. 1533. Springer (1992)

[JR98] Jipsen, P., Rose, H.: Varieties of Lattices. In: Grätzer, G. (ed.) Gen-
eral Lattice Theory, pp. 555–574. Birkhäuser (1998); Appendix F to the
second edition

[Mad80] Maddux, R.: The Equational Theory of CA3 is Undecidable. The Journal
of Symbolic Logic 45, 311–316 (1980)

Relational Lattices 343

[Mae74] Maeda, S.: Locally Modular Lattices and Locally Distributive Lattices.
Proceedings of the American Mathematical Society 44, 237–243 (1974)

[McK72] McKenzie, R.: Equational bases and non-modular lattice varieties.
Trans. Amer. Math. Soc. 174, 1–43 (1972)

[PMV07] Padmanabhan, R., McCune, W., Veroff, R.: Lattice Laws Forcing Dis-
tributivity Under Unique Complementation. Houston Journal of Math-
ematics 33, 391–401 (2007)

[Pos47] Post, E.L.: Recursive Unsolvability of a Problem of Thue. The Journal
of Symbolic Logic 12, 1–11 (1947)

[ST06] Spight, M., Tropashko, V.: First Steps in Relational Lattice (2006),
http://arxiv.org/abs/cs/0603044

[Sta72] Stanley, R.P.: Supersolvable lattices. Algebra Universalis 2, 197–217
(1972)

[Ste99] Stern, M.: Semimodular Lattices. Encyclopedia of Mathematics and its
Applications, vol. 73. Cambridge University Press (1999)

[Tro] Tropashko, V.: The website of QBQL: Prototype of relational lattice
system, https://code.google.com/p/qbql/

[Tro05] Tropashko, V.: Relational Algebra as non-Distributive Lattice (2005),
http://arxiv.org/abs/cs/0501053

[VdBVGV07] Van den Bussche, J., Van Gucht, D., Vansummeren, S.: A crash course on
database queries. In: PODS 2007: Proceedings of the Twenty-Sixth ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Sys-
tems, pp. 143–154. ACM, New York (2007)

http://arxiv.org/abs/cs/0603044
https://code.google.com/p/qbql/
http://arxiv.org/abs/cs/0501053

Towards Finding Maximal Subrelations

with Desired Properties

Martin Eric Müller1

University Augsburg, Dept. Computer Science
m.e.mueller@acm.org

Abstract. As soon as data is noisy, knowledge as it is represented in
an information system becomes unreliable. Features in databases in-
duce equivalence relations—but knowledge discovery takes the other way
round: given a relation, what could be a suitable functional description?
But the relations we work on are noisy again. If we expect to record
data for learning a classification of objects then it can well be the real
data does not create a reflexive, symmetric and transitive relation al-
though we know it should be. The usual approach taken here is to build
the closure in order to ensure desired properties. This, however, leads to
overgeneralisation rather quickly.

In this paper we present our first steps towards finding maximal sub-
relations that satisfy the desired properties. This includes a discussion
of different properties and their representations, several simple measures
on relations that help us comparing them and a few distance measures
that we expect to be useful when searching for maximal subrelations.

1 Motivation

Information systems are used to represent data and their (observed) properties
in some (informative) systematic way:

I = 〈U,F,V〉 , with F = {fj :U → Vj : j ∈ n} ,V = {Vj : j ∈ n} (1)

where F is the set of all total features describing the elements of U = {xi : i ∈m}.
A feature fj is called an attribute, iff |cod(fj)| = 2; sets of attributes are also
known as contexts, [GW99]. Every fj ∈ F induces a canonical equivalence re-
lation Rj . For F ⊆ F the set of induced equivalence relations are denoted by
R ⊆ R. A concept is a subset s ⊆ U which is defined in terms of basic set
operations on the equivalence classes of induced by relations Rj ∈ R. They can
be expressed in conjunctive normal form

s =
�

D∈P

�
〈i,j〉∈D

[xi]Rj , for some P ⊆ 2m×n (2)

which is an expression only parametrised by relation identifiers and domain ele-
ment identifiers serving as class representatives. The second approach to concepts
is that all elements belonging to a certain concept are indiscernible with respect

P. Höfner et al. (Eds.): RAMiCS 2014, LNCS 8428, pp. 344–361, 2014.
c© Springer International Publishing Switzerland 2014

Towards Finding Maximal Subrelations with Desired Properties 345

to a certain set of knowledge. Arguing in reverse direction, we say that we can
(uniquely) identify x if we are able to tell the difference between x and any other
element. Therefore, given the question whether an x is-a s is the same as the
question whether our knowledge suffices to prove that x is indiscernible from
any object of which we know it belongs to s.

The problem is that real data is noisy and the information system uninten-
tionally carries some misinformation.

Once we are given an information system I, hypotheses can be induced in
many ways (c.f.[Mül12]), but there arise several problems when all we have are
noisy relations of similarities of domain objects. The reverse construction of
F for such a set of relations on F ⊆ 2U×U will, in the general case, fail, for
these relations are not neccessarily total or functional or simply do not exhibit
any desired relation property. One way to force such properties is by building
closures, which on the other hand, may result in huge information loss: In the
worst case one might yield for some closure operation ⊗ that R⊗ = �� and, thus,
U/R⊗ = {[x]}.1 One consequence expressed in terms of rough set data analysis
is that for all s ⊂ U and R′ := R ∪ {R⊗},

[[R′]]s = ∅ and 〈|R′|〉s = U.

where [[·]] and 〈|·|〉 are the lower and upper approximations (see [Paw84, Pol02,
Mül12]). Then, no object x could be discerned from any (other) object y.

The problem at hand can be described as follows: Given a relation R that we
want to satisfy a certain property. Then, its closure R⊗ is the smallest superset
satisfying this property. The largest subset of R satisfying the desired property
need not be defined uniquely.

In this paper, we shall discover how to approach the required properties for
finding suitable classes on a given set of data.

2 Interesting Relation Properties

One can identify equivalence relations in matrix notation by simultaneously re-
arranging rows and columns such that the matrix becomes a square diagonal
matrix.2 What sounds simple in theory, becomes cumbersome in practice: How
can one efficiently prove or disprove whether a relation matrix can be rearranged
into a desired normal form to show it satisfies certain properties? There exist
several, weaker versions of equivalence that one might hope are easier to identify.

Notational Conventions. In the following, 〈Reln(U),⊆,∩,∪,��,⊥⊥〉 shall de-
note the complete lattice of binary relations on a finite base set U with�� = U×U
and ⊥⊥ = ∅. 1 denotes the identity relation and 1n := 1 ∪{〈xi, xj〉 : |i− j| < n}
the band of radius n around 1 . x•R and R•y denote the image and preimage
of x and y under R. Closure operations are written post-superscript (R⊗) their
1 Where �� := U × U and U/R is the quotient (i.e. partition).
2 Matrix normal forms and associated relation properties are extensively dealt with
in [Sch11].

346 M.E. Müller

“duals” with a pre-subscript (⊗R). We define the (principal) up- or downsets3

of R by

R↑ := {P ∈ Reln(U) : R ⊆ P} and R↓ := {P ∈ Reln(U) : P ⊆ R} . (3)

R, P �Q , R ,̆ R∗ and Rd := R˘ denote complementation, composition, converse,
the reflexive transitive closure and duality resp.

2.1 Biorders (Ferrers relations)

A binary relation on U is called a biorder (or Ferrers relation), iff:

R�Rd�R ⊆ R. (4)

Pointwise, we get uRx∧vRy∧¬uRy =⇒ vRx (see, e.g.[GW99]) which intuitively
implies that for any two elements having at least one common image, one image
set is a subset of the other, which together means that all elements’ image sets
form a sequence of subsets:

∀x, y ∈ U : R•x �= ∅ ∧R•y �= ∅ =⇒ x•R ⊆ y•R ∨ y•R ⊆ x•R (5)

In matrix notation it means that if wRx and yRz then also wRz or yRx. Vi-
sually speaking, there is a representation of R in echelon normal form.4 This is
equivalent to stating that there exists an ordering of the domain elements such
that their images form a monotone sequence of sub- (or super-) sets:

R is a biorder⇐⇒ ∃f : ∀x, y ∈ U : f(x) ≤ f(y) −→ x•R ⊆ y•R (6)

=⇒ ∃f : ∀x, y ∈ U : f(x) ≤ f(y) −→ |x•R| ≤ |y•R|, (7)

where f is an enumeration (injective function f : U → N0). The former statement
is proved in the appendix, the latter one is used for the implementation of an
(efficient) test procedure.5 By FerR(U) we denote the set of all biorders on U .
The definition of a proper closure operator appears straightforward:

R� := the smallest relation Q ⊇ R s.t. Q is a biorder (8)

= R�(Rd�R)∗ , (9)

3 See [Bly05] or [GW99] for principal filters and ideals.
4 A matrix is in echelon form, if there is a monotone descending slope of 1-entries
and all entries above are 0s. To be precise, we speak of column echelon normal forms
since we want the 1-entries to be aligned in the lower left corner of the matrix.

5 After writing this paragraph and the corresponding proofs in the appendix, the
author found that this property corresponds to the notion of block transitivity as
defined through fringes in [Sch11] or order shaped relations as in [Win04]. There
is, however no proof directly showing the equivalence of a relation being a biorder
and having a sequent subset matrix representation from which one could infer an
algorithm in a natural way. See also [CDF03].

Towards Finding Maximal Subrelations with Desired Properties 347

but the ∗-operation causes serious problems since FerR(U) is not closed under
∪ or ∩: Therefore, R� is a uniquely defined biorder containing R (by equation
(9)), but it is not necessarily a minimal biorder containing R as stated in (8).6

To verify a relation is a biorder one has to show that R = R�. It is, iff ∀x ∈
U : x•R = x•R� = x•(R�(Rd�R) ∗) = x•(R�(Rd�R)). A näıve implementation
would require the computation of Rd plus O(n3) tests for equality.7 An O(n2)-
algorithm for checking relations being biorders is given in the appendix.

2.2 Difunctionality

R ∈ Reln(U) is called difunctional, iff

R� R �̆R ⊆ R,

which means that any two elements x, y ∈ U sharing a common element in their
images, have equal image sets:

R is difunctional ⇐⇒ ∀x, y ∈ U : x•R ∩ y•R �= ∅ −→ x•R = y•R. (10)

The only relations that are difunctional and biorders are ��,⊥⊥ ∈ Reln(U). The
set DifR(U) of difunctional relations on U forms a poset 〈DifR(U),⊆〉. It is closed
under ∩ but not under ∪ which can easily be proved using the matrix notation
supposing that a relation is difunctional if and only if its incidence matrix can
be represented in block form8 (this is an immediate consequence of the proof of
equation (10) in the appendix). DifR(U) is not closed under complementation
(simple counterexample or by contradiction and deMorgan of a ∩-expression).
The difunctional closure is defined as

R† := R�(R �̆R)∗ . (11)

A proof is given in [Sch11]. Again, it does not suffice to add the condition of
difunctionality to the relation since we may have only “pointwise connected”
images (for example 1n), but in contrast to biorder closures, the difunctional
closure of a relation only requires mutual “blind copies” of images without the
need for checking set inclusion.

2.3 Transitivity

The transitive closure of a relation R is R+ :=
�

i∈NR
i. The reflexive, transitive

closure is R∗ = R+ ∪ 1 =
�

i∈N0
Ri. We denote the set of transitive relations

6 As an example, see R as in section 4.1. For R = (
100
101
110

) , both P1 = (
100
101
111

) and
P2 = (

100
111
110

) are minimal biorders containing R, whereas R� = (
100
111
111

) is even bigger.

But in contrast to the minimal relations it is unique in the sense that there are no
other biorders of the same cardinality containing R.

7 Cubic runtime follows from a three-fold iteration similar to the näıve algorithm for
the difunctional closure.

8 A matrix that can be partitioned into non-overlapping rectangular regions with all
values in such a region being either 1 or 0.

348 M.E. Müller

on U by TrnR(U). 〈TrnR(U),⊆,∩,⊥⊥,��〉 forms a complete meet-semilattice.
Transitivity is an important property that is hard to come by: There is no
efficiently computable formula known to determine the number of transitive
relations on a domain of n elements (a few asymptotic results can be found in
[Pfe04, Kla04]), and the only well-known algorithm for computing the transitive
closure (the Roy-Warshall(-Floyd) algorithm, see appendix) is of cubic runtime
complexity. Recent algorithms have a worst case behaviour of less than O(n2.4)
but require special normal forms or additional relation properties.

2.4 Equivalence

Let EquR(U) be the set of all equivalence relations on U . Then, 〈EquR(U),⊆〉
forms a ∩-semilattice 〈EquR(U),⊆,∩, 1U ,��〉. It does not form a complete lattice
in the sense that it is not closed under ∪ meaning that the supremum is not
defined. By defining

xP �Ry := ∃n ∈ N0∃Q0, . . . , Qn−1 ∈ {P,R} : xQ0� · · ·�Qn−1 (12)

we find 〈EquR(U),⊆,∩,�,⊥⊥,��〉 with ⊥⊥ = 1 to be a complete lattice.9 The
equivalence closure of an arbitrary binary relation R ∈ Reln(U) is defined as
follows:

R≡ := the smallest relation P ∈ EquR(U) with R ⊆ P. (13)

Equivalence relations can be visualised in block-diagonal10 form by rearranging
rows and columns simultaneously (since R˘ ⊂ R). Therefore, relations can be
checked in O(n2) for being equivalent by reordering through sorting and check-
ing class equality in at most O(n2). Having reflexivity and difunctionality we
represent the equivalence closure as

R≡ := R1 †. (14)

For a proof, see the appendix. The most important properties that we have
reported so far are summarised in table 1.

3 Relation Footprints

Let R ∈ Reln(U). Up- and downsets can be restricted to subsets of Reln(U) that
are defined by the according relation properties:

R↑{↔,1 ,†,�,+,≡} := {P ∈ SymR,RefR,FerR,TrnR,EquR(U) : R ⊆ P} (15)

9 See the definition of
�

on E(U) in [GW99].
10 A partition of a square matrix into squares with all diagonal elements being a diago-

nal element of a square matrix, too. All the squares intersecting the diagonal are 1s,
all others are 0. Block diagonal matrices are subsets of band matrices (n-diagonal),
[RZ11].

Towards Finding Maximal Subrelations with Desired Properties 349

Table 1. Summary of closure properties and the poset of relation types

closed

∪ ∩ � ⊥⊥
RefR + + − + 1
SymR + + + + 1
FerR − − + + ∅
DifR − + − + ∅
TrnR − − + + 1
EquR − + − + 1

TrnR

$$$
$

FerR DifR
%%%

%% SymR

&&&
&

RefR
'''

' pEquR

&&&
&

EquR

R ∈ pEquR(U) :⇐⇒ R�R ⊆ R∧R˘⊆ R.

⊆Reln-extrema of restricted up- or downsets do not always coincide with closure
operations (or their dual concepts). Therefore, we define

⊗R := maxR↓⊗ for ⊗ ∈ {↔, 1 , †, 9,+,≡} , (16)

as the set of ⊆⊗-maximal relations. It is kind of an interior operator corre-
sponding to the dual of the closure operator R⊗ and delivers a not neccessarily
singleton set of solutions. As an example, consider U = {a, b, c} and ⊗ = + on
Reln(U) & R /∈ TrnR(U) (since bRd):

R =

�
1 1 1
0 1 0
0 0 1

�
, +R =

��	
�

1 1 1
0 1 0
0 0 0

�
,

�
1 1 1
0 0 0
0 0 1

�
�� . (17)

To find a subrelation with desired properties, one has to search for it, and to
search efficiently, one needs heuristics guiding the way. We will now discuss a
few methods to determine relation “footprints”.11

3.1 Signatures and Permutations

For U = {xi : i ∈ n}, a matrix representation

x0 · · · xn−1
x0
...

. . .

xn−1

=

x0Rx0 · · · x0Rxn−1

...
. . .

...
xn−1Rx0 · · · xn−1Rxn−1

Ǳ

or R[i][j] = (xij)i,j∈n with xij = 1 :⇐⇒ xiRxj of a relation R ∈ Reln(U) is
said to be of a signature σR :=

�
σX
R , σ

Y
R

�
:= 〈0 · · · (n− 1), 0 · · · (n− 1)〉. Each

part of the signature corresponds to a bijective indexing function idx : n → U
such that the i-th component (i.e. row or column) defines to which element

11 They are called footprints but not “fingerprints” because they are not unique.

350 M.E. Müller

xidx (i) ∈ U it refers.12 Reordering rows or columns simply means to rearrange
the index strings using a permutation.13 Two relations P and Q are said to be
weakly shape equivalent, iff there are permutations of their signatures such that
the matrices (disregarding the signatures) are equal:

P * Q :⇐⇒ ∃πX , πY : P [xi][yj] = Q[xπX (i)][yπY (j)] (18)

P and Q are called strongly shape equivalent (P
!* Q), iff P * Q and πX = πY .

14

Given a matrix R of signature σR = 〈i0 · · · in−1, j0 · · · jn−1〉, we denote by

%xk :=
�
xikRxj0 , . . . , xikRxjn−1

�
bin

(19)

%yl :=
�
yjn−1Ryil , . . . , yj0Ryil

�
bin

(20)

the fixed length n-bit vectors (and, hence natural numbers) that we get when
reading the k-th row from left to right and the l-th column bottom up (!)15,
respectively. The cardinality of |%xk| := |xk•R| corresponds to the number of 1s
in the row; the same holds for | %xl| := |Rx•l|.

Vectors as Footprints. The cardinality of a relation |R| is simply the sum
of all vector cardinalities

�
i∈n |%xi|. The density of a matrix can be measured

by the ratio of the relation’s cardinality and relation size, |R|/n2. Its relative
reflexivity is the size of the subidentity contained in R compared to n, |R∩1 |/n =
(
�

i∈n xii)n.
Recall the definition of R from equation (17). There we have σR = 〈abc, abc〉.

such that for πX(σX
R) = {〈a, c〉 , 〈b, a〉 , 〈c, b〉} and πY (σY

R) = {〈c, a〉 , 〈b, c〉 , 〈a, b〉}
we obtain a new signature σ′R =

�
πY (σ

X
R), πY (σ

Y
R)
�
= 〈cab, bca〉. The result of

the reordering is:

Rσ a b c
a 1 1 1
b 0 1 0
c 0 0 1

Rσ′ b c a
c 0 1 0
a 1 1 1
b 1 0 0

Rσ′′ c b a
b 0 1 0
c 1 0 0
a 1 1 1

Rσ′′′ b c a
b 1 0 0
c 0 1 0
a 1 1 1

Both matrices represent the same relation in just another permutation of rows
and columns. Hence, the scores (cardinality of (pre-) images) remain the same.

12 This is equivalent to saying that σX
R and σY

R are permutations of n, [Bón12].
13 Here, the word “permutation” means a bijective mapping from one permutation of

n onto another. We use the same word for both assuming that the context disam-
biguates.

14 Using � for (strong) shape equivalence originates in the isomorphism of permutation
groups. — Also, permutations are renamings of domain elements. Hence, by some
abuse of notation and for later purposes, we also define renamings as: ∃ρ : Q =
ρ(P) :⇐⇒ ∃π1,2 : xPy ←→ π1(x)Qπ2(y) such that P � Q iff there is some ρ such
that ρ(P) = Q. This is a very informal way of writing, because the renaming function
does not operate on the relation but rather on the set of possible sequences of indices
for enumerating the objects of the domain.

15 Reading the l-th column top down yields mirror(�yl). The direction of reading is
interchangeable.

Towards Finding Maximal Subrelations with Desired Properties 351

The bit-vector reading base 10 results in quite different values:

σ σ′ σ′′ σ′′′

%x0 111bin = 7dec 001bin = 1dec 010bin = 2dec 100bin = 4dec
%x1 010bin = 2dec 011bin = 3dec 100bin = 4dec 010bin = 2dec
%x2 001bin = 1dec 101bin = 5dec 111bin = 7dec 111bin = 7dec
%x0 010bin = 2dec 110bin = 6dec 110bin = 6dec 101bin = 5dec
%x1 111bin = 7dec 011bin = 3dec 101bin = 5dec 110bin = 6dec
%x2 100bin = 4dec 010bin = 2dec 100bin = 4dec 100bin = 4dec

(21)

Note that for σ′′, we have an increasing sequence of values for %x and a de-
creasing sequence for %x.

Vector Weights. The same cardinality of images and preimages do not imply
equality of the sets, but we can infer quite useful information if cardinalities do
not coincide. If for two elements the image cardinalities are different, the images
are unequal. In the case of biorders we know that the smaller one must be a
subset of the larger one and in the case of difunctionality the intersection of
both is empty.

In order to distinguish different vectors with the same number of 1s in them,
we define:

‖%xi‖ :=
�
j∈n

(n− j) ∗ xiRxj . (22)

This way, the score for a vector increases the farther to the left the 1s are located
within %xi and unequal images of same size are assigned different values. It is easy
to see that xi•R ⊆ xj•R implies ‖%xi‖ ≤ ‖%xj‖.

Run-Length Encoding of Matrices. Using run-length-encoding (RLE) of %xi
and %xi, we have a very simple measure for both the homogeneity of single rows
or columns and the distance between two such vectors:16

alt(%x) = alt(x0 · · ·xn−1)
:= 〈0〉 ◦ 〈i : xi �= xi−1, 1 ≤ i ≤ n− 1〉 (23)

rle(%x) := [alt(%x)[i+ 1]− alt(%x)[i] : 0 ≤ i < !(alt(%x))] (24)

Two vectors %x and %y are equal, iff rle(%x) = rle(%y) and x0 = y0. Hence, we agree
to add a prefix 1 or 0 indicating the first symbol of the encoded string: 1[4, 1, 3]
encodes 〈11110111〉. When interpreted as binary strings with bitwise comple-
mentation, %x = %y, iff rle(%x) = rle(%y) and x0 = y0. We define an alphanumeric
ordering on the (possibly different length) RLE strings by:

%x ≤
rle
%y :⇐⇒ x0 < yo ∨ x1 · · ·xk−1 ≤

rle
y1 · · · yl−1. (25)

16 To avoid confusion, we denote sequences or strings enclosed in 〈· · ·〉 without sep-
arating commas. Sequences can be concatenated using the ◦ operator and can be
described intensionally like sets: s = 〈s0 · · · sn−1〉 = 〈i : i ∈ n〉. Sequence elements
can be accessed similar to array elements s[i] = 〈s0 · · · sn−1〉 [i] = si.

352 M.E. Müller

The shorter a RLE-code, the more homogenous a vector. The ordering as defined
in equation (25) can also be computed arithmetically by adding a prefix of values
n such that all RLE codes have the same length. From the point of view of
compression this is not a wise thing to do, but then

%x≤
rle
%y ⇐⇒ x′n ≤ y′n

where x′n and y′n are the integers base n after adding the prefixes.

Structural Footprints. We use the following formulae to compute a heuristic
measure for the “staircaseness” of a given matrix:

scX(σX
R) :=

�
i∈n

(n− (i+ 1))(%xi+1 − %xi) (26)

scY (σ
Y
R) :=

�
i∈n

(i+ 1) (%xi+1 − %xi) (27)

Example. The heuristic measures for the example above deliver the following
values:

σ σ′ σ′′ σ′′′

scX(σX
R) −11 6 7 1

scY (σ
Y
R) −1 −5 −3 −3

hechelon −12 1 4 −2

A simple summation ranks σ′′ as the most promising echelon candidate. The
idea behind this heuristics is to get a rough picture of a given relation R so as to
bring it into a form that allows for generating a good candidate P for P ∈ �R.

3.2 Comparing Relation Matrices

Now that we have a toolset of measures, we collect a few heuristics to guide our
search for maximal subrelations satisfying a desired property.

Distance by Difference: A Hamming-Like Dissimilarity. Computing the
distance for two relations on a set of n elements is, in general, in O(n2). The
simplest measure for the distance between two relations is the number of matrix
entries in which the two relations disagree:

dist∨̇(P,Q) :=
�

i,j∈n,i�=j

xiPxj∨̇xiQxj |: Defn. as, e.g. by [GPR08](28)

= |(P ∩Q) ∪ (P ∩Q)| − |1 ∩ ((P ∩Q) ∪ (P ∩Q))| (29)

≤ |(P ∩Q) ∪ (P ∩Q)| (30)

where ∨̇ denotes exclusive disjunction. This measure disregards differences in
subidentities contained in the relations. It satisfies the separation axiom (for in
line (29), the minuend is always a subset), it is symmetric (due to ∨̇), identical

Towards Finding Maximal Subrelations with Desired Properties 353

arguments deliver zero distance, and it also satisfies the triangle inequation.
[GPR08] silently presuppose subadditivity, but since this not as trivial as it
seems at first sight, we provide a proof in the appendix.

Based on dist∨̇, one can also define asymmetric and weaker distance measures:

dist→(P,Q) := |(P ∪Q)| − n and dist←(P,Q) := |(P ∪Q)| − n (31)

are both lower bounds for dist∨̇. If dist→(P,Q) = dist←(P,Q) then dist∨̇(P,Q) =
n2 − dist←(P −Q) + n = n2 − dist→(P −Q) + n. Of course, all these measures
are invariant against replacing P and Q by weakly shape equivalent versions P ′

and Q′ resulting from the same renaming: P ′ = ρ(P) and Q′ = ρ(Q). The time
it takes to compute any of these distance values takes n2 − n = n(n− 1).

Distance by Integer Values. Let there be two vectors %xP �= %xQ describing x•P
and x•Q respecitvely. We define the (squared) Signed Encoding Length distance:

distSEL := (−1) ∗ (xP0 �= xQ0) ∗ (!(rle(%xP))− !(rle(%xQ)))2. (32)

This measure only reveils information about the relative homogeneity of the
vectors, but not at all any information about the number of entries where the
relations disagree. A more informative way of talking about the difference be-
tween relations has been described in the previous section and we now shall

develop a method to extract dist∨̇ from the RLE encodings. Two vectors are dif-
ferent, if at at least one position RLE values unequal (and thus, lose alignment).
Suppose the two RLE codes have a common prefix and differ for the first time
in their k-th arguments. Let, without loss of generality, rle(%xP)[k] < rle(%xQ)[k].
We then know that the two vectors differ in at least one position and we also
know that

xPl �= xQl where l =
�

0≤i<k

rle(%xP)[i] + min
�
rle(%xP)[k], rle(%xQ)[k]

�
.

Then, we also know that the following

max
�
rle(%xP)[k], rle(%xQ)[k]

�
−min

�
rle(%xP)[k], rle(%xQ)[k]

�
have different values, too:

3 2 2 3
%xPk 0 0 0 1 1 0 0 1 1 1

%xQk 0 0 1 1 1 1 1 1 1 0
2 7 1

.

354 M.E. Müller

Hence, we can compute the number of places in which both vectors disagree as
follows:

i j rle(xPk)[i] rle(x
Q
k)[j] Counter

0 0 3 2 0
0′ 1 3− 2 = 1 7 0 + 1
1 1′ 2 7− 1 = 6
2 1′ 2 6− 2 = 4 1 + 2
3 1′ 3 4− 2 = 2
3′ 2 3− 2 = 1 1 3 + 1

4

As one can see, the bit difference counter increases every second row starting at
the first position of disagreement because it always takes two toggles to retain the
original bit value. We then successively substract the minimum of the remaining
block lengths from the larger one and skip an addition step if the longer block
continues even farther then the current shorter one.

Since both encodings are aligned at the end of the row, we can concatenate
all row vector codes to one RLE-encoding of the entire matrices for each P and

Q and, hence, compute dist∨̇ in a time linear in the matrix RLE code length
rather than in matrix size n2 (in the example above it took us 5 steps while
the vector length is 10). This motivates the idea of sorting matrices for another
reason than just their visual appearance: The better it is ordered, the longer the
average sequences or runs and, therefore, the shorter the code.

4 Finding Subrelations with Desired Properties

Sorting helps to bring matrices into a form that is “closer” to block matrices,
block diagonal matrices or echelon matrices.17 Once matrices are sorted with
the intention to show a certain property one can identify entries that violate the
restrictions.

4.1 Biorders

Recall the table in equation (21). The visual appearance of Rσ′′ comes close to
an echelon form and it is easy to see that by removing bRb, the relation becomes
a biorder. Alternatively, removing cRc also yields a biorder and both are of
the same cardinality and coincide with the set +R. Similarly, For example, the
following matrix defines a non-biorder R with the 0 denoting a “missing” entry
and 1′ and 1′′ as optional entries that need to be deleted to make R a biorder:

R =

�
1 0 0
1 1′ 0
1 0 1′′

�
, �R =

��	
�

1 0 0
1 0 0
1 0 1

�
,

�
1 0 0
1 1 0
1 0 0

�
�� = {P1, P2} .

17 Another idea that comes to mind when permuting matrices so as to “cluster” 1s is
that of memory efficient binary representations of decimals, [TCC75, Cow02], and
block-wise binary string multiplication, [Boo51].

Towards Finding Maximal Subrelations with Desired Properties 355

We proceed as follows: After sorting the rows by increasing |%x|, the density
increases the closer we come to the bottom. Next, the columns are sorted with
respect to ‖ %y‖ or %ydec. As an example,

R =

�
1 0 0 0
0 1 1 1
0 0 1 0
1 0 1 1

�
becomes ρ(R) =

�
1 0 0 0
0 1 0 0
0 1 1 1
1 1 1 0

�

where σR = 〈abcd, abcd〉 and σ′R = 〈acbd, acdb〉. The RLE-encodings are:

Rows 1[1, 3] 0[1, 1, 2] 0[1, 3] 1[3.1]
Columns 1[1, 2, 1] 1[3, 1] 1[2, 2] 0[1, 1, 2]

It shows immediately that there are proper subsets (1[1, 3] and 1[3, 1]), inter-
sections (0[1, 3] and 1[3, 1]) and even complementary rows (1[1, 3] and 0[1, 3]).
From all those columns where %y has a prefix of 1’s the leftmost is the one with
an RLE-code greater than two, therefore it contains a “gap” inside the eche-
lon and should be deleted. A test verifies that �R = {R− {〈a, a〉 , 〈a, d〉}}. The
same method also delivers P1 and P2 for the introducing example—depending
on whether we focus on the RLE-codes of the rows or the columns when deciding
which entries we delete.

4.2 Difunctionality

Difunctional relations can be displayed in a special block matrix form with max-
imal three blocks per row or column (see section 3.1). This means there are a
whole lot of permutations of signatures against which the matrix shape is in-
variant. But the good news is that any difunctional relation R can be reordered
such that its row and colum vectors all have of length 3 and less and that, for
every block the codes are equal. Where they are not, they must not intersect
with any other code which means that no code segment of rle(%x) may cover any
point in alt(%y). This overlap condition can be formalised as:

x0 = y0 −→ alt(%x) = alt(%y).

The simplest way to check for overlaps between two rows is by joining the se-
quence of alteration indices and delete all those entries where the rows at a
certain point have different values. Difunctionality is a strong property as it re-
quires equality or disjointness of image sets. Hence there are not many options
when encountering an object that is and is not element of intersecting image
sets: it has to be deleted.

Surprisingly, the first idea that comes to mind appears to be the best, too:
Just as in biorder reduction, we simply sort the rows by |%x| and then do the same
on the columns %y. Now the matrix is roughly ordered by density. If %xi &%xj =
%xi = %xj , we carry on. If %xi &%xj �= 0n, we have a nonempty intersection on
the image sets. Hence, we remove from xi all those 1-entries, that are 0 in %xj :

356 M.E. Müller

xi := xj := xi & xj . Forcing difunctionality is quite easy: all we need is the
conjunction & or intersection of image sets. At the same time this suggests that
for very more or less noisy relations R their interior †R is nearly ⊥⊥.

4.3 Transitivity

Consider the relation

R =

�
1 1 0 1
0 0 1 0
0 1 1 1
0 1 0 0

�

It is not transitive, since bRc and c•R = {b, c, d} but neither bRb nor bRd. A
closer inspection shows that in fact

+R = {R− {〈b, c〉} , R− {〈d, b〉}} .

One could say that b witnesses a gap at c and that b points to gaps in d and b.
The common thing of the two relations in +R is that the removed tuples always
involved the domain element b.

In other words, we should try deleting those entries first, which then also
resolve violations of the transitivity principle in interaction with other elements.
Finding a suitable, quick algorithm is not easy but [FR95] showed that

R ∩R� ⊆ R and R ∩R�R are transitive (33)

for any R ∈ Reln(U) where R� and R� are so-called left and right covering
relations or traces :

xR�y :⇐⇒
�
z∈U

zRx −→ zRy |: Left trace/covering relation

xR�y :⇐⇒
�
z∈U

yRz −→ xRz |: Right trace/covering relation
(34)

It even follows that transitive relations R ∈ TrnR(U) can be defined by inter-
sections of transitive biorders Pi ∈ TrnR(U) ∩ FerR(U). This conclusion does
not sound very exciting since from section 2.1 and table 1 we already know that
FerR(U) is not closed under ∩. But with a (relatively) efficient algorithm to solve
the problem of finding biorder subrelations and weakly shape equivalent versions
thereof we might find good candidates for maximal transitive subrelations, too.

[GPR08] present algorithms for defining so-called exterior and interior approx-
imations as well as approximate fittings corresponding to R+, +R and a mixed
form that allows for both adding and deleting elements from R. The algorithm
is based on the distance measure presented in section 3.2. Similar to the con-
cepts of interior approximations and maximal transitive subsets are transitive
reductions : P is called a transitive reduction of R iff P is a minimal subset of R
such that P+ = R+. Reductions have been studied intensively, especially in the

Towards Finding Maximal Subrelations with Desired Properties 357

context of graph theory, and it has been shown that the time complexity of an
according algorithm lies in between O(n2) ⊆ O(n3).

Bringing together the ideas of Fodor/Roubens and how to identify witnesses
and gaps efficiently using suitable heuristics and probabilistic approaches (see
[Bón12]) to our minimisation problem are subject to current work.

4.4 Equivalence

The final goal of our work is to find equivalence relations, where the hard part
is transitivity. On the other hand, we have shown that reflexive difunctional
relations are equivalence relations. Here, reflexivity plays a minor, but crucial
role: If 1 �⊆ R, then there can’t be a subset of R which is an equivalence relation.
If, on the other hand, we postulate18 1 ⊆ R, the problem boils down to finding
difunctional subrelations.

5 Conclusion

In this article we described the problems of search in a sublattice of Reln(U)
that is upper bounded by a given relation R and that is lower bounded by a
relation R which is the infimum of ⊗R.

The relations that are in focus of our work are biorders, difunctional relations
and transitive relations. The substructures of FerR(U), DifR(U) and TrnR(U)
were described in section 2; including a few considerations about equivalences
between relation properties and their corresponding representations from the
point of view of implementing efficient algorithms.

In the further course of developing according algorithms, we focused on mea-
sures to speed up finding elements in ⊗R. We introduced the idea of using
lossless RLE-compressed representations of vectors which result in memory effi-
ciency gain, a speedup (modulo the compression procedure itself) and a heuristic
measure for the distance of relations in order to overcome shortcomings of the

dist∨̇-measure. Another interesting perspective is to introduce weights or a pref-
erence structure describing which parts of a relation may be altered and which
should be left as they are. One of the many tasks ahead is a deeper investigation
of the product of such a preference relation together with an ordering of the
relation matrix as described in section 3.1.

In the first part many results on the algorithmic complexity of algorithms for
testing relation properties were reported (most of them already well-known) and
we presented one with a lower bound pushed from cubic down to square. Still
it remains to find more precise runtime approximations; many of the algorithms
can be optimized by taking into account whether a matrix is sparse or dense.
Especially with respect to the numerical footprints of relations (see sections 3.1

18 This does not hurt in the context of information systems since we deal with equiv-
alence relations induced by functions. So if an element has none or several different
values for one and the same feature, we know there is something wrong in our un-
derlying data collection.

358 M.E. Müller

and 3.2) there is still a lot of work to be done; we couldn’t find a satisfying
answer to the question of how to identify witnesses and the use of traces in the
discussion of finding elements in +R in section 4.3.

In this article we ignored the space complexity of the presented algorithms;
an issue that is of crucial importance in the context of “big data”. On the
other hand, it offers further crosslinks between the combinatoric problems of
permutations, relation properties and matrix representation (for example, sky-
line matrices or map-and-reduce methods are space-preserving representation
and time-saving processing techniques that come into play there).

In the course of this research we also hope to discover new heuristics for a
better guidance when searching Reln(U) for subrelations of desired properties—
this issue has been pointed out by [FR95] already, but there is much research in
the area of combinatorics of permutations and matrices ([RZ11, Zha99, Bón12]
as well as in optimisation (e.g. [Nik70]) that has not been considered in the
context of relational data analysis.

Acknowledgements. The author wishes to thank Bernhard Möller and an
anonymous reviewer for valuable comments. Rudolf Berghammer provided a
valuable comment on related work. Sebastian Pospiech implemented an algo-
rithm for +R for the Rela-X project.

References

[Bly05] Blyth, T.S.: Lattices and ordered algebraic structures. Springer (2005)
[Bón12] Bóna, M.: Combinatorics of Permutations, 2nd edn. Chapman and

Hall/CRC (2012)
[Boo51] Booth, A.D.: A Signed Binary Multiplication Technique. Quarterly Journal

of Mechanics and Applied Mathematics, 236–240 (1951)
[CDF03] Christophe, J., Doignon, J.-P., Fiorini, S.: Counting Biorders. Journal of

Integer Sequences 6 (2003)
[Cow02] Cowlishaw, M.: Densely packed decimal encoding. IEE Proceedings – Com-

puters and Digital Techniques 149 (2002)
[FR95] Fodor, J.C., Roubens, M.: Structure of transitive valued binary relations.

Mathematical Social Sciences (1995)
[GW99] Ganter, B., Wille, R.: Formal Concept Analysis. Springer (1999)
[GPR08] Gonzalez-Pachon, J., Romero, C.: A method fir obtaining transitive approx-

imations of a binary relation. Annals of Operations Research (2008)
[Kla04] Klaška, J.: Transitivity and partial order. Mathematica Bohemnia 122 (2004)
[Mül12] Müller, M.E.: Relational Knowledge Discovery. Cambridge University Press

(2012)
[Nik70] Nikaido, H.: Introduction to sets and mappings in modern economics. North-

Holland (1970)
[Paw84] Pawlak, Z.: On rough sets. Bulletin of the EATCS 24, 94–184 (1984)
[Pfe04] Pfeiffer, G.: Counting transitive relations. Journal of integer sequences 7

(2004)
[Pol02] Polkowski, L.: Rough Sets - Mathematical Foundations. Advances in Soft

Computing. Physica (2002)

Towards Finding Maximal Subrelations with Desired Properties 359

[RZ11] Rudolf Zurmühl, S.F.: Matrizen und ihre Anwendungen. Springer Orig.
Erstausgabe 1950 (2011)

[Sch11] Schmidt, G.: Relational Mathematics, Encyclopedia of Mathematics and its
Applications, vol. 132. Cambridge University Press (2011)

[TCC75] Tien Chi Chen, I. T.H.: Storage-efficient representation of decimal data.
Communications of the ACM 18, 49–52 (1975)

[Win04] Winter, M.: Decomposing relations into orderings. In: Berghammer, R.,
Möller, B., Struth, G. (eds.) RelMiCS/Kleene-Algebra Ws 2003. LNCS,
vol. 3051, pp. 265–277. Springer, Heidelberg (2004)

[Zha99] Zhang, F.: Matrix Theory: Basic Results and Techniques. Springer (1999)

6 Appendix: Proofs

Theorem: Biorders are sequences of subsets of images (equation 6).
This theorem is also stated in [CDF03] but remains unproved. In order to show
equation (6) we first prove the reverse direction.

“⇐=” by contradiction: Assume some f satisfying ∀x, y : f(x) ≤ f(y) −→
x•R ⊆ y•R is given. We further assume that R is not a biorder:

R is not a biorder ⇐⇒ R�Rd�R �⊆ R (35)

Then we need to have a, b, c, d ∈ U such that

with aRb, cRd, cRb, aRd, eqn.(35) yields: aRbR c̆Rd but aRd. (36)

We examine a and c:

1. If f(a) ≤ f(c), then a•R ⊆ c•R. By construction, there exists b with b ∈
a•R ⊆ c•R �& b, hence a contradiction.

2. If f(c) ≤ f(a), then c•R ⊆ a•R. By construction, there exists d with d ∈
c•R ⊆ a•R �& d, hence a contradiction.

The assumptions always lead to a contradiction, hence we have shown that
the existence of a suitable enumeration of domain elements implies that R is a
biorder.

“=⇒”: We need to show that given a biorder, we can find an enumeration that
orders all domain elements in a way such that the sequence of their image sets is
⊆-isotone. We choose as enumeration a function f whose inverse f−1 : N0 → U
delivers for the first k0 numbers the objects whose image sets are empty, then
k1 objects whose image sets are singletons and so forth until it lists kn objects
with image sets U . Then, clearly, f(x) ≤ f(y) =⇒ |x•R| ≤ |y•R|. We now have
to show that f(x) ≤ f(y) −→ x•R ⊆ y•R given that R is a biorder:

1. Empty image sets:
From f(x) = 0 = |x•R| follows the x•R = ∅. Hence we have 0 ≤ f(y) −→
∅ ⊆ y•R which is true. �

360 M.E. Müller

2. Let f(x) �= 0 �= f(y), i.e. both x•R and y•R are nonempty. Assume wlog. that
f(x) ≤ f(y). We need to show that yRz for all z ∈ x•R. Since f(y) ≥ f(z) >
0 we know that y•R �= ∅, i.e. there exists some a ∈ y•R. The interesting case
is where a /∈ x•R: Then we have aRy and aRdx. If we now assume that aRz,
we have

yRaRdxRz

and, since R is a biorder, also yRz, which completes the proof. �

Theorem: R≡ = R1†
, (equation 14). We first show R≡ ⊆ R1†

by contra-
diction. Let R = R≡ ∈ EquR(U). Then, by symmetry and twice transitivity it

follows that R� R˘�R ⊆ R� R�R ⊆ R�R ⊆ R ⊆ R1†
which would contradict

R�R �̆R �⊆ R1†
. The reverse direction requires to show 1 ⊆ R1†

, (R1†
)̆ ⊆ R1†

,

and R1†
�R1† ⊆ R1†

. We have

R1†
= R1 �(R1 �̆R1)∗ |: Closure ∗

⊇ R1 �(R1 �̆R1) |: Force surjectivity
⊇ R1 �R1 |: Reflexive closure
⊇ 1 �1 |: � -neutrality of 1
= 1

(37)

A few steps yield (R1†
)̆ = ((R1)̆ �R1)∗

�����������
�(R1)̆ and (((R1)̆ �R1)∗)̆

�������������
�(R1)̆ = R1†

such that symmetry follows by:

((R1)̆ �R1)∗
�����������

renaming
= (P˘�P)∗ |: Since 1 ⊆ P

⊆ (P �̆P)∗ �P |: Again, 1 ⊆ P
⊆ P � (P˘�P)∗ �P |: Composition and converse
⊆ P � P˘�((P �̆P)∗)̆ |: Drop surjectivity condition
⊆ ((P˘�P)∗)̆

renaming
= (((R1)̆ �R1)∗)̆

�������������
.

(38)

It remains to show that R1†
is transitive.

R1†
�R1† renaming

= P † �P † |: Defn. †, assoc.
= P �(P �̆P) ∗ � P �(P �̆P) ∗ |: Renaming
= P �Q � P �Q |: 1 neutral wrt �
= P �Q�1 � P �Q |: 1 ⊆ P = R1 = R ∪ 1
⊆ P �Q�P � P �Q |: ˘ over � , symmetry
⊆ P �Q�P˘ � P �Q |: Surjectivity
⊆ P �Q∗�Q∗ |: ∗
= P �Q∗ = P �(P �̆P)∗ |: Renaming

= R1 �(R1 �̆R1)∗ = R1† �.

(39)

Towards Finding Maximal Subrelations with Desired Properties 361

Theorem: In difunctional relations any pair x, y have either disjoint
or equal images, (equation 10). The property to be shown is expressed by
equation (10):

R� R �̆R ⊆ R |: pointwise
⇐⇒ ∀a, b, c, d : aRb ∧ cRb ∧ cRd −→ aRd |: Defn. −→
⇐⇒ ∀a, b, c, d : aRb ∨ cRb ∨ cRd ∨ aRd |: deMorgan, assoc.

⇐⇒ ∀a, b, c, d : aRb ∧ cRb ∨ (cRd ∨ aRd) |: de Morgan

⇐⇒ ∀a, b, c, d : (aRb ∧ cRb) ∧ cRd ∨ aRd |: Quantifier

⇐⇒ ¬∃a, b, c, d : (aRb ∧ cRb) ∧ cRd ∨ aRd |: deMorgan, Assoc.
⇐⇒ ¬∃a, b, c, d : b ∈ a•R ∧ b ∈ c•R ∧ d ∈ c•R ∧ d /∈ a•R |: Commutativity
⇐⇒ ¬∃a, b, c, d : b ∈ c•R ∧ d ∈ c•R ∧ b ∈ a•R ∧ d /∈ a•R

There are no combinations of elements such that they share one image and, at
the same time differ in their images. Hence, images are disjoint or equal. �
Theorem: If P and Q are in �R, then P � Q (section 4.1). More
or less trivial. We can presuppose P �= Q (trivial) and P �⊆ Q (contradicts
P,Q ∈ �R). Hence, P‖Q. P * Q is equivalent to stating there is a renaming
ρ : P %→ Q with ρ(〈x, y〉) := 〈π1(x), π2(y)〉 inheriting bijectivity from π1,2 which
is preserved by building the product. If xPy and xQy, then π1(x) = x, π2(y) =
y, ρ(〈x, y〉) = 〈x, y〉. Therefore, we suppose that xPy and xQy and show that

assuming Q
(∗)
= ρ(P) leads to a contradiction: The equivalence

xQy
(∗)⇐⇒ xρ(P)y

def⇐⇒ π1(x)Qπ2(y)
(∗)⇐⇒ π1(x)ρ(P)π2(y)

def⇐⇒ xPy (40)

contradicts xPy. �
The result is that we can find a single matrix representation for all Pi ∈ �R

and the definitions of all the different Pi can be derived from this matrix by
application of permutations πi

1 and πi
2.

Theorem:dist∨̇ is subadditive (section3.2). Let there beP,Q,R ∈ Reln(U).
We compute:

dist∨̇(P,Q) + dist∨̇(Q,R)

=
�

i,j∈n,i�=j

xiPxj∨̇xiQxj +
�

i,j∈n,i�=j

xiRxj∨̇xiQxj

=
�

i,j∈n,i�=j

((xiPxj∨̇xiQxj) + (xiRxj∨̇xiQxj))

|: By a lengthy set theory/truthtable argument :|
≥

�
i,j∈n,i�=j

((xiPxj∨̇xiRxj)) = dist∨̇(P,R) �.

Complete Solution of a Constrained

Tropical Optimization Problem
with Application to Location Analysis

Nikolai Krivulin�

Saint Petersburg State University, Faculty of Mathematics and Mechanics
Universitetsky Ave. 28, 198504 Saint Petersburg, Russia

nkk<at>math.spbu.ru

Abstract. We present a multidimensional optimization problem that is
formulated and solved in the tropical mathematics setting. The problem
consists of minimizing a nonlinear objective function defined on vectors
over an idempotent semifield by means of a conjugate transposition op-
erator, subject to constraints in the form of linear vector inequalities. A
complete direct solution to the problem under fairly general assumptions
is given in a compact vector form suitable for both further analysis and
practical implementation. We apply the result to solve a multidimen-
sional minimax single facility location problem with Chebyshev distance
and with inequality constraints imposed on the feasible location area.

Keywords: idempotent semifield, tropical mathematics, minimax opti-
mization problem, single facility location problem, Chebyshev distance.

1 Introduction

Tropical (idempotent) mathematics encompasses various aspects of the theory
and applications of semirings with idempotent addition and has its origin in
a few pioneering works by Pandit [Pan61], Cuninghame-Green [CG62], Giffler
[Gif63], Vorob’ev [Vor63] and Romanovskĭı [Rom64]. At the present time, the
literature on the topic contains several monographs, including those by Carré
[Car79], Cuninghame-Green [CG79], U. Zimmermann [Zim81], Baccelli et al.
[BCOQ93], Kolokoltsov and Maslov [KM97], Golan [Gol03], Heidergott, Olsder
and van der Woude [HOvdW06], Gondran and Minoux [GM08], and Butkovič
[But10]; as well as a rich variety of contributed papers.

Optimization problems that are formulated and solved in the tropical math-
ematics setting come from various application fields and form a noteworthy re-
search domain within the research area. Certain optimization problems have
appeared in the early paper [CG62], and then the problems were investigated in
many works, including [CG79, Zim81, GM08, But10].

� This work was supported in part by the Russian Foundation for Humanities (grant
No. 13-02-00338).

P. Höfner et al. (Eds.): RAMiCS 2014, LNCS 8428, pp. 362–378, 2014.
c© Springer International Publishing Switzerland 2014

Constrained Tropical Optimization Problem 363

Tropical mathematics provides a useful framework for solving optimization
problems in location analysis. Specifically, a solution in terms of tropical math-
ematics has been proposed by Cuninghame-Green [CG91, CG94] to solve single
facility location problems defined on graphs. A different but related approach to
location problems on graphs and networks has been developed by K. Zimmer-
mann [Zim92], Hudec and K. Zimmermann [HZ93, HZ99], Tharwat and K. Zim-
mermann [TZ10] on the basis of the concept of max-separable functions.

Multidimensional minimax location problems with Chebyshev distance arise
in various applications, including the location of emergency service facility in
urban planning and the location of a component on a chip in electronic circuit
manufacturing (see, e.g., Hansen, Peeters and Thisse [HPT80, HPT81]). The
two-dimensional problems on the plane without constraints can be solved directly
on the basis of geometric arguments, as demonstrated by Sule [Sul01] and Moradi
and Bidkhori [MB09]. The solution of the multidimensional constrained problems
is less trivial and requires different approaches. These problems can be solved,
for instance, by using standard linear programming techniques which, however,
generally offer iterative procedures and do not guarantee direct solutions.

A strict tropical mathematics approach to solve both unconstrained and con-
strained minimax location problems with Chebyshev distance was developed by
Krivulin [Kri11, Kri12], and Krivulin and K. Zimmermann [KZ13]. The main
result of [Kri11] is a direct solution to the unconstrained problem obtained by
using the spectral properties of matrices in idempotent algebra. The application
of another technique in [Kri12, KZ13], which is based on the derivation of sharp
bounds on the objective function, shows that the solution in [Kri11] is complete.

In this paper, a new minimax Chebyshev location problem with an extended
set of constraints is taken to both motivate and illustrate the development of the
solution to a new general tropical optimization problem. The problem is to mini-
mize a nonlinear objective function defined on vectors over a general idempotent
semifield by means of a conjugate transposition operator. The problem involves
constraints imposed on the solution set in the form of linear vector inequalities
given by a matrix, and two-sided boundary constraints.

To solve the problem, we use the approach, which is proposed in [Kri13, Kri14]
and combines the derivation of a sharp bound on the objective function with
the solution of linear inequalities. The approach is based on the introduction
of an auxiliary variable as a parameter, and the reduction of the optimization
problem to the solution of a parametrized system of linear inequalities. Under
fairly general assumptions, we obtain a complete direct solution to the problem
and represent the solution in a compact vector form. The obtained result is then
applied to solve the Chebyshev location problem, which motivated this study.

The paper is organized as follows. In Section 2, we offer an introduction to
idempotent algebra to provide a formal framework for the study in the rest of
the paper. Section 3 offers the preliminary results on the solution of linear in-
equalities, which form a basis for later proofs. The main result is included in
Section 4, which starts with a discussion of previously solved problems. Further-
more, we describe the problem under study, present a complete direct solution to

364 N. Krivulin

the problem, consider particular cases, and give illustrative examples. Finally,
application of the results to location analysis is discussed in Section 5.

2 Preliminary Definitions and Notation

We start with a short, concise introduction to the key definitions, notation,
and preliminary results in idempotent algebra, which is to provide a proper
context for solving tropical optimization problems in the subsequent sections.
The introduction is mainly based on the notation and results suggested in [Kri06,
Kri09b, Kri12, Kri13], which offer strong possibilities for deriving direct solutions
in a compact form. Further details on both introductory and advanced levels are
available in various works published on the topic, including [CG79, Car79, Zim81,
BCOQ93, KM97, Gol03, HOvdW06, ABG07, GM08, But10].

2.1 Idempotent Semifield

An idempotent semifield is an algebraic system (�,⊕,⊗, �, �), where � is a non-
empty carrier set, ⊕ and ⊗ are binary operations, called addition and multipli-
cation, � and � are distinct elements, called zero and one; such that (�,⊕, �) is
a commutative idempotent monoid, (�,⊗, �) is an abelian group, multiplication
distributes over addition, and � is absorbing for multiplication.

In the semifield, addition is idempotent, which means the equality x⊕ x = x
is valid for each x ∈ �. The addition induces a partial order relation such that
x ≤ y if and only if x ⊕ y = y for x, y ∈ �. Note that � is the least element in
terms of this order, and so the inequality x �= � implies x > �.

Furthermore, with respect to this partial order, addition exhibits an extremal
property in the form of the inequalities x ⊕ y ≥ x and x ⊕ y ≥ y. Both ad-
dition and multiplication are monotone in each argument, which implies that
the inequalities x ≤ y and u ≤ v result in the inequalities x ⊕ u ≤ y ⊕ v and
x ⊗ u ≤ y ⊗ v. These properties lead, in particular, to the equivalence of the
inequality x⊕ y ≤ z with the two simultaneous inequalities x ≤ z and y ≤ z.

Multiplication is invertible to allow every non-zero x ∈ � to have an inverse
x−1 such that x−1 ⊗ x = �. The multiplicative inversion is antitone in the sense
that if x ≤ y then x−1 ≥ y−1 for all non-zero x and y.

The integer power indicates iterated product defined, for each non-zero x �= �

and integer p ≥ 1, as xp = xp−1 ⊗ x, x−p = (x−1)p, x0 = � and �
p = �. We

suppose the rational exponents can be defined as well, and take the semifield to
be algebraically closed (radicable).

In what follows, the multiplication sign ⊗ will be omitted to save writing.
Typical examples of the idempotent semifield under consideration include

�max,+ = (� ∪ {−∞},max,+,−∞, 0), �min,+ = (� ∪ {+∞},min,+,+∞, 0),
�max,× = (�+ ∪ {0},max,×, 0, 1), and �min,× = (�+ ∪ {+∞},min,×,+∞, 1),
where � denotes the set of real numbers and �+ = {x ∈ �|x > 0}.

Specifically, the semifield �max,+ is equipped with the maximum operator in
the role of addition, and arithmetic addition as multiplication. Zero and one are

Constrained Tropical Optimization Problem 365

defined as −∞ and 0, respectively. For each x ∈ �, there exists the inverse x−1,
which is equal to −x in ordinary notation. The power xy can be defined for all
x, y ∈ � (and thus for rational y) to coincide with the arithmetic product xy.
The partial order induced by addition agrees with the usual linear order on �.

2.2 Matrix and Vector Algebra

Consider matrices over the idempotent semifield and denote the set of matrices
with m rows and n columns by �m×n. A matrix with all zero entries is the zero
matrix. A matrix is column- (row-) regular if it has no zero columns (rows).

Addition, multiplication, and scalar multiplication of matrices follow the usual
rules. For any matrices A = (aij) ∈ �

m×n, B = (bij) ∈ �
m×n and C = (cij) ∈

�
n×l, and a scalar x ∈ �, these operations are performed according to the entry-

wise formulas

{A⊕B}ij = aij ⊕ bij , {AC}ij =
n⊕

k=1

aikckj , {xA}ij = xaij .

The extremal property of the scalar addition extends to the matrix addition,
which implies the entry-wise inequalities A ⊕ B ≥ A and A ⊕ B ≥ B. All
matrix operations are entry-wise monotone in each argument. The inequality
A⊕B ≤ C is equivalent to the two inequalities A ≤ C and B ≤ C.

Furthermore, we concentrate on square matrices of order n in the set �n×n.
A matrix that has the diagonal entries set to �, and the off-diagonal entries to
� is the identity matrix, which is denoted by I.

The integer power of a square matrix A is routinely defined as A0 = I and
Ap = Ap−1A = AAp−1 for all p ≥ 1.

The trace of a matrix A = (aij) is given by

trA = a11 ⊕ · · · ⊕ ann.

A matrix that consists of one column (row) is a column (row) vector. In the
following, all vectors are regarded as column vectors, unless otherwise specified.
The set of column vectors of length n is denoted by �

n. A vector with all zero
elements is the zero vector. A vector is called regular if it has no zero components.

Let x = (xi) be a non-zero vector. The multiplicative conjugate transpose of
x is a row vector x− = (x−i), where x

−
i = x−1i if xi > �, and x−i = � otherwise.

It follows from the antitone property of the inverse operation that, for regular
vectors x and y, the inequality x ≤ y implies that x− ≥ y− and vice versa.

The conjugate transposition exhibits the following properties, which are easy
to verify. First, note that x−x = � for each non-zero vector x.

Suppose that x,y ∈ �
n are regular vectors. Then, the matrix inequality

xy− ≥ (x−y)−1I holds entry-wise, and becomes xx− ≥ I if y = x.
Finally, for any regular vector x ∈ �

n, if a matrix A ∈ �
n×n is row-regular,

then Ax is a regular vector. If A is column-regular, then x−A is regular.

366 N. Krivulin

3 Solutions to Linear Inequalities

We now present solutions to linear vector inequalities, which form the basis
for later investigation of constrained optimization problems. These solutions are
often obtained as consequences to the solution of the corresponding equations,
and are known under diverse assumptions, at different levels of generality, and
in various forms (see, e.g., [Car79, CG79, Zim81, BCOQ93, ABG07, But10]).

In this section we follow the results in [Kri06, Kri09b, Kri09a, Kri13, KZ13],
which offer a framework to represent the solutions in a compact vector form.

Suppose that, given a matrix A ∈ �
m×n and a regular vector d ∈ �

m, the
problem is to find all regular vectors x ∈ �n that satisfy the inequality

Ax ≤ d. (1)

The next result offers a solution obtained as a consequence of the solution to
the corresponding equation [Kri09b, Kri09a], and by independent proof [KZ13].

Lemma 3.1. For every column-regular matrix A and regular vector d, all reg-
ular solutions to inequality (1) are given by

x ≤ (d−A)−.

Furthermore, we consider the following problem: given a matrix A ∈ �
n×n

and a vector b ∈ �n, find all regular vectors x ∈ �n that satisfy the inequality

Ax⊕ b ≤ x. (2)

To describe a complete solution to the problem, we define a function that
maps every matrix A ∈ �n×n to a scalar given by

Tr(A) = trA⊕ · · · ⊕ trAn.

We also employ the asterate operator (also known as the Kleene star), which
takes A to the matrix

A∗ = I ⊕A⊕ · · · ⊕An−1.

Note that the asterate possesses a useful property established by Carré [Car71].
The property states that each matrix A with Tr(A) ≤ � satisfies the entry-wise
inequality Ak ≤ A∗ for all integer k ≥ 0. Specifically, this property makes the
equality A∗A∗ = A∗ valid provided that Tr(A) ≤ �.

A direct solution to inequality (2) is given as follows [Kri06, Kri09b, Kri13].

Theorem 3.2. For every matrix A and vector b, the following statements hold:

1. If Tr(A) ≤ �, then all regular solutions to (2) are given by x = A∗u, where
u is any regular vector such that u ≥ b.

2. If Tr(A) > �, then there is no regular solution.

Constrained Tropical Optimization Problem 367

4 Optimization Problems

This section is concerned with deriving complete direct solutions to multidimen-
sional constrained optimization problems. The problems consist in minimizing
a nonlinear objective function subject to both linear inequality constraints with
a matrix and simple boundary constraints. We start with a short overview of
the previous results, which provide solutions to problems with reduced sets of
constraints. Furthermore, a complete solution to a general problem that involves
both constraints is obtained under fairly general assumptions. Two special cases
of the solution are discussed which improve the previous results. Finally, we
present illustrative examples of two-dimensional optimization problems.

4.1 Previous Results

We start with an unconstrained problem that is examined in [Kri11] by applying
extremal properties of tropical eigenvalues. Given vectors p, q ∈ �

n, the problem
is to find regular vectors x ∈ �

n that

minimize x−p⊕ q−x. (3)

The problem is reduced to the solving of the eigenvalue-eigenvector problem
for a certain matrix. The solution is given by the next statement.

Lemma 4.1. Let p and q be regular vectors, and

θ = (q−p)1/2.

Then, the minimum value in problem (3) is equal to θ and attained at each
vector x such that

θ−1p ≤ x ≤ θq.

A different approach based on the solutions to linear inequalities is used in
[Kri12, KZ13] to show that the above solution of problem (3) is complete. More-
over, the approach is applied to solve constrained versions of the problem. Specif-
ically, the following problem is considered: given a matrix B ∈ �n×n, find regular
vectors x that

minimize x−p⊕ q−x,
subject to Bx ≤ x.

(4)

The solution, which is given in [Kri12] under some restrictive assumptions on
the matrix B, can readily be extended to arbitrary matrices by using the result
of Theorem 3.2, and then written in the following form.

Theorem 4.2. Let B be a matrix with Tr(B) ≤ �, p and q regular vectors, and

θ = ((B∗(q−B∗)−)−p)1/2. (5)

Then, the minimum value in problem (4) is equal to θ and attained at

x = θB∗(q−B∗)−.

368 N. Krivulin

Note that the theorem offers a particular solution to the problem rather than
provides a complete solution.

Furthermore, given vectors g,h ∈ �
n, consider a problem with two-sided

boundary constraints to find regular vectors x that

minimize x−p⊕ q−x,
subject to g ≤ x ≤ h.

(6)

The complete solution obtained in [KZ13] is as follows.

Theorem 4.3. Let p, q, g, and h be regular vectors such that g ≤ h, and

θ = (q−p)1/2 ⊕ h−p⊕ q−g.

Then, the minimum in problem (6) is equal to θ and all regular solutions of
the problem are given by the condition

g ⊕ θ−1p ≤ x ≤ (h− ⊕ θ−1q−)−.

Below, we examine a new general problem, which combines the constraints in
problems (4) and (6), and includes both these problems as special cases.

4.2 New Optimization Problem with Combined Constraints

We now are in a position to formulate and solve a new constrained optimization
problem. The solution follows the approach developed in [Kri13, Kri14], which
is based on the introduction of an auxiliary variable and the reduction of the
problem to the solution of a parametrized system of linear inequalities, where
the new variable plays the role of a parameter. The existence condition for the
solution of the system is used to evaluate the parameter, whereas the complete
solution to the system is taken as the solution to the optimization problem.

Given vectors p, q, g,h ∈ �
n, and a matrix B ∈ �

n×n, consider the problem
to find all regular vectors x ∈ �

n that

minimize x−p⊕ q−x,
subject to Bx⊕ g ≤ x,

x ≤ h.

(7)

The constraints in the problem can also be written in the equivalent form

Bx ≤ x,

g ≤ x ≤ h.

The next statement gives a complete direct solution to the problem.

Theorem 4.4. Let B be a matrix with Tr(B) ≤ �, p be a non-zero vector, q
and h regular vectors, and g a vector such that h−B∗g ≤ �. Define a scalar

θ = (q−B∗p)1/2 ⊕ h−B∗p⊕ q−B∗g. (8)

Constrained Tropical Optimization Problem 369

Then, the minimum value in problem (7) is equal to θ and all regular solutions
of the problem are given by

x = B∗u,

where u is any regular vector such that

g ⊕ θ−1p ≤ u ≤ ((h− ⊕ θ−1q−)B∗)−. (9)

Proof. Suppose that θ is the minimum of the objective function in problem (7)
over all regular x, and note that θ ≥ (q−B∗p)1/2 ≥ (q−p)1/2 > �. Then, all
solutions to the problem are given by the system

x−p⊕ q−x = θ,

Bx⊕ g ≤ x,

x ≤ h.

Since θ is the minimum of the objective function, the solution set remains
unchanged if we replace the first equation by the inequality x−p⊕q−x ≤ θ and
then substitute this inequality with equivalent two inequalities as follows

x−p ≤ θ,

q−x ≤ θ,

Bx⊕ g ≤ x,

x ≤ h.

After the application of Lemma 3.1 to the first two inequalities, the system
becomes

θ−1p ≤ x,

x ≤ θq,

Bx⊕ g ≤ x,

x ≤ h.

We now combine the inequalities in the system as follows. The first and third
inequalities are equivalent to the inequality Bx⊕ g ⊕ θ−1p ≤ x.

The other two inequalities are replaced by x− ≥ θ−1q− and x− ≥ h−, which
are equivalent to x− ≥ h− ⊕ θ−1q−, and thus to x ≤ (h− ⊕ θ−1q−)−.

After the rearrangement of the system, we arrive at the double inequality

Bx⊕ g ⊕ θ−1p ≤ x ≤ (h− ⊕ θ−1q−)−.

The solution of the left inequality by using Theorem 3.2 gives the result

x = B∗u, u ≥ g ⊕ θ−1p.

Substitution of this solution into the right inequality yields the inequality

B∗u ≤ (h− ⊕ θ−1q−)−,

370 N. Krivulin

which, by Lemma 3.1, has the solution

u ≤ ((h− ⊕ θ−1q−)B∗)−.

By coupling both lower and upper bounds on u, we arrive at the solution in
the form of (9). The solution set defined by (9) is non-empty if and only if

g ⊕ θ−1p ≤ ((h− ⊕ θ−1q−)B∗)−.

The left multiplication of this inequality by (h−⊕ θ−1q−)B∗ and application
of one property of conjugate transposition lead to

(h− ⊕ θ−1q−)B∗(g ⊕ θ−1p) ≤ (h− ⊕ θ−1q−)B∗((h− ⊕ θ−1q−)B∗)− = �,

which results in the new inequality

(h− ⊕ θ−1q−)B∗(g ⊕ θ−1p) ≤ �.

Since the left multiplication of the latter inequality by ((h−⊕θ−1q−)B∗)− and
the other property of conjugate transposition give the former inequality, both
inequalities are equivalent. The obtained inequality can further be rewritten as

θ−2q−B∗p⊕ θ−1(h−B∗p⊕ q−B∗g)⊕ h−B∗g ≤ �,

and then represented by the equivalent system

θ−2q−B∗p ≤ �,

θ−1(h−B∗p⊕ q−B∗g) ≤ �,

h−B∗g ≤ �.

Note that the third inequality in the system is valid by the condition of the
theorem. After rearrangement of terms, the first two inequalities become

θ ≥ (q−B∗p)1/2,

θ ≥ h−B∗p⊕ q−B∗g,

and then finally lead to one inequality

θ ≥ (q−B∗p)1/2 ⊕ h−B∗p⊕ q−B∗g.

Since θ is assumed to be the minimum value of the objective function, the
last inequality has to be satisfied as an equality, which gives (8). !�

4.3 Particular Cases

We now examine particular cases, in which the feasible solution set is defined
either by a linear inequality with a matrix or by two-sided boundary constraints.

First, we offer a new complete solution to problem (4), which does not have
the boundary constraints. A slight modification to the proof of Theorem 4.4
yields the solution in the following form.

Constrained Tropical Optimization Problem 371

Corollary 4.5. Let B be a matrix with Tr(B) ≤ �, p be a non-zero vector, and
q a regular vector. Define a scalar

θ = (q−B∗p)1/2. (10)

Then, the minimum in (4) is θ and all regular solutions are given by

x = B∗u, θ−1p ≤ u ≤ θ(q−B∗)−.

Although the expression at (10) offers the minimum in a different and more
compact form than that at (5), both representations prove to be equivalent.

To verify that these representations coincide, we first note that B∗B∗ = B∗

and then apply the properties of conjugate transposition to write

B∗(q−B∗)− = B∗(q−B∗B∗)− ≤ (q−B∗)−q−B∗B∗(q−B∗B∗)− = (q−B∗)−,

which implies that the inequality B∗(q−B∗)− ≤ (q−B∗)− holds.
Since B∗ ≥ I, the opposite inequality B∗(q−B∗)− ≥ (q−B∗)− is valid as

well. Both inequalities result in the equality B∗(q−B∗)− = (q−B∗)−, and thus
in the equality (B∗(q−B∗)−)− = q−B∗. Finally, the right multiplication by p
and extraction of square roots lead to the desired result.

Furthermore, we put B to be the zero matrix in (7) and so arrive at problem
(6), which can be completely solved through a direct consequence of Theorem 4.4.
Clearly, the new solution of (6) coincides with that given by Theorem 4.3, and
even involves somewhat less assumptions on the vectors under consideration.

4.4 Numerical Examples and Graphical Illustration

To illustrate the results obtained above, we present examples of two-dimensional
problems in the setting of the idempotent semifield �max,+ and provide geometric
interpretation on the plane with a Cartesian coordinate system.

Consider problem (7) formulated in terms of �max,+ under the assumptions
that

p =

(
3
14

)
, q =

(
−12
−4

)
, g =

(
2

−8

)
, h =

(
6
8

)
, B =

(
0 −4
−8 −6

)
.

Prior to solving the general problem, we examine several special cases.
We start with problem (3) without constraints, which has a complete solution

given by a consequence of Theorem 4.4 (see also Lemma 4.1). According to this
result, the minimum in the unconstrained problem is given by

θ1 = (q−p)1/2 = 9,

and attained if and only if the vector x satisfies the conditions

x′1 ≤ x ≤ x′′1 , x′1 = θ−11 p =

(
−6
5

)
, x′′1 = θ1q =

(
−3
5

)
.

372 N. Krivulin

�

�

�
�
�
�
�
�
�
��

��������

�
�

��

�
�

��	

�
�

�
�

��

�
�
�
�
��

q

p

x′
1 x′′

1

�

�

q

p

�

�
�
�
��
g

h

��
�
�
���

x′
2

x′′
2

Fig. 1. Solutions to problems without constraints (left) and with two-sided boundary
constraints (right)

A graphical illustration of the result is given in Fig. 1 (left), where the solutions
form a horizontal segment between the ends of the vectors x′1 and x′′1 .

Furthermore, we consider the problem in the form (6) with two-sided bound-
ary constraints g ≤ x ≤ h. It follows from Theorem 4.3 (or as another conse-
quence of Theorem 4.4) that the minimum in the problem is calculated as

θ2 = (q−p)1/2 ⊕ h−p⊕ q−g = 14.

The solution set consists of those vectors x that satisfy the double inequality

x′2 ≤ x ≤ x′′2 , x′2 = g ⊕ θ−12 p =

(
2
0

)
, x′′2 = (h− ⊕ θ−12 q−)− =

(
2
8

)
.

The solutions of the problem are indicated on Fig. 1 (right) by a thick vertical
segment on the left side of the rectangle that represents the feasible set.

We now examine problem (4) with the linear inequality constraints Bx ≤ x.
We calculate

B∗ = I ⊕B =

(
0 −4

−8 0

)
, q−B∗ =

(
12 8

)
.

The application of Corollary 4.5 gives the minimum value

θ3 = (q−B∗p)1/2 = 11,

which is attained if and only if x = B∗u for all u such that

u′3 ≤ u ≤ u′′3 , u′3 = θ−1p =

(
−8
3

)
, u′′3 = θ(q−B∗)− =

(
−1
3

)
.

Constrained Tropical Optimization Problem 373

After multiplication ofB∗ by both bounds on u, we conclude that the problem
has the unique solution

x3 = B∗u′3 = B∗u′′3 =

(
−1
3

)
.

Figure 2 (left) shows the solution point located on the upper side of the strip,
which represents the solution of the inequality Bx ≤ x. The columns of the
matrices B = (b1, b2) and B∗ = (b∗1, b

∗
2) are also included.

�

�

q

p

�
�

����
�
�
�
�
�
�
�
��

�

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
��b∗2

b2

b1 = b∗1

�

�
��

x3

�

�

q

p

��
�
���

x′

x′′

�
�
�
�
�
�
�
�
��

��

�
�
�
�
�
�
��

�
��

Fig. 2. Solutions to problems with linear inequality constraints (left) and with both
linear inequality and two-sided boundary constraints (right)

Finally, we consider general problem (7). To solve the problem, we calculate

B∗p =

(
10
14

)
, h−B∗p = 6, q−B∗g = 14.

It follows from Theorem 4.4 that the minimum in the problem is given by

θ = (q−B∗p)1/2 ⊕ h−B∗p⊕ q−B∗g = 14.

This minimum is attained only at x = B∗u, where u is any vector such that

u′ ≤ u ≤ u′′, u′ = g⊕ θ−1p =

(
2
0

)
, u′′ = ((h−⊕ θ−1q−)B∗)− =

(
2
6

)
.

Turning to the solution of the problem, we arrive at the set of vectors x that
satisfy the conditions

x′ ≤ x ≤ x′′, x′ = B∗u′ =
(
2
0

)
, x′′ = B∗u′′ =

(
2
6

)
.

The solution is shown on Fig. 2 (right) by the thick vertical segment on the
left side of the polygon which describes the feasible set.

374 N. Krivulin

5 Application to Location Analysis

In this section, we apply the above results to solve minimax single facility location
problems, which are often called the Rawls problems [HPT80, HPT81], but also
known as Messenger Boy problems [EH72] and 1-center problems [Dre11]. We
consider a new constrained problem on a multidimensional space with Chebyshev
distance. A complete direct solution is obtained which extends the results in
[Kri11, Kri12, KZ13] by taking into account a more general system of constraints.

Let r = (ri) and s = (si) be vectors in �
n. The Chebyshev distance (L∞,

maximum, dominance, lattice, king-move, or chessboard metric) between the
vectors is calculated as

ρ(r, s) = max
1≤i≤n

|ri − si|. (11)

Consider the following Chebyshev single facility location problem. Given m
vectors rj = (rij) ∈ �

n and constants wj ∈ � for each j = 1, . . . ,m, a matrix
B = (bij) ∈ �

n×n, and vectors g = (gi) ∈ �
n, h = (hi) ∈ �

n, the problem is to
find the vectors x = (xi) ∈ �n that

minimize max
1≤j≤m

(
max
1≤i≤n

|rij − xi|+ wi

)
,

subject to xj + bij ≤ xi,

gi ≤ xi ≤ hi, j = 1, . . . , n, i = 1, . . . , n.

(12)

Note that the feasible location area is formed in �
n by the intersection of

the hyper-rectangle defined by the boundary constraints with closed half-spaces
given by the other inequalities.

To solve the problem, we represent it in terms of the semifield �max,+. First,
we put (11) in the equivalent form

ρ(r, s) =

n⊕
i=1

(s−1i ri ⊕ r−1i si) = s−r ⊕ r−s.

Furthermore, we define the vectors

p = w1r1 ⊕ · · · ⊕ wmrm, q− = w1r
−
1 ⊕ · · · ⊕ wmr−m.

The objective function in problem (12) becomes

m⊕
i=1

wiρ(ri,x) =
m⊕
i=1

wi(x
−ri ⊕ r−i x) = x−p⊕ q−x.

We now combine the constraints xj + bij ≤ xi for all j = 1, . . . , n into one
inequality for each i, and write the obtained inequalities in terms of �max,+ as

bi1x1 ⊕ · · · ⊕ binxn ≤ xi, i = 1, . . . , n.

After rewriting the above inequalities and the boundary constraints in matrix-
vector form, we obtain the problem in the form (7), where all given vectors have

Constrained Tropical Optimization Problem 375

real components. Since these vectors are clearly regular in the sense of �max,+,
they satisfy the conditions of Theorem 4.4, which completely solves the problem.

As an illustration, consider the two-dimensional problem with given points

r1 =

(
−7
12

)
, r2 =

(
2
10

)
, r3 =

(
−10

3

)
, r4 =

(
−4
4

)
, r5 =

(
−4
−3

)
,

and constants w1 = w3 = 2, w2 = w4 = w5 = 1. For the sake of simplicity, we
take the same matrix B and vectors g,h as in the examples considered above.

To reduce the location problem to problem (7), we first calculate the vectors

p =

(
3
14

)
, q =

(
−12
−4

)
.

These vectors define two opposite corners of the minimum rectangle which
encloses all points wiri and w

−1
i ri. The rectangle is depicted in Fig. 3 (left).

�

�

q

p�

�

��
��

�

�

���

�

�

��
��

�

�

���

�

�

���

r1

r2

r3
r4

r5

�

�

q

p

��

�
��

�

�

�

�

�

Fig. 3. Minimum enclosing rectangle (left) and solution of location problem (right)

Note that the reduced problem coincides with that examined as an example
in the previous section, and thus admits the same solution. We show the solution
as a thick vertical segment and the given points as black dots in Fig. 3 (right).

To conclude this section, we write the solution given by Theorem 4.4 to prob-
lem (12) in the usual form.

We first represent the entries of the matrix B∗ = (b∗ij) in terms of ordinary
operations. It follows from the definition of the asterate operator that

b∗ij =

{
βij , if i �= j;

max(βij , 0), if i = j;

where the numbers βij are calculated as

βij = max
1≤k≤n−1

max
1≤i1,...,ik−1≤n

i0=i,ik=j

(bi0i1 + · · ·+ bik−1ik).

376 N. Krivulin

Furthermore, we replace the operations of tropical mathematics by arithmetic
operations in the rest of the statement of Theorem 4.4. By adding definitions for
the vectors p and q, we obtain the following statement.

Theorem 5.1. Let B be a matrix, and g and h be vectors such that

max
1≤i,k≤n

max
1≤i1,...,ik−1≤n

i0=ik=i

(bi0i1 + · · ·+ bik−1ik) ≤ 0,

max
1≤i,j≤n

(b∗ij − hi + gj) ≤ 0.

Define vectors p = (pi) and q = (qi) with elements

pi = max
1≤j≤m

(rij + wj), qi = min
1≤j≤m

(rij − wj), i = 1, . . . , n;

and a scalar

θ = max
1≤i,j≤n

(
(b∗ij − qi + pj)/2, b

∗
ij − hi + pj , b

∗
ij − qi + gj

)
.

Then, the minimum in (12) is θ and all solutions x = (xi) are given by

xi = max
1≤j≤n

(b∗ij + uj), i = 1, . . . , n;

where the numbers uj for each j = 1, . . . , n satisfy the condition

max(gj , pj − θ) ≤ uj ≤ min

(
− max

1≤i≤n
(b∗ij − hi), θ − max

1≤i≤n
(b∗ij − qi)

)
.

6 Conclusions

The paper was concerned with a new multidimensional tropical optimization
problem with a nonlinear objective function and inequality constraints. A com-
plete solution was obtained based on the technique, which reduces the problem
to the solution of a linear inequality with a parametrized matrix. The solution
is given in a closed form in terms of simple vector operations, which offers low
computational complexity and provides for efficient software implementation.

Possible directions of future research include the further extension of the prob-
lem to account for new types of objective functions and constraints. The devel-
opment of new real-world applications of the results is also of interest.

Acknowledgments. The author is very grateful to the three reviewers for their
careful reading of a previous draft of this paper. He thanks the reviewers for their
valuable comments and illuminating suggestions that have been incorporated in
the final version.

Constrained Tropical Optimization Problem 377

References

[ABG07] Akian, M., Bapat, R., Gaubert, S.: Max-plus algebra. In: Hogben, L. (ed.)
Handbook of Linear Algebra. Discrete Mathematics and its Applications,
pp. 25-1–25-17. Taylor and Francis, Boca Raton (2007)

[BCOQ93] Baccelli, F.L., Cohen, G., Olsder, G.J., Quadrat, J.-P.: Synchronization
and Linearity: An Algebra for Discrete Event Systems. Wiley Series in
Probability and Statistics. Wiley, Chichester (1993)

[But10] Butkovič, P.: Max-linear Systems: Theory and Algorithms. Springer Mono-
graphs in Mathematics. Springer, London (2010)

[Car71] Carré, B.A.: An algebra for network routing problems. IMA J. Appl.
Math. 7, 273–294 (1971)

[Car79] Carré, B.: Graphs and Networks. Oxford Applied Mathematics and Com-
puting Science Series. Clarendon Press, Oxford (1979)

[CG62] Cuninghame-Green, R.A.: Describing industrial processes with interference
and approximating their steady-state behaviour. Oper. Res. Quart. 13,
95–100 (1962)

[CG91] Cuninghame-Green, R.A.: Minimax algebra and applications. Fuzzy Sets
and Systems 41, 251–267 (1991)

[CG94] Cuninghame-Green, R.A.: Minimax algebra and applications. In: Hawkes,
P.W. (ed.) Advances in Imaging and Electron Physics, vol. 90, pp. 1–121.
Academic Press, San Diego (1994)

[CG79] Cuninghame-Green, R.: Minimax Algebra. Lecture Notes in Economics and
Mathematical Systems, vol. 166. Springer, Berlin (1979)

[Dre11] Drezner, Z.: Continuous Center Problems. In: Eiselt, H.A., Marianov, V.
(eds.) Foundations of Location Analysis. International Series in Operations
Research and Management Science, vol. 155, pp. 63–78. Springer, New York
(2011)

[EH72] Elzinga, J., Hearn, D.W.: Geometrical solutions for some minimax location
problems. Transport. Sci. 6, 379–394 (1972)

[Gif63] Giffler, B.: Scheduling general production systems using schedule algebra.
Naval Res. Logist. Quart. 10, 237–255 (1963)

[Gol03] Golan, J.S.: Semirings and Affine Equations Over Them: Theory and Ap-
plications. Mathematics and its Applications, vol. 556. Springer, New York
(2003)

[GM08] Gondran, M., Minoux, M.: Graphs, Dioids and Semirings: New Models
and Algorithms. Operations Research/Computer Science Interfaces, vol. 41.
Springer, New York (2008)

[HPT80] Hansen, P., Peeters, D., Thisse, J.-F.: Location of public services: A
selective method-oriented survey. Annals of Public and Cooperative Eco-
nomics 51, 9–51 (1980)

[HPT81] Hansen, P., Peeters, D., Thisse, J.-F.: Constrained location and the Weber-
Rawls problem. In: Hansen, P. (ed.) Annals of Discrete Mathematics (11)
Studies on Graphs and Discrete Programming. North-Holland Mathematics
Studies, vol. 59, pp. 147–166. North-Holland (1981)

[HOvdW06] Heidergott, B., Olsder, G.J., van der Woude, J.: Max-plus at Work: Mod-
eling and Analysis of Synchronized Systems. Princeton Series in Applied
Mathematics. Princeton University Press, Princeton (2006)

[HZ99] Hudec, O., Zimmermann, K.: Biobjective center – balance graph location
model. Optimization 45, 107–115 (1999)

378 N. Krivulin

[HZ93] Hudec, O., Zimmermann, K.: A service points location problem with Min-
Max distance optimality criterion. Acta Univ. Carolin. Math. Phys. 34,
105–112 (1993)

[KM97] Kolokoltsov, V.N., Maslov, V.P.: Idempotent Analysis and Its Applications,
Mathematics and its Applications, vol. 401. Kluwer Academic Publishers,
Dordrecht (1997)

[Kri06] Krivulin, N.K.: Solution of generalized linear vector equations in idempo-
tent algebra. Vestnik St. Petersburg Univ. Math. 39, 16–26 (2006)

[Kri09a] Krivulin, N.K.: Methods of Idempotent Algebra for Problems in Model-
ing and Analysis of Complex Systems. Saint Petersburg University Press,
St. Petersburg (2009) (in Russian)

[Kri09b] Krivulin, N.K.: On solution of a class of linear vector equations in idem-
potent algebra. Vestnik St. Petersburg University. Applied Mathematics,
Informatics, Control Processes 10, 64–77 (2009) (in Russian)

[Kri11] Krivulin, N.: An algebraic approach to multidimensional minimax loca-
tion problems with Chebyshev distance. WSEAS Trans. Math. 10, 191–200
(2011)

[Kri12] Krivulin, N.: A new algebraic solution to multidimensional minimax loca-
tion problems with Chebyshev distance. WSEAS Trans. Math. 11, 605–614
(2012)

[Kri13] Krivulin, N.: A multidimensional tropical optimization problem with non-
linear objective function and linear constraints. Optimization (2013)

[KZ13] Krivulin, N., Zimmermann, K.: Direct solutions to tropical optimization
problems with nonlinear objective functions and boundary constraints. In:
Biolek, D., Walter, H., Utu, I., von Lucken, C. (eds.) Mathematical Methods
and Optimization Techniques in Engineering, pp. 86–91. WSEAS Press
(2013)

[Kri14] Krivulin, N.: A constrained tropical optimization problem: complete so-
lution and application example. In: Litvinov, G.L., Sergeev, S.N. (eds.)
Tropical and Idempotent Mathematics and Applications, Contemp. Math.
American Mathematical Society, Providence (2014)

[MB09] Moradi, E., Bidkhori, M.: Single facility location problem. In: Farahani,
R.Z., Hekmatfar, M. (eds.) Facility Location, Contributions to Management
Science, pp. 37–68. Physica (2009)

[Pan61] Pandit, S.N.N.: A new matrix calculus. J. SIAM 9, 632–639 (1961)
[Rom64] Romanovskĭi, I. V.: Asymptotic behavior of dynamic programming pro-

cesses with a continuous set of states. Soviet Math. Dokl. 5, 1684–1687
(1964)

[Sul01] Sule, D.R.: Logistics of facility location and allocation. Marcel Dekker Ltd.,
New York (2001)

[TZ10] Tharwat, A., Zimmermann, K.: One class of separable optimization prob-
lems: Solution method, application. Optimization 59, 619–625 (2010)

[Vor63] Vorob’ev, N.N.: The extremal matrix algebra. Soviet Math. Dokl. 4,
1220–1223 (1963)

[Zim92] Zimmermann, K.: Optimization problems with unimodal functions in max-
separable constraints. Optimization 24, 31–41 (1992)

[Zim81] Zimmermann, U.: Linear and Combinatorial Optimization in Ordered Al-
gebraic Structures. Annals of Discrete Mathematics, vol. 10. Elsevier,
Amsterdam (1981)

Refinements of the RCC25 Composition Table

Manas Ghosh and Michael Winter

Department of Computer Science
Brock University

St. Catharines, Ontario, Canada, L2S 3A1
{mg11yq,mwinter}@brocku.ca

Abstract. Boolean Contact Algebras (BCAs) are an appropriate alge-
braic approach to mereotopological structures. They are Boolean
algebras equipped with a binary contact relation C indicating whether
two regions are considered to be in contact or not. It has been shown that
BCAs with some additional properties are equivalent to the well-known
Region Connection Calculus (RCC) of Randell et al. In this paper we
show that the contact relation of a BCA gives rise to at least 35 atomic
relationships between regions in any model of RCC. In addition, we pro-
vide a composition table of the corresponding relation algebra up to 31
atoms. This improves previous results that distinguished only 25 atomic
relationships.

1 Introduction

Qualitative spatial reasoning (QSR) is an important area of Artificial Intelli-
gence (AI) which is concerned with the qualitative aspects of representing and
reasoning about spatial entities. Non-numerical relationships among spatial ob-
jects can be expressed through QSR. The majority of work in QSR has focused
on single aspects of space. Probably the most important aspect is the under-
lying topology, i.e., the spatial relationship between regions. Relation algebras
(RAs) have been shown to be a very convenient tool within spatial reasoning.
One reason is that a large part of contemporary spatial reasoning is based on the
investigation of “part of” relations and “contact” relations in various domains
[7, 21, 22, 37]. Relation algebras were introduced into spatial reasoning in [22]
with additional results published in [20, 23]. We would like to refer the reader
to these papers for additional background and motivation.

As a subarea of QSR, mereotopology combines mereology, topology and alge-
braic reasoning. Many possible theories have been proposed for mereotopology
[4, 6, 30, 31]. The most prominent theory is the region connection calculus (RCC)
[7], which is based on Clarke’s theory [8]. Randell in [32, 33] first proposed RCC
as a logical framework for mereotopology. It was shown in [36] that models of the
RCC are isomorphic to Boolean connection algebras [35]. A slightly more gen-
eral approach is based on Boolean contact algebras (BCAs) which are Boolean
algebras equipped with a binary contact relation C. In fact, Boolean Connec-
tion Algebras, and, hence, RCC models, are extensional and connected BCAs.

P. Höfner et al. (Eds.): RAMiCS 2014, LNCS 8428, pp. 379–394, 2014.
c© Springer International Publishing Switzerland 2014

380 M. Ghosh and M. Winter

As lattices, and Boolean algebras in particular, are well-known mathematical
structures, this led towards an intensive study of the properties of the RCC
including several topological representation theorems [11, 13–15, 19].

The contact relation of a BCA allows to define several atomic relationships
between regions. These atomic relations form a jointly exhaustive and pairwise
disjoint (JEPD) set of relations, i.e., each pair of regions is in exactly one of those
atomic relationships. This approach to spatial reasoning closely mirrors Allen’s
interval algebra [1, 2] and the corresponding interval based approach to tempo-
ral reasoning. The JEPD set of topological relations known as RCC8 has been
identified to be of particular importance in the RCC theory. RCC8 consists of
the relations “x is disconnected from y” (DC), “x is externally connected to y”
(EC), “x partially overlaps y” (PO), “x is equal to y” (EQ), “x is a tangential
proper part of y” (TPP), “x is a non-tangential proper part of y” (NTPP), and
the converse of the latter two relations. A relation algebra was developed based
on these eight atomic relations. This kind of categorization of topological rela-
tions was independently given by Egenhofer [19] in the context of geographical
information systems (GIS). In order to further study contact relations, Düntsch
[12, 17, 18] studied RCC8 and other relation algebras derived from mereotopol-
ogy. Furthermore, he explored their expressive power with respect to topological
domains.

It has been shown in [16–18] that it is possible to refine the eight atomic
relations of RCC8. As a result several new algebras with up to 25 atoms were
generated. New relations were obtained by splitting certain atoms from a pre-
vious algebra into two new relations. A new composition table was generated
by removing certain elements after splitting in the composition table for one of
the new atoms according to its definition. Splitting atoms in relation algebras is
based on a general method introduced in [34]. This method generalized a previ-
ous method [3] that is not suitable in the BCA context. The reason is that this
splitting procedure requires a condition to hold that is violated by all the RCC
tables starting with RCC11.

In this paper we will refine the RCC25 algebra by providing 3 additional
algebras with 27, 29 and 31 atoms. In addition, we will show that further atoms
will split. However, the generation of algebras beyond RCC31 will require further
study on regions with holes in BCAs.

2 Mathematical Preliminaries

In this section we recall some basic notions and properties. However, we will
assume that the reader is familiar with the basic notions from Boolean algebras
and lattice theory. For any notion used but defined here we refer to [5].

A subset R ⊆ A×A is called a binary relation on A. We will use the notation
xRy instead of (x, y) ∈ R. We will also write xRySz as an abbreviation for xRy
and ySz.

Refinements of the RCC25 Composition Table 381

2.1 Boolean Contact Algebra

De Laguna (1922) and Whitehead (1929) [10, 38] first used contact relations in
their research. They used regions instead of points as the basic entity of geometry.
Whitehead [38] has defined that two regular closed sets are in contact, if they
have a non-empty intersection. Notice that the regular closed sets of a topological
space form a Boolean algebra in which the meet of two regions is not their set
intersection. This notion of contact is a reflexive and symmetric relation C among
non-empty regions, satisfying an additional extensionality axiom. Leśniewski’s
classical mereology was generalized by Clarke [8] by taking a contact relation C
as the basic structural element. Clarke also proposed additional axioms such as
compatibility and summation. As a result he obtained complete Boolean algebras
without a least element together with Whitehead‘s connection relation C. This
observation led to the notion of BCAs.

Definition 1. Let B = (B,+, ·, , 0, 1) be a Boolean algebra, and C ⊆ B ×B a
binary relation on B. Then we consider the following properties of C:

C0. 0Cx, i.e., not 0Cx (Null disconnectedness)
C1. if x �= 0, then xCx (Reflexivity)
C2. if xCy, then yCx (Symmetry)
C3. if xCy and y ≤ z, then xCz (Compatibility)
C4. if xC(y + z), then xCy or xCz (Summation)
C5. if C(x) = C(y), then x = y (Extensionality)
C6. if xCz or yCz for all z ∈ B, then xCy (Interpolation)
C7. if x �= 0 and x �= 1, then xCx (Connection)

C is called a contact relation if it satisfies C0-C4. In this case the pair 〈B, C〉
is called a Boolean contact algebra. If C satisfies C5 in addition, it is called an
extensional contact relation. A Boolean contact algebra is called connected if C
also satisfies C7.

2.2 Relation Algebras

We will only recall the concepts from the theory of relation algebras that will be
used in this paper. For further details and some of the basic algebraic properties
that will be used throughout this paper we refer to [28].

Definition 2. A structure A = 〈A,+, ·, , 0, 1, ˘, ; , 1′〉 is called a relation algebra
(RA) iff it satisfies the following:

R1 〈A,+, ·, , 0, 1〉 is a Boolean algebra.
R2 〈A, ; , 1′〉 is a monoid.
R3 For all x, y, z ∈ A the following formulas are equivalent:

x; y · z = 0 ⇐⇒ x̆; z · y = 0 ⇐⇒ z; y̆ · x = 0.

We say that A is a non-associative relation algebra (NA) if A is a structure
satisfying all of the axioms above except associativity of the composition oper-
ation ;, i.e., R2 is weakened by only requiring that 1′ is a neutral element for

382 M. Ghosh and M. Winter

composition. We will denote the set of atoms of a relation algebra B by AtB
and the set of all bijections, i.e., relations f that satisfy f̆ ; f = 1′ and f ; f̆ = 1′,
by BijB.

An integral relation algebra is a relation algebra in which the composition of
any two nonzero elements is not equal to zero. This property is equivalent to
condition that the identity 1′ is an atom.

Oriented triangles can be used to visualize R3 and its immediate consequence
the so-called cycle law [9]. It states that the following properties are equivalent:

•
y

��(
((

((
((

•
x

��))
))
))
)

z

��(
((

((
((

•

•

x

��))))))) z

x; y · z = 0
�� • • y

x̆; z · y = 0
�� • • x

z; y̆ · x = 0
��

z

��)))))))
•

y
��(((((((

•
z

��))
))
))
)

x

��(
((

((
((

•
y

��))
))
))
)

•

• •y

z̆;x · y̆ = 0
�� • •z

y̆; x̆ · z̆ = 0
��

x

��(((((((
•

y
��)))))))

•x

y; z̆ · x̆ = 0
��

z

��(((((((

It is possible to recover a complete and atomic relation algebra from a suitable
structure based on its atoms. Atom structures are very useful for storing and
handling relation algebras on a computer because they take less storage space
than the entire algebra. For this reason several implementations such as [26]
are actually based on these structures. We consider a relational structure G =
〈U,D, f, I〉, where D is a ternary relation on U , f is a unary function f : U → U ,
and I is a subset of U . It is possible to construct an algebra of relational type
as follows.

Definition 3. Given a relational structure G = 〈U,D, f, I〉, the complex algebra
CmG = 〈P(U),∪,∩, , ∅, U, ˘, ; , I〉 is based on the set-theoretic operations and
constants ∪,∩, and ∅ and the following operations:

X ;Y = {z ∈ U : ∃x ∈ X, y ∈ Y (x, y, z) ∈ D} and X̆ = {f(x) : x ∈ X}.

Conversely, every relation algebra defines an atom structure on its set of
atoms.

Definition 4. An atom structure AtA = 〈AtA, D(A), f, I(A)〉 of a non-associa-
tive relation algebra A consists of the set AtA of atoms, the set I(A) = {x ∈
AtA : x ≤ 1′}, the unary function f(x) = x̆, and the ternary relation D(A) =
{(x, y, z) : x, y, z ∈ AtA, x; y ≥ z}.

The following theorem relates atom structures, relation algebras, and complex
algebras. A proof can be found in [27].

Refinements of the RCC25 Composition Table 383

Theorem 1. Let G = 〈U,D, f, I〉 be a relational structure.

1. The following three conditions are equivalent:

i. G is an atom structure of some complete atomic NA.

ii. CmG is a NA.

iii. G satisfies condition (a) and (b):

(a) If (x, y, z) ∈ D, then (f(x), z, y) ∈ D and (z, f(y), x) ∈ D.
(b) For all x, y ∈ U we have x = y iff there is some w ∈ I such that

(x,w, y) ∈ D.

2. CmG is a relation algebra iff CmG is a NA and it satisfies condition (c):

(c) For all x, v, w, x, y, z ∈ U , if (v, w, x) ∈ D and (x, y, z) ∈ D, then there
is some u ∈ U such that (w, y, u) ∈ D and (v, u, z) ∈ D.

Condition (a) of the theorem above is closely related to the cycle law. This
property can alternatively be formulated by using cycles. For three elements
x, y, z we use the cycle 〈x, y, z〉 to denote the following set of up to six triples:

〈x, y, z〉 = {(x, y, z), (x̆, z, y), (y, z̆, x̆), (y̆, x̆, z̆), (z̆, x, y̆), (z, y̆, x)}.

Using cycles we can reformulate Condition (a) as: if (x, y, z) ∈ D, then
〈x, y, z〉 ⊆ D. In order to guarantee that the structures we consider are NAs,
i.e., Condition (a) is satisfied, we will represent D by a set of cycles.

Condition (c) of the previous theorem can be visualized by the following dia-
gram, where the u (dotted arrow) is required to exist:

•
u

��

w

��(
((

((
((

•

v

��))))))) x ��

z

��• y �� •

Notice that for integral relation algebras the set I of the underlying atom
structure becomes a singleton.

Henkin et al. [25] introduced the method of splitting in cylindric algebra
theory. He showed how to obtain non-representable cylindric algebras from rep-
resentable ones. Later on H. Andréka et al. [3] formulated the way of splitting
atoms in relation algebras. However, those methods cannot be applied if the alge-
bra in question contains a bijection, and, hence, cannot be applied to any algebra
starting with RCC11. In [34] a new method for splitting atoms was introduced
that allows splitting of atoms in presence of bijections.

Definition 5. Let A and B be atomic integral RAs. We say that A is an ex-
tension of B if the following conditions are satisfied:

1. A ⊇B, i.e., B is a subalgebra of A,

2. every atom x ∈ A is contained x ≤ c(x) in an atom c(x) ∈ B, called the
cover of x.

384 M. Ghosh and M. Winter

If η and θ are functions mapping elements of AtB to cardinals, we say that A
is an extension of B along η and θ if A is an extension B and for all x ∈ AtB
we have

η(x) = |{y ∈ AtA : y ≤ x, y �= y̆}| ,
θ(x) = |{y ∈ AtA : y ≤ x, y = y̆}|

The function η and θ of the previous definition indicate into how many sym-
metric atoms θ(x) and how many non-symmetric atoms η(x) the given atom x
of B will split into in A. The following theorem characterizes situations in which
splitting of atoms is possible. A proof can be found in [34].

Theorem 2. Let B be a complete atomic integral RA and let η, θ be the func-
tions mapping elements of AtB to cardinals, and let α(x) = θ(x) + η(x). Then
there is a complete atomic integral RA A that is an extension of B along η and
θ if the following conditions hold for all x, y ∈ AtB:

(a) α(x) ≥ 1.
(b) η(x) = η(x̆).
(c) x ∈ BijB implies α(x) = 1.
(d) x = x̆ implies η(x) is even.
(e) x �= x̆ implies θ(x) = 0.
(f) y ∈ BijB implies α(x; y) = α(x).
(g) y ∈ BijB, x = x̆ and η(x) > 0 implies x; y = (x; y)˘ and θ(x) = θ(x; y).
(h) α(x) > 1, y;x �= 0 and y /∈ BijB implies y ≤ y; (x;xx̆ ∩ 0′).

Before we continue we want to explain how we will obtain new RCC ta-
bles, i.e., atom structures, from RCC25. We start by identifying a so-called non-
extensional situation. Such a situation is given by a triple (R,S, T) ∈ RCC25
for which we provide two regions x, y (definable in any model) so that xTy and
xR;Sy, i.e., not x(R;S)y. This shows that the relation T can be split into the
two relations T1 = T ∩R;S and T2 = T ∩R;S. The splitting of T is done using
Theorem 2. According to the conditions of the theorem this implies that further
atoms have to be split as well (Conditions (f) and (g)). These atoms are related
to T by composing T with any bijection from the left and/or the right. After
the splitting process we remove the cycle 〈R,S, T2〉 and all cycles necessary to
maintain the bijections. Now, Condition (c) of Theorem 1 will be checked. If it
is satisfied, we have obtained the new table. If not, the specific situation has to
be resolved by removing one of the two triples in question. In order to decide
which of the triples should be removed we have to keep the triple for which an
example in any model exists. After removing the cycle of one of the triples we
start over. It is possible that this process ends in a situation where both triples
must be kept. This is a clear indication that splitting T alone is not possible.
We will encounter this situation in Section 6.

2.3 RCC Relations

In this paper we will use several relations derived from the basic contact relation
C of a extensional and connected BCA. In the table below we list the most

Refinements of the RCC25 Composition Table 385

convenient among the equivalent conditions defining each of the relations. For
further explanation and motivation of those relations we refer to [16–19].

xDCy iff not xCy
xECy iff xCy and x · y = 0

xECNy iff xECy and x+ y �= 1
xECDy iff x = y

xOy iff x · y �= 0
xPOy iff xOy and x � y and y � x

xPONy iff xPOy and x+ y �= 1
xPODy iff xPOy and x+ y = 1
xTPPy iff x < y and there is a z with xECz and yECz

xTPPAy iff xTPPy and x(ECN ;TPP)y
xTPPBy iff xTPPy and not x(ECN ;TPP)y
xNTPPy iff x < y and not xTPPy
xECNAy iff xECNy and x(TPP ;TPP�)y
xECNBy iff xECNy and not x(TPP ;TPP�)y

In the following table we listed some sub-relations of PON and their defining
properties. A “+” sign in the table means that two regions that are in the rela-
tionship indicated by the row also satisfy the property indicated by the column.
A “-” sign obviously indicates the opposite.

ECN ;TPP TPP�;ECN TPP ;TPP� TPP�;TPP
PONXA1 + + + +
PONXA2 + + + -
PONXB1 + + - +
PONXB2 + + - -
PONY A1 - + + +
PONY A2 - + + -
PONY A1� + - + +

PONY A2� + - + -
PONY B - + - +

PONY B� + - - +
PONZ - - + +

The next lemma summarizes some important properties of these relations that
we will need in the remainder of the paper. A proof can be found in [16].

Lemma 1. In any extensional and connected BCA we have the following:

1. 1′ ∈ NTPP�;NTPP, i.e. for all z there is some x with xNTPPz.
2. ECN = TPP ;ECD, i.e., xECNz iff xTPPz.
3. xNTPPz and yNTPPz iff (x + y)NTPPz.
4. xNTPPy and xNTPPz iff xNTPPy · z.
5. ECD;DC = NTPP�, i.e xDCz iff zNTPPx.
6. x(ECN ;TPP)z iff xECN(x · z)TPPz.
7. xNTPPy and y ≤ z implies xNTPPz.

386 M. Ghosh and M. Winter

In [16] the RCC15 and RCC25 composition table were presented. These tables
have also been computed by splitting certain atoms (in RCC11) and removing
certain cycles. In fact the cycle 〈TPPA, TPPA, TPPB〉was removed in addition
to the cycles required by the definitions of the new relations. A proof that this
cycle should be removed, i.e., a proof that this situation is impossible in all
models, was not given. We provide the proof in the following lemma.

Lemma 2. In every extensional and connected BCA we have

TPPA;TPPA ∩ TPP ⊆ ECN ;TPP.

Proof. To prove this lemma, assume x(TPPA;TPPA∩TPP)z. Then there is a
y so that xTPPAyTPPAz, i.e., we have (1) xTPPy (2) yTPPz (3) xTPPz (4)
xECN(x ·y)TPPy (5) yECN(y ·z)TPPz by Lemma 1(6). We want to show (a)
xECN(x · z) and (b) (x · z)TPPz. To prove (a) at first we show xTPP (x + z)
which is equivalent to (a) by Lemma 1(2). We have x ≤ x + z. If x = x + z,
then z ≤ x, and hence x ≤ z. But this implies z = 1, and, hence, xTPP1 by (3),
which is a contradiction to xNTPP1 for all x. Therefore we have x < (x + z).
Now assume xNTPP (x+ z). From the computation

(x+ y) · (y + z) = x · (y + z) + y · (y + z)

= x · y + x · z + y · y + y · z
= x+ 0 + 0 + z by (1),(2) and (3)

= x+ z

we obtain xNTPP (x+y) ·(y+z), which implies by Lemma 1(4) xNTPP (x+y)
and xNTPP (y+ z). The first property is equivalent to xECD(x · y) by Lemma
1(5), a contradiction to (3). Therefore we have xTPP (x + z). Now, in order
to prove (b) we already have x · z ≤ z. If x·z = z, then z ≤ x, and, hence,
x ≤ z · z = 0 by (3). But this is a contradiction to (3) since 0NTTPz for all z.
We conclude (x · z) < z. Now, assume (x · z)NTPPz. From the computation

x · y + y · z = x · y + x · (x+ y) · z
= x · (y + (x+ y) · z)
= x · (y · z + (x+ y) · z)
= x · (y + x+ y) · z
= x · z

we get (x · y + y · z)NTPPz, and, hence, x · yNTPPz and y · zNTPPz by
Lemma 1(3). The second property is a contradiction to (5). So we conclude that
(x · z)TPPz. All these facts prove the lemma. !�

3 From RCC25 to RCC27

Our investigation starts with the relation algebra RCC25. Due to lack of space
we cannot provide its composition table here. We refer to [16] for the details.

Refinements of the RCC25 Composition Table 387

Consider the diagram given in Figure 1 where we define x = a+c and z = a·s.
It shows a general PONXB2 situation between x and z, i.e., a situation that
appears in any non-empty model. In order to verify that such a situation indeed
occurs in any non-empty model we start with any region s within the model.
Since NTTP is surjective [16] we obtain a with aNTTPs. Then we choose c
with cNTPP (a · s).

It is easy to see that xNTPP (x+ z), but zNTPP(x+ z). So this fact implies
that PONXB2 can be split into two parts that we will call PONXB2H and
PONXB2H�:

xPONXB2Hz = xPONXB2z ∩ xNTPP (x+ z),

xPONXB2H�z = xPONXB2z ∩ xNTPP (x+ z).

Fig. 1. (a+ c)PONXB2(a · s)

Later we will provide a justification for the name PONXB2H� by showing
that PONXB2H� is indeed the converse of PONXB2H . The definition of
PONXB2H is based on the condition xNTPP (x + z). This property cannot
be used to remove triples because it is not based on the composition of atomic
relations. Instead it uses the algebraic operation +. In the following we want
to show that PONXB2H can be written in suitable way. Notice that a similar
computation was already shown in [29].

Lemma 3. We have x(ECN ;O)z ⇔ xTPP (x+ z).

Proof. First we want to prove the implication ⇒. For this purpose we have to
find a region y with xECNyOz, i.e., y has to satisfy (1) x · y = 0 (2) xCy (3)
x+ y �= 1 (4) z · y = 0. Now choose y = x · z. The properties (1) and (4) follow
immediately from the definition of y. From the assumption we conclude that
xNTPP (x+ z), which is equivalent to (2) by Lemma 1(5). In order to show (3)
assume that x+ y = 1. Then we have

1 = x+ (x · z)
= (x+ x) · (x+ z)

= (x+ z).

This implies z ≤ x, and, hence, x + z = x. But this is a contradiction to
the assumption. For the other implication assume xNTPP (x + z). From the

388 M. Ghosh and M. Winter

assumption we obtain a y with (1)-(4) as listed above. First, we want to show
that xTPPy. From (1) we get x ≤ y. If x = y, then xECDy, a contradiction
to the assumption xECNy. Since xCy we conclude xTPPy. On the other hand
(1) and (4) show that x+z ≤ y. By our assumption xNTPP (x+z) and Lemma
1(7) we get xNTPPy, a contradiction. !�

Using the previous lemma we are now able to provide a condition equivalent
to xNTPP (x+ y) based on the relational operations only.

Lemma 4. We have xNTPP (x+ z)⇔ x(ECN \O)z.

Proof. First consider direction⇒. From xNTPP (x+z) we get xTPP (x+z) since

x ≤ x+z. This is equivalent to xECN ;O(x+z) by Lemma 3, and, hence, we have
x(ECN \O)z. Now consider the other implication. Let us assume xTPP (x+z).
Then we get x(ECN ;O)z from Lemma 3. But this contradicts with (ECN \O).
If, x = x + z then z ≤ x. Now choose an a with aNTPPx, which is possible
because of Lemma 1(1). Then define y = x · a. We want to show that xECNy.
First, we have x · y ≤ x · x = 0. Now, assume xCy then yNTPPx from Lemma
1(5) and hence we have (y + a)NTPPx from Lemma 1(3). Then we have

y + a = (x · a) + a

= (x+ a) · (a+ a)

= (x+ a)

= x since a ≤ x.

This implies xNTPPx. But that is contradiction to the assumption. This fact
implies xCy. If x+ y = 1 then 1 = x+ (x · a), which is equivalent to x+ a and
that implies a ≤ x. So we have a ≤ x+ x = 1 and hence aNTPPx i.e xECNy.
Now y.z is equivalent to x · a · z and that is 0. Which implies z ≤ x. So, we can
conclude that yOz. !�

The previous two lemmas show that PONXB2H = PONXB2∩ (ECN \O).
This formula can be used for our method of splitting. But before we proceed
with this procedure, we want to show that PONXB2H� is indeed the converse
of PONXB2H .

Lemma 5. We have (ECN \O) ∩ (ECN \O)� = ∅.

Proof. From Lemma 4 x(ECN\O)z is equivalent to xNTPP (x+z) and z(ECN\
O)x is equivalent to zNTPP (x+ z). The latter two imply (x+ z)NTPP (x+ z)
by Lemma 1(3), which is a contradiction. !�

The next lemma shows that (ECN \ O)� is the complement of ECN \ O
within a TPP ;TPP� context.

Lemma 6. We have (ECN \O) ∩ (ECN \O)� ⊆ TPP ;TPP�.

Refinements of the RCC25 Composition Table 389

Proof. Suppose we have x(ECN \O)z and x(ECN \O)�z. Then Lemma 4 im-
plies xNTPP (x + z) and zNTPP (x+ z). But xNTPP (x + z) is equivalent to
xTPP (x+ z) and zNTPP(x+ z) equivalent to zTPP (x+ z) since x < (x+ z)
and z < (x+ z). !�

Since PONXB2 is a subset of TPP ;TPP� we obtain the desired result.

Lemma 7. We have PONXB2H� = PONXB2 ∩ (ECN \O)�.

Proof. We compute

PONXB2H� = PONXB2 ∩ECN \O
= PONXB2 ∩ECN \O ∩ TPP ;TPP�

= PONXB2 ∩ (ECN \O)�,

where the last line follows from the previous two lemmas. !�

The final step before we start the splitting process is to express the definition
of PONXB2H in terms that can be used to find appropriate cycles of RCC25
which should be removed. Notice that we will use the names of new relations in
the Lemmas 8-10 as an abbreviation for their definition. Those relations are not
in RCC25.

Lemma 8. In RCC25 we have PONXB2H = PONXB2 ∩ECN ;DC.

Proof. Consider the following computation

PONXB2H = PONXB2 ∩ (ECN \O)

= PONXB2 ∩ ECN ;O

= PONXB2 ∩ ECN ; (DC ∪ ECD ∪ ECN)

= PONXB2 ∩ ECN ;DC ∪ ECN ;ECD ∪ ECN ;ECN

= PONXB2 ∩ ECN ;DC ∩ ECN ;ECD ∩ ECN ;ECN

= PONXB2 ∩ ECN ;DC ∩ TPP ∩ ECN ;ECN

= PONXB2 ∩ ECN ;DC,

where the last line follows from PONXB2 �= TPP and the fact PONXB2 is
not in ECN ;ECN . !�

RCC25 contains one bijection; the relation ECD. From the composition ta-
ble of RCC25 we obtain PONXB2;ECD = PONZ and ECD;PONXB2 =
PONZ. This shows that we need to split PONZ as well. We define

PONZH = PONXB2H ;ECD, PONZH� = PONXB2H�;ECD.

As above, the next lemma indicates precisely which cycles have to be removed.
The proof is similar to the proof of Lemma 8, and, therefore, omitted.

Lemma 9. In RCC25 we have PONZH = PONZ ∩ ECN ;NTPP .

390 M. Ghosh and M. Winter

After splitting PONXB2 and PONZ in RCC25, we obtain an algebra with
27 atoms, which we will call RCC27. During the splitting process we will remove
initially the cycles listed below plus the cycles obtained from them by composing
the relation in a cycle from the left and/or right with the bijection ECD appro-
priately. The first two cycles are removed in order to make sure that ECD is a
bijection in the new algebra as well. The other cycles are removed considering
the definition of PONXB2H, PONXB2H�, PONZH and PONZH�.

1. 〈PONXB2H,ECD,PONZH�〉
2. 〈PONXB2H�, ECD,PONZH〉
3. 〈ECNA,DC,PONXB2H〉
4. 〈ECNB,DC,PONXB2H〉
5. 〈DC,ECNA,PONXB2H�〉
6. 〈DC,ECNB,PONXB2H�〉
7. 〈ECNA,NTPP, PONZH〉
8. 〈ECNB,NTPP, PONZH〉
9. 〈NTPP�, ECNA,PONZH�〉
10. 〈NTPP�, ECNB,PONZH�〉

As described in Section 2.2 we continue by checking the associativity of RCC27
based on Theorem 1. After removing additional cycles we have obtained the set
of cycles that define the composition table of RCC27. This list can be found in
[24].

4 From RCC25 to RCC29

Similar to the previous section consider the diagram given in Figure 2 where we
define x = a + c and z = a · (s + b). Again, the fact that NTPP is surjective
guarantees that such a situation is available in any non-empty model.

It is easy to see that xNTPP (x + z), but zNTPP (x+ z) does not hold. So
this fact implies that PONXB1 can also be split into two parts that we will call
PONXB1H and PONXB1H�:

xPONXB1Hz = xPONXB1z ∩ xNTPP (x+ z),

xPONXB1H�z = xPONXB1z ∩ xNTPP (x+ z).

Fig. 2. (a+ c)PONXB1(a · (s+ b))

Refinements of the RCC25 Composition Table 391
The same reasoning as in the previous section leads to the following equations

for the two relations

PONXB1H = PONXB1 ∩ (ECN \O),

PONXB1H� = PONXB1 ∩ (ECN \O)�.

From the composition table we obtain that PONXB1;ECD = PONY A1,
ECD;PONXB1 = PONY A1� and ECD;PONXB1;ECD = PONXA2 in
RCC25. This shows that we need to split the relation PONY A1, PONY A1�

and PONXA2 as well. We define

PONY A1H = PONXB1H ;ECD,

PONY A1H� = ECD;PONXB1H�,

PONY A1tH = PONXB1H�;ECD,

PONY A1tH� = ECD;PONXB1H,

PONXA2H = ECD;PONXB1H�;ECD,

PONXA2H� = ECD;PONXB1H ;ECD.

The next lemma will tell us which cycles have to be removed concretely. The
proof is very similar to Lemma 8, and, therefore, omitted.

Lemma 10. In RCC25 we have:

1. PONXB1H = PONXB1 ∩ ECN ;DC,
2. PONY A1H = PONY A1 ∩ ECN ;NTPP ,
3. PONY A1tH = PONY A1 ∩DC;TPP ,
4. PONXA2H = PONXA2 ∩NTPP�;TPP .

As in the previous section the cycles of the RCC29 composition table are
obtained by splitting the atoms above, and then removing the appropriate cycles.
The result of this process can be found in [24].

5 Beyond RCC29

In this section we sketch two further refinements of the RCC25 composition
table.

5.1 Generating RCC31

The algebra RCC31 is obtained by combining the splittings that were used to
generate RCC27 and RCC29. Overall we are splitting the atoms PONXA2,
PONXB1, PONXB2, PONY A1, PONY A1� and PONZ. This was done
splitting the two remaining atoms in the algebra RCC29. An alternative ap-
proach could have been to split the remaining four atoms in RCC27, of course.
It is worth mentioning that during the associativity test for RCC31, only one
additional cycle had to be removed. Again, the resulting set of cycles can be
found in [24].

392 M. Ghosh and M. Winter

5.2 Splitting ECNB

Mormann [29] introduced the concept of a hole relation. He defined the restricted
hole relation by H = ECN ∩ (EC \ O). He also showed that H splits ECNB.
Following the same procedure as in Section 3 and 4 we recognize that we have
to split TPPB, TPPB� and PODY B as well. We get the following definitions
(the remaining relations are just converses of the ones listed below):

H = ECNB ∩ ECN ;DC,

TPPB1 = TPPB ∩DC;TPP,

TPPB2 = TPPB ∩ ECN ;NTPP,

PODY BH = PODY B ∩ TPP�;NTPP.

After splitting the atoms we removed the appropriate cycles similar to the
previous sections. This time we were not able to obtain a relation algebra in the
iterative removal procedure based on Theorem 1 (Condition (c)). We ended in
a situation were both cycles could not be removed. For an intensive study of
the situation and further details we refer to [24]. This situation is similar to the
RCC10 composition table [17]. The RCC10 composition table is not associative,
and, hence, not a relation algebra. Splitting an additional atom in RCC10 led
to RCC11 which is associative. As already mentioned in Section 2.2 it should be
possible to obtain a relation algebra based on splitting ECNB by splitting at
least one atom in addition to the four identified here. So far we were not able to
find that atom and the condition defining its sub-relations. Therefore, we leave
this problem for future investigation.

6 Conclusion and Future Work

In this paper we have presented three refinements of the RCC25 relation alge-
bra. These refinements were obtained by splitting certain atoms of the RCC25
algebra. In addition, we have identified another atom that splits but we weren’t
able to produce the corresponding algebra. A successful attempt to split ECNB
requires to identify another atom that splits so that the resulting composition
table is associative. This work will be part of future research.

In addition to ECNB we recognized that there are two TPPA situations
that indicate that TPPA splits as well. The corresponding definitions of the
sub-relations of TPPA are:

TPPA1 = TPPA ∩ TPPA;TPPB2, TPPA2 = TPPA ∩ TPPA;TPPB2.

Notice that the definitions above use TPPB2, a relation that is generated while
splitting ECNB. In order to generate a relation algebra that contains TPPA1
and TPPA2 as atoms we need to split ECNB successfully first.

Refinements of the RCC25 Composition Table 393

References

1. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of
the ACM 26(11), 832–843 (1983)

2. Allen, J.F., Hayes, P.J.: A common sense theory of time. In: Proceedings 9th IJCAI,
Los Angeles, pp. 528–531 (1985)

3. Andréka, H., Maddux, R.D., Nemeti, I.: Splitting in relation algebras. Proceedings
of the AMS 111(4), 1085–1093 (1991)

4. Asher, N., Vieu, L.: Toward a geometry of common sense: A semantics and a
complete axiomatization of mereotopology. In: Mellish, C. (ed.) Proceedings of the
14th International Joint Conference on Artificial Intelligence (IJCAI 1995), pp.
846–852 (1995)

5. Birkhoff, G.: Lattice Theory, 3rd edn., vol. XXV. American Mathematical Society
Colloquium Publications (1968)

6. Cohn, A.G.: Qualitative spatial representation and reasoning techniques. In:
Brewka, G., Habel, C., Nebel, B. (eds.) KI 1997. LNCS, vol. 1303, pp. 1–30.
Springer, Heidelberg (1997)

7. Cohn, A.G., Bennett, B., Gooday, J., Gotts, N.M.: Representing and reasoning
with qualitative spatial relations about regions. In: Stock, O. (ed.) Spatial and
Temporal Reasoning, pp. 97–134. Kluwer, IRST (1997)

8. Clarke, B.L.: A calculus of individuals based on ‘connection’. Notre Dame J. of
Formal Logic 22, 204–218 (1981)

9. de Morgan, A.: On the syllogism: IV, and on the logic of relations. Transactions of
the Cambridge Philosophical Society 10, 331–358 (1860)

10. De Laguna, T.: Point, line and surface as sets of solids. Journal of Philosophy 19,
449–461 (1922)

11. Dimov, G., Vakarelov, D.: Contact algebras and region-based theory of space: A
proximity approach - II. Fundamenta Informaticae 74, 251–282 (2006)

12. Düntsch, I.: Relation algebras and their application in temporal and spatial rea-
soning. Artificial Intelligence Review 23, 315–357 (2005)

13. Düntsch, I., Winter, M.: A representation theorem for boolean contact algebras.
Theoretical Computer Science 347, 498–512 (2003)

14. Düntsch, I., Winter, M.: Weak contact structures. In: MacCaull, W., Winter, M.,
Düntsch, I. (eds.) RelMiCS 2005. LNCS, vol. 3929, pp. 73–82. Springer, Heidelberg
(2006)

15. Düntsch, I., Winter, M.: The lattice of contact relations on a boolean algebra.
In: Berghammer, R., Möller, B., Struth, G. (eds.) RelMiCS/AKA 2008. LNCS,
vol. 4988, pp. 99–109. Springer, Heidelberg (2008)

16. Düntsch, I., Schmidt, G., Winter, M.: A necessary relation algebra for mereotopol-
ogy. Studia Logica 69, 381–409 (2001)

17. Düntsch, I., Wang, H., McCloskey, S.: Relations algebras in qualitative spatial
reasoning. Fundamenta Informaticae 39, 229–248 (1999)

18. Düntsch, I., Wang, H., McCloskey, S.: A relation-algebraic approach to the region
connection calculus. Theoretical Computer Science 255, 63–83 (2001)

19. Egenhofer, M.: Reasoning about binary topological relations. In: Günther, O.,
Schek, H.-J. (eds.) SSD 1991. LNCS, vol. 525, pp. 141–160. Springer, Heidelberg
(1991)

20. Egenhofer, M.: Deriving the composition of binary topological relations. Journal
of Visual Languages and Computing 5, 133–149 (1994)

394 M. Ghosh and M. Winter

21. Egenhofer, M., Franzosa, R.: Point-set topological spatial relations. International
Journal of Geographic Information Systems 5, 161–174 (1991)

22. Egenhofer, M., Sharma, J.: Topological consistency. In: Fifth International Sym-
posium on Spatial Data Handling, Charleston, pp. 335–343 (1992)

23. Egenhofer, M., Sharma, J.: Assessing the consistency of complete and incomplete
topological information. Geographical Systems 1, 47–68 (1993)

24. Ghosh, M.: Region Connection Calculus: Composition Tables and Constraint Sat-
isfaction Problems. MSc Thesis, Brock University (2013),
https://dr.library.brocku.ca/handle/10464/5109

25. Henkin, L., Monk, J.D., Tarski, A.: Cylindric algebras, Part II. Studies in Logic
and the Foundations of Mathematics, vol. 115. North-Holland (1985)

26. Kahl, W., Schmidt, G.: Exploring (Finite) Relation Algebras Using Tools Writ-
ten in Haskell. Technical Report 2000-02, University of the Federal Armed Forces
Munich (2000)

27. Maddux, R.D.: Some varieties containing relation algebras. Transactions of the
AMS 272, 501–526 (1982)

28. Maddux, R.D.: Relation algebras. Studies in Logic and the Foundations of Math-
ematics, vol. 150. Elsevier (2006)

29. Mormann, T.: Holes in the region connection calculus, Oisterwijk (2001) (Preprint
presented at RelMiCS 6)

30. Pratt, I., Schoop, D.: A complete axiom system for polygonal mereotopology of
the real plane. Journal of Philosophical Logic 27(6), 621–658 (1998)

31. Pratt, I., Schoop, D.: Expressivity in polygonal, plane mereotopology. Journal of
Symbolic Logic 65(2), 822–838 (2000)

32. Randell, D.A., Cohn, A.G.: Modelling topological and metrical properties in phys-
ical processes. Principles of Knowledge Representation and Reasoning, 357–368
(1989)

33. Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection.
Principles of Knowledge Representation and Reasoning, 165–176 (1992)

34. Siddavaatam, P., Winter, M.: Splitting atoms in relation algebras. In: de Swart, H.
(ed.) RAMICS 2011. LNCS, vol. 6663, pp. 331–346. Springer, Heidelberg (2011)

35. Stell, J.G.: Boolean connection algebras: A new approach to the Region-Connection
Calculus. Artificial Intelligence 122, 111–136 (2000)

36. Vakarelov, D., Dimov, G., Düntsch, I., Bennett, B.: A proximity approach to some
region-based theories of space. Journal of Applied Non-classical Logics 12, 527–559
(2002)

37. Varzi, A.C.: Parts, wholes, and part-whole relations: The Prospect of Mereotopol-
ogy. Data & Knowledge Engineering 20, 259–286 (1996)

38. Whitehead, A.N.: Process and Reality. MacMillan (1929)

https://dr.library.brocku.ca/handle/10464/5109

Fuzzifying Modal Algebra

Jules Desharnais1 and Bernhard Möller2

1 Département d’informatique et de génie logiciel
Université Laval, Québec, QC, Canada
jules.desharnais@ift.ulaval.ca

2 Institut für Informatik, Universität Augsburg, 86135 Augsburg, Germany
bernhard.moeller@informatik.uni-augsburg.de

Abstract. Fuzzy relations are mappings from pairs of elements into the
interval [0, 1]. As a replacement for the complement operation one can
use the mapping that sends x to 1 − x. Together with the concepts of
t-norm and t-conorm a weak form of Boolean algebra can be defined.
However, to our knowledge so far no notion of domain or codomain has
been investigated for fuzzy relations. These might, however, be useful,
since fuzzy relations can, e.g., be used to model flow problems and many
other things. We give a new axiomatisation of two variants of domain
and codomain in the more general setting of idempotent left semirings
that avoids complementation and hence is applicable to fuzzy relations.
Some applications are sketched as well.

Keywords: fuzzy relations, semirings, domain operator, modal
operator.

1 Introduction

The basic idea of the present paper is to bring together the concepts of fuzzy
semirings, say in the form of fuzzy relations or matrices, and modal semirings
that offer domain and codomain operators and, based on these, algebraic defi-
nitions of box and diamond. The latter have been thoroughly studied for more
than ten years now (see [DMS06] for an early survey) and applied to many dif-
ferent areas, such as program semantics, knowledge and belief logics [Möl13] or
preference queries in databases [MRE12], and many more.

Domain and codomain in a certain sense “measure” enabledness in transition
systems. This observation motivated an investigation whether modal semirings
might also be interesting for handling fuzzy systems. So the idea is not to invent
a new kind of algebraic “meta-system” for all kinds of fuzzy logics, but rather
to apply and hence re-use an existing and well established algebraic system to
the particular case of fuzzy systems.

Let us briefly recapitulate the theory of fuzzy relations. These are mappings
from pairs of elements into the interval [0, 1]. The values can be interpreted as
transition probabilities or as capacities and in various other ways. Hence the idea
was to take up the above idea of measuring and to enrich fuzzy relations semi-
rings with domain/codomain operators and applying the corresponding modal

P. Höfner et al. (Eds.): RAMiCS 2014, LNCS 8428, pp. 395–411, 2014.
c© Springer International Publishing Switzerland 2014

396 J. Desharnais and B. Möller

operators in the description and derivation of systems or algorithms in that
realm. To our knowledge this has not been done so far.

The classical relational operators are adapted as follows:

(R � S)(x, y) = max(R(x, y), S(x, y)) ,
(R ! S)(x, y) = min(R(x, y), S(x, y)) ,
(R ; S)(x, y) = sup

z
min(R(x, z), S(z, y)) .

Under these operations, fuzzy relations form an idempotent semiring (see below
for the precise definition). One can also define a weak notion of complementation
by setting R(x, y) = 1 − R(x, y). This already shows the main problem one
encounters in transferring the concept of domain to fuzzy semirings: the original
axiomatisation of domain used a Boolean subring of the overall semiring as the
target set of the domain operator, and this generally is not present in the fuzzy
case.

However, using the above weak negation and the concepts of t-norm and t-
conorm (see again below for the details) a substitute for Boolean algebra can be
defined.

We give a new axiomatisation of two variants of domain and codomain in
the more general setting of idempotent left semirings that avoids complemen-
tation and hence is applicable to fuzzy relations. Such an axiomatisation has
been given in [DS11] for idempotent semirings. We study the more general case
of idempotent left semirings in which left distributivity of multiplication over
addition and right annihilation of zero are not required. At the same time we
weaken the domain axioms by requiring only isotony rather than distributivity
over addition. Surprisingly still a wealth of properties known from the semi-
ring case persist in the more general setting. However, it is no longer true that
complemented subidentities are domain elements. This is not really disturbing,
though, because the fuzzy world has its own view of complementation anyway.

In the main part of the paper we develop the theory, involving the new concept
of restrictors. It tuns out that the axiomatisation we come up with can be param-
eterised in certain ways to characterise a whole family of domain operators in a
uniform way. We then investigate how the domain operators extend to matrices,
since this is the application we are after. It turns out that the axioms apart
from the the so-called locality axiom extend well from the base left semiring
S to the matrix semiring over it, while locality extends only if S is actually a
semiring. Finally, some applications are sketched.

2 Preliminaries

We will frequently use the reasoning principle of indirect equality for partial
orders (M,≤). For a, b ∈ M we have a = b ⇔ (∀ c ∈ M : b ≤ c ⇔ a ≤ c). The
implication (⇒) is trivial. For (⇐), choosing c = a and c = b yields b ≤ a and
a ≤ b, respectively, so that antisymmetry of ≤ shows the claim.

Fuzzifying Modal Algebra 397

Definition 2.1. For elements a, b ∈M , the interval [a, b] is

[a, b] =df {c | a ≤ c ∧ c ≤ b} .

This entails [a, b] = ∅ if a �≤ b.

Now we define our central algebraic structure.

Definition 2.2. A left (or lazy) semiring, briefly an L-semiring, is a quintuple
(S,+, 0, ·, 1) with the following properties:

1. (S,+, 0) is a commutative monoid.
2. (S, ·, 1) is a monoid.
3. The · operation is right-distributive over + and left-strict , i.e., (a+ b) · c =

a · c+ b · c and 0 · a = 0. As customary, · binds tighter than + .

A right semiring is defined symmetrically. A semiring [Van34] is a structure
which is both a left and right semiring. In particular, its multiplication is both
left and right distributive over its addition and its 0 is a left and right annihilator.

Definition 2.3. An idempotent left semiring [Möl07], briefly IL-semiring, is an
L-semiring (S,+, 0, ·, 1) with the following additional requirements.

– Addition is idempotent. Hence it induces an upper semilattice with the nat-
ural order ≤ given by a ≤ b ⇔df a + b = b, which means that b offers at
least all the choices of a, but possibly more.

– Multiplication is right-isotone w.r.t. the natural order. This can be axioma-
tised as super-disjunctivity a · b+ a · c ≤ a · (b+ c).

An I-semiring is an idempotent semiring. Finally, an IL-semiring is bounded if
it has a greatest element �.

3 Predomain and Restrictors

As is well known, predicates on states can be modelled by tests, which are defined
involving the Boolean operation of negation. As mentioned in the introduction,
we want to avoid that and hence give the following new axiomatisation of a
(pre)domain operation whose range will replace the set of tests.

Definition 3.1. A prepredomain IL-semiring is a structure (S, �), where S is
an IL-semiring and the prepredomain operator � : S → S satisfies, for all a ∈ S,

�a ≤ 1 , (sub-id)

�0 ≤ 0 , (strict)

a ≤ �a · a . (d1)

By �S we denote the image of S under the prepredomain operation. The operator
� is called a predomain operator if additionally, for all a, b ∈ S and p ∈ �S,

�a ≤ �(a+ b) , (isot)

�(p · a) ≤ p . (d2)

398 J. Desharnais and B. Möller

Finally, a predomain operator � is called a domain operator if additionally it
satisfies the locality axiom, i.e., for all a, b ∈ S,

�(a · �b) ≤ �(a · b) . (d3)

In the latter cases, (S, �) is called a predomain IL-semiring and a domain IL-
semiring, resp. An element of �S is called a ((pre)pre)domain element . We will
consistently write a, b, c . . . for arbitrary semiring elements and p, q, r, . . . for
elements of �S.

Since by definition �a ≤ 1, by isotony of · the reverse inequation to (d1) holds
as well, so that (d1) is equivalent to a = �a ·a. To simplify matters we will refer to
that equation as (d1), too. Using Mace4 it can be shown that the above axioms
are independent. They can be understood as follows. The equational form of
Ax. (d1) means that restriction to all starting states is no actual restriction,
whereas (d2) means that after restriction the remaining starting states satisfy
the restricting test. Ax. (isot) states, by the definition of ≤, that � is isotone,
i.e., monotonically increasing. Ax. (d3), which, as will be shown in Lemma 5.4.1,
again strengthens to an equality, states that the domain of a ·b is not determined
by the inner structure or the final states of b; information about �b in interaction
with a suffices.

The auxiliary notion of prepredomain already admits a few useful results.

Lemma 3.2. Assume a prepredomain IL-semiring (S, �). Then for all a ∈ S
and p ∈ �S we have the following properties.

1. If a ≤ 1 then a ≤ �a.
2. �1 = 1 and hence 1 ∈ �S.
3. (d1) ⇔ (�a ≤ p ⇒ a ≤ p · a).

Proof.

1. By (d1), the assumption, isotony of · and neutrality of 1, a ≤ �a·a ≤ �a·1 = �a.
2. We have 1 ≤ �1 by Part 1 and �1 ≤ 1 by (sub-id).
3. (⇒) Assume (d1) and suppose �a ≤ p. Then by isotony of ·, a = �a ·a ≤ p ·a.

(⇐) Set p = �a in the right hand side. !�

To reason more conveniently about predomain we introduce the following
auxiliary notion.

Definition 3.3. A restrictor in an IL-semiring is an element x ∈ [0, 1] such that
for all a, b ∈ S we have

a ≤ x · b ⇒ a ≤ x · a .

Note that by x ≤ 1 this is equivalent to

a ≤ x · b ⇒ a = x · a . (1)

The set of all restrictors of S is denoted by rest(S). In particular, 0, 1 ∈ rest(S).

Fuzzifying Modal Algebra 399

A central result is the following.

Lemma 3.4. In a predomain IL-semiring �S ⊆ rest(S).

Proof. Assume a ≤ �b·c. By (isot) and (d2) we infer �a ≤ �(�b·c) ≤ �b. Now by (d1)
and isotony of multiplication we obtain a = �a · a ≤ �b · a. Hence �b ∈ rest(S). !�

To allow comparison with previous approaches we recapitulate the following
notion.

Definition 3.5. An element r of an IL-semiring is a test if it has a relative
complement s ∈ S with r + s = 1 and r · s = 0 = s · r. The set of all tests of S
is denoted by test(S). In particular, 0, 1 ∈ test(S).

In an I-semiring, test(S) is a Boolean algebra with 0 and 1 as the least and
greatest elements and + as join and · as meet; moreover, the relative complements
are unique if they exist.

Lemma 3.6. test(S) ⊆ rest(S).

Proof. Consider an r ∈ test(S) with relative complement s. Assume that a ≤ r·b.
Then by isotony of multiplication, the definition of relative complement and left
annihilation of 0,

s · a ≤ s · r · b = 0 · b = 0 . (*)

Now, by neutrality of 1, the definition of relative complement, right distributivity,
(∗) and neutrality of 0,

a = 1 · a = (r + s) · a = r · a+ s · a = r · a+ 0 = r · a . !�

4 Properties of Restrictors

Next we show some fundamental properties of restrictors which will be useful in
proving the essential laws of predomain. In this section we will, for economy, use
p, q for restrictors, since domain elements are not mentioned here.

Lemma 4.1. Assume an IL-semiring S. Then for all a, b, c ∈ S and all p, q ∈
rest(S) the following properties hold.

1. p · p = p.
2. p · q ∈ rest(S).
3. p · q = q · p.
4. p · q is the infimum of p and q.
5. If the infimum a ! b exists then p · (a ! b) = p · a ! b = p · a ! p · b.
6. p · q · a = p · a ! q · a.
7. p · q = 0 ⇒ p · a ! q · a = 0.
8. If b ≤ a then p · b = b ! p · a.

400 J. Desharnais and B. Möller

Assume now that S is bounded.

9. p · b = b ! p · �. In particular, p = 1 ! p · �.
10. p ≤ q ⇔ p · � ≤ q · �.

Proof.

1. Set x = a = p and b = 1 in (1).
2. Assume a ≤ p · q · b. Since p is a restrictor we obtain a = p · a. By p ≤ 1 we

also obtain a ≤ p · q · b ≤ q · b, and hence a = q · a since q is a restrictor, too.
Altogether, a = p · a = p · q · a.

3. By the previous part, Part 1 and p, q ≤ 1 we have

p · q = p · q · p · q ≤ q · p .

The reverse inequation is shown symmetrically.
4. By p, q ≤ 1 and isotony of multiplication we have p · q ≤ p, q. Let c be an

arbitrary lower bound of p and q. Then by Part 1, p being a restrictor and
isotony of multiplication,

c ≤ p ∧ c ≤ q ⇔ c ≤ p · p ∧ c ≤ q ⇒ c ≤ p · c ∧ c ≤ q ⇒ c ≤ p · q ,

which shows that p · q is the greatest lower bound of p and q.
5. We show the first equation. By isotony and p ≤ 1 we have p · (a ! b) ≤ p · a

and p · (a ! b) ≤ b, i.e., p · (a ! b) is a lower bound of p · a and b. Let c be
an arbitrary lower bound of p · a and b. Since p is a restrictor, this implies
c = p·c. Moreover, p·a ≤ a implies that c is also a lower bound of a and b and
hence c ≤ a!b. Now by isotony of multiplication we have c = p ·c ≤ p ·(a!b).
This means that p · (a ! b) is the greatest lower bound of p · a and b.
The second equation follows using idempotence of p (Part 1) and applying
the first equation twice:

p · (a ! b) = p · p · (a ! b) = p · (p · a ! b)
= p · (b ! p · a) = p · b ! p · a = p · a ! p · b .

6. Employ that a ! a = a and use Part 5 with b = a:

p · q · a = p · q · (a ! a) = p · (q · a ! a) = p · (a ! q · a) = p · a ! q · a .

7. Immediate from Part 6.
8. Since b ≤ a the meet a ! b exists and equals b. Now Part 5 shows the claim.
9. For the first claim substitute � for a in Part 8. For the second claim substi-

tute 1 for b in the first claim.
10. (⇒) Immediate from isotony of · .

(⇐) Assume p · � ≤ q · �. Then by Part 9 and isotony we have

p = 1 ! p · � ≤ 1 ! q · � = q . !�

The restrictor laws will help to obtain smoother and shorter proofs of the
predomain properties in the next section. We will make some further observa-
tions about restrictors in the parameterised predomain axiomatisation in the
appendix.

Fuzzifying Modal Algebra 401

5 (Pre)domain Calculus

For a further explanation of (d1) and (d2) we show an equivalent characterisation
of their conjunction. For this we use the formula

�a ≤ p ⇔ a ≤ p · a . (llp)

One half of this bi-implication was already mentioned in Lemma 3.2.3.
Now we can deal with the second half.

Lemma 5.1.

1. ∀ a ∈ S, p ∈ �S : (sub-id) ∧ (d2) ⇒ (a ≤ p · a ⇒ �a ≤ p).
2. (∀ a ∈ S, p ∈ �S : a ≤ p · a ⇒ �a ≤ p) ⇒ (∀ a ∈ S, p ∈ �S : (d2)).

Proof.

1. Assume (sub-id) and (d2) and suppose a ≤ p · a. Since p ≤ 1 this implies
a = p · a and by (d2) we get �a = �(p · a) ≤ p.

2. Consider an arbitrary p ∈ �S. By Lemmas 3.4 and 4.1.1, p is multiplicatively
idempotent. Hence, substituting in the left hand side of the antecedent p · a
for a makes that true, so that the right hand side of the antecedent, which
is (d2) in that case, is true as well. !�

Corollary 5.2. All predomain elements satisfy (llp), which states that �a is the
least left preserver of a in �S. Hence, if �S is fixed then predomain is uniquely
characterised by the axioms if it exists.

Proof. The first part is immediate from Lemmas 3.2.3 and 5.1. The second part
holds, because least elements are unique in partial orders. !�

Now we can show a number of important laws for predomain.

Theorem 5.3. Assume a predomain IL-semiring (S, �) and let a, b range over
S and p, q over �S.

1. �p = p. (Stability)
2. The predomain operator is fully strict, i.e., �a = 0 ⇔ a = 0.
3. Predomain preserves arbitrary existing suprema. More precisely, if a subset

A ⊆ S has a supremum b in S then the image set of A under � has a
supremum in �S, namely �b. Note that neither completeness of S nor that of
�S is required.

4. �S forms an upper semilattice with supremum operator � given by p � q =
�(p+ q). Hence for r ∈ �S we have p ≤ r ∧ q ≤ r ⇔ p � q ≤ r.

5. �(a+ b) = �a � �b.
6. We have the absorption laws p · (p�q) = p and p� (p ·q) = p. Hence (�S, ·,�)

is a lattice.
7. �(a · b) ≤ �(a · �b).
8. �(a · b) ≤ �a.

402 J. Desharnais and B. Möller

9. Predomain satisfies the partial import/export law �(p · a) ≤ p · �a.
10. p · q = �(p · q).

Assuming that S is bounded, the following additional properties hold.

11. We have the Galois connection �a ≤ p ⇔ a ≤ p · �.
12. �(a · �) = �a. Hence also �(p · �) = p, in particular �� = 1.

Proof.

1. By Lemma 3.2.1 it remains to show (≤). By neutrality of 1 and (d2) we
obtain �p = �(p · 1) ≤ p.

2. The direction (⇐) is Ax. (strict). (⇒) is immediate from (d1) and left strict-
ness of 0.

3. Let b = �{a | a ∈ A} exist for some set A ⊆ S. We show that �b is a
supremum of �A =df {�a | a ∈ A} in �S. First, by (isot), �b is an upper bound
of �A, since b is an upper bound of A.
Now let p be an arbitrary upper bound of �A in �S. Then for all a ∈ A we have
�a ≤ p, equivalently a ≤ p · a by (llp), and therefore a ≤ p · b by definition of
b and isotony of · . Hence p · b is an upper bound of A and therefore b ≤ p · b.
By (llp) this is equivalent to �b ≤ p, so that �b is indeed the least upper bound
of �A in �S.

4. Consider p, q ∈ �S. By Part 1 we know that �p = p and �q = q. Part 3 tells us
that �(p+ q) is the supremum of �p and �q and hence of p and q.

5. By Part 3, �(a+ b) is the supremum of �a and �b which, by Part 4 is �a � �b.
6. For the first claim, assume p = �a and q = �b. By Part 5, (isot) with

Lemma 3.4 and Lemma 4.1.4,

p · (p � q) = �a · �(a+ b) = �a = p .

The second claim follows by q ≤ 1 and the definition of supremum.
7. By (llp) and (d1) thrice we obtain

�(a · b) ≤ �(a · �b) ⇔ a · b ≤ �(a · �b) · a · b
⇔ a · b ≤ �(a · �b) · a · �b · b ⇔ TRUE .

8. By Part 7, �b ≤ 1, isotony of � and neutrality of 1 we have �(a · b) ≤ �(a · �b) ≤
�(a · 1) = �a.

9. By (d2) we know �(p · a) ≤ p. By p ≤ 1, isotony of · and � and neutrality
of 1 we obtain �(p · a) ≤ �(1 · a) = �a. Now the claim follows by isotony of · ,
Lemma 3.4 and idempotence of · on restrictors and hence domain elements.

10. (≤) follows from Lemma 3.2.1, since p, q ≤ 1 implies p · q ≤ 1. For (≥) we
obtain by Parts 9 and 1 that �(p · q) ≤ p · �q = p · q.

11. We calculate, employing (llp), greatestness of � and isotony of · , isotony of
�, and finally (d2),

�a ≤ p ⇔ a ≤ p · a ⇒ a ≤ p · � ⇒ �a ≤ �(p · �) ⇒ �a ≤ p .

Fuzzifying Modal Algebra 403

12. By Part 8 we know �(a · �) ≤ �a. The reverse inequation follows from a =
a · 1 ≤ a · � and isotony of domain. The remaining claims result by first
specialising a to p and using Part 1, and second by further specialising p
to 1. !�

We now show additional properties of a domain operation.

Lemma 5.4. Assume a domain IL-semiring (S, �) and let a, b range over S and
p, q over �S.

1. (d3) strengthens to an equality.
2. Domain satisfies the full import/export law �(p · a) = p · �a.
3. In an I-semiring, the lattice (�S, ·,�) is distributive.

Proof.

1. This is immediate from Lemma 5.3.7.
2. By Part 1 and Lemma 5.3.10 we obtain �(p · a) = �(p · �a) = p · �a.
3. We show one distributivity law; it is well known that the second one follows

from it. By Lemma 5.3.5, Part 2, distributivity of ·, Lemma 5.3.5 and Part 2
again,

�a · (�b � �c) = �a · �(b+ c) = �(�a · (b + c)) = �(�a · b+ �a · c)
= �(�a · b) � �(�a · c)) = �a · �b � �a · �c . !�

6 Fuzzy Domain Operators

We now present the application of our theory to the setting of fuzzy systems.
First we generalise the notion of t-norms (e.g. [EGn03, Haj98]) and pseudo-
complementation to general IL-semirings, in particular to semirings that do not
just consist of the interval [0, 1] (as, say, a subset of the real numbers) and where
that interval is not necessarily linearly ordered.

Definition 6.1. Consider an IL-semiring S with the interval [0, 1] as specified
in Def. 2.1. A t-norm is a binary operator � : [0, 1] × [0, 1] → [0, 1] that is
isotone in both arguments, associative and commutative and has 1 as unit.

The definition implies p � q ≤ p, q, since, e.g., p � q ≤ p � 1 = p. In an
IL-semiring, by the axioms the operator · restricted to [0, 1] is a t-norm.

Definition 6.2. A weak complement operator in an IL-semiring is a function
¬ : [0, 1] → [0, 1] that is an order-antiisomorphism, i.e., is bijective and satisfies
p ≤ q ⇔ ¬q ≤ ¬p, such that additionally ¬¬p = p. This implies ¬0 = 1 and
¬1 = 0.

Based on ¬ we can define the weak relative complement p− q =df p�¬q and
weak implication p→ q =df ¬p+ q. We have 1− p = ¬p and 1→ p = p.

404 J. Desharnais and B. Möller

Moreover, if the IL-semiring has a t-norm � the associated t-conorm � is
defined as the analogue of the De Morgan dual of the t-norm:

p� q =df ¬(¬p� ¬q) .

Lemma 6.3. Assume an IL-semiring with weak negation.

1. p ≤ p� q.
2. If p� q is the infimum of p and q then p � q = p� u.

Proof.

1. By definition of �, antitony of complement and ¬q ≤ 1,

p ≤ p� q ⇔ p ≤ ¬(¬p � ¬q) ⇔ ¬p� ¬q ≤ ¬p ⇔ TRUE .

2. By Part 1 p� q is an upper bound of p and q. Let r ∈ [0, 1] be an arbitrary
upper bound of p and q. Then by antitony of ¬ we have ¬r ≤ ¬p,¬q and
hence, by the assumption that � is the infimum operator, ¬r ≤ ¬p � ¬q.
Again by antitony of ¬ this entails ¬(¬p�¬q) ≤ ¬¬r = r, i.e., p� q ≤ r by
definition of �. Hence p� q is the supremum of p and q. !�

Next, we deal with a special t-norm and its associated t-conorm.

Lemma 6.4. Consider the sub-interval I =df [0, 1] of the real numbers with
x � y =df min(x, y) and x � y =df max(x, y). Then (I,�, 0,�, 1) is an I-
semiring and the identity function is a domain operator on I.

The proof is straightforward. Since this domain operator is quite boring, in
Sect. 8 we will turn to matrices over I, where the behaviour becomes non-trivial.

7 Modal Operators

Following [DMS06], in a predomain IL-semiring we can define a forward diamond
operator as

|a〉p =df �(a · p) .
By right-distributivity, diamond is homomorphic w.r.t. + :

|a+ b〉p = |a〉p � |b〉p .

Hence diamond is isotone in the first argument:

a ≤ b ⇒ |a〉p ≤ |b〉p .

Diamond is also isotone in its second argument:

p ≤ q ⇒ |a〉p ≤ |a〉q .

Fuzzifying Modal Algebra 405

For predomain elements p, q we obtain by Thm. 5.3.10 that |p〉q = p ·q. Hence,
|1〉 is the identity function on predomain elements. Moreover, |0〉p = 0. If the
underlying semiring is even a domain semiring, by the property (d3) we obtain
multiplicativity of diamond:

|a · b〉p = |a〉|b〉p .

If the semiring has a weak complement the diamond can be dualised to a
forward box operator by setting

|a]q =df ¬|a〉¬q .

This De Morgan duality gives the swapping rule

|a〉p ≤ |b]q ⇔ |b〉¬q ≤ |a]¬p .

We now study the case where · plays the role of a t-norm � on [0, 1]. By right-
distributivity, Thm. 5.3.5, Lemma 6.3 and duality then for predomain elements
p, q we have

|a+ b]p = (|a]p) · (|b]p) ,

i.e., box is anti-homomorphic w.r.t. + and hence antitone in its first argument:

a ≤ b ⇒ |a]p ≥ |b]p .

Box is also isotone in its second argument:

p ≤ q ⇒ |a]p ≤ |a]q .

For predomain elements p, q we get by Thm. 5.3.10 and the definition of→ that

|p]q = p→ q .

Hence, |1], too, is the identity function on tests. Moreover, |0]p = 1. If the
underlying semiring is even a domain semiring, by locality (d3) we obtain mul-
tiplicativity of box as well:

|a · b]p = |a]|b]p .

One may wonder about the relation of these operators to those in other sys-
tems of fuzzy modal logic (e.g [MvA13]). These approaches usually deal only
with algebras where the whole carrier set coincides with the interval [0, 1]. This
would, for instance, rule out the matrix semirings to be discussed in Section 8.
On the other hand, it would be interesting to see whether the use of residu-
ated lattices there could be carried over fruitfully to the interval [0, 1] of general
semirings. However, this is beyond the scope of the present paper.

406 J. Desharnais and B. Möller

8 Predomain and Domain in Matrix Algebras

We can use the elements of an IL-semiring as entries in matrices. With pointwise
addition and the usual matrix product the set of n×n matrices for some n ∈ IN
becomes again an IL-semiring with the zero matrix as 0 and the diagonal unit
matrix as 1. The restrictors in the matrix IL-semiring are precisely the diagonal
matrices with restrictors in the diagonal.

Let us work out what the characteristic property (llp) of a predomain operator
means in the matrix world, assuming a predomain operator on the underlying
IL-semiring. We perform our calculations for 2 × 2 matrices to avoid tedious
index notation; they generalise immediately to general matrices.(

a b
c d

)
≤
(
p 0
0 q

)
·
(
a b
c d

)
⇔ {[definition of matrix multiplication]}(

a b
c d

)
≤
(
p · a p · b
q · c q · d

)
⇔ {[pointwise order]}

a ≤ p · a ∧ b ≤ p · b ∧ c ≤ q · c ∧ d ≤ q · d
⇔ {[by (llp)]}

�a ≤ p ∧ �b ≤ p ∧ �c ≤ q ∧ �d ≤ q

⇔ {[by Th. 5.3.4]}
�a � �b ≤ p ∧ �c � �d ≤ q .

⇔ {[pointwise order]}(�a � �b 0
0 �c � �d

)
≤
(
p 0
0 q

)
Since (llp) characterises predomain uniquely for fixed �S, we conclude, by the
principle of indirect equality, that predomain in the matrix IL-semiring must be

�(a b
c d

)
=df

(�a � �b 0
0 �c � �d

)
.

Next we investigate the behaviour of domain in the matrix case.

Lemma 8.1. Let S be an I-semiring. If S has a domain operator, then so does
the set of n× n matrices over S.

Proof. We need to show that the above representation of predomain on matrices
satisfies (d3) provided the predomain operator on S does. Again we treat only
the case of 2× 2-matrices.

�((
a b
c d

)
·
�(e f

g h

))
= {[above representation of predomain]}

�((a b
c d

)
·
(�e � �f 0

0 �g � �h

))

Fuzzifying Modal Algebra 407

= {[definition of matrix product and right annihilation]}
�(a · (�e � �f) b · (�g � �h)

c · (�e � �f) d · (�g � �h)

)
= {[by Lemma 5.3.5]}

�(a · �(e + f) b · �(g + h)

c · �(e + f) d · �(g + h)

)
= {[above representation of predomain]}(

�(a · �(e + f)) � �(b · �(g + h)) 0

0 �(c · �(e + f) � �(d · �(g + h))

)
= {[by (d3)]}(�(a · (e+ f)) � �(b · (g + h)) 0

0 �(c · (e+ f)) � �(d · (g + h))

)
= {[left distributivity]}(�(a · e+ a · f) � �(b · g + b · h) 0

0 �(c · e+ c · f) � �(d · g + d · h)

)
= {[by Lemma 5.3.5]}(�(a · e+ a · f + b · g + b · h) 0

0 �(c · e+ c · f + d · g + d · h)

)
= {[associativity and commutativity of +]}(�(a · e+ b · g + a · f + b · h) 0

0 �(c · e+ d · g + c · f + d · h)

)
= {[by Lemma 5.3.5]}(�(a · e+ b · g) � �(a · f + b · h) 0

0 �(c · e+ d · g) � �(c · f + d · h)

)
= {[above representation of predomain]}

�(a · e+ b · g a · f + b · h
c · e + d · g c · f + d · h

)
= {[definition of matrix product]}

�((a b
c d

)
·
(
e f
g h

))
.

!�

Finally, we calculate the diamond operator in the matrix IL-semiring.∣∣∣∣(a b
c d

)〉(
p 0
0 q

)
= {[definition of diamond]}

�((a b
c d

)
·
(
p 0
0 q

))
= {[definition of matrix multiplication]}

�(a · p b · q
c · p d · q

)
= {[definition of matrix predomain]}

408 J. Desharnais and B. Möller(�(a · p) � �(b · q) 0

0 �(c · p) � �(d · q)

)
= {[definition of predomain]}(

|a〉p � |b〉q 0
0 |c〉p � |d〉q

)
.

9 Application to Fuzzy Matrices

Assume now that in [0, 1] we use the t-norm p � q = p · q and that there is a
weak complement operator ¬. Then by Lemma 6.3.2 the above formula for the
diamond transforms into∣∣∣∣(a b

c d

)〉(
p 0
0 q

)
=

(
|a〉p� |b〉q 0

0 |c〉p� |d〉q

)
and a straightforward calculation shows∣∣∣∣(a b

c d

)](
p 0
0 q

)
=

(
|a]p� |b]q 0

0 |c]p� |d]q

)
.

A potential application of this is the following. Using the approach of [Kaw06]
one can model a flow network as a matrix with the pipe capacities between the
nodes as entries, scaled down to the interval [0,1]. Note that the entries may be
arbitrary elements of [0, 1] and not just 0 or 1. By Lemma 6.4 the algebra with
� = min and � = max is an I-semiring with domain and hence, by Lemma 8.1
the set of fuzzy n × n matrices is, too. For such a matrix C the expressions �C
and ¬�C′, where C′ is the componentwise negation of C, give for each node the
maximum and minimum capacity emanating from that node.

To describe network shapes and restriction we can use crisp matrices, i.e.,
matrices with 0/1 entries only. Using crisp diagonal matrices P , we can express
pre-/post-restriction by matrix multiplication on the appropriate side. So if a
matrix C gives the pipe capacities in a network, P ·C and C ·P give the capacities
in the network in which all starting/ending points outside P are removed. Hence,
if we take again � = min and � = max, the expression |C〉P gives for each node
the maximum outgoing capacity in the output restricted network C · P . To
explain the significance of |C]P , we take a slightly different view of the fuzzy
matrix model for flow analysis. Scaling down the capacities to [0, 1] could be
done relative to a top capacity (not necessarily occurring in the network). Then
p ∈ [0, 1] would indicate how close the flow level is to the top flow. Then |C]P
would indicate the level of “non-leaking” outside of P . If for instance |C]P = 0,
then the maximal flow outside of P is 1, i.e., leaking is maximal.

Since on crisp matrices weak negation coincides with standard Boolean nega-
tion, we can, additionally, use these ideas to replay the algebraic derivation of
the Floyd/Warshall and Dijkstra algorithms in [HM12].

Elaborating on these examples will be the subject of further papers.

Fuzzifying Modal Algebra 409

10 Conclusion

Despite the weakness in assumptions, the generalised theory of predomain and
domain has turned out to be surprisingly rich in results. Concerning applications,
we certainly have just skimmed the surface and hope that others will join our
further investigations.

Acknowledgement. We are grateful for valuable comments by Han-Hing Dang
and the anonymous referees.

References

[DMS06] Desharnais, J., Möller, B., Struth, G.: Kleene Algebra with Domain. ACM
Transactions on Computational Logic 7, 798–833 (2006)

[DS11] Desharnais, J., Struth, G.: Internal axioms for domain semirings. Sci. Com-
put. Program. 76, 181–203 (2011)

[EGn03] Esteva, F., Godo, L., Garćıa-Cerdaña, À.: On the hierarchy of t-norm based
residuated fuzzy logics. In: Fitting, M., Or�lowska, E. (eds.) Beyond Two, pp.
251–272. Physica (2003)

[Haj98] Hajek, P.: The Metamathematics of Fuzzy Logic. Kluwer (1998)
[HM12] Höfner, P., Möller, B.: Dijkstra, Floyd and Warshall meet Kleene. Formal

Asp. Comput. 24, 459–476 (2012)
[Kaw06] Kawahara, Y.: On the Cardinality of Relations. In: Schmidt, R.A. (ed.)

RelMiCS/AKA 2006. LNCS, vol. 4136, pp. 251–265. Springer, Heidelberg
(2006)

[Möl07] Möller, B.: Kleene getting lazy. Sci. Comput. Program. 65, 195–214 (2007)
[MRE12] Möller, B., Roocks, P., Endres, M.: An Algebraic Calculus of Database Pref-

erences. In: Gibbons, J., Nogueira, P. (eds.) MPC 2012. LNCS, vol. 7342,
pp. 241–262. Springer, Heidelberg (2012)

[Möl13] Möller, B.: Modal Knowledge and Game Semirings. Computer Journal 56,
53–69 (2013)

[MvA13] Morton, W., van Alten, C.: Modal MTL-algebras. Fuzzy Sets and Sys-
tems 222, 58–77 (2013)

[Van34] Vandiver, H.: Note on a simple type of algebra in which the cancellation law
of addition does not hold. Bulletin of the American Mathematical Society 40,
914–920 (1934)

Appendix: A Parametrised Axiomatisation of Predomain

Experiments have shown that the ((pre)pre)domain axioms of Sect. 3 can be
formulated in a more general way, leading to a whole family of ((pre)pre)domain
operators. The key is to factor out the set over which p is quantified in Ax. (d2)
and make that into a parameter. This leads to the following definition.

410 J. Desharnais and B. Möller

Definition 10.1. By a parameterised prepredomain IL-semiring we mean a
structure (S, �) with an IL-semiring S and the prepredomain operator � : S → S
satisfying, for all a ∈ S,

a ≤ �a · a . (pd1)

A parameterised predomain IL-semiring is a structure (S, �, T) with a subset
T ⊆ S such that (S, �) is a parameterised prepredomain IL-semiring and for all
a, p ∈ S,

p ∈ T ⇒ �(p · a) ≤ p , (pd2)

�a ≤ �(a+ b) . (p-isot)

We will impose varying conditions on the set T using the following formulas.

T ⊆ [0, 1] , (T-sub-id)

�S ⊆ T , (dom-in-T)

T is closed under +, (T-plus-closed)

T is closed under ·. (T-dot-closed)

Using Prover9/Mace4 it is now an easy albeit somewhat tedious task to in-
vestigate which of the properties in Sects. 3 and 5 follow from which subsets of
the parameterised axioms and the restrictions on T . We list the results below
in Table 1. All of the proofs and counterexamples are generated quite fast. The
table is to be understood as follows: “Proved with set A of axioms” means that
for all proper subsets of A Mace4 finds counterexamples to the formulas listed.

The strictness property �0 = 0 does not follow from any subset of the above
formulas; it would need to be an extra axiom.

Using Prover 9 one can also show that (T-sub-id), (dom-in-T), (pd1), (pd2)
and (p-isot) determine predomain uniquely: use two copies of these axiom sets
with two names for the predomain operator, say d1 and d2, and use the goal
d1(a) = d2(a).

There remains the question whether there are any interesting sets T that meet
a relevant subset of the restricting conditions. We can offer four candidates:

• T = [0, 1]. This trivially satisfies (T-sub-id), and also (T-plus-closed). More-
over, we have 0 ∈ T . So if we stipulate �a ≤ 1 as an additional axiom we
obtain the full set of properties in the table above, plus the full strictness
property �a = 0 ⇔ a = 0.

• T = �S. This choice trivially satisfies (dom-in-T), but to obtain (T-sub-id)
we need again the additional axiom �a ≤ 1. Since nothing else is known about
�S, we cannot assume (T-plus-closed), and so we only get the properties of
the table above the last row, which still is quite a rich set.

• T = rest(S). This choice trivially satisfies (T-sub-id). But as the table shows,
(dom-in-T) is needed in the proof of �S ⊆ T , so that things get circular here.
For that reason this choice does not lead as many results as the two before.

• T = test(S). This satisfies (T-sub-id), but not necessarily (dom-in-T); the
question is the subject of ongoing investigation.

Fuzzifying Modal Algebra 411

Table 1. Proof results

Properties Proved Interpretation

with (pd1)

�a = 0 ⇒ a = 0 strictness
a ≤ 1 ⇒ a ≤ �1 sub-Identity I
a ≤ 1 ⇒ a ≤ �a sub-Identity II
1 ≤ �1 sub-Identity III

with (pd2)

1 ∈ T ⇒ �a ≤ 1 1 dominates predomain

with (pd1), (pd2)

a ∈ T ⇒ �a ≤ a predomain is contracting

with (T-sub-id), (pd1), (pd2)

�a ≤ �b ⇒ a ≤ �b · a first half of (llp)
a ∈ T ⇒ (�a ≤ b ⇒ a ≤ b · a) analogue of first half of (llp)
a ∈ T ⇒ a = �a · a equational form of (pd1)
a ∈ T ⇒ a = �a stability
a ∈ T ⇒ (�a ≤ b ⇐ a ≤ b · a) analogue of second half of (llp)

with (T-sub-id), (pd1), (pd2), (p-isot)

b ∈ T ∧ a ≤ b · c ⇒ a ≤ b · a T ⊆ rest(S)

with (T-sub-id), (dom-in-T), (pd1), (pd2)

�a ≤ �b ⇐ a ≤ �b · a second half of (llp)

with (T-sub-id), (dom-in-T), (T-plus-closed), (pd1), (pd2), (p-isot)

�(a+ b) ≤ �a+ �b additivity
�a · (�b+ �c) = �a · �b+ �a · �c left distributivity
�a+ �b · �c = (�a+ �b) · (�a+ �c) distributivity II

with (T-sub-id), (dom-in-T), (pd1), (pd2), (p-isot)

a ≤ �b · c ⇒ a ≤ �b · a �S ⊆ rest(S)
a ≤ �b · c ⇒ �a ≤ �b analogue of second half of (llp)
�a+ �a · �b = �a absorption I
�a · (�a+ �b) = �a absorption II
(�a+ �b) · �a = �a absorption III
�a · �b = �b · �a predomain elements commute
�a · �a = �a predomain elements are idempotent
�a · 0 = 0 0 is a right annihilator on �S
�1 = 1
��a = �a stability
�(�a · �b) = �a · �b domain of product
r ∈ T ∧ (r ≤ �a ∧ r ≤ �b) ⇒ r ≤ �a · �b infimum I
(�c ≤ �a ∧ �c ≤ �b) ⇒ �c ≤ �a · �b infimum II
r ∈ T ∧ (�a ≤ r ∧ �b ≤ r) ⇒ �(a+ b) ≤ r supremum I
(�a ≤ �c ∧ �b ≤ �c) ⇒ �(a+ b) ≤ �c supremum II
(T-dot-closed) T closed under ·
0 ∈ T ⇒ �0 = 0 strictness (not valid without the

premise)

Tableau Development

for a Bi-intuitionistic Tense Logic�

John G. Stell1, Renate A. Schmidt2, and David Rydeheard2

1 School of Computing, University of Leeds, Leeds, UK
2 School of Computer Science, University of Manchester, Manchester, UK

Abstract. The paper introduces a bi-intuitionistic logic with two modal
operators and their tense versions. The semantics is defined by Kripke
models in which the set of worlds carries a pre-order relation as well as
an accessibility relation, and the two relations are linked by a stability
condition. A special case of these models arises from graphs in which the
worlds are interpreted as nodes and edges of graphs, and formulae rep-
resent subgraphs. The pre-order is the incidence structure of the graphs.
These examples provide an account of time including both time points
and intervals, with the accessibility relation providing the order on the
time structure. The logic we present is decidable and has the effective
finite model property. We present a tableau calculus for the logic which
is sound, complete and terminating. The MetTel system has been used
to generate a prover from this tableau calculus.

1 Introduction

We start by reviewing the motivation for developing a theory of ‘relations on
graphs’ which generalizes that of ‘relations on sets’. One novel feature of relations
on graphs is a pair of adjoint converse operations instead of the involution found
with relations on sets. One half of this pair (the ‘left converse’) is used later in
defining a relational semantics for a novel bi-intuitionistic modal logic.

Relations on sets underlie the most fundamental of the operations used in
mathematical morphology [Ser82, BHR07]. Using Z2 to model a grid of pixels,
binary (i.e., black and white) images are modelled by subsets of Z2. One aim of
processing images is to accentuate significant features and to lessen the visual
impact of the less important aspects. Several basic transformations on images
are parameterized by small patterns of pixels called structuring elements. These
structuring elements generate relations which transform subsets of Z2 via the
correspondence between relations R ⊆ Z2 ×Z2 and union-preserving operations
on the powerset PZ2. Several fundamental properties of image processing op-
erations can be derived using only properties of these relations.

There have been various proposals for developing a version of mathematical
morphology for graphs, one of the earliest being [HV93]. However, most work in
this area does not use a relational approach, probably because a theory of rela-
tions on graphs may be constructed in several different ways. In one way [Ste12],

� This research was supported by UK EPSRC research grant EP/H043748/1.

P. Höfner et al. (Eds.): RAMiCS 2014, LNCS 8428, pp. 412–428, 2014.
c© Springer International Publishing Switzerland 2014

Tableau Development for a Bi-intuitionistic Tense Logic 413

the set of relations on a graph, or more generally a hypergraph, forms a gener-
alization of a relation algebra where, in particular, the usual involutive converse
operation becomes a pair of operations (the left converse and the right converse)
forming an adjoint pair. In the present paper, we use these relations to give a
semantics for a bi-intuitionistic modal logic in which propositions are interpreted
over subgraphs as opposed to subsets of worlds as in standard Kripke semantics.

Accessibility relations with additional structure are already well-known in in-
tuitionistic modal logic [ZWC01]. However, the semantics for the logic we present
is distinguished both from this work, and from other related work we discuss in
Section 5, by the use of the left-converse operation. This leads to a logic with
novel features which include ♦ϕ being equivalent to ¬�¬ϕ, where ¬ and ¬ are
respectively the co-intuitionistic and the intuitionistic negation.

Connections between mathematical morphology and modal logic, have been
developed by Aiello and Ottens [AO07], who implemented a hybrid modal logic
for spatial reasoning, and by Aiello and van Benthem [Av02] who pointed out
connections with linear logic. Bloch [Blo02], also motivated by applications to
spatial reasoning, exploited connections between relational semantics for modal
logic and mathematical morphology. These approaches used morphology opera-
tions on sets, and one motivation for our own work is to extend these techniques
to relations on graphs. This has potential for applications to spatial reasoning
about discrete spaces based on graphs.

In this paper we restrict our attention to the logic itself, rather than its appli-
cations, and the semantic setting we use is more general than that arising from
relations on graphs or hypergraphs.

The main contribution of the paper is a bi-intuitionistic tense logic, called
biskt, for which a Kripke frame consists of a pre-order H interacting with
an accessibility relation R via a stability condition. The semantics interprets
formulae asH-sets, the downwardly closed sets of the pre-order. A particular case
arises when the worlds represent the edges and nodes of a graph and formulae
are interpreted as subgraphs. We show that biskt is decidable and has the
effective finite model property, by showing that biskt can be mapped to the
guarded fragment which is known to be decidable and has the effective finite
model property [ANvB98, Grä99].

The semantic setting for biskt is a relational setting in which it is not difficult
to develop deduction calculi. Semantic tableau deduction calculi in particular
are easy to develop. In this paper we follow the methodology of tableau calculus
synthesis and refinement as introduced in [ST11, TS13] to develop a tableau
calculus for the logic. We give soundness, completeness and termination results
as consequences of results of tableau synthesis and that biskt has the effective
finite model property.

Implementing a prover is normally a time-consuming undertaking but MetTeL
is software for automatically generating a tableau prover from a set of tableau
rules given by the user [Met, TSK12]. For us using MetTeL turned out to be
useful because we could experiment with implementations of different initial
versions of the calculus. In combination with the tableau synthesis method it

414 J.G. Stell, R.A. Schmidt, and D. Rydeheard

was easy to run tests on a growing collection of problems with different provers
for several preliminary versions of formalisations of bi-intuitionistic tense logics
before settling on the definition given in this paper. MetTeL has also allowed
to us experiment with different refinements of the rules and different forms of
blocking. Blocking is a technique for forcing termination of tableau calculi for
decidable logics.

The paper is structured as follows. Section 2 presents the basic notions of
bi-Heyting algebras and relations on downwardly closed sets as well as graphs.
Section 3 defines the logic biskt as a bi-intuitionistic stable tense logic in which
subgraphs are represented as downwardly closed sets. In Section 4 we present
a terminating labelled tableau calculus for biskt. With a MetTeL generated
prover we have tested several formulae for validity and invalidity in biskt; a
selection of the validities shown are given in the section. Connections to other
work is discussed in Section 5.

The MetTeL specification of the tableau calculus for biskt and the generated
prover can be downloaded from the accompanying website: http://staff.cs.
manchester.ac.uk/~schmidt/publications/biskt13/. There also our current
set of problems and performance graphs can be found.

2 Relations on Pre-orders and on Graphs

2.1 The Bi-Heyting Algebra of H-Sets

Let U be a set with a subset X ⊆ U , and let R ⊆ U×U be a binary relation. We
recall the definitions of the key operations used in mathematical morphology.

Definition 1. The dilation, ⊕, and the erosion, ;, are given by:

X ⊕R = {u ∈ U : ∃x ((x, u) ∈ R ∧ x ∈ X)},
R;X = {u ∈ U : ∀x ((u, x) ∈ R→ x ∈ X)}.

For a fixed R these operations form an adjunction from the lattice PU to itself
in the following sense, with ⊕R being left adjoint to R ; .

Definition 2. Let (X,≤X), (Y,≤Y) be partially ordered sets. An adjunction
between X and Y consists of a pair of order-preserving functions f : X → Y
and g : Y → X such that x ≤X g(y) iff f(x) ≤Y y for all x ∈ X and all y ∈ Y .
The function f is said to be left adjoint to g, and g is right adjoint to f .

Erosion and dilation interact with composition of relations as follows.

Lemma 1. If R and S are any binary relations on U and X ⊆ U , then

(S ; R);X = S ; (R ;X) and X ⊕ (R ; S) = (X ⊕R)⊕ S.

The operations ⊕ and ; can be applied to subgraphs of a graph when relations
on graphs are defined. We see how this works in Section 2.3, but first work in
a more general setting of H-sets which we now define. Let U be a set and H a
pre-order on U (i.e., a reflexive and transitive relation).

http://staff.cs.manchester.ac.uk/~schmidt/publications/biskt13/
http://staff.cs.manchester.ac.uk/~schmidt/publications/biskt13/

Tableau Development for a Bi-intuitionistic Tense Logic 415

Definition 3. A subset X ⊆ U is an H-set if X ⊕H ⊆ X.

Since H is reflexive, the condition is equivalent to X⊕H = X , and if we were to
write H as 	 these would be downsets. It follows from the adjunction between
dilation and erosion that X satisfies X = X ⊕H iff it satisfies X = H ;X .

The set of all H-sets forms a lattice which is a bi-Heyting algebra. The H-sets
are closed under unions and intersections but not under complements. When A
and B are H-sets, we can construct the following H-sets where − denotes the
complement of a subset of U .

A→ B = H ; (−A ∪B) relative pseudocomplement
A �B = (A ∩ −B)⊕H dual relative pseudocomplement
¬A = H ; (−A) pseudocomplement
¬A = (−A)⊕H dual pseudocomplement

2.2 Relations on H-Sets

Relations on a set U can be identified with the union-preserving functions on the
lattice of subsets. When U carries a pre-order H , the union-preserving functions
on the lattice of H-sets correspond to relations on U which are stable:

Definition 4. A binary relation R on U is stable if H ;R ;H ⊆ R.

Stable relations are closed under composition, with H as the identity element for
this operation, but they are not closed under converse. They do however support
an adjoint pair of operations, the left and the right converse, denoted by

�
and

�

respectively. Properties of these include

��

R ⊆ R ⊆ ��

R for any stable
relation R.

Definition 5. The left converse of a stable relation R is

�

R = H ; R̆ ; H
where R̆ is the (ordinary) converse of R.

The stability of

�

R is immediate since H is a pre-order, and the left converse
can be characterized as the smallest stable relation which contains R̆. The right
converse is characterized as the largest stable relation contained in R̆, but it
plays no role in this paper, so we omit an explicit construction (see [Ste12] for
details).

The connection between erosion, dilation, complementation and converse in
the lemma below is well-known [BHR07]. We need it to prove Theorem 3 below
which generalizes the lemma to the case of a stable relation acting on an H-set.

Lemma 2. For any relation R on U and any X ⊆ U , X ⊕ R̆ = −(R; (−X)).

The following was proved in [Ste12] for the special case of hypergraphs, but
we give a direct proof of the general case as it underlies one of the novel features
of the logic we consider.

Theorem 3. For any stable relation R and any H-set A,

A⊕ (

�

R) = ¬(R; (¬A)) and (

�

R);A = ¬((¬A)⊕R).

416 J.G. Stell, R.A. Schmidt, and D. Rydeheard

Proof.

A⊕ (

�

R) = A⊕ (H ; R̆ ;H)

= ((A⊕H)⊕ R̆)⊕H

= (A⊕ R̆)⊕H
= (−(R; (−A)))⊕H
= ¬(R ; (−A)))
= ¬((R ;H); (−A)))
= ¬(R ; (H ; (−A)))
= ¬(R ; (¬A))

(

�

R);A = (H ; R̆ ;H);A

= H ; (R̆; (H ;A))

= H ; (R̆;A)
= H ;−((−A)⊕R)
= ¬((−A)⊕R)
= ¬((−A)⊕ (H ;R))
= ¬(((−A)⊕H)⊕R)
= ¬((¬A)⊕R)

2.3 Relations on Graphs

A special case of the above constructions is when U is the set of all edges and
nodes of a graph (that is, an undirected multigraph with multiple loops permit-
ted). For an edge e and a node n we put (e, n) ∈ H iff e is incident with n, and
otherwise (u, v) ∈ H holds only when u = v.

In this setting, the H-sets are exactly the subgraphs, that is sets of nodes and
edges which include the incident nodes of every edge in the set. The importance
of the bi-Heyting algebra of subgraphs of a directed graph has been highlighted
by Lawvere as explained in [RZ96].

G K ¬K ¬K ¬¬K ¬¬K ¬¬K ¬¬K

Fig. 1. Graph G with subgraph K and the pseudocomplement operation and its dual

We give an example for an undirected graph of the operations ¬ and ¬ of
Section 2.1 since these motivate the semantics for the two negations in our
logic. Figure 1 shows various subgraphs of a graph where the subgraphs are
distinguished by depicting the edges and nodes in bold. For a subgraph K, the
operations ¬ and ¬ yield respectively the largest subgraph disjoint from K and
the smallest subgraph containing all the edges and nodes not present in K. In
Figure 1 it can be seen that neither ¬¬K nor ¬¬K is equal to K. The subgraph
¬¬K consists of K completed by the addition of any edges all of whose incident
nodes are in K. The subgraph ¬¬K is K with the removal of any nodes that

Tableau Development for a Bi-intuitionistic Tense Logic 417

have incident edges none of which is present in K. The subgraph ¬¬K can be
interpreted as the expansion of K to include things up to one edge away from
K, and ¬¬K is a kind of contraction, removing any nodes on the boundary of
K and any edges incident on them.

The graph includes edges v, w, x, y, z
and nodes a, b, c. The relation is the set
{(z, a), (x, z), (b, z), (v, z), (w, z), (x, a),

(b, a), (v, a), (w, a), (y, b), (y, v), (y, c)}.

a b cv
w

x
yz

Fig. 2. Relation on a graph drawn as arrows with multiple heads and tails

The stable relations on a graph can be visualized as in Figure 2. The arrows
used may have multiple heads and multiple tails; the meaning is that every node
or edge at a tail is related to all the edges and nodes at the various heads. The
stability condition implies that if a node, n, is related to something, u say, then
every edge incident with n is also related to u. Stablility also implies that if u,
which may be an edge or a node, is related to an edge e, then u is also related
to every node incident with e.

R

�

R

��

R

Fig. 3. A relation R, its left converse, and the left converse of the left converse of R

The left converse operation is illustrated in Figure 3 showing that iterating
this operation can lead to successively larger relations.

3 Bi-intuitionistic Stable Tense Logic

We now propose a modal logic biskt for which a Kripke frame is a pre-ordered
set (U,H) together with a stable relation. The semantics in this section interprets
formulae as H-sets. A particular case is when the worlds are the edges and nodes
of a graph and formulae are interpreted as subgraphs.

418 J.G. Stell, R.A. Schmidt, and D. Rydeheard

Definition 6. The language of biskt consists of a set Vars of propositional
variables: p, q, . . ., a constant: ⊥, unary connectives: ¬ and ¬, binary connectives:
∧, ∨, →, �, and unary modal operators: �, �, ♦, and �. The set Form of
formulae is defined in the usual way.

Definition 7. An H-frame F = (U,H,R) is a pre-order (U,H) together with
a stable relation R. A valuation on an H-frame F is a function V : Vars →
H-Set, where H-Set is the set of all H-sets.

A valuation V on F extends to a function [[]] : Form → H-Set by putting
[[v]] = V v for any propositional variable v, and making the following definitions.

[[⊥]] = ∅ [[�]] = U

[[α ∨ β]] = [[α]] ∪ [[β]] [[α ∧ β]] = [[α]] ∩ [[β]]

[[¬α]] = ¬[[α]] [[¬α]] = ¬[[α]]
[[α→ β]] = [[α]]→ [[β]] [[α � β]] = [[α]] � [[β]]

[[�α]] = R; [[α]] [[♦α]] = [[α]]⊕ (

�

R)

[[�α]] = [[α]]⊕R [[�α]] = (

�

R); [[α]]

From Theorem 3 we have [[♦α]] = [[¬�¬α]] and [[�α]] = [[¬�¬α]].

Definition 8. Given a frame F , a valuation V on F and a world w ∈ U we
define � by

F ,V , w � α iff w ∈ [[α]].

When F ,V , w � α holds for all w ∈ U we write F ,V � α, and when F ,V � α
holds for all valuations V we write F � α.

In the special case that H is the identity relation on U , stability places no
restriction on R and

�

R is just the ordinary converse of R. The semantics is
then equivalent to the usual relational semantics for tense logic when time is not
assumed to have any specific properties. Figure 4 illustrates how the semantics of
♦ and � can differ from this usual case. In the figure, R is denoted by the broken
lines and H is determined by the graph. The H-sets are shown in bold. We can
give a temporal interpretation to the example by taking the nodes to be time
points, the edges to be open intervals, and R to relate each open interval to all
instants that either end the interval or end some later interval. The times when
♦p holds are then the open intervals for which p holds at some later instant,
together with both endpoints of those intervals. The times when �q holds are
all the closed intervals where q holds at all times and has always held.

Theorem 4. The logic biskt is decidable and has the effective finite model
property.

The proof involves an embedding of biskt into a traditional modal logic with
forward and backward looking modal operators defined by H and R as accessi-
bility relations. The frame conditions are reflexivity and transitivity of H , and

Tableau Development for a Bi-intuitionistic Tense Logic 419

[[p]] [[♦p]]

[[q]] [[�q]]

Fig. 4. Example of semantics for ♦ and �

the stability of R with respect to H . Monotonicity also needs to be suitably
ensured. This logic can be shown to be decidable and have the effective finite
model property by mapping it to the guarded fragment. This can be done using
the axiomatic translation principle introduced in [SH07]. As the guarded frag-
ment is decidable and has the effective finite model property [ANvB98, Grä99]
these properties are inherited by the modal logic and also biskt. It further fol-
lows that the computational complexity of reasoning in biskt is no worse than
EXPTIME. (Due to space constraints the detailed proof has been omitted.)

4 Tableau Calculus for BISKT

Since the accessibility relations in the Kripke models of biskt involve converse
relations it is natural to use a semantic tableau method, which does not place
any limitations on how the proof search can be performed. In particular, we use
a labelled tableau approach because this ensures proof confluence. This means
there is no need for backtracking over the proof search, and there is more flexibil-
ity in defining search heuristics in an implementation. These are aspects which
make it harder to develop tableau calculi where the rules operate on formulae
of the logic and do not include any syntactic entities referring to semantics. An
additional advantage of semantic tableau calculi is that they return concrete
models for satisfiable formulae.

Since biskt is based on intuitionistic logic the calculus presented in this sec-
tion is a labelled signed tableau calclulus. Tableau formulae have these forms.

⊥ s : S ϕ H(s, t) R(s, t) s ≈ t s �≈ t

S denotes a sign (either T or F for true or false), s and t represent worlds in
the models constructed by the tableau calculus, and ≈ is the standard equality
symbol. Technically, s and t denote terms in the term algebra freely generated
from a finite set of constants and a finite set of unary function symbols fθ, gθ′ ,
g′θ′, which are uniquely associated with subformulae of the input set. Specifically,
the fθ are associated with subformulae involving quantification in their semantic

420 J.G. Stell, R.A. Schmidt, and D. Rydeheard

definition (i.e., ¬ϕ, ¬ϕ, ϕ → ψ, ϕ � ψ, �ϕ, �ϕ, ♦ϕ, �ϕ), and for each subfor-
mula θ′ of the form ♦ϕ or �ϕ there is a unique function symbol gθ′ and g′θ′ .
These symbols are Skolem functions and provide a convenient technical device
to generate witnesses for formulae of existential extent.

The semantics of tableau formulae is defined by extended Kripke models. An
extended Kripke model is a structure (M, ι), where M = (F ,V) is a Kripke
model defined as in the previous section (F denotes a frame and V a valuation
function) and ι is an assignment mapping terms in the tableau language to worlds
in U . Satisfiability of tableau formulae is defined by:

M, ι �� ⊥
M, ι � s : T ϕ iff M, ι(s) � ϕ M, ι � s : F ϕ iff M, ι(s) �� ϕ

M, ι � H(s, t) iff (ι(s), ι(t)) ∈ H M, ι � R(s, t) iff (ι(s), ι(t)) ∈ R
M, ι � s ≈ t iff ι(s) = ι(t) M, ι � s �≈ t iff ι(s) �= ι(t)

Let Tabbiskt be the calculus consisting of the rules in Figure 5. The rules are to
be applied top-down. Starting with set of tableau formulae the rules are used to
decompose formulae in a goal-directed way. Since some of the rules are branching
the inference process constructs a tree derivation. As soon as a contradiction is
derived in a branch (that is, when ⊥ has been derived) that branch is regarded
closed and no more rules are applied to it. If a branch is not closed then it is
open. When in an open branch no more rules are applicable then the derivation
can stop because a model for the input set can be read off from the branch.

The way to use the tableau calculus is as follows. Suppose we are interested
in the validity of a formula, say ϕ, in biskt. Then the input to the tableau
derivation is the set {a : Fϕ} where a is a constant representing the initial
world, and the aim is to find a counter-model for ϕ. If a counter-model is found
then ϕ is not valid, on the other hand, if a closed tableau is constructed then
ϕ is valid.

The first group of rules in the calculus are the closure rule and the decompo-
sition rules of the operators of bi-intuitionistic logic. The closure rule derives ⊥
when for a formula ϕ both s : T ϕ and s : F ϕ occur on the branch. The branch is
then closed. The other rules can be thought of as ‘decomposing’ labelled formu-
lae and building an ever growing tree derivation. These inference steps basically
follow the semantics of the main logical operator of the formula being decom-
posed. For example, the rule for positive occurrences of implication extends the
current branch with t : F ϕ and t : T ψ thereby creating two branches, if for-
mulae of the form s : T ϕ → ψ and H(s, t) belong to the current branch. The
rule for negative occurrences of implication extends the current branch with the
three formulae H(s, fϕ→ψ(s)), fϕ→ψ(s) : T ϕ and fϕ→ψ(s) : F ψ, if the formula
s : F ϕ → ψ occurs on the current branch. The effect is that an H-successor
world is created for s and ψ is assigned false in this successor, while ϕ is assigned
true.

Tableau Development for a Bi-intuitionistic Tense Logic 421

s : T ϕ, s : F ϕ

⊥ pv. 0
s : T ⊥

⊥ pv. 0

Rules for operators of bi-intuitionistic logic and the closure rule:

s : T ϕ ∧ ψ

s : T ϕ, s : T ψ
pv. 1

s : F ϕ ∧ ψ

s : F ϕ | s : F ψ
pv. 7

s : F ϕ ∨ ψ

s : F ϕ, s : F ψ
pv. 1

s : T ϕ ∨ ψ

s : T ϕ | s : T ψ
pv. 7

s : T ¬ϕ, H(s, t)

t : F ϕ
pv. 2

s : F ¬ϕ
H(s, f¬ϕ(s)), f¬ϕ(s) : T ϕ

pv. 10

s : F ¬ϕ, H(t, s)

t : T ϕ
pv. 2

s : T ¬ϕ
H(f¬ϕ(s), s), f¬ϕ(s) : F ϕ

pv. 10

s : T ϕ → ψ, H(s, t)

t : F ϕ | t : T ψ
pv. 2

s : F ϕ → ψ

H(s, fϕ→ψ(s)), fϕ→ψ(s) : T ϕ, fϕ→ψ(s) : F ψ
pv. 10

s : F ϕ � ψ, H(t, s)

t : F ϕ | t : T ψ
pv. 2

s : T ϕ � ψ

H(fϕ�ψ(s), s), fϕ�ψ(s) : T ϕ, fϕ�ψ(s) : F ψ
pv. 10

s : T �ϕ, R(s, t)

t : T ϕ
pv. 2

s : F �ϕ

R(s, f�ϕ(s)), f�ϕ(s) : F ϕ
pv. 10

Rules for the tense operators:

s : F �ϕ, R(t, s)

t : F ϕ
pv. 2

s : T �ϕ
R(f�ϕ(s), s), f�ϕ(s) : T ϕ

pv. 10

s : F ♦ϕ, H(t, s), R(t, u), H(v, u)

v : F ϕ
pv. 4

s : T ♦ϕ
H(g♦ϕ(s), s), R(g♦ϕ(s), g′♦ϕ(s)), H(f♦ϕ(s), g′♦ϕ(s)), f♦ϕ(s) : T ϕ

pv. 10

s : T �ϕ, H(s, t), R(u, t), H(u, v)

v : T ϕ
pv. 4

s : F �ϕ

H(s, g�ϕ(s)), R(g′�ϕ(s), g�ϕ(s)), H(g′�ϕ(s), f�ϕ(s)), f�ϕ(s) : F ϕ
pv. 10

(refl)
H(s, s)

pv. 3 (tr)
H(s, t), H(t, u)

H(s, u)
pv. 2

Rules for frame and model conditions:

(mon)
s : T ϕ, H(s, t)

t : T ϕ
pv. 2 (stab)

H(s, t), R(t, u), H(u, v)

R(s, v)
pv. 4

Fig. 5. Tableau calculus Tabbiskt. (pv = priority value. Rules of highest priority have
pv 0, rules of lowest priority have pv 10.)

The rules for the � and � operators are signed versions of the standard rules
for tense modalities in semantic tableaux for traditional modal logics. The rules
for the ♦ and � operators are more complicated versions, as they refer to the
composite relation H ; R̆;H .

422 J.G. Stell, R.A. Schmidt, and D. Rydeheard

The third group of rules ensures the models constructed have the required
properties. For example, the (refl)-rule ensures all terms (representing worlds)
are reflexive in a fully expanded branch, and (tr)-rule ensures the H-relation is
transitively closed. The rule (mon) accommodates the property that the truth
sets form downsets. It is justified since we can show monotonicity not only for
atomic formulae but any formulae of the logic. The rule (stab) ensures the rela-
tion R will be stable with respect to H in any generated model.

The rules have been systematically derived from the definition of the semantics
of biskt as given in Section 3. We first expressed the semantics in first-order logic
and then converted the formulae to inference rules following the tableau synthesis
method described in [ST11]. We do not describe the conversion here because it
is completely analogous to the conversion for intuitionistic logic considered as a
case study in [ST11, Section 9]. The subset of the rules in the calculus Tabbiskt
restricted to the operators and frame conditions relevant to intuitionistic logic
in fact coincides with the tableau calculus derived there for intuitionistic logic
(there are just insignificant variations in notation). We just note for the rule
refinement step in the synthesis process atomic rule refinement as introduced
in [TS13] is sufficient. Atomic rule refinement is a specialization of a general rule
refinement technique described in [ST11] with the distinct advantage that it is
automatic because separate proofs do no need to be given.

The values accompanying each rule in Figure 5 are the priority values we used
in the implementation using the MetTeL tableau prover generator [Met, TSK12].
Lower values mean higher prority.

Theorem 5. The tableau calculus Tabbiskt is sound and (constructively) com-
plete with respect to the semantics of biskt.

This follows by the results of the tableau synthesis framework and atomic rule
refinement [ST11, TS13], because we can show the semantics of biskt defined
in Section 3 is well-defined in the sense of [ST11].

To obtain a terminating tableau calculus, adding the unrestricted blocking
mechanism provides an easy way to obtain a terminating tableau calculus for
any logic with the finite model property [ST08, ST11, ST13]. The main ingredient
of the unrestricted blocking mechanism is the following rule.

(ub)
s ≈ t | s �≈ t

pv. 9Unrestricted blocking rule:

Since this involves equality ≈, provision needs to be made for equality reasoning.
This can be achieved, for example, via the inclusion of these paramodulation
rules.

s �≈ s

⊥
s ≈ t

t ≈ s

s ≈ t, G[s]λ
G[λ/t]

Here, G denotes any tableau formula. The notation G[s]λ means that s occurs
as a subterm at position λ in G, and G[λ/t] denotes the formula obtained by
replacing s at position λ with t. In MetTeL equality reasoning is provided in the
form of ordered rewriting which is more efficient [TSK12].

Tableau Development for a Bi-intuitionistic Tense Logic 423

Unrestricted blocking systematically merges terms (sets them to be equal) in
order to find small models if they exists. The intuition of the (ub)-rule is that
merging two terms s and t, either leads to a model, or it does not, in which
case s and t cannot be equal. In order that small models are found it is crucial
that blocking is performed eagerly before the application of any term creating
rules. The term creating rules are the rules expanding formulae with implicit
existential quantification. As can be seen in our implementation using MetTeL
the (ub)-rule has been given higher priority (a lower priority value 9) than all
the rule creating new Skolem terms (priority value 10).

We denote the extension of the calculus Tabbiskt by the unrestricted blocking
mechanism, including some form of reasoning with equality ≈, by Tabbiskt(ub).

Using unrestricted blocking, because the logic has the finite model property,
as we have shown in Theorem 4, the tableau calculus of Figure 5 extended with
unrestricted blocking provides the basis for a decision procedure.

Theorem 6. The tableau calculus Tabbiskt(ub) is sound, (constructively) com-
plete and terminating for biskt.

Implementing a prover requires lots of specialist knowledge and there are
various non-trivial obstacles to overcome, but using the MetTeL tableau prover
generator requires just feeding in the rules of the calculus into the tool which then
fully automatically generates an implemention in Java. The tableau calculus in
Figure 5 is in exactly the form as supported by MetTeL and unrestricted blocking
is available in MetTeL. We have therefore implemented the calculi using MetTeL.
MetTeL turned out to be useful to experiment with several initial versions of the
calculus. Moreover, in combination with the tableau synthesis method it was easy
to experiment with different tableau provers for several preliminary versions of
formalizations of bi-intuitionistic tense logics before settling on biskt. MetTeL
has also allowed us to experiment with different rule refinements, limiting the
monotonicity rule to atomic formulae or not, and alternative forms of blocking.
A natural variation of the (ub) rule is given by these two rules.

H(s, t)

s ≈ t | s �≈ t
pv. 9

R(s, t)

s ≈ t | s �≈ t
pv. 9Predecessor blocking rules:

Whereas the (ub)-rule blocks any two distinct terms, these rules restrict block-
ing to terms related via the H and R relations. The rules implement a form
of predecessor blocking, which is known to give decision procedures for basic
multi-modal logic K(m). We conjecture it also provides a decision procedure for
biskt. Because Tabbiskt is sound and complete and both rules are sound, basing
blocking on these rules instead of (ub) preserves soundness and completeness.

The following are examples of formulae provable using the calculus as have
been verified by a MetTeL generated prover.

424 J.G. Stell, R.A. Schmidt, and D. Rydeheard

Lemma 7. The following hold in biskt.

1. (a) [[⊥ → ϕ]] = [[�]]
(b) [[ϕ→ ¬⊥]] = [[�]]
(c) [[¬(ϕ → ψ) → (¬ϕ → ¬ψ)]] =

[[�]]
(d) [[¬(ϕ → ψ) → (¬ϕ → ¬ψ)]] =

[[�]]
(e) [[ϕ ∧ ¬ϕ]] = [[⊥]]
(f) [[ϕ ∨ ¬ϕ]] = [[�]]
(g) [[¬¬¬ϕ]] = [[¬ϕ]]
(h) [[¬¬¬ϕ]] = [[¬ϕ]]
(i) [[¬(ϕ ∨ ψ)]] = [[¬ϕ ∧ ¬ψ]]

(j) [[¬(ϕ ∧ ψ)]] = [[¬¬(¬ϕ ∨ ¬ψ)]]
(k) [[¬(ϕ ∧ ψ)]] = [[¬ϕ ∨ ¬ψ]]
(l) [[¬(ϕ ∨ ψ)]] = [[¬¬(¬ϕ ∧ ¬ψ)]]

(m) [[ϕ]] ⊆ [[¬¬ϕ]]
(n) [[¬¬ϕ]] ⊆ [[ϕ]]
(o) [[¬ϕ ∨ ¬ψ]] ⊆ [[¬(ϕ ∧ ψ)]]
(p) [[¬(ϕ ∨ ψ)]] ⊆ [[¬ϕ ∧ ¬ψ]]
(q) [[ϕ ∧ ψ]] ⊆ [[¬(¬ϕ ∨ ¬ψ)]]
(r) [[ϕ ∨ ψ]] ⊆ [[¬(¬ϕ ∧ ¬ψ)]]
(s) [[¬¬(ϕ ∧ ψ)]] = [[¬¬ϕ ∧ ¬¬ψ]]
(t) [[¬¬(ϕ→ ψ)]] = [[¬¬ϕ→ ¬¬ψ]]

2. (a) [[ϕ]] ⊆ [[¬¬ϕ]]
(b) [[¬ϕ]] ⊆ [[¬ϕ]]
(c) [[¬¬ϕ]] ⊆ [[ϕ]]
(d) [[¬¬ϕ]] ⊆ [[¬¬ϕ]]

(e) [[¬¬ϕ]] ⊆ [[¬¬ϕ]]
(f) [[¬¬ϕ]] ⊆ [[¬¬ϕ]]
(g) [[¬ϕ]] = [[¬ϕ ∨⊥]]

3. (a) [[�¬⊥]] = [[�]], [[�(ϕ→ ψ)→ (�ϕ→ �ψ)]] = [[�]]
(b) [[�⊥]] = [[⊥]], [[¬�(ϕ→ ψ)→ (¬�ϕ→ ¬�ψ)]] = [[�]]
(c) [[♦⊥]] = [[⊥]], [[¬♦(ϕ→ ψ)→ (¬♦ϕ→ ¬♦ψ)]] = [[�]]
(d) [[�¬⊥]] = [[�]], [[�(ϕ→ ψ)→ (�ϕ→ �ψ)]] = [[�]]
These properties mean all box and diamond operators are in fact ‘modal’.

4. (a) [[♦ϕ]] = [[¬�¬ϕ]]
(b) [[♦ϕ]] ⊆ [[¬�¬¬¬ϕ]]
(c) [[¬�¬ϕ]] ⊆ [[♦ϕ]]

(d) [[¬♦¬ϕ]] ⊆ [[�ϕ]]

(e) [[�ϕ]] = [[¬�¬ϕ]]

5. (a) [[¬ϕ]] = [[¬⊥ � ϕ]]
(b) ¬(⊥ � ϕ)

(c) ¬(ϕ � ¬⊥)
(d) [[♦ϕ]] ⊆ [[¬⊥ � �¬(¬⊥ � ¬ϕ)]]

Since we can show the following hold in biskt, the inclusions in Lemma 7
also hold as implications.

Lemma 8. 1. [[ϕ]] ⊆ [[ψ]] implies � ϕ→ ψ.
2. [[ϕ]] = [[�]] implies � ϕ.
3. [[ϕ]] = [[⊥]] implies ϕ is contradictory.

5 Connections to Other Work

Propositional bi-intuitionistic logic was studied by Rauszer [Rau74] who referred
to it as H-B logic, standing for Heyting-Brouwer logic. The co-intuitionistic
fragment of H-B logic is one of the propositional paraconsistent logics inves-
tigated by Wansing [Wan08], but neither of these papers was concerned with
bi-intuitionistic modal logic. The stable relations we used are already well known
in intuitionistic modal logic [ZWC01, p219] and they provide a special case of

Tableau Development for a Bi-intuitionistic Tense Logic 425

the category-theoretic notion of a distributor [Bén00]. However, as far as we are
aware, the left converse operation that we use has not featured in either of these
contexts.

Reyes and Zolfaghari [RZ96] present modal operators with semantics in bi-
Heyting algebras. Graphs are an important example, as in our work, but the
modalities are quite different, arising from iterating alternations of ¬ and ¬.

Goré et al [GPT10] studied a bi-intuitionistic modal logic, BiKt, with the same
langauge as biskt but with a semantics producing no relationship between the
box and diamond operators. The four modal operators form two residuated pairs
(�,�) and (�,♦) but without any necessary relationship between � and ♦ or
between � and �. In our case the same pairs are residuated (or adjoint) but
we have a different semantics for the (�,♦) pair, and consequently we do get
relationships between � and ♦ and between � and �.

We next describe the semantics for BiKt [GPT10, p26], using our notation
and terminology to clarify the connection with biskt.

Definition 9. A BiKt Frame, 〈U,H,R, S〉, consists of a set U , a relation H
on U which is reflexive and transitive, and two relations R and S on U that
satisfy R ;H ⊆ H ; R and H̆ ; S ⊆ S ; H̆.

The condition R ; H ⊆ H ; R is strictly more general than R = H ; R ; H .
For example, if U = {a, b} and H = {(a, a), (a, b), (b, b)} then taking R to be
{(b, a), (b, b)} we find that R ;H ⊆ H ;R holds but not R = H ;R ;H . However,
we shall see shortly that this additional generality is not essential. The semantics
interprets formulae by H-sets and the modalities are defined as follows.

[[♦α]] = [[α]]⊕ S̆ [[�α]] = (H ;R); [[α]] [[�α]] = [[α]]⊕R [[�α]] = (H ; S̆); [[α]]

Since [[α]] is an H-set [[α]] ⊕ S̆ = [[α]] ⊕ (H ; S̆) and [[α]] ⊕ R = [[α]] ⊕ (H ; R).
Thus the only accessibility relations needed in the semantics are R′ = H ;R and
S′ = H ; S̆. The following lemma shows that the constraints on R and S are
equivalent to R′ and S′ being stable with respect to H .

Lemma 9. Let U be any set, let H be any pre-order on U , and let S be any
binary relation on U . Then the following are equivalent.

1. S = H ; S ;H.

2. There is some relation R ⊆ U × U such that S = H ;R and R ;H ⊆ H ; R.

Thus we can rephrase the semantics in [GPT10, p26] as

1. A frame 〈U,H,R′, S′〉, consists of a set U , a pre-orderH on U , and two stable
relations R′ and S′ on U . A valuation assigns an H-set to each propositional
variable, and the connectives are interpreted as for biskt.

2. The semantics of the modal operators is:

[[♦α]] = [[α]]⊕ S′ [[�α]] = R′ ; [[α]] [[�α]] = [[α]]⊕R′ [[�α]] = S′ ; [[α]]

426 J.G. Stell, R.A. Schmidt, and D. Rydeheard

There is no relationship between R′ and S′ whereas the approach in Section 3
above is the special case in which S′ = �

R′. The significance of our semantics for
biskt is that we are able to define all four modalities from a single accessibility
relation. In developing, for example, a bi-intuitionistic modal logic of time it
seems reasonable that the forward procession of time should not be completely
unrelated to the backwards view looking into the past. It is the left converse
operation on stable relations that allows us to state what appears to be the
appropriate connection between the two directions.

6 Conclusion

Motivated by the theory of relations on graphs and applications to spatial rea-
soning, we have presented a bi-intuitionistic logic biskt with tense operators.
The need to interact well with a graph structure, and more generally with a pre-
order, meant that our accessibility relations needed to be stable. The stability
condition itself is not novel, but stable relations are not closed under the usual
converse operation and our work is the first to show that the weaker left converse,
which does respect stability, can be used to define semantics for modalities.

In contrast to other intuitionistic and bi-intuitionistic tense logics where all
the modal operators are independent of each other, in biskt the white diamond
can be defined in terms of the white box, although not conversely. Dually the
black box can be defined from the black diamond, also by using a pairing of
intuitionistic negation and dual intuitionistic negation.

We showed biskt is decidable and has the effective finite model property.
The proof is via a reduction to the guarded fragment, which also gives an upper
complexity bound of EXPTIME. Future work includes giving a tight complexity
result for biskt.

We have presented a tableau calculus for biskt, which was shown to be sound,
complete and terminating. This was obtained and refined using the tableau syn-
thesis methodology and refinement techniques of [ST11, TS13]. We used a prover
generated with the MetTeL tool [Met, TSK12] to analyse the logic and inves-
tigate the properties that hold in it, including relationship between different
logical operators.

As the reduction to the guarded fragment is via an embedding into a multi-
modal logic, this provides another route to obtaining a tableau calculus and
tableau prover for biskt. Preliminary experiments on about 120 problems have
however shown that the performance of this alternative prover is not better than
the prover for the calculus presented in this paper. The reason is that the rules
are more fine grained and less tailor-made, which allows fewer rule refinements.
However deeper analysis and more experiments are needed.

Other future work includes extending biskt with modalities based on the
right converse operator.

Tableau Development for a Bi-intuitionistic Tense Logic 427

References

[Met] MetTeL website, http://www.mettel-prover.org

[Av02] Aiello, M., van Benthem, J.: A Modal Walk Through Space. Journal of
Applied Non-Classical Logics 12, 319–363 (2002)

[AO07] Aiello, M., Ottens, B.: The Mathematical Morpho-Logical View on Reason-
ing about Space. In: Veloso, M.M. (ed.) IJCAI 2007, pp. 205–211. AAAI
Press (2007)

[ANvB98] Andréka, H., Németi, I., van Benthem, J.: Modal Languages and Bounded
Fragments of Predicate Logic. Journal of Philosophical Logic 27, 217–274
(1998)

[Bén00] Bénabou, J.: Distributors at Work (2000),
http://www.mathematik.tu-darmstadt.de/ streicher/FIBR/DiWo.pdf

[Blo02] Bloch, I.: Modal Logics Based on Mathematical Morphology for Qualita-
tive Spatial Reasoning. Journal of Applied Non-Classical Logics 12, 399–423
(2002)

[BHR07] Bloch, I., Heijmans, H.J.A.M., Ronse, C.: Mathematical Morphology. In:
Aiello, M., Pratt-Hartmann, I., van Benthem, J. (eds.) Handbook of Spatial
Logics, pp. 857–944. Springer (2007)

[GPT10] Goré, R., Postniece, L., Tiu, A.: Cut-elimination and Proof Search for Bi-
Intuitionistic Tense Logic. arXiv e-Print 1006.4793v2 (2010)

[Grä99] Grädel, E.: On the restraining power of guards. Journal of Symbolic Logic 64,
1719–1742 (1999)

[HV93] Heijmans, H., Vincent, L.: Graph Morphology in Image Analysis. In:
Dougherty, E.R. (ed.) Mathematical Morphology in Image Processing, pp.
171–203. Marcel Dekker (1993)

[Rau74] Rauszer, C.: A formalization of the propositional calculus of H-B logic. Stu-
dia Logica 33, 23–34 (1974)

[RZ96] Reyes, G.E., Zolfaghari, H.: Bi-Heyting Algebras, Toposes and Modalities.
Journal of Philosophical Logic 25, 25–43 (1996)

[SH07] Schmidt, R.A., Hustadt, U.: The Axiomatic Translation Principle for Modal
Logic. ACM Transactions on Computational Logic 8, 1–55 (2007)

[ST08] Schmidt, R.A., Tishkovsky, D.: A General Tableau Method for Deciding
Description Logics, Modal Logics and Related First-Order Fragments. In:
Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS,
vol. 5195, pp. 194–209. Springer, Heidelberg (2008)

[ST11] Schmidt, R.A., Tishkovsky, D.: Automated Synthesis of Tableau Calculi.
Logical Methods in Computer Science 7, 1–32 (2011)

[ST13] Schmidt, R.A., Tishkovsky, D.: Using Tableau to Decide Description Logics
with Full Role Negation and Identity. To appear in ACM Transactions on
Computational Logic (2013)

[Ser82] Serra, J.: Image Analysis and Mathematical Morphology. Academic Press
(1982)

[Ste12] Stell, J.G.: Relations on Hypergraphs. In: Kahl, W., Griffin, T.G. (eds.)
RAMICS 2012. LNCS, vol. 7560, pp. 326–341. Springer, Heidelberg (2012)

[TSK12] Tishkovsky, D., Schmidt, R.A., Khodadadi, M.: The Tableau Prover Gen-
erator MetTeL2. In: del Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA
2012. LNCS, vol. 7519, pp. 492–495. Springer, Heidelberg (2012)

http://www.mettel-prover.org
http://www.mathematik.tu-darmstadt.de/~streicher/FIBR/DiWo.pdf

428 J.G. Stell, R.A. Schmidt, and D. Rydeheard

[TS13] Tishkovsky, D., Schmidt, R.A.: Refinement in the Tableau Synthesis Frame-
work. arXiv e-Print 1305.3131v1 (2013)

[Wan08] Wansing, H.: Constructive negation, implication, and co-implication. Journal
of Applied Non-Classical Logics 18, 341–364 (2008)

[ZWC01] Zakharyaschev, M., Wolter, F., Chagrov, A.: Advanced Modal Logic. In:
Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 3,
pp. 83–266. Kluwer (2001)

Nominal Sets over Algebraic Atoms�

Joanna Ochremiak

Institute of Informatics, University of Warsaw, Warsaw, Poland
ochremiak@mimuw.edu.pl

Abstract. Nominal sets, introduced to Computer Science by Gabbay
and Pitts, are useful for modeling computation on data structures built
of atoms that can only be compared for equality. In certain contexts it
is useful to consider atoms equipped with some nontrivial structure that
can be tested in computation. Here, we study nominal sets over atoms
equipped with both relational and algebraic structure. Our main result
is a representation theorem for orbit-finite nominal sets over such atoms,
a generalization of a previously known result for atoms equipped with
relational structure only.

1 Introduction

Nominal sets [Pit13] are sets whose elements depend on atoms – elements of a
fixed countably infinite set A. Examples include:

• the set A itself,
• the set An of n-tuples of atoms,
• the set A(n) of n-tuples of distinct atoms,

• the set A∗ of finite words over A,
• the set of graphs edge-labeled with atoms, etc.

Any such set is acted upon by permutations of the atoms in a natural way,
by renaming all atoms that appear in it. We require the result of applying a
permutation of atoms to each element of a nominal set to be determined by a
finite set of atoms, called a support of this element. Sets A, An and A(n) are
nominal, since each tuple of atoms is supported by the finite set of atoms that
appear in it. Another example of a nominal set is A∗, where a word is supported
by the set of its letters. The set of all cofinite subsets of atoms is also nominal:
one of the supports of a cofinite set is simply its complement.

Nominal sets were introduced in 1922 by Fraenkel as an alternative model
of set theory. In this context they were further studied by Mostowski, which is
why they are sometimes called Fraenkel-Mostowski sets. Rediscovered for the
computer science community in the 90s by Gabbay and Pitts [GP02], nominal
sets gained a lot of interest in semantics. In this application area atoms, whose

� This work was supported by the Polish National Science Centre (NCN) grant
2012/07/B/ST6/01497.

P. Höfner et al. (Eds.): RAMiCS 2014, LNCS 8428, pp. 429–445, 2014.
c© Springer International Publishing Switzerland 2014

430 J. Ochremiak

only structure is equality, are used to describe variable names in programs or
logical formulas. Permutations of atoms correspond to renaming of variables.

In parallel, nominal sets were studied in automata theory [Pis99], under the
name of named sets with symmetries1, and used to model computation over
infinite alphabets that can only be accessed in a limited way.

An example of such a model that predates nominal sets are Francez-Kaminski
register automata [KF94] that, over the alphabet of atoms A, recognize languages
such as ”the first letter does not appear any more”:

L = {a1 . . . an : a1 �= ai for all i > 1}.

To this end, after reading the first letter the automaton stores it in its register.
Then it reads the rest of the input word and rejects if any letter equals the one
in the register. The automaton has one register and three states: 0, 1,�, where
0 is initial and � is rejecting. Alternatively, in the framework of nominal sets,
this may be modelled as an automaton with an infinite state space {0,�} ∪ A
and the transition relation defined by the graph:

0 c

b

a

d

�

...

a

b

c

d

a

b

c

d

�= a

�= b

�= c

�= d

A

In [BKL11] and [BKL] Bojańczyk, Klin and Lasota showed that automata
over infinite alphabets whose letters are built of atoms that can only be tested

1 The equivalence between named sets and nominal sets was proven in [FS06]
and [GMM06].

Nominal Sets over Algebraic Atoms 431

for equality, are essentially automata in the category of nominal sets. As a contin-
uation of this line of research, Turing machines that operate over such alphabets
were studied in [BKLT13].

The key notion in the above constructions is orbit-finiteness – a more relaxed
notion of finiteness provided by nominal sets. A nominal set is considered orbit-
finite if it has finitely many elements, up to permutations of atoms. The set
A of atoms is orbit-finite: in fact, it has only one orbit. This single orbit can
be represented by any atom a, because a can be mapped to every other atom
by a suitable permutation. Another example of an orbit-finite set is the set of
configurations of any register automaton. The automaton described above has
infinitely many configurations. However, there are only three of them up to
permutations: the initial state 0 with an empty register, state 1 with an atom
stored in the register and the rejecting state � with an empty register.

Atoms turn out to be a good framework to speak of data that can be accessed
only in a limited way. Nominal sets, as defined in [Pit13], intuitively correspond
to data with no structure except for equality. To model a device with more
access to its alphabet one may use atoms with additional structure. An example
here are atoms with total order. A typical language recognized by a nominal
automaton over such atoms is the language of all monotonic words:

L = {a1 . . . an : ai < aj for all i < j}.

In [BKL] atoms are modelled as countable relational structures. In this setting
the definition of a nominal set remains essentially the same. The only change
is that we consider only those permutations of atoms that preserve and reflect
the relational structure, i.e., we talk about automorphisms of atoms. A choice
of such automorphisms is called an atom symmetry.

Since interesting orbit-finite nominal sets are usually infinite (for example, the
transition relation of the automaton above), to manipulate them effectively we
need to represent them in a finite way. In [BKL] Bojańczyk et al. provide such
a concrete, finite representation of orbit-finite nominal sets for atoms that are
homogeneous relational structures over finite vocabularies (the corresponding
atom symmetries are called Fräıssé symmetries). Each element of a nominal
set is represented as a finite substructure of atoms modulo some group of local
automorphisms. There are two technical assumptions needed for the theorem
to hold: existence of least supports and so-called fungibility (meaning roughly
that one can always find an automorphism that fixes a concrete substructure of
atoms without fixing other atoms).

In some contexts, a relational structure of atoms is not enough. In [BL12]
Bojańczyk and Lasota use the theory of nominal sets to obtain a machine-
independent characterization of the languages recognized by deterministic timed
automata. To do so they introduce atoms with a total order and a function sym-
bol +1 and they relate deterministic timed automata to automata over these
timed atoms. An example of a language recognized by such a nominal automaton

432 J. Ochremiak

is the set of all monotonic words where the distance between any two consecutive
letters is smaller than 1:

L = {a1 . . . an : ai−1 + 1 > ai > ai−1 for all i > 1}.

One could easily think of other types of potentially useful functional dependen-
cies on atoms, such as composing two atoms to get another atom. It is therefore
natural to ask if the representation theorem can be generalized to cover atoms
with algebraic as well as relational structure. This paper gives a positive answer
to this question.

The proof of the representation theorem for atoms with both relational and
function symbols follows the same pattern as the proof for relational structures
given in [BKL]. There are, however, some subtleties, since instead of finite sup-
ports one has to consider finitely generated supports (which can be infinite) and,
as a result, the notion of fungibility becomes less clear.

The structure of this paper is as follows. In Section 2 we define atom symme-
tries and introduce the category of G-sets. In Section 3, following [BKL11,BKL],
we focus on the theory of nominal sets for Fräıssé symmetries, introduce the cat-
egory of nominal sets, and explain the notion of the least finitely generated
support. In Section 4 we define the property of fungibility and finally prove the
representation theorem for fungible Fräıssé symmetries that admit least finitely
generated supports.

2 Atom Symmetries

A (right) group action of a groupG on a set X is a binary operator · : X×G→ X
that satisfies following conditions:

for all x ∈ X x · e = x, where e is the neutral element of G,

for all x ∈ X and π, σ ∈ G x · (πσ) = (x · π) · σ.
The set X equipped with such an action is called a G-set.

Example 2.1. For a set X let Sym(X) denote the symmetric group on X , i.e.,
the group of all bijections of X . Take any subgroup G of the symmetric group
Sym(X). There is a natural action of the group G on the set X defined by
x · π = π(x).

Definition 2.2. An atom symmetry (A, G) is a set A of atoms, together with a
subgroup G ≤ Sym(A) of the symmetric group on A.

Example 2.3. Examples of atom symmetries include:

– the equality symmetry, where A is a countably infinite set, say the natural
numbers, and G = Sym(A) contains all bijections of A,

– the total order symmetry, where A = Q is the set of rational numbers, and
G is the group of all monotone permutations,

Nominal Sets over Algebraic Atoms 433

– the timed symmetry, where A = Q is the set of rational numbers, and G is
the group of all permutations of rational numbers that preserve the order
relation ≤ and the successor function x %→ x+ 12.

For any element x of a G-set X the set

x ·G = {x · π | π ∈ G} ⊆ X

is called the orbit of x. Orbits form a partition of X . The set X is called orbit-
finite if the partition has finitely many parts. Each of the orbits can be perceived
as a separate G-set. Therefore we can treat any G-set X as a disjoint union of
its orbits.

Example 2.4. For any atom symmetry (A, G) the action of G on A extends
pointwise to an action of G on the set of tuples An. In the equality symmetry,
the set A2 has two orbits:

{(a, a) | a ∈ A} {(a, b) | a �= b ∈ A}.

In the timed symmetry, the set A2 is not orbit-finite. Notice that for any a ∈ Q
each of the elements (a, a+ 1), (a, a+ 2), . . . is in a different orbit.

Let X be a G-set. A subset Y ⊆ X is equivariant if Y · π = Y for every
π ∈ G, i.e., it is preserved under group action. Considering a pointwise action
of a group G on the Cartesian product X × Y of two G-sets X,Y we can define
an equivariant relation R ⊆ X × Y . In the special case when the relation is a
function f : X → Y we obtain a following definition of an equivariant function

f(x · π) = f(x) · π for any x ∈ X, π ∈ G.

The identity function on any G-set is equivariant, and the composition of two
equivariant functions is again equivariant, therefore for any group G, G-sets and
equivariant functions form a category, called G-Set.

Definition 2.5. For any x in a G-set X , the group

Gx = {π ∈ G | x · π = x} ≤ G

is called the stabilizer of x.

Lemma 2.6. If Gx ≤ G is the stabilizer of an element x of a G-set X then
Gx·π = π−1Gxπ for each π ∈ G.

Proof. Obviously π−1Gxπ ⊆ Gx·π. On the other hand, x · (πσπ−1) = x for any
σ ∈ Gx·π. Hence πGx·ππ−1 ⊆ Gx, which means that Gx·π ⊆ π−1Gxπ. As a result
Gx·π = π−1Gxπ, as required.

2 The timed symmetry was originally defined in [BL12] for A = R. Considering the
rational numbers instead of the reals makes little difference but is essential for our
purposes. To fit the Fräıssé theory we need the set of atoms to be countable.

434 J. Ochremiak

Proposition 2.7. Let x be an element of a single-orbit G-set X. For any G-set
Y equivariant functions from X to Y are in bijective correspondence with those
elements y ∈ Y for which Gx ≤ Gy.

Proof. Given an equivariant function f : X → Y , let y = f(x). If π ∈ Gx then

y · π = f(x) · π = f(x · π) = f(x) = y,

hence Gx ≤ Gy. On the other hand, given y ∈ Y such that Gx ≤ Gy, define a
function f : X → Y by f(x · π) = y · π. Function f is well-defined. Indeed, if
x · π = x · σ then πσ−1 ∈ Gx ⊆ Gy, hence y · π = y · σ.

It is easy to check that the two above constructions are mutually inverse.

3 Fräıssé Symmetries

In the following, we shall consider atom symmetries that arise as automorphism
groups of algebraic structures. Such symmetries behave particularly well if those
structures arise as so-called Fräıssé limits, which we introduce in this sections.

3.1 Fräıssé Limits

An algebraic signature is a set of relation and function names together with
(finite) arities. We will consider structures over a fixed finite algebraic signature.
For two structures A and B, an embedding f : A → B is an injective function
from the carrier of A to the carrier of B that preserves and reflects all relations
and functions in the signature.

Definition 3.1. A class K of finitely generated structures over some fixed alge-
braic signature is called a Fräıssé class if it:

– is closed under isomorphisms as well as finitely generated substructures and
has countably many members up to isomorphism,

– has joint embedding property: if A,B ∈ K then there is a structure C in K
such that both A and B are embeddable in C,

– has amalgamation: if A,B,C ∈ K and fB : A → B, fC : A → C are em-
beddings then there is a structure D in K together with two embeddings
gB : B→ D and gC : C→ D such that gB ◦ fB = gC ◦ fC.

Examples of Fräıssé classes include:

– all finite structures over an empty signature, i.e., finite sets,
– finite total orders,
– all finite structures over a signature with a single binary relation symbol,

i.e., directed graphs,
– finite Boolean algebras,
– finite groups,
– finite fields of characteristic p.

Nominal Sets over Algebraic Atoms 435

Classes that are not Fräıssé include:

– total orders of size at most 7 – due to lack of amalgamation,
– all finite fields – due to lack of joint embedding property.

Some Fräıssé classes admit a stronger version of amalgamation property. We
say that a class K has strong amalgamation if it has amalgamation and more-
over, gB ◦ fB(A) = gC ◦ fC(A) = gB(B) ∩ gC(C). It means that we can make
amalgamation without identifying any more points than absolutely necessary.

Example 3.2. All the Fräıssé classes listed above, except for the class of finite
fields of characteristic p, have the strong amalgamation property.

The age of a structure U is the class K of all structures isomorphic to finitely
generated substructures of U. A structure U is homogeneous if any isomorphism
between finitely generated substructures of U extends to an automorphism of
U. The following theorem says that for a Fräıssé class K there exists a so-called
universal homogeneous structure of age K. We shall refer to it also as the Fräıssé
limit of the class K (see e.g. [Hod93]).

Theorem 3.3. For any Fräıssé class K there exists a unique, up to isomor-
phism, countable (finite or infinite) structure UK such that K is the age of UK
and UK is homogeneous.

Example 3.4. The Fräıssé limit of the class of finite total orders is 〈Q,≤〉. For
finite Boolean algebras it is the countable atomless Boolean algebra.

A structure U is called weakly homogeneous if for any two finitely generated
substructures A,B of U, such that A ⊆ B, any embedding fA : A → U extends
to an embedding fB : B → U. It turns out that a countable structure U is
homogeneous if and only if it is weakly homogeneous (see [Hod93]). Hence, one
way to obtain a Fräıssé class K is to take a weakly homogeneous, countable
structure U and simply consider its age.

Fact 3.5. Every countable, weakly homogeneous structure U is a Fräıssé limit
of its age.

Example 3.6. Consider an algebraic signature with a single binary relation
symbol ≤, and two unary function symbols +1 and −1. It is not difficult to see
that the structure 〈Q,≤,+1,−1〉 is countable and weakly homogeneous. There-
fore it is the Fräıssé limit of its age. Observe that its automorphism group con-
tains precisely those permutations of rational numbers which are monotone and
preserve the successor funtion x %→ x+ 1.

From a Fräıssé class K we obtain an atom symmetry (AK, GK), where AK is
the carrier of UK and GK = Aut(UK) is its group of automorphisms. Such an
atom symmetry is called a Fräıssé symmetry.

For simplicity we frequently identify the elements of age K with finitely gen-
erated substructures of UK.

436 J. Ochremiak

Example 3.7. All symmetries in Example 2.3 are Fräıssé symmetries. The
equality symmetry arises from the class of all finite sets, the total order symme-
try – from the class of finite total orders and the timed symmetry – from the
class of all finitely generated substructures of 〈Q,≤,+1,−1〉 (see Example 3.6).

The timed symmetry was originally defined based on a structure without the
unary function −1. In the context of [BL12] adding −1 to the signature does not
make any difference since the automorphism groups of both structures are the
same. As we will show, thanks to this slight modification the timed symmetry
satisfies all the conditions of our representation theorem.

3.2 Least Supports

From now on, we focus on G-sets for groups arising from Fräıssé symmetries.
Consider such a symmetry (AK, GK) and a GK-set X . By π|C we denote the
restriction of a permutation π to a subset C of its domain.

Definition 3.8. A set C ⊆ AK supports an element x ∈ X if x · π = x for all
π ∈ GK such that π|C = id|C . A GK-set is nominal in the symmetry (AK, GK)
if every element in the set is supported by the carrier of a finitely generated
substructure A of UK. We call A a finitely generated support of x.

Nominal GK-sets and equivariant functions between them form a category
GK-Nom which is a full subcategory of GK-Set. When the symmetry (AK, GK)
under consideration is the equality symmetry, the category GK-Nom coincides
with the category Nom defined in [Pit13].

Example 3.9. For any Fräıssé symmetry (AK, GK) the sets AK and An
K are

nominal. A tuple (d1, ..., dn) is supported by the structure generated by its ele-
ments.

Lemma 3.10. The following conditions are equivalent:
(1) C supports an element x ∈ X;
(2) for any π, σ ∈ GK if π|C = σ|C then x · π = x · σ.

Proof. For the implication (1) =⇒ (2), notice that if π|C = σ|C , then πσ−1 acts
as identity on C, hence x · πσ−1 = x and x · π = x · σ, as required. The opposite
implication follows immediately from the definition if we take σ = id.

It is easy to see that if an element x ∈ X has a finitely generated support
A then it is also supported by the finite set C of its generators. Thus we can
equivalently require x to be finitely supported.

Fact 3.11. A GK-set is nominal if and only if its every element has a finite
support.

Nominal Sets over Algebraic Atoms 437

Example 3.12. Consider the structure 〈Q,≤,+1〉. It is countable and weakly
homogeneous, and therefore gives rise to a Fräıssé symmetry. This symmetry is
almost the same as the timed symmetry (the carriers and automorphim groups of
both 〈Q,≤,+1〉 and 〈Q,≤,+1,−1〉 are the same). It has, though, some unwanted
properties. Notice that an automorphism π of 〈Q,≤,+1〉 which preserves an
atom a ∈ Q necessarily preserves also a + i for any integer i. Therefore, if
an element x of a nominal set is supported by a substructure generated e.g.
by {1, 30 1

2 , 100
5
7} it is also supported by its proper substructure generated by

{1000, 300 1
2 , 105

5
7}. Hence, in this case for any finitely generated support A of

an element x one can find a finitely generated substructure B, which is properly
contained in A and still supports x.

An element of a nominal set has many supports. In particular, supports are
closed under adding atoms. If every element of a nominal set X has a unique
least finitely generated support, we say that X is supportable. As shown in Ex-
ample 3.12 it is not always the case. It turns out that to check if a single-orbit
nominal set is supportable, one just needs to find out if any element of the set
has the least finitely generated support.

Lemma 3.13. If A ⊆ UK is the least finitely generated support of an element
x ∈ X, then A · π is the least finitely generated support of x · π for any π ∈ GK.

Proof. First we prove that A · π supports x ·π. Indeed, if an arbitrary ρ ∈ GK is
an identity on A · π, then πρπ−1 is an identity on A, hence x · (πρπ−1) = x. As
a result (x · π) · ρ = x · π, as required.

Now let B ⊆ UK be any finitely generated support of x · π. We need to show
that A ·π ⊆ B. A reasoning similar to the one above shows that B ·π−1 supports
x, from which we obtain A ⊆B ·π−1. Therefore, since π is a bijection, A ·π ⊆B.

Definition 3.14. A Fräıssé symmetry (AK, GK) is supportable if every nominal
GK-set is supportable.

We call a structure U locally finite if all its finitely generated substructures
are finite. Notice that if the universal structure UK is locally finite then being
supportable is equivalent to finitely generated supports being closed under finite
intersections. The same holds under the weaker assumption that any finitely
generated structure has only finitely many finitely generated substructures.

Example 3.15. If we have only relation symbols in the signature it is obvious
that any finitely generated structure is finite. One can prove that in the equality
symmetry the intersection of two supports is a support itself. Hence the equality
symmetry is supportable. The same holds for the total order symmetry. Both
facts are proved e.g. in [BKL].

From Example 3.12 we learned that the symmetry arising from the structure
〈Q,≤,+1〉 is not supportable (even though the finitely generated supports are
closed under finite intersections). In the structure 〈Q,≤,+1,−1〉 all the elements
a+ i are bound together and, as a result, we obtain a Fräıssé symmetry that is
supportable.

438 J. Ochremiak

Proposition 3.16. The timed symmetry is supportable.

Proof. Notice that any finitely generated substructure of 〈Q,≤,+1,−1〉 has only
finitely many substructures. Hence it is enough to show that finitely generated
supports are closed under finite intersections.

Take any two finitely generated substructures A, B of 〈Q,≤,+1,−1〉. Let A
and B be the sets of elements of A and B that are contained in the interval [0, 1).
These are (finite) sets of generators. Moreover, the structure A∩B is generated
by A∩B. Hence, it is enough to show that if an automorphism π acts as identity
on A ∩B, then π can be decomposed as

π = σ1τ1σ2τ2...σnτn,

where σi acts as identity on A and τi acts as identity on B. Indeed, since each
σi, τi acts as identity on A and B respectively, we have x ·σi = x and x · τi = x.
As a result x · π = x.

Let l be the smallest and h the biggest element of the set A ∪B. Notice that
h − l < 1. Take two different open intervals (lA, hA), (lB, hB) of length 1 such
that

[l, h] ⊆ (lA, hA) and [l, h] ⊆ (lB, hB).

Now, consider sets A′ = A∪{lA, hA}, B′ = B∪{lB, hB}. Take an automorphism
π that acts as identity on A∩B = A′ ∩B′. Obviously π is a monotone bijection
of the set of rational numbers. Therefore, since the total order symmetry is
supportable,

π = σ′1τ
′
1σ
′
2τ
′
2...σ

′
nτ
′
n,

where σ′i, τ
′
i are monotone bijections of Q and σ′i act as identity on A′, τ ′i act as

identity on B′. For each of the permutations σ′i, τ
′
i take an automorphism σi, τi

of the universal structure 〈Q,≤,+1,−1〉, such that

σ′i|(lA,hA) = σi|(lA,hA), τ ′i |(lB ,hB) = τi|(lB ,hB).

Then σi act as identity on A and τi act as identity on B. Moreover π =
σ1τ1σ2τ2...σnτn, as required.

4 Structure Representation

For any C ⊆ A and G ≤ Sym(A), the restriction of G to C is defined by

G|C = {π|C | π ∈ G, C · π = C} ≤ Sym(C).

Lemma 4.1. Let A ∈ K be a finitely generated structure. The set of embeddings
u : A→ UK with the GK-action defined by composition:

u · π = uπ

is a single-orbit nominal set.

Nominal Sets over Algebraic Atoms 439

Proof. First notice that any embedding u : A → UK is supported by its image
u(A). Indeed, if an automorphism π ∈ GK is an identity on u(A) then obviously
u · π = u. Hence the set of embeddings is a nominal set. Now take any two
embeddings u and v. The images u(A), v(A) are finitely generated isomorphic
substructures of UK. By extending any isomorphism between u(A) and v(A), we
obtain an automorphism π ∈ GK such that u · π = v.

As we shall show now, in a supportable symmetry (AK, GK) every single-
orbit nominal set is isomorphic to one of the above form, quotiented by some
equivariant equivalence relation.

Notice that the quotient of a G-set by an equivariant equivalence relation R
has a natural structure of a G-set, with the action defined as follows:

[x]R · π = [x · π]R.

It is easy to see that if X has one orbit, then so does the quotientX/R. Moreover,
any support C of an element x ∈ X supports the equivalence class [x]R, hence
if X is nominal then X/R is also nominal.

Definition 4.2. A structure representation is a finitely generated structure A ∈
K together with a group of automorphisms S ≤ Aut(A) (the local symmetry).
Its semantics [A, S] is the set of embeddings of u : A → UK , quotiented by the
equivalence relation:

u ≡S v ⇔ ∃τ ∈ S τu = v.

A GK-action on [A, S] is defined by composition:

[u]S · π = [uπ]S .

Proposition 4.3. (1) [A, S] is a single-orbit nominal GK-set. (2) If a Fräıssé
symmetry (AK, GK) is supportable then every single-orbit nominal GK-set X is
isomorphic to some [A, S].

Proof. For (1), use Lemma 4.1. The set of embeddings u : A → UK is a single-
orbit nominal GK-set, and so is the quotient [A, S].

For (2), take a single-orbit nominal set X and let H ≤ GK be the stabilizer of
some element x ∈ X . Put S = H |A where A ∈ K is the least finitely generated
support of x. Define f : X → [A, S] by f(x · π) = [π|A]S . The function f is
well defined: if x · π = x · σ then πσ−1 ∈ H . As A · πσ−1 is the least finitely
generated support of x · πσ−1 = x, we obtain A · πσ−1 = A. Therefore for
τ = (πσ−1)|A ∈ S we have τσ|A = π|A, hence [π|A]S = [σ|A]S . It is easy to
check that f is equivariant.

It remains to show that f is bijective. For injectivity, assume f(x·π) = f(x·σ).
This means that there exists τ ∈ S such that τσ|A = π|A, then (πσ−1)|A ∈ S,
hence (πσ−1)|A = ρ|A for some ρ ∈ H . Therefore x·πσ−1 = x·ρ = x, from which
we obtain x · π = x · σ. For surjectivity of f , note that by universality of the
structure UK any embedding u : A→ UK can be extended to an automorphism
π of UK , for which we have f(x · π) = [u]S.

440 J. Ochremiak

Structures over signatures with no function symbols are called relational struc-
tures. Structure representation was defined by Bojańczyk et al. in the special case
of UK being a relational structure. The proposition above generalizes Proposi-
tion 11.7 of [BKL].

Example 4.4. Consider the universal structure 〈Q,≤,+1,−1〉 and its substruc-
ture A generated by { 13 ,

1
2 ,

3
4}. Notice that mapping one of the generators, say 1

2 ,
to any element of A, say 1

2 %→ 3 3
4 , uniquely determines an automorphism π of

A. The automorphism can be seen as a shift. It maps 1
3 to 3 1

2 and 3
4 to 4 1

3 .
This observation leads to the conclusion that Aut(A) = Z. Any subgroup S of
Aut(A) is therefore isomorphic to Z and generated by a single automorphism
π of the form described above. The same holds for any finitely generated sub-
structure A. In the case of timed symmetry Proposition 4.3 provides a very nice
finite representation of single-orbit nominal sets.

4.1 Fungibility

Even if the symmetry is supportable it may happen that some finitely generated
structure is not the least finitely generated support of anything. Now we will
introduce a condition which ensures that any finitely generated structure is the
least finitely generated support of some element of some nominal set.

Definition 4.5. A finitely generated substructure A of UK is fungible if for every
finitely generated substructure B � A, there exists π ∈ GK such that:

– π|B = id|B,
– π(A) �= A.

A Fräıssé symmetry (AK, GK) is fungible if every finitely generated substructure
A of UK is fungible.

Example 4.6. The equality, total order and timed symmetries are all fungible.
The symmetry obtained from the universal structure 〈Q,≤,+1〉 is not fungible.
Take a structure A generated by {0} and its substructure B generated by {1}.
Obviously if an automorphism π acts as identity on B then it acts as identity
also on A.

In general, being supportable and being fungible are independent properties
of symmetries. Examples are given in [BKL]. The following result generalizes
Lemma 10.8. of [BKL].

Lemma 4.7. (1) If (AK, GK) is supportable then every finitely generated fungi-
ble A ⊆ UK is the least finitely generated support of [id|A]S, for any S ≤ Aut(A).

(2) If (AK, GK) is fungible then every finitely generated A ⊆ UK is the least
finitely generated support of [id|A]S, for any S ≤ Aut(A).

Nominal Sets over Algebraic Atoms 441

Proof. For (1), recall from Lemma 4.1 that an embedding u : A → UK is sup-
ported by its image. Therefore A supports id |A and hence also [id |A]S . Now
consider any finitely generated structure B properly contained in A. Since A is
fungible there exists an automorphism π from the Definition 4.5. The automor-
phism π acts as identity on B, but [id |A]S · π = [π|A]S �= [id |A]S as the image
of π is not A.

For (2), we first show that A supports [id |A]S as in (1) above. Then let B be
another support of [id |A]S and assume A is not contained in B, i.e., there exists
some a ∈ A\B. Since the structure C generated by A∪B is fungible, there exists
an automorphism π such that π|B = id |B and π(C) �= C, which means that also
π(A) �= A. Hence [id |A]S · π = [π|A]S �= [id |A]S and we obtain a contradiction
as it turns out that B does not support [id |A]S .

Let us focus for a moment on relational structures. In this case to obtain a
fungible symmetry it is enough to require an existence of π that is not an identity
on A.

Definition 4.8. A finitely generated substructure A of UK is weakly fungible if
for every finitely generated substructure B � A, there exists π ∈ GK such that:

– π|B = id|B,
– π|A �= id|A.

A Fräıssé symmetry (AK, GK) is weakly fungible if every finitely generated sub-
structure A of UK is weakly fungible.

On the other hand, if we restrict ourselves to relational structures, we can
also equivalently require an existence of automorphisms π that satisfy a stronger
condition.

Definition 4.9. A finitely generated substructure A of UK is strongly fungible
if for every finitely generated substructure B � A, there exists π ∈ GK such
that:

– π|B = id|B,
– π(A) ∩ A = B.

A Fräıssé symmetry (AK, GK) is strongly fungible if every finitely generated
substructure A of UK is strongly fungible.

Fact 4.10. Let (AK, GK) be a Fräıssé symmetry over a signature containing
only relation symbols. The following conditions are equivalent:

(1) (AK, GK) is weakly fungible,
(2) (AK, GK) is fungible,
(3) (AK, GK) is strongly fungible.

The general picture is more complicated. When we introduce function sym-
bols, the notions of weak fungibility, fungibility and strong fungibility differ from
each other. Before showing this let us notice that the condition of strong fungi-
bility is in fact equivalent to the strong amalgamation property.

442 J. Ochremiak

Proposition 4.11. A Fräıssé symmetry (AK, GK) is strongly fungible if and
only if the age K of the universal structure UK has the strong amalgamation
property.

Proof. The if part is easily proved using homogeneity. For the only if part take
any finitely generated substructures A, B, C of UK and embeddings fB : A→ B,
fC : A→ C. Thanks to amalgamation there exists a finitely generated substruc-
ture D of UK together with two embeddings gB : B → D and gC : C → D such
that gB ◦ fB(A) = gC ◦ fC(A) = A′. Take π ∈ GK for which π|A′ = id|A′ and
π(D)∩D = A′. Let D′ be a substructure generated byD∪π(D). The embeddings
gB and g′C = π ◦ gC into D′ are as needed:

gB ◦ fB(A) = g′C ◦ fC(A) = gB(B) ∩ g′C(C).

Corollary 4.12. A Fräıssé symmetry (AK, GK) over a signature containing
only relation symbols is fungible if and only if the age K of the universal structure
UK has the strong amalgamation property.

Example 4.13. Consider an algebraic signature with unary function symbols
F and G. For any integer i let Ai be the set of all infinite, binary sequences 〈an〉
defined for n ≥ i and equal 0 almost everywhere. Take A =

⋃
Ai and define a

structure U with a carrier A, where

F (〈ai, ai+1, ai+2, ...〉) = 〈ai+1, ai+2, ...〉, G(0w) = 1w, G(1w) = 0w.

Since the structure is weakly homogeneous, we obtain a Fräıssé symmetry. The
symmetry is weakly fungible, but it is not fungible, as the structure generated
by {0w, 1w} is not fungible for any w ∈ A.

Example 4.14. Consider an algebraic signature with a single unary function
symbol F . For any integer i let Ai be the set of all infinite sequences 〈an〉 of
natural numbers defined for n ≥ i and equal 0 almost everywhere. Take A =

⋃
Ai

and define a structure U with a carrier A, where

F (〈ai, ai+1, ai+2, ...〉) = 〈ai+1, ai+2, ...〉.

Notice that the age of U is the class K of all finitely generated structures that
satisfy the following axioms

– for any a, b there exist m,n ∈ N such that Fm(a) = Fn(b),
– there are no loops, i.e., Fn(a) �= a for all n ∈ N.

Since the structure is weakly homogeneous, we obtain a Fräıssé symmetry
(AK, GK). It is easy to check that the symmetry is fungible.

Now, take any nonempty finitely generated substructure A of U and the empty
substructure ∅ ⊆ A. For any automorphism π of U and a ∈ A there existm,n ∈ N
for which Fm(a) = Fn(a · π). Hence there is no π for which π(A) ∩ A = ∅ and
the structure A is not strongly fungible. Therefore the symmetry (AK, GK) is
not strongly fungible.

Nominal Sets over Algebraic Atoms 443

4.2 Representation of Functions

For any finitely generated substructure A of UK and any S ≤ Aut(A), the GK-
extension of S is

extGK(S) = {π ∈ GK | π|A ∈ S} ≤ GK.

Notice that extGK(S) is exactly the stabilizer of [id |A]S in GK.

Lemma 4.15. For each embedding u : A→ UK the group extGK(u
−1Su), where

u−1Su ≤ Aut(u(A)), is the stabilizer of an element [u]S ∈ [A, S].

Proof. For any π ∈ GK that extends u we have [u]S = [id |A]S · π. Hence, by
Lemma 2.6, the stabilizer of [u]S is π−1extGK(S)π. It is easy to check that

π−1extGK(S)π = extGK(u
−1Su).

Lemma 4.16. For any supportable and fungible Fräıssé symmetry (AK, GK) let
A,B be finitely generated substructures of UK and let S ≤ Aut(A), T ≤ Aut(B),
then extGK(S) ≤ extGK(T) if and only if B ⊆ A and S|B ≤ T .

Proof. The if part is obvious. For the only if part, we first prove that B ⊆ A.
Notice that if π|A = id |A then π ∈ extGK(S) and hence π ∈ extGK(T), which is
the stabilizer of [id |B]T . Therefore A supports [id |B]T . By Lemma 4.7 (2) the
least support of [id |B]T is B. Hence B ⊆ A. Then we have

extGK(S) ≤ extGK(T)

<

∀π ∈ GK π|A ∈ S =⇒ π|B ∈ T

<

∀π ∈ GK π|A ∈ S =⇒ (π|A)|B ∈ T

<

∀τ ∈ S τ |B ∈ T.

Similar facts about finite substructures of a universal relational structure UK
were proven in [BKL]. The following proposition generalizes Proposition 11.8.

Proposition 4.17. For any supportable and fungible Fräıssé symmetry (AK, GK)
let X = [A, S] and Y = [B, T] be single-orbit nominal sets. The set of equivariant
functions from X to Y is in one to one correspondence with the set of embeddings
u : B→ A, for which uS ⊆ Tu, quotiented by ≡T .

444 J. Ochremiak

Proof. By Proposition 2.7 and Lemma 4.15 equivariant functions from [A, S]
to [B, T] are in bijective correspondence with those elements [u]T ∈ [B, T] for
which

extGK(S) ≤ extGK(u
−1Tu).

Hence, by Lemma 4.16, equivariant functions from [A, S] to [B, T] correspond
to those elements [u]T ∈ [B, T] for which

u(B) ⊆ A and S|u(B) ≤ u−1Tu,

which means that u is an embedding from B to A and uS ⊆ Tu, as required.

Let GK-Nom1 denote the category of single-orbit nominal sets and equiv-
ariant functions. Propositions 4.3 and 4.17 can be phrased in the language of
category theory:

Proposition 4.18. In a supportable and fungible Fräıssé symmetry, the cate-
gory GK-Nom1 is equivalent to the category with:

– as objects, pairs (A, S) where A ∈ K and S ≤ Aut(A),
– as morphisms from (A, S) to (B, T), those embeddings u : B→ A for which
uS ⊆ Tu, quotiented by ≡T .

Since a nominal set is a disjoint union of single-orbit sets, this representation
extends to orbit-finite sets in an obvious way:

Theorem 4.19. In a supportable and fungible Fräıssé symmetry, the category
GK-Nom is equivalent to the category with:

– as objects, finite sets of pairs (Ai, Si) where Ai ∈ K and Si ≤ Aut(Ai),
– as morphisms from {(A1, S1), . . . , (An, Sn)} to {(B1, Tm), . . . , (Bm, Tm)},

pairs (f, {[ui]Tf(i)
}i=1,...,n), where f : {1, . . . , n} → {1, . . . ,m} is a function

and each ui is an embedding ui : Bf(i) → Ai such that uiSi ⊆ Tf(i)ui.

In the special case of relational structures the above theorem was formulated
and proved in [BKL].

5 Conclusions and Future Work

Orbit-finite nominal sets can be used to model devices, such as automata or
Turing machines, which operate over infinite alphabets. This approach makes
sense only if one can treat objects with atoms as data structures and manipulate
them using algorithms. To do so the existence of a finite representation of orbit-
finite nominal sets is crucial.

In this paper we have generalized the representation theorem due to Bojańczyk
et al. to cover atoms with algebraic structure. The result is however not entirely
satisfying. Our representation uses automorphism groups of finitely generated
substructures of the atoms. If such groups are finitely presentable Theorem 4.19

Nominal Sets over Algebraic Atoms 445

indeed provides a concrete, finite representation of orbit-finite nominal sets (the
timed symmetry being an example). But is it always the case? So far we do not
know and we regard it as a field for a further research effort.

Another thing left to be done is a characterization of “well-behaved” atom
symmetries in terms of Fräıssé classes that induce them. One might think of
algebraic atoms that could be potentially interesting from the point of view
of computation theory: strings with the concatenation operator, binary vectors
with addition, etc. Yet checking the technical conditions, such as supportability
and fungibility, needed for the representation theorem to hold requires each time
a lot of effort. This is because these conditions are formulated in terms of Fräıssé
limits, and these are not always easy to construct. It would be desirable to have
more natural criteria that would be easier to verify.

Acknowledgments. I would like to thank Miko�laj Bojańczyk, Bartek Klin,
S�lawomir Lasota and Szymon Toruńczyk for inspiring discussions and helpful
remarks on earlier drafts of this paper, and the anonymous referees for many
insightful comments.

References

[BKL] Bojańczyk, M., Klin, B., Lasota, S.: Automata Theory in Nominal Sets (to
appear)

[BKL11] Bojańczyk, M., Klin, B., Lasota, S.: Automata with Group Actions. In:
Proc. LICS 2011, pp. 355–364 (2011)

[BL12] Bojańczyk, M., Lasota, S.: A Machine-independent Characterization of
Timed Languages. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer,
R. (eds.) ICALP 2012, Part II. LNCS, vol. 7392, pp. 92–103. Springer,
Heidelberg (2012)

[BKLT13] Bojańczyk, M., Klin, B., Lasota, S., Toruńczyk, S.: Turing Machines with
Atoms. In: Proc. LICS 2013, pp. 183–192 (2013)

[FS06] Fiore, M., Staton, S.: Comparing Operational Models of Name-passing Pro-
cess Calculi. Inf. Comput. 204, 524–560 (2006)

[GP02] Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax with variable
binding. Formal Aspects of Computing 13, 341–363 (2002)

[GMM06] Gadducci, F., Miculan, M., Montanari, U.: About Permutation Alge-
bras (Pre)Sheaves and Named Sets. Higher Order Symbol. Comput. 19,
283–304 (2006)

[Hod93] Hodges, W.: Model theory. Cambridge University Press (1993)
[KF94] Kaminski, M., Francez, N.: Finite-memory Automata. Theor. Comput.

Sci. 134, 329–363 (1994)
[Pis99] Pistore, M.: History Dependent Automata. PhD thesis, Università di Pisa,

Dipartimento di Informatica. available at University of Pisa as PhD Thesis
TD-5/99 (1999)

[Pit13] Pitts, A.M.: Nominal Sets: Names and Symmetry in Computer Science.
Cambridge Tracts in Theoretical Computer Science, vol. 57. Cambridge
University Press (2013)

Fixed-Point Theory in the Varieties Dn

Sabine Frittella and Luigi Santocanale

Laboratoire d’Informatique Fondamentale de Marseille
Aix-Marseille Université, Marseille, France

Abstract. The varieties of latticesDn, n ≥ 0, were introduced in [Nat90]
and studied later in [Sem05]. These varieties might be considered as gener-
alizations of the variety of distributive lattices which, as a matter of fact,
coincides with D0. It is well known that least and greatest fixed-points of
terms are definable on distributive lattices; this is an immediate conse-
quence of the fact that the equation φ2(⊥) = φ(⊥) holds on distributive
lattices, for any lattice term φ(x). In this paper we propose a generaliza-
tion of this fact by showing that the identity φn+2(x) = φn+1(x) holds
in Dn, for any lattice term φ(x) and for x ∈ {�,⊥}. Moreover, we prove
that the equations φn+1(x) = φn(x), x = ⊥,�, do not hold in the variety
Dn nor in the variety Dn ∩ Dop

n , where Dop
n is the variety containing the

lattices Lop, for L ∈ Dn.

1 Introduction

The research that we present in this paper stems from fixed-point theory, as
conceived in computer science logic, specifically with logics of computation. It is
customary here to add least and greatest fixed-point operators to existing logical
or algebraic frameworks to increase their expressive power. The elementary the-
ory of the formal systems so obtained, the μ-calculi, is covered in [AN01]; a main
example of a fixed-point logic is the propositional modal μ-calculus [Koz83]. The
lattice μ-calculus [San02] is among the most elementary μ-calculi. Its μ-terms
are built according to the following grammar:

φ := x | � | ⊥ | φ ∧ φ | φ ∨ φ | μx.φ | νx.φ . (1)

Syntactically, the lattice μ-calculus is obtained from the signature of lattice the-
ory (including constants for least and greatest elements) by adding the power
of forming terms μx.φ, νx.φ. Semantically, when all the variables but x are eval-
uated, a μ-term φ gives rise to a monotone function; μx.φ (resp. νx.φ) is then
used to denote its least (resp. greatest) fixed-point.

Applications of the lattice μ-calculus, through its theory of circular proofs
[FS13], lie more in the area of functional programming. We tackle here a different
problem, explained next, concerning the expressive power of μ-calculi.

The alternation complexity of μ-terms measures the number of nested distinct
fixed-point operators; it gives rise to the fixed-point alternation hierarchy of a
μ-calculus, see [AN01, §8]. It was shown in [San01] that the alternation hierarchy

P. Höfner et al. (Eds.): RAMiCS 2014, LNCS 8428, pp. 446–462, 2014.
c© Springer International Publishing Switzerland 2014

Fixed-Point Theory in the Varieties Dn 447

for the lattice μ-calculus is infinite. This means that for each integer n we can find
a μ-term of alternation complexity n which is not semantically equivalent to any
other μ-term of alternation complexity m < n. This result appeared striking
if compared with well known folklore of fixed-point theory—see for example
[NW96, Lemma 2.2] or [AN01, Proposition 3.1.2]: the alternation hierarchy of
the lattice μ-calculus is degenerate if the interpretation of μ-terms is restricted to
distributive lattices; namely, every μ-term, of arbitrary alternation complexity,
can be replaced with a semantically equivalent (on distributive lattices) lattice
term, with no fixed-point operators.

The reasons for such a degeneracy are easy to guess for a scientist trained
in universal algebra. The variety of distributive lattices has, as its unique sub-
directly irreducible member, the two element lattice 2. Its height being 2, the
increasing chain

⊥ ≤ φ(⊥) ≤ φ2(⊥) ≤ . . . ≤ φn(⊥) ≤ . . . (2)

must become stationary after one step. Thus, the equation φ2(⊥) = φ(⊥) holds
in 2, for every lattice term φ, therefore it holds on all the distributive lattices,
and thus it forces (the interpretation of) φ(⊥) to be the least fixed-point of (the
interpretation of) φ(x). A dual fact evidently holds for greatest fixed-points.
An algorithm to eliminate all the fixed-point operators from μ-terms can be
therefore devised.

For the sake of fixed-point theory it would be desirable to understand the
alternation hierarchy uniformly along different classes of models; for example,
you would like to exhibit and classify generic reasons for the alternation hierarchy
to be degenerate. So, what about the existence of non-trivial equations holding
on a class of models and enforcing the increasing chains of approximations (2)
to stabilize after a bounded number of steps? Is this a valid generic reason?

In this paper we provide evidence that the answer to the last question is
positive. Such an evidence is constructed within lattice theory. We exhibit lattice
varieties Dn, n ≥ 0, such that

Dn |= φn+2(⊥) = φn+1(⊥) , for each lattice term φ. (3)

We also prove that the equations φn+2(�) = φn+1(�) hold on Dn. Moreover, we
provide examples of terms ψ for which

Dn �|= ψn+1(⊥) = ψn(⊥) , (4)

and dually. Thus the phenomenon observed for distributive lattices generalizes in
a non-trivial way to each varietyDn: each varietyDn has a degenerate alternation
hierarchy, the alternation hierarchy of Dn+1 being, under some respect, less
degenerate than the one of Dn.

The varieties Dn, n ≥ 0, were first considered in [Nat90] and studied further
in [Sem05]. Actually, D0 is exactly the variety of distributive lattices and the
identities axiomatizing these varieties (for which we have Dn ⊆ Dn+1) can be
thought as increasingly weaker forms of the distributive law.

448 S. Frittella and L. Santocanale

To see that (3) holds for n ≥ 1, we cannot use the same argument used for
distributive lattices, as already D1 contains subdirectly irreducible lattices of un-
bounded height. The reasons for (3) to hold appear deeper, based on some modal
view of lattice theory. Roughly speaking, we represent a finite lattice as the set
of closed subsets for a closure operator. On the logical side, a closure operator is
just a monotone non-normal (that is, it does not distribute over joins) operator
satisfying additional equations. The modal logic we have in mind is therefore
monotonic modal logic, see for example [Han03, VS10]. Precise connections be-
tween lattice theory and monotonic modal logic still need to be fully explored
and they are not the main aim of this paper. The preprint [San09] (from which
some of the results presented here are borrowed) is just a first step towards es-
tablishing these connections and does not cover other attempts [KW99, §6] to
establish them. Yet, we freely use ideas and tools from modal logic (semantics,
games) and move them to the lattice-theoretic context; these are the tools that
allow us to achieve the desired results. From lattice theory, we make heavy use
of the notion of OD-graph [Nat90] of a finite lattice, which we consider as the
adequate working notion for a dual space of a finite lattice.

The paper is organized as follows. Having introduced some elementary notions
and results in Section 2, we present the varieties Dn in Section 3. Section 4
introduces the main working tool, the semantic relation |= and the associated
game. In the following Sections 5 and 6 we prove our main results, relations (3)
and the dual ones, and show these relations are the least possible. Finally, in
Section 7, we sketch how to obtain relations similar to (4) for the varieties
Dn ∩Dop

n .

2 Elementary Notions and Results

For elementary notions about ordered sets and lattices, we invite the reader
to consult the standard literature [Bir73, Grä98, DP02]. Similarly, we refer the
reader to standard monographs for elementary facts on category theory or univer-
sal algebra [Mac98, Awo10, Grä08]. A reference for the lattice-theoretic notions
to be introduced in this section is [FJN95, Chapter II].

If P is a poset and p ∈ P , then ↓p shall denote the principal ideal of p, that
is, the set { p′ ∈ P | p′ ≤ p }. Similarly, if X ⊆ P , then ↓X denotes the downset
generated by X , ↓X = { p ∈ P | ∃x ∈ X s.t. p ≤ x }. A downset of P is a subset
X ⊆ P such that ↓X = X . We use similar notations, ↑p and ↑X , for principal
filter of p and the the upset generated by X .

If L is a lattice, an element x ∈ L is said to be join-irreducible (resp. meet-
irreducible) if x =

∨
X (resp. x =

∧
X) implies x ∈ X ; J(L) (resp. M(L))

denotes the collection of join-irreducible (resp. meet-irreducible) elements of L.
If L is finite and j ∈ J(L), then we denote by j∗ the unique lower cover of j in
L; namely, j∗ is the unique element such that { x ∈ L | j∗ ≤ x ≤ j } = { j∗, j }
and j∗ < j. Dually, for m ∈ M(L), m∗ denotes the unique upper cover of m in
L. The join-dependency relation DL ⊆ J(L)× J(L) is defined as follows:

jDLk if j �= k and, for some p ∈ L, j ≤ p ∨ k and j �≤ p ∨ k∗ .

Fixed-Point Theory in the Varieties Dn 449

If x ∈ L and X ⊆ L is such that x ≤
∨
X , then we say that X is a join-cover

of x; we write C(x) for the collection of join-covers of x ∈ L. The set C(x)—and,
more in general, the collection of subsets of L—is pre-ordered by the refinement
relation = defined as follows:

X = Y iff ∀x ∈ X ∃y ∈ Y s.t. x ≤ y .

We say that X ∈ C(x) is a minimal join-cover of x if, for all Y ∈ C(x), Y = X
implies X ⊆ Y . The set of minimal join-covers of x is denoted M(x); we shall
also write x�X whenever X ∈ M(x). It is easily seen that X ⊆ J(L) for each
x ∈ L and X ∈M(x). A lattice has the minimal join-cover refinement property
if, for each x ∈ L and X ∈ C(x), there is some Y ∈ M(x) such that Y = X .
Every finite lattice has this property. We say that Y ∈ C(x) is a non-trivial join-
cover of x if x �≤ y for each y ∈ Y . We let M−(x) denote the set of non-trivial
minimal join-covers of x.

It is known [FJN95, Lemma 2.31] that jDLk iff k belongs to a minimal non-
trivial join-cover of j, that is:

jDLk iff k ∈ C, for some C ∈M−(j) .

Definition 2.1. The OD-graph of a finite lattice L, denoted OD(L), is the struc-
ture 〈J(L),≤,M〉, where ≤ is the restriction of the order of L to the join-
irreducible elements, and M : J(L) −→ P(P(J(L))) is the function sending
j ∈ J(L) to M(j).

a

bc

c 0

a

1

b

1

0 0

Fig. 1. The lattice N5 with its OD-graph

The notion of OD-graph was intro-
duced in [Nat90]. The letter O stands
for order, while D stands dependency.
For example, for the lattice N5 (see
Figure 1), we have J(N5) = { a, b, c },
a ≤ c, M(a) = { { a } },M(b) =
{ { b } },M(c) = { { c }, { a, b } }. As
suggested in [Nat90], the OD-graph of
a lattice can be represented as a la-
belled digraph where a cover of a join-
irreducible element is recovered as the
set of its successors by a same label;
a dotted arrow might be used to code
the order in J(L). Figure 1 exemplifies this for the lattice N5 and its OD-graph.

The OD-graph of a finite lattice is a particular instance of a structure that
we call in [San09] a presentation.

Definition 2.2. A presentation is a structure 〈V,≤,M〉, where 〈V,≤〉 is a poset
and M : V −→ PP(V). We write x � C if C ∈ M(x). Given a presentation
〈V,≤,M〉, we say that a downset X ⊆ V is closed if, for each x ∈ V and
C ⊆ V , x�C ⊆ X implies x ∈ X. The collection of closed subsets of V , ordered
by subset inclusion, form a poset that we denote L(V,≤,M).

450 S. Frittella and L. Santocanale

Let us recall that L(V,≤,M) is a lattice, where the meet is given by intersection.
For the join operation, see Lemma 4.1 and, more generally, [Bir73, Chapter V].

The following representation Theorem was proved in [Nat90].

Theorem 2.3. A finite lattice L is isomorphic to L(OD(L)) via the map ψ
defined by ψ(l) := { j ∈ J(L) | j ≤ l }.

A presentation 〈V,≤,M〉 is direct if, for each downset X ⊆ V , the set { x ∈
V | ∃C ∈ M(x) s.t. C ⊆ X } belongs to L(V,≤,M); it is atomistic if the order
≤ on V is the identity. The OD-graph of a lattice is a direct presentation. An
atomistic lattice is a finite lattice for which every join-prime element is an atom.
As atoms are not pairwise comparable, the OD-graph of an atomistic lattice
is an atomistic presentation. If 〈V,≤,M〉 is an atomistic presentation, then we
omit the order and write only 〈V,M〉.

The following Lemma—see [San09, Proposition 6.4]—characterizes OD-graphs
of atomistic lattices.

Lemma 2.4. Suppose that an atomistic presentation 〈V,M〉 satisfies:

1. { v } ∈M(v) and is the unique singleton in M(v),
2. M(v) is an antichain w.r.t subset inclusion,
3. if v � C and c � D for some c ∈ C, then there exists E ⊆ V such that

v � E ⊆ (C \ { c }) ∪D,

for each v ∈ V . ThenL(V,M) is atomistic and 〈V,M〉 is isomorphicOD(L(V,M)).
Every OD-graph of an atomistic lattice satisfies the constraints (1), (2), and (3).

3 The Varieties Dn

Let us consider the following lattice terms:

t−1 := x−1 , tn+1 := xn+1 ∧ (yn+1 ∨ tn) ,
s−1 := ⊥ , sn+1 := (xn+1 ∧ xn) ∨ (xn+1 ∧ (yn+1 ∨ sn)) ,
w−1 := ⊥ , wn+1 := (xn+1 ∧ tn) ∨ (xn+1 ∧ yn+1) ∨ (xn+1 ∧ (yn+1 ∨ wn)) .

For n ≥ −1, define the inclusions (βn) and (dn) as follows:

tn ≤ sn , (βn) tn ≤ wn . (dn)

Let Bn (resp. Dn) be the variety determined by (βn) (resp. (dn)). The inclusions
(βn) were considered in [Nat90], while the inclusions (dn) were considered in
[Sem05]. We have that B−1 = D−1 is the trivial variety, while B0 = D0 is the
variety of distributive lattices. For n ≥ 1, we can think of the varieties Bn and
Dn as classes of lattices obeying weaker and weaker forms of the distributive
law.

Notice that the inclusions wn ≤ sn and sn ≤ tn are valid, for each n ≥ −1,
so that (dn) implies (βn) and the variety Dn is contained in Bn. In order to
argue that Bn ⊆ Dn, let us recall that a variety V is locally finite if every finitely
generated algebra in V is finite, as well as the following Theorem.

Fixed-Point Theory in the Varieties Dn 451

Theorem 3.1 (See [Nat90], §5). The varieties Bn are locally finite. Thus an
identity holds in Bn if and only if it holds in all the finite lattices in Bn.

As a subvariety of a locally finite variety is again locally finite, we obtain:

Corollary 3.2. The varieties Dn are locally finite.

In particular, both varieties Bn and Dn are determined by the finite lattices in
it.

The following Proposition was proved in [Nat90, Section 5].

Proposition 3.3. A finite lattice L belongs to the variety Bn if and only if every
sequence jkDLjk−1DL . . . DLj0 has length k ≤ n.

The same statement, with Bn replaced by Dn, was proved in [Sem05, Proposi-
tion 3.4]. As the two varieties have the same finite lattices and are locally finite,
we obtain:

Theorem 3.4. For each n ≥ −1, the varieties Dn and Bn coincide.

As Dn is reminiscent of the bound on the length of a sequence of the join-
dependency relation, we prefer to keep this naming in the rest of the paper.

To understand the role of the varieties Dn within lattice theory, let us recall
a few definitions and results.

Definition 3.5. A lattice is:

– join-semidistributive if it satisfies the Horn sentence

x ∨ y = x ∨ z implies x ∨ y = x ∨ (y ∧ z) , (SD∨)

– meet-semidistributive if it satisfies the dual Horn sentence

x ∧ y = x ∧ z implies x ∧ y = x ∧ (y ∨ z) , (SD∧)

– semidistributive , if it is both join− semidistributive and meet−semidistri-
butive,

– lower bounded if there exists an epimorphism π from a finitely generated free
lattice F to L, with a left-adjoint ! from L to F :

F L
π ��

�

�� �

– bounded1 if there exists such an epimorphism π with both a left adjoint !
and a right adjoint ρ.

1 The naming, bounded, is a short for bounded homomorphic image of a free lattice; it
is nowadays widespread among lattice theorists. Unfortunately, it clashes with the
notion of a lattice with both a least and a greatest element.

452 S. Frittella and L. Santocanale

Theorem 3.6. The following statements hold:

(i) A finite lattice L is lower bounded iff L ∈ Dn for some n ≥ 0.

(ii) Every lower bounded lattice is join-semidistributive.

(iii) A finite lattice is bounded if and only if it is lower bounded and meet-
semidistributive.

(iv) The class of bounded lattices generates the variety of all lattices.

For (i) see [FJN95, Corollary 2.39], for (ii) see [FJN95, Theorem 2.20], for (iii)
see [FJN95, Corollary 2.65]. Finally, (iv) was the main result of [Day92], see also
[FJN95, Theorem 2.84]

4 Game Semantics

Nation’s representation (Theorem 2.3) gives rise to a covering semantics similar
to the one developed in [Gol06] for non-commutative linear logic. We give here a
game-theoretic account of this semantics, which allows us to have further insights
on the problems we wish to tackle.

Lemma 4.1. If a presentation 〈V,≤,M〉 is direct and X is a downset, then the
set { y ∈ V | ∃C ∈M(y) s.t. C ⊆ X } is the least closed downset of V containing
X. In particular the join of X1, X2 in L(V,≤,M) can be computed as

X1 ∨X2 = { y ∈ V | ∃C ∈M(y) s.t. C ⊆ X1 ∪X2 } . (5)

Let X be a set of variables, denote by T (X) the algebra of lattice terms whose
free variables are among X , denote by F(X) the free lattice generated by the set
X . Recall that there are natural bijections between the following type of data:
valuations u : X −→ L(V,≤,M), algebra morphisms u′ : T (X) −→ L(V,≤,M)
such that u′(x) = u(x), lattice homomorphisms ũ : F(X) −→ L(V,≤,M) such
that ũ(x) = u(x). In order to simplify the notation, we shall often use the same
notation u for the three different kind of data.

We introduce next a semantical relation reminiscent of Kripke semantics in
modal logic.

Definition 4.2. For u : X −→ L(V,≤,M), v ∈ V and t ∈ T (X), the relation
v |=u t is defined, inductively on t, as follows :

– v |=u x if v ∈ u(x),
– v |=u

∧
i∈I ti if v |= ti for each i ∈ I,

– v |=u

∨
i∈I ti if there exists C ∈ M(v) such that, for all c ∈ C, there exists

i ∈ I with c |=u ti.

The following statement is quite obvious:

Lemma 4.3. v |=u t if and only if v ∈ u(t).

Fixed-Point Theory in the Varieties Dn 453

Let us denote by P the presentation 〈V,≤,M〉. The same relation is char-
acterized by means of a game G(P, u, t) between two players, Eva and Adam,
described as follows. Its set of positions is the disjoint union of three sets,

V × Sub(t) ,
⋃
v∈V

M(v)× Sub∨(t) , and V × P(Sub(t)) ,

where Sub(t) denotes the set of subterms of t and Sub∨(t) denotes the set of
subterms of t that are formal joins. The moves of the game are as follows:

– In position (v, x) Eva wins if v ∈ u(x) and otherwise Eva loses.
– In position (v,

∧
i∈I ti) Adam chooses i ∈ I and moves to (v, ti).

– In position (v,
∨

i∈I ti) Eva chooses C ∈M(v) and moves to (C,
∨

i∈I ti);
– in (C,

∨
i∈I ti) Adam chooses v′ ∈ C and moves to (v′, { ti | i ∈ I });

– in position (v′, { ti | i ∈ I }) Eva chooses i ∈ I and moves to (v′, ti).

If a player cannot move then he loses.

Proposition 4.4. Eva has a winning strategy from position (v, t) in the game
G(P, u, t) if and only if v ∈ u(t), if and only if v |=u t.

5 Least Fixed-Points

Next, let φ be a lattice term possibly containing the variable z. We define terms
φn(⊥), n ≥ 0, inductively by the rules

φ0(⊥) := ⊥ , φn+1(⊥) := φ[φn(⊥)/z] .

Proposition 5.1. The identity

φn+2(⊥) = φn+1(⊥)

holds on Dn.

Proof. The inclusion φn+1(⊥) ≤ φn+2(⊥) always holds, so that we only need to
verify that the inclusion φn+2(⊥) ≤ φn+1(⊥) holds as well in Dn. As Dn is locally
finite, we can focus our attention on the finite lattices in Dn. So, let L ∈ Dn

be finite; as L and L(J(L),≤,M) are isomorphic, we can work with the latter.
Consider a valuation u : X −→ L(J(L),≤,M); we suppose that j0 |=u φ

n+2(⊥)
and prove that j0 |=u φ

n+1(⊥). To this goal, we consider a winning strategy for
Eva in the game G(OD(L), u, φn+2(⊥)) from (j0, φ

n+2(⊥)) and transform it into
a winning strategy for Eva in G(OD(L), u, φn+1(⊥)) from (j0, φ

n+1(⊥)).
Notice first that if i ≥ 1, then the structure of the games G(OD(L), u, φi+1(⊥))

and G(OD(L), u, φi(⊥)) are, at the beginning, the same from the positions of the
form (j, φi+1(⊥)) and (j, φi(⊥)). In particular, a winning strategy for Eva from
(j, φi+1(⊥)) in G(OD(L), u, φi+1(⊥)) can be simulated, at the beginning, within
the game G(OD(L), u, φi(⊥)) from position (j, φi(⊥)).

Therefore Eva plays as follows: she plays from (j0, φ
n+1(⊥)) as if she was

playing in (j0, φ
n+2(⊥)) according to the given winning strategy. If, at some

point,

454 S. Frittella and L. Santocanale

– she hits a position (ji, φ
n−i+1(⊥)), where she is simulating the winning strat-

egy from position (ji, φ
n−i+2(⊥)) in the game G(OD(L), u, φn+2(⊥)), and

– the position (ji, φ
n−i+1(⊥)) is also part of the winning strategy in the game

G(OD(L), u, φn+2(⊥)),

then she jumps forward in the simulation: she continues simulating the winning
strategy from (ji, φ

n−i+1(⊥)) in the game G(OD(L), u, φn+2(⊥)).
Evidently, this strategy might be losing if Eva cannot jump. That is, Adam

might force a play to visit positions (ji, φ
n−i+1(⊥)), i = 0, . . . , n+ 1, such that

all the ji are distinct. As the ji �= ji+1, this means that Eva, in the play that has
lead from (ji, φ

n−i+1(⊥)) to (ji+1, φ
n−(i+1)+1(⊥)), has gone through at least one

sequence of choices of the form C ∈ M(k) and k′ ∈ C with k �= k′, i.e. kDLk
′;

thus we have jiD
+
L ji+1, whereD

+
L is the transitive closure of the join-dependency

relation. Thus, we can depict the play forced by Adam as follows:

(j0, φ
n+1(⊥))

D+
L−−−→ (j1, φ

n(⊥))
D+

L−−−→
D+

L−−−→ (jn, φ(⊥))
D+

L−−−→ (jn+1,⊥) .

The play therefore witnesses the existence of a sequence the join-dependency
relation of length at least n + 1. By Proposition 3.3, this contradicts the fact
that L ∈ Dn. !�

For each n ≥ 0, let

σμ(n) := min{ k ≥ 0 | Dn |= φk+1(⊥) = φk(⊥), for each lattice term φ(z) } ,

where we write Dn |= φk+1(⊥) = φk(⊥) to mean that the equation φk+1(⊥) =
φk(⊥) holds on every lattice in Dn. Proposition 5.1 shows that σμ(n) ≤ n + 1.
Our next goal, achieved with Proposition 5.3, is to show that σμ(n) = n+ 1.

Definition 5.2. For a fixed interger n ≥ 0, let An = 〈Vn,M〉 be the atomistic
presentation where

Vn := { vn, wn, vn−1, wn−1, . . . , v1, w1, v0 } ,
M(wi) := { {wi } }, i = n, . . . , 1,

M(vi) := { {wj | j = i, . . . , k + 1 } ∪ { vk } | k = i, . . . , 0 }, i = n, . . . , 0 .

The presentation An satisfies the constraints of Lemma 2.4, so that An is iso-
morphic to OD(L(An)). Figure 2 exhibits generators for the join-dependency
relation of L(An) from which it is easily seen that L(An) ∈ Dn.

Moreover, we consider the valuations un : { a, b, c, d, e } −→ L(An) defined as
follows:

un(a) := { vi | i is even } , un(b) := { vi | i is odd } ,
un(c) := {wi | i is even } , un(d) := {wi | i is odd } ,
un(e) := { v0 } .

As un(z) = um(z)∩Vn for n ≤ m, we shall abuse of notation and write simply u
for any such un. Notice that u(z) is indeed a closed subset, for z ∈ { a, b, c, d, e }.

Fixed-Point Theory in the Varieties Dn 455

Proposition 5.3. Let

ψ(z) := (a ∧ (c ∨ (b ∧ z))) ∨ (b ∧ (d ∨ (a ∧ z))) ∨ (a ∧ e) .

For each n ≥ 0, the atomistic lattice L(An,M) fails the inclusion ψn+1(⊥) ≤
ψn(⊥).

v w
1

v

1

w
1

v w
1

v

1

w
1

v

1

Fig. 2. Dependency generators for
the presentation An (only the cov-
ers of the form vi � {wi, vi−1 } are
represented). The valuation u is
represented by labels on nodes.

Proof. We shall show that, for each n ≥ 0,
vn |=u ψ

n+1(⊥) while vn �|=u ψ
n(⊥).

When n = 0 the result is immediate. Let
us suppose therefore that n > 0, vn−1 �|=u

ψn−1(⊥), and vn−1 |=u ψ
n(⊥).

Claim. Adam has a winning strategy in the
game G(An, u

′, ψ(z)) from position (vn, ψ(z)),
where u′ is the valuation which extends u by
setting u′(z) := u(ψn−1(⊥)).

Proof of Claim. Let us describe Adam’s strat-
egy. The starting position is:

(vn, (a∧(c∨(b∧z)))∨(b∧(d∨(a∧z)))∨(a∧e)).

Recall that wn satisfies neither a nor b. Thus,
if Eva chooses from the starting position a
cover of the form {wn, wn−1, ..., wk+1, vk }
with n > k, then Adam easily wins by choos-
ing wn from this cover. If Eva chooses the
cover { vn }, then we hit position ({ vn }, ψ(z))
where Adam has the only choice to move to

(vn, { a∧ (c∨ (b∧z)), b∧ (d∨ (a∧z)), a∧e }) .

If Eva moves to (vn, a ∧ e), then Adam wins
because n > 0 and vn �∈ u′(e). If n is odd
(resp. even) and Eva moves to position (vn, a∧
(c∨ (b∧ z))) (resp. (vn, b∧ (d∨ (a∧ z)))), then
Adam wins because vn �∈ u′(a) (resp. vn �∈
u′(b)).

Let us assume that n is even and that Eva moves to position (vn, a∧(c∨(b∧z)))
(the case where n is odd is similar and can be treated in a similar way). Here
Adam moves to position (vn, c ∨ (b ∧ z)) and Eva has to pick a cover of vn.
If she picks the cover { vn } or a cover containing both wn and wn−1, then
Adam wins because, as n is even, vn �∈ u′(b), vn �∈ u′(c), wn−1 �∈ u′(c) and
wn−1 �∈ u′(b). We suppose therefore that she picks the cover {wn, vn−1 } and
moves to ({wn, vn−1 }, c∨(b∧z)). Here Adam goes to position (vn−1, { c, b∧z }).
Here if Eva chooses position (vn−1, c), then Adam wins because vn−1 �∈ u′(c).
If otherwise she moves in position (vn−1, b ∧ z), then Adam chooses position
(vn−1, z) and wins, since vn−1 �∈ u′(z). �Claim

456 S. Frittella and L. Santocanale

As Adam has a winning strategy in the game G(An, u
′, ψ(z)) from (vn, ψ(z)),

then we have vn �|=u′ ψ(z), that is vn �|=u ψ
n(⊥). Our next goal is to prove that

vn |=u ψ
n+1(⊥).

Claim. Eva has a winning strategy in the game G(An, u
′, ψ(z)) from posi-

tion (vn, ψ(z)), where u
′ is the valuation which extends u by setting u′(z) :=

u(ψn(⊥)).

Proof of Claim. At the beginning of the game Eva chooses { vn } among the
covers of vn, so that Adam can only move from ({ vn }, ψ(z)) to (vn, { a ∧ (c ∨
(b ∧ z)), b ∧ (d ∨ (a ∧ z)), a ∧ e }). If n is even (resp. odd), then Eva moves to
position (vn, a ∧ (c ∨ (b ∧ z))) (resp. (vn, b ∧ (d ∨ (a ∧ z))). As the cases, n even
and n odd, are symmetric, we analyse only the situation where n is even.

If, from position (vn, a∧ (c∨ (b∧ z))), Adam moves to (vn, a), then Eva wins
because vn ∈ u′(a). We suppose therefore that Adam moves to (vn, c ∨ (b ∧ z));
here Eva chooses the cover {wn, vn−1} and moves to ({wn, vn−1}, c ∨ (b ∧ z)).

If Adam moves to (wn, { c, b∧ z }), then Eva moves to (wn, c) and wins, since
n is even and wn ∈ u′(c).

If Adam moves to (vn−1, {c, b∧z}), then Eva moves to position (vn−1, b∧z). If,
from here, Adam moves to (vn−1, b) then Eva wins since n−1 is odd and vn−1 ∈
u′(b). If Adam moves to (vn−1, z), then Eva wins because vn−1 ∈ u′(ψn(⊥)).
�Claim

Thus Eva has a winning strategy in the game G(An, u
′, ψ(z)) from position

(vn, ψ(z)) with u′(z) = ψn(⊥). Therefore vn |=u′ ψ(z), which is the same as
vn |=u ψ

n+1(⊥). !�

6 Greatest Fixed-Points

It is well known that the distributive identity x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)
implies the dual identity x∨ (y ∧ z) = (x ∨ y)∧ (x∨ z). We can rephrase this by
saying that if L ∈ D0, then L

op ∈ D0 as well—where Lop is the dual lattice of L,
obtained by reversing its order. As an immediate consequence of this fact—and
of the results obtained in the previous Section—we observe that the identities
of the form φ2(�) = φ(�) hold in distributive lattices.

The varieties Dn are not in general closed under order reversing. For example,
the lattice L(A1) is not meet-semidistributive, thus its dual L(A1)

op is not join-
semidistributive and therefore it does not belong to any of the varieties Dn, see
Theorem 3.6. We shall see later with Proposition 7.1 that meet-semidistributivity
is the only requirement needed to obtain closure under order reversing, and
actually characterizes it.

Yet, for lattices in Dn that are not meet-semidistributive, we do not have a
shortcuts to derive an identity φn+2(�) = φn+1(�). We prove in this Section
that such identities actually hold in Dn.

For a lattice term φ, possibly containing the variable z, define the terms φn(z)
and φn(�), n ≥ 0, as follows:

φ0(z) := z , φn+1(z) := φ[φn(z)/z] , φn(�) := (φn(z))[�/z] .

Fixed-Point Theory in the Varieties Dn 457

Proposition 6.1. For every lattice term φ(z), the identity φn+1(�) = φn+2(�)
holds in Dn

Proof. As Dn is locally finite, we only have to prove that the identity φn+1(�) =
φn+2(�) holds in the finite lattices of Dn. As the inclusion φn+2(�) ≤ φn+1(�)
always holds, we shall only be concerned with proving the inclusion φn+1(�) ≤
φn+2(�).

Since each finite lattice L is isomorphic to L(J(L),≤,M), it will be enough
to prove that if L is a finite lattice, u : X −→ L(J(L),≤,M) is a valuation, and
j0 ∈ J(L), then j0 |=u φ

n+1(�) implies j0 |=u φ
n+2(�).

Therefore, we suppose that Eva has a winning strategy in the game G(OD(L),
u, φn+1(�)) from position (j0, φ

n+1(�)) and construct, out of this strategy,
a winning strategy for Eva in the game G(OD(L), u, φn+2(�)) from position
(j0, φ

n+2(�)).
Before presenting the construction, let us have a look at the structure of a

complete play in a game of the form G(OD(L), u, φk(�)), for some k ≥ 0. Such
a play goes through a maximal sequence of positions of the form

(j0, φ
k(�)), (j1, φk−1(�)), . . . , (jm−1, φk−m+1(�)) , (jm, φk−m(�)) ,

with 0 ≤ m ≤ k. Moreover, for i = 1, . . . ,m, either ji−1 = ji or ji−1D+
L ji—where

D+
L is the transitive closure of the join-dependency relation. Thus we can say that

such a play has a repetition if ji−1 = ji for some i, and that it is simple other-
wise. Let us observe that, for a simple play, we have j0D

+
L j1D

+
L . . . jm−1D+

L jm;
consequenlty we have m ≤ n since L is a finite lattice in the variety Dn, see
Proposition 3.3.

We can now describe a strategy for Eva in the game G(OD(L), u, φn+2(�))
from the initial position (j0, φ

n+2(�)). To this goal, notice that, as φn+2(�) =
φn+1[φ(�)/z], the structure of the terms φn+2(�) and φn+1(�) and therefore of
the games G(OD(L), u, φn+2(�)) and G(OD(L), u, φn+1(�)) are identical as far
as the first part of a play is concerned.

In position (j0, φ
n+2(�)) of the game G(OD(L), u, φn+2(�)) Eva plays as if

she was playing in the game G(OD(L), u, φn+1(�)) in position (j0, φ
n+1(�)),

according to the given winning strategy.
Each time the play hits a position of the form (ji, φ

n+2−i(�)) Eva com-
pares ji with ji−1. If ji �= ji−1 and n + 1 − i > 0, then she keeps playing
from position (ji, φ

n+2−i(�)) as if she was playing from position (ji, φ
n+1−i(�))

within the game G(OD(L), u, φn+1(�)) according to the given winning strat-
egy. If ji �= ji−1 but i = n + 1—let us say that a critical position of the form
(jn+1, φ(⊥)) is met, where Eva cannot use anymore the given strategy in the
game G(OD(L), u, φn+1(�)) from the corresponding position (jn+1,�)—then
she keeps moving randomly until the play reaches a final position (which might
be a lost for her).

If instead ji = ji−1, then she recalls that, from position (ji−1, φn+2−(i−1)(�))
she has been playing using a winning strategy in position (ji−1, φn+1−(i−1)(�)).
As ji = ji−1 and (ji, φ

n+2−i(�)) = (ji−1, φn+1−(i−1)(�)), she realizes that she

458 S. Frittella and L. Santocanale

disposes of a winning strategy from (ji, φ
n+2−i(�)): she continues using that

winning strategy.
Let us argue that Eva’s strategy is a winning strategy. If a complete play has

ji−1 = ji as its first repeat, then Eva has been using a winning strategy from
the position (ji, φ

n+2−i(�)), thus the play is win for Eva.
If on the other hand the play is simple, so that it hits the positions

(j0, φ
n+2(�)), (j1, φn+2−1(�)), . . . , (jm, φn+2−m(�)) ,

with ji all distinct, then—by the previous remark on the length of chain of the
join-dependency relation—m ≤ n and m < n+1: a critical position (jn+1, φ(�))
is not met. This shows that the complete path entirely comes from mimicking a
winning play from the game G(OD(L), u, φn+1(�)), there have been no need of
random moves. Thus the play has been played according to a winning strategy
and it is a win for Eva. !�

We show next that the identity φn+1(�) = φn(�) does not hold within the
variety Dn.

Proposition 6.2. Let

ψ(z) := (a ∧ (c ∨ (b ∧ z))) ∨ (b ∧ (d ∨ (a ∧ z))).

For each n ≥ 0 the atomistic lattice L(An) fails the inclusion ψ
n(�) ≤ ψn+1(�).

The atomistic presentations An and the valuations un have been defined in
Section 5. As e is not among the variables of ψ(z), we won’t be concerned with
the value un(e). As before, we shall freely write u for an arbitrary un.
Proof of Proposition 6.2. We prove, by induction on n ≥ 0, that vn |=u ψ

n(�)
and vn �|=u ψ

n+1(�).
For n = 0, we only need to prove that v0 �|=u ψ(�) and, to this goal, we show

that Adam has a winning strategy in the game G(A0, u
′, ψ(z)) from the position

(v0, ψ(z)), where u
′ is the valuation extending u by setting u(z) = V0 = { v0 }.

In the starting position (v0, ψ(z)) Eva can only move to ({ v0 }, ψ(z)), and
from here Adam can only move to (v0, { a ∧ (c ∨ (b ∧ z)), b ∧ (d ∨ (a ∧ z)) }). If
Eva moves to (v0, b ∧ (d ∨ (a ∧ z))), then Adam chooses (v0, b) and wins. If Eva
moves to (v0, a ∧ (c ∨ (b ∧ z))), then Adam moves to (v0, c ∨ (b ∧ z)). From here
(as before) the game necessarily hits position (v0, { c, b ∧ z }) where it is Eva’s
turn to move. As v0 �∈ u(c), Eva looses if she moves to (v0, c). If she moves to
(v0, b ∧ z), then Adam moves to (v0, b) and wins.

We suppose now that n ≥ 1, vn−1 |=u ψ
n−1(�), vn−1 �|=u ψ

n(�).

Claim. Eva has a winning strategy in the game G(An, u
′, ψ(z)) from position

(vn, ψ(z)), where u
′ extends u by u′(z) = u(ψn−1(�)).

Proof of Claim. From the initial position (vn, ψ(z)) Eva moves to ({ vn }, ψ(z))
where Adam can only move to (vn, { a ∧ (c ∨ (b ∧ z)), b ∧ (d ∨ (a ∧ z)) }). From
here, if n is even, then Eva moves to a∧ (c∨ (b∧ z)); if n is odd, then she moves
to b∧ (d∨ (a∧z)). By symmetry, we only consider the first case. If Adam, moves

Fixed-Point Theory in the Varieties Dn 459

to (vn, a), then Eva wins because vn ∈ u′(a); if he moves to (vn, c∨ (b∧ z)), then
Eva chooses the cover {wn, vn−1 } and moves to ({wn, vn−1 }, c∨ (b∧ z)). From
here, if Adam moves to (wn, { c, b∧ z }), then Eva moves in position (wn, c) and
wins; if Adam moves to (vn−1, { c, b ∧ z }), then Eva moves to (vn−1, b ∧ z) and
she wins since vn−1 ∈ u′(b) and vn−1 ∈ u(ψn−1(�)) = u′(z). �Claim
Thus Eva has a winning strategy in the game G(An, u

′, ψ(z)) from position
(vn, ψ(z)) with u′(z) = u(ψn−1(�)); we have therefore vn |=u′ ψ(z), that is
vn |=u ψ

n(�).

Claim. Adam has a winning strategy in the game G(An, u
′, ψ(z)) from position

(vn, ψ(z)) where u
′ extends u by u′(z) := u(ψn(�)).

Proof of Claim. If, from the initial position (vn, ψ
n(z)), Eva chooses a position

({wn, wn−1, ..., wk+1, vk }, ψ(z)) with k < n, then Adam wins by moving to
(wn, { a ∧ (c ∨ (b ∧ z)), b ∧ (d ∨ (a ∧ z)) }), since wn /∈ u′(a) and wn �∈ u′(b).

Let us assume that Eva chooses the position ({ vn }, ψ(z)), from which Adam
can only move to (vn, { a ∧ (c ∨ (b ∧ z)), b ∧ (d ∨ (a ∧ z)) }).

If n is even (resp. odd) and Eva moves to position b ∧ (d ∨ (a ∧ z)) (resp.
a ∧ (c ∨ (b ∧ z))), then Adam wins because vn �∈ u′(b) (resp. vn �∈ u′(a)). We
describe therefore how Adam plays when n is even and Eva moves to position
a ∧ (c ∨ (b ∧ z)). By symmetry, the analysis will cover the case where n is odd
and Eva moves to position b ∧ (d ∨ (a ∧ z)).

From position (vn, a∧ (c∨ (b∧ z)) Adam moves to (vn, c∨ (b∧ z)), where Eva
has to choose a cover of vn.

If she moves to ({ vn }, c∨(b∧z)), then Adam can only move to (vn, { c, b∧z }).
If Eva moves to (vn, c), then Adam wins because vn �∈ u′(c). If Eva moves to
(vn, b ∧ z), then Adam moves to (vn, b) and wins because vn �∈ u′(b).

If Eva picks a cover C containing both wn and wn−1, then Adam moves from
(C, c ∨ (b ∧ z)) to position (wn−1, { c, b ∧ z }). If Eva moves to (wn−1, c), then
Adam wins because n−1 is odd and wn−1 �∈ u′(c). If Eva moves to (wn−1, b∧z),
then Adam moves to (wn−1, b) and wins because wn−1 �∈ u′(b).

Finally, let us consider what happens if Eva picks the cover {wn, vn−1 }: from
position ({wn, vn−1 }, c ∨ (b ∧ z)) Adam moves to (vn−1, { c, b ∧ z }). Therefore,
if Eva moves to (vn−1, c), then Adam wins because vn−1 �∈ u′(c); if she moves to
(vn−1, b∧ z), then Adam wins by moving to (vn−1, z), since vn−1 �∈ u(ψn(�)) =
u′(z). �Claim

We have shown that Adam has a winning strategy in the game G(An, u
′, ψ(z))

from position (vn, ψ(z)) with u′(z) = u(ψn(�)): therefore vn �|=u′ ψ(z), that is
vn �|=u ψ

n+1(�). !�
For each n ≥ 0, put

σν(n) := min{ k ≥ 0 | Dn |= φk+1(�) = φk(�), for each lattice term φ(z) } .

Thus we have shown that σν(n) = σμ(n) = n + 1. Another consequence of the
results presented up to here is the following Theorem.

Theorem 6.3. The alternation hierarchy for the lattice μ-calculus is degenerate
on each variety Dn.

460 S. Frittella and L. Santocanale

Indeed, if we consider the μ-terms defined in (1), it is easily argued thatDn |= t =
trn(t), where trn(t) is a lattice term (with no fixed-point operators) inductively
defined by

trn(x) := x , trn(�) := � trn(⊥) := ⊥ ,
trn(t ∧ s) := trn(t) ∧ trn(s) , trn(t ∨ s) := trn(t) ∨ trn(s) ,

trn(μz.φ(z)) := trn(φ(z))
n+1(⊥) , trn(νz.φ(z)) := trn(φ(z))

n+1(�) .

7 Further Lower Bounds

We survey in this Section on further results that can be obtained on extremal
fixed-points of lattice terms in given varieties.

We have seen that the varieties Dn are not dual, for n ≥ 1. What then if
we enforce duality? Namely, for a lattice variety V , let Vop := {Lop | L ∈ V }.
Clearly, if V is axiomatized by identities { e1, . . . ek }, then Vop is axiomatized
by the identities { eop1 , . . . e

op
k }, with eop obtained from e by exchanging in terms

meets with joins and joins with meets. What can be said if we consider the
varieties Dn ∩ Dop

n ?

Proposition 7.1. The variety Dn ∩ Dop
n consists of the meet-semidistributive

lattices in Dn.

The interesting question is then whether the lower bounds we found in Sec-
tions 5 and 6 are still valid. Namely, for n ≥ 0, let

τμ(n) := min{ k ≥ 0 | Dn ∩ Dop
n |= φk+1(⊥) = φk(⊥), φ(z) a lattice term } .

Notice that, if τν is defined similarly, with ⊥ replaced by �, duality enforces
τν = τμ. Clearly we have τμ(n) ≤ n + 1; we argue next that we still have
τμ(n) = n+ 1.

The lower bounds to the functions σμ and σν were obtained using the atomistic
presentation An. When considering meet-semidistributive lattices, we cannot
look at atomistic ones, because of the following Lemma.

Lemma 7.2. A finite meet-semidistributive atomistic lattice in Dn is a Boolean
algebra; in particular it belongs to D0.

In order to exhibit lower bounds to the function τμ, we lift the atomistic
presentations An to presentations On by adding to them an ordering; we prove
then that each On arises as the OD-graph of a semidistributive lattice.

Definition 7.3. For n ≥ 0, let On be the presentation 〈Vn,≤,M〉, where Vn and
M are as in Definition 5.2, and ≤ is the ordering on Vn whose Hasse diagram
is given by v0 ≺ v1 ≺ . . . ≺ vn−1 ≺ vn.

The technical achievement, from a pure lattice-theoretic perspective, is to show
that the presentations On arise as OD-graphs of meet-semidistributive lattices.

Fixed-Point Theory in the Varieties Dn 461

Proposition 7.4. For each n ≥ 0, the presentation On is isomorphic to the OD-
graphs of a meet-semidistributive lattice Ln ∈ Dn. Thus, L(On) is in Dn ∩Dop

n .

Unfortunately, we cannot reuse the results from the preceeding Sections 5
and 6, as neither un(a) nor un(b) defined in Section 5 are downsets, therefore
they do not belong to L(On). In order to achieve our goals, we have to proceed in
a completely different—yet similar–way. We let ψn and un : { bn, . . . , b1, a } −→
L(On) be defined by

ψn(z) := a ∨
∨

i=1,...,n

(c ∧ (bi ∨ z)) ,

un(a) := { v0 } , un(bi) := {wi } , un(c) = { vn, vn−1, . . . , v0 } .

Proposition 7.5. For each n ≥ 0, we have vn |=un ψn+1
n (⊥) and vn �|=un

ψn
n(⊥). Thus the inclusion ψn+1

n (⊥) ≤ ψn
n(⊥) does not hold in Dn ∩Dop

n and we
have τμ(n) = n+ 1.

8 Conclusions and Future Work

A main aim of our research was to identify generic principles for the degener-
acy of alternation hierarchies in fixed-point calculi. We argued, in this paper,
that validity of some non-trivial equations is among these principles. We aim
at finding other principles; connections between uniform interpolation in logics
and definability of extremal fixed-points, see for example [DH00], provide a clear
direction for our future researches.

Our paper has also made extensive use of the representation theory for finite
lattices based on Nation’s Theorem [Nat90] and on an approach to lattice theory
from the perspective of modal logic. Among the many open paths, we wish to
use this representation theory for studying richer mathematical structures such
as the residuated lattices and the algebraic models of linear logic. The study of
the fixed-point theories of these structures is also of fundamental relevance for
the usual μ-calculi. A main difficulty in the proof of the completeness of Kozen’s
axiomatization of the modal μ-calculus [Wal00] originates from the odd interplay
between the classical conjunction and the least fixed-point operator. Understand-
ing the interplay between the linear conjunction and least fixed-points will shed,
most probably, an important enlightenment on the classical case.

References

[AN01] Arnold, A., Niwiński, D.: Rudiments of μ-Calculus, Studies in Logic and the
Foundations of Mathematics, vol. 146. Elsevier, Amsterdam (2001)

[Awo10] Awodey, S.: Category Theory. In: Oxford Logic Guides, 2nd edn., vol. 52.
Oxford University Press, Oxford (2010)

462 S. Frittella and L. Santocanale

[Bir73] Birkhoff, G.: Lattice Theory, American Mathematical Society Colloquium
Publications, 3rd edn., vol. 25. American Mathematical Society, Providence
(1973)

[DH00] D’Agostino, G., Hollenberg, M.: Logical Questions Concerning the mu-
Calculus: Interpolation, Lyndon and Los-Tarski. J. Symb. Log. 65, 310–332
(2000)

[DP02] Davey, B., Priestley, H.: Introduction to Lattices and Order, 2nd edn. Cam-
bridge University Press, New York (2002)

[Day92] Day, A.: Doubling constructions in lattice theory. Can. J. Math. 44, 252–269
(1992)

[FS13] Fortier, J., Santocanale, L.: Cuts for circular proofs: semantics and cut-
elimination. In: Rocca, S.R.D. (ed.) CSL. LIPIcs, vol. 23, pp. 248–262.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2013)

[FJN95] Freese, R., Ježek, J., Nation, J.: Free Lattices, Mathematical Surveys and
Monographs, vol. 42. American Mathematical Society, Providence (1995)

[Gol06] Goldblatt, R.: A Kripke-Joyal Semantics for Noncommutative Logic in
Quantales. In: Governatori, G., Hodkinson, I.M., Venema, Y. (eds.) Ad-
vances in Modal Logic, pp. 209–225. College Publications (2006)

[Grä98] Grätzer, G.: General Lattice Theory, 2nd edn. Birkhäuser Verlag, Basel
(1998); New appendices by the author with Davey, B.A., Freese, R.,
Ganter, B., Greferath, M., Jipsen, P., Priestley, H.A., Rose, H., Schmidt,
E.T., Schmidt, S.E., Wehrung, F., Wille, R

[Grä08] Grätzer, G.: Universal Algebra, 2nd printing of the 2nd edn. Springer, New
York (2008)

[Han03] Hansen, H.: Monotonic Modal Logics. Master’s thesis, Institute for Logic,
Language and Computation, Universiteit van Amsterdam (2003), Available
as: ILLC technical report: PP-2003-24

[Koz83] Kozen, D.: Results on the Propositional mu-Calculus. Theor. Comput.
Sci. 27, 333–354 (1983)

[KW99] Kracht, M., Wolter, F.: Normal monomodal logics can simulate all others.
J. Symb. Log. 64, 99–138 (1999)

[Mac98] Mac Lane, S.: Categories for the Working Mathematician, Graduate Texts
in Mathematics, 2nd edn., vol. 5. Springer, New York (1998)

[Nat90] Nation, J.B.: An approach to lattice varieties of finite height. Algebra Uni-
versalis 27, 521–543 (1990)

[NW96] Niwinski, D., Walukiewicz, I.: Games for the mu-Calculus. Theor. Comput.
Sci. 163, 99–116 (1996)

[San01] Santocanale, L.: The alternation hierarchy for the theory of μ-lattices. The-
ory Appl. Categ. 9, 166–197 (2001)

[San02] Santocanale, L.: Free μ-lattices. J. Pure Appl. Algebra 168, 227–264 (2002)
[San09] Santocanale, L.: A duality for finite lattices (2009),

http://hal.archives-ouvertes.fr/hal-00432113 (unpublished)
[Sem05] Semenova, M.V.: Lattices that are embeddable in suborder lattices. Algebra

and Logic 44 (2005)
[VS10] Venema, Y., Santocanale, L.: Uniform interpolation for monotone modal

logic. In: Beklemishev, L., Goranko, V., Shehtman, V. (eds.) Advances in
Modal Logic, vol. 8, pp. 350–370. College Publications (2010)

[Wal00] Walukiewicz, I.: Completeness of Kozen’s Axiomatisation of the Proposi-
tional μ-Calculus. Inf. Comput. 157, 142–182 (2000)

http://hal.archives-ouvertes.fr/hal-00432113

Author Index

Armstrong, Alasdair 49
Arun-Kumar, S. 208

Bagga, Divyanshu 208
Berghammer, Rudolf 173, 309
Brunet, Paul 101

Dang, Han-Hing 157
Danilenko, Nikita 309
Desharnais, Jules 395

Frias, Marcelo F. 191
Frittella, Sabine 446
Fujiwara, Yuki 293
Furusawa, Hitoshi 261

Ghosh, Manas 379
Gomes, Victor B.F. 49
Guttmann, Walter 139

Hidders, Jan 327
Hoare, Tony 1
Höfner, Peter 173

Jackson, Ethan 293
Jaoua, Ali 191
Jaskolka, Jason 19
Jipsen, Peter 37

Kahl, Wolfram 242
Khedri, Ridha 19
Krivulin, Nikolai 362

Laurence, Michael R. 65
Litak, Tadeusz 327

Mikulás, Szabolcs 327
Mili, Ali 191
Möller, Bernhard 1, 395
Müller, Martin Eric 344

Nishizawa, Koki 261

Ochremiak, Joanna 429
O’Hearn, Peter 1
Oliveira, José N. 119

Pous, Damien 101

Rydeheard, David 412

Santocanale, Luigi 446
Schmidt, Gunther 226
Schmidt, Renate A. 412
Schnoor, Henning 309
Stell, John G. 412
Struth, Georg 1, 49, 65
Stucke, Insa 173

Uramoto, Takeo 83

van Staden, Stephan 1
Villard, Jules 1

Winter, Michael 277, 293, 379

Zhang, Qinglei 19
Zhu, Huibiao 1

	Preface
	Organization
	Table of Contents
	Concurrent Kleene Algebras and Related Formalisms
	Developments in Concurrent Kleene Algebra
	1 Introduction
	1.1 Domain of Discourse
	1.2 Contracts and Counterexamples
	1.3 Semantics

	2 The Laws of Programming
	2.1 The Basic Operators
	2.2 Refinement
	2.3 The Exchange Law: (p | q) ; (p� | q�) ⇒ (p ; p�) | (q ; q�)

	3 A Diagrammatic Model
	3.1 Decomposition of Diagrams
	3.2 Refinement

	4 Sketch of a Formal CKA Model
	4.1 Graphs and Tracelets
	4.2 Tracelets and Colours
	4.3 Programs and Lifting
	4.4 Residuals

	Endowing Concurrent Kleene Algebra with Communication Actions
	1 Introduction
	2 Stimuli and Induced Behaviours
	3 Mathematical Background
	3.1 Monoids, Semirings, Kleene Algebras, and Semimodules
	3.2 Concurrent Kleene Algebra

	4 The Proposed Framework
	4.1 A Simple Example of a System of Communicating Agents
	4.2 Structure of Agent Behaviours
	4.3 Structure of External Stimuli
	4.4 Communicating Concurrent Kleene Algebra (C2KA)
	4.5 Specifying Systems of Communicating Agents with C2KA
	4.6 C2KA and Orbits, Stabilisers, and Fixed Points

	5 Related Work and Discussion
	6 Conclusion and Future Work
	References

	Concurrent Kleene Algebra with Tests
	1 Introduction
	2 Adding Concurrency
	3 Automata over Guarded Series-Parallel Strings
	4 Trace Semantics for Concurrent Kleene Algebras with Tests
	5 Expanding Relation Algebras with Concurrency
	6 Conclusion
	References

	Algebras for Program Correctnessin Isabelle/HOL
	1 Introduction
	2 Algebraic Preliminaries
	3 Demonic Refinement Algebra in Isabelle
	4 Three Formalisations of Tests
	5 A Program Refinement Example
	6 A Program Transformation Example
	7 Relational and Predicate Transformer Semantics
	8 A Prototypical Verification Tool
	9 Conclusion
	References

	Completeness Theorems for Bi-Kleene Algebrasand Series-Parallel Rational Pomset Languages
	1 Introduction
	2 Pomsets, Pomset Languages, Pomset Algebras
	3 Series-Parallel Rational Expressions and Languages
	4 Bimonoids and Series-Parallel Pomsets
	5 Completeness of bKA∗
	6 Alternation Depth
	7 Closure Properties
	8 Completeness of bKA
	9 Conclusion
	References

	A Modified Completeness Theorem of KATand Decidability of Term Reducibility
	1 Introduction
	2 Kleene Algebras with Tests
	2.1 Syntax and Models of KAT
	2.2 Completeness of KAT

	3 Pseudo-identity and Undefinability of GΣ,B
	3.1 Syntactic Semirings
	3.2 Pseudo-identities and Definability
	3.3 Undefinability of GΣ,B

	4 A Modified Completeness Theorem of KAT
	4.1 Weakly Guarded Strings
	4.2 Identities Defining WΣ,B

	5 Decidability of a Term Reducibility
	6 Conclusion
	References
	Appendix: The Proof of Lemma 3

	Kleene Algebra with Converse
	Introduction
	1 Preliminary Material
	1.1 Languages with Converse: Theory KAC−
	1.2 Relations with Converse: Theory KAC

	2 Closure of an Automaton
	2.1 The Original Construction
	2.2 Intuitions
	2.3 Our Construction

	3 Analysis and Consequences
	3.1 Relationship with [BÉS95]’s construction
	3.2 Complexity
	3.3 A Polynomial-Space Algorithm

	Conclusion
	References

	Reasoning About Computations and Programs
	Preparing Relational Algebrafor “Just Good Enough” Hardware
	1 Introduction
	2 Context
	3 Motivation
	4 Related Work and Research Questions
	5 Composition
	6 Composing Non-deterministic Components
	7 Composing Probabilistic Components
	8 Monads in Relational/Linear Algebra
	9 Strong Monads in Relational/Linear Algebra
	10 Conclusions and Future Work
	References

	Extended Conscriptions Algebraically
	1 Introduction
	2 Algebraic Structures for Sequential Computations
	3 Conscriptions
	3.1 An Approximation Order for Conscriptions: Two Attempts
	3.2 An Approximation Order for Conscriptions
	3.3 Iteration

	4 Extended Conscriptions
	5 Further Computation Models
	6 Conclusion
	References
	Appendix: Consequences of n-Algebras

	Abstract Dynamic Frames
	1 Introduction
	2 Basics of the Algebraic Structure
	2.1 Separation Algebras
	2.2 The Relational Structure

	3 Abstracting Dynamic Frames
	4 Locality and Frame Accumulation
	5 A Related Approach: Local Actions
	6 Conclusion and Outlook
	References
	Appendix: Deferred Proofs

	Automated Verificationof Relational While-Programs
	1 Introduction
	2 Preliminaries
	2.1 (Homogeneous) Relation Algebra
	2.2 Automating Relation Algebra

	3 Automation of Proof Obligations
	3.1 Verification of Relational While-Programs
	3.2 Reflexive-Transitive Closure
	3.3 Topological Sorting of Cycle-Free Relations
	3.4 Equivalence of Logical and Relation-Algebraic Specifications

	4 Lessons Learned
	5 Conclusion and Outlook
	References

	On Faults and Faulty Programs
	1 Introduction: Faults, an Evasive Concept
	2 A Framework for Program Analysis
	2.1 Relational Notations
	2.2 Relational Semantics
	2.3 Correctness and Relative Correctness

	3 Faults and Fault Removals
	3.1 Faults, An Evasive Concept
	3.2 Contingent Faults
	3.3 Monotonic Fault Removal

	4 Definite Faults
	4.1 Definite Faults: Loss of Injectivity
	4.2 Definite Faults: Loss of Surjectivity

	5 Conclusion
	5.1 Summary
	5.2 Theoretical Extensions
	5.3 Applications

	References

	Parameterised Bisimulations: Some Applications
	1 Introduction
	2 Parameterised Bisimulations
	2.1 (ρ, σ)-Bisimulations

	3 On Observational Congruence
	4 Amortised Bisimulations [KAK05]
	5 Parameterised Bisimulations in Name-Passing Calculi
	5.1 An Alternative Operational Semantics for the Fusion Calculus
	5.2 Parameterised Bisimulations in the Fusion Calculus
	5.3 Parameterised Hyperbisimulations

	6 Concluding Remarks
	References
	A Appendix: Observational Congruence Proof

	Heterogeneous and Categorical Approaches
	A Point-Free Relation-Algebraic Approachto General Topology
	1 Prerequisites
	1.1 Quotient Forming
	1.1 Proposition.
	1.2 Proposition.
	1.2 Domain Construction

	2 Recalling Concepts of Topology
	2.1 Definition.
	2.2 Definition.
	2.3 Proposition.
	2.4 Definition.

	3 Continuity
	3.1 Existential and Inverse Image
	3.2 Lifting the Continuity Condition
	3.1 Definition.
	3.3 Remark on Comparison of Structures in General
	3.4 Cryptomorphy of the Continuity Conditions
	3.2 Definition.
	3.3 Proposition.

	4 Conclusion

	A Mechanised Abstract Formalisation of Concept Lattices
	1 Introduction
	2 Agda Notation
	3 Semigroupoids, Categories, OSGCs, OCCs
	4 Power Operators in Ordered Semigroupoids with Converse
	5 Power Orders via Residuals
	6 Contexts in OSGCs with Powers and Residuals
	7 Abstract Context Categories in OCCs with Powers and Residuals
	8 Conclusion
	References

	A Sufficient Condition for Liftable Adjunctionsbetween Eilenberg-Moore Categories
	1 Introduction
	2 Monads for Join Semilattices
	3 Left Adjoint by Absolute Coequalizers
	4 Ideal Completion as Absolute Coequalizer
	5 Liftable Adjunctions between Eilenberg-Moore Categories
	6 Pointed Sets and Absolute Coequalizer
	7 Conclusion and Future Work
	References

	Higher-Order Arrow Categories
	1 Introduction
	2 Dedekind and Arrow Categories
	3 Extension of an Object
	4 An Arrow Category Based on a Product Monad
	5 Higher-Order Arrow Categories
	6 Conclusion and Future Work
	References

	Type-2 Fuzzy Controllers in Arrow Categories
	1 Introduction
	2 Mathematical Preliminaries
	3 L-Fuzzy Controllers
	3.1 The Mamdani Approach to Fuzzy Controllers
	3.2 Linguistic Entities and Variables
	3.3 Fuzzification
	3.4 Rule Base
	3.5 Decision Module
	3.6 Defuzzification
	3.7 Type Reduction

	4 Conclusion and Future Work
	References

	Applications of Relational and Algebraic Methods
	Relation Algebra and RelViewApplied to Approval Voting
	1 Introduction
	2 Relation-Algebraic Preliminaries
	3 A Relation-Algebraic Model of Approval Voting
	4 Relation-Algebraic Solutions of Control Problems
	5 Alternative Approaches
	6 Conclusion
	References

	Relational Lattices
	1 Introduction
	2 Basic Definitions
	2.1 Relational Lattice as the Grothendieck Construction

	3 Towards the Equational Theory of Relational Lattices
	4 Relational Lattices as a Quasiequational Class
	5 The Concept Structure of Tropashko Lattices
	6 Conclusions and Future Work
	6.1 Possible Extensions of the Signature
	6.2 Summary and Other Directions for Future Research

	References

	Towards Finding Maximal Subrelationswith Desired Properties
	1 Motivation
	2 Interesting Relation Properties
	2.1 Biorders (Ferrers relations)
	2.2 Difunctionality
	2.3 Transitivity
	2.4 Equivalence

	3 Relation Footprints
	3.1 Signatures and Permutations
	3.2 Comparing Relation Matrices

	4 Finding Subrelations with Desired Properties
	4.1 Biorders
	4.2 Difunctionality
	4.3 Transitivity
	4.4 Equivalence

	5 Conclusion
	References
	6 Appendix: Proofs

	Complete Solution of a ConstrainedTropical Optimization Problemwith Application to Location Analysis
	1 Introduction
	2 Preliminary Definitions and Notation
	2.1 Idempotent Semifield
	2.2 Matrix and Vector Algebra

	3 Solutions to Linear Inequalities
	4 Optimization Problems
	4.1 Previous Results
	4.2 New Optimization Problem with Combined Constraints
	4.3 Particular Cases
	4.4 Numerical Examples and Graphical Illustration

	5 Application to Location Analysis
	6 Conclusions
	References

	Refinements of the RCC25 Composition Table
	1 Introduction
	2 Mathematical Preliminaries
	2.1 Boolean Contact Algebra
	2.2 Relation Algebras
	2.3 RCC Relations

	3 From RCC25 to RCC27
	4 From RCC25 to RCC29
	5 Beyond RCC29
	5.1 Generating RCC31
	5.2 Splitting ECNB

	6 Conclusion and Future Work
	References

	Developments Related to Modal Logics and Lattices
	Fuzzifying Modal Algebra
	1 Introduction
	2 Preliminaries
	3 Predomain and Restrictors
	4 Properties of Restrictors
	5 (Pre)domain Calculus
	6 Fuzzy Domain Operators
	7 Modal Operators
	8 Predomain and Domain in Matrix Algebras
	9 Application to Fuzzy Matrices
	10 Conclusion
	References
	Appendix: A Parametrised Axiomatisation of Predomain

	Tableau Developmentfor a Bi-intuitionistic Tense Logic
	1 Introduction
	2 Relations on Pre-orders and on Graphs
	2.1 The Bi-Heyting Algebra of H-Sets
	2.2 Relations on H-Sets
	2.3 Relations on Graphs

	3 Bi-intuitionistic Stable Tense Logic
	4 Tableau Calculus for BISKT
	5 Connections to Other Work
	6 Conclusion
	References

	Nominal Sets over Algebraic Atoms
	1 Introduction
	2 Atom Symmetries
	3 Fra¨ıss´e Symmetries
	3.1 Fra¨ısse ´Limits
	3.2 Least Supports

	4 Structure Representation
	4.1 Fungibility
	4.2 Representation of Functions

	5 Conclusions and Future Work
	References

	Fixed-Point Theory in the Varieties Dn
	1 Introduction
	2 Elementary Notions and Results
	3 The Varieties Dn
	4 Game Semantics
	5 Least Fixed-Points
	6 Greatest Fixed-Points
	7 Further Lower Bounds
	8 Conclusions and Future Work
	References

	Author Index

