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Preface

This volume contains the proceedings of the 12th International Conference on
Relational and Algebraic Methods in Computer Science (RAMiCS 2011) with a
special track on Computational Social Choice and Social Software. The confer-
ence took place in Rotterdam, The Netherlands, from May 30 to June 3, 2011.
Over the past 20 years, the RelMiCS (Relational Methods in Computer Science)
and AKA (Applications of Kleene Algebra) conferences have been a main forum
for researchers who use the calculus of relations and similar algebraic formalisms
as methodological and conceptual tools. At the last of these conferences it was
decided that the two series should be united under the new title “Relational
and Algebraic Methods in Computer Science” (RAMiCS). This year, special
attention was paid to the fact that the meetings started 20 years ago at the Ba-
nach Center in Warsaw. It was commemorated with an invited lecture by Chris
Brink, who, together with Ewa Orlowska and Gunther Schmidt, was one of the
originators of this series.

Relational and algebraic methods and software tools like RelView turn out
to be useful for solving problems in social choice and game theory. For that reason
this conference included a special track on Computational Social Choice and
Social Software, organized by the CFSC (Computational Foundations of Social
Choice) and SSEAC (Social Software for Elections, the Allocation of tenders and
Coalition formation) projects of the ESF LogiCCC programme.

Each submission was reviewed by three Programme Committee members.
The committee decided to accept 18 papers. The programme also included five
invited talks, of which three were on relational and algebraic methods, by Chris
Brink, Bernhard Möller (included) and Renate Schmidt (included), and two on
social choice theory, by Donald Saari and Agnieszka Rusinowska (included).
In addition, there were two tutorials on relational and algebraic methods, by
Georg Struth (included) and Michael Winter (included), and two on social choice
theory, by Donald Saari (included) and Felix Brandt (included). These tutori-
als were part of a special PhD programme, where PhD students also had the
opportunity to present their work in progress.

I am very grateful to the members of the Programme Committee and the
external referees for their care and diligence in reviewing the submitted papers.
I would also like to thank the Faculty of Philosophy of the Erasmus University
in Rotterdam for having accepted to host this conference, in particular Willy
Ophelders, Amanda Koopman, Linda Degener and Lizzy Patilaya for their as-
sistance. I also gratefully appreciate the excellent facilities offered by the Easy-
Chair conference administration system. Last but not least I would like to thank
the European Science Foundation (ESF) and the Erasmus Trust Fund for their
generous financial support.

March 2011 Harrie de Swart
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Building Structured Theories

(Invited Paper)

Bernhard Möller

Institut für Informatik, Universität Augsburg, D-86135 Augsburg, Germany
bernhard.moeller@informatik.uni-augsburg.de

Abstract. We provide a set of syntactic tools for structuring large col-
lections of logical theories. Their use is demonstrated by a formalisation
of algebras that are used in describing the semantics of concepts in pro-
gramming languages, but also of more general systems.

1 Introduction

Within the series of RelMiCS, AKA and now RAMiCS conferences we have
seen many algebraic theories, starting with relation and Kleene algebras, which
have diversified considerably to cover more and more application areas. Still,
many of them share a significant common core, and hence it seems adequate to
think about their connections in a systematic way. At the same time, some of
the theories are quite complex. This is similar to the situation in programming,
where one tries to cope with that using suitable structuring mechanisms, such
as inheritance and encapsulation.

In the present paper we attempt a similar structured presentation of some
essential RAMiCS theories. While there is already some work in that direc-
tion in connection with treating these theories with automatic theorem provers
[6, 15, 29, 30], we try to modularise further in a number of new and perhaps un-
usual ways to pinpoint more clearly which parts of the theories depend on which
others.

Of course, there is already a lot of work on structuring larger formal theories.
There is the long series of languages designed in the field of algebraic specification,
like CLEAR [3], CIP-L [2], ASL [67], ACT ONE [14] and CASL [4]. They all comprise
some sort of structuring mechanism, and many show notational similarity to
what we will use in the present paper. However, by their nature they are mostly
restricted to first-order equational logic, whereas we will be more liberal. There
is also work on structuring specifications in Edinburgh LCF [40, 56]. General
structured specification frameworks based on category theory appear in [12, 16,
20,58,60,61]. And there is the interesting dependently typed functional language
Agda [1] with proof assistant, which also allows expressing structured theories.

What we present here deviates from these approaches in that we introduce a
number of additional construction mechanisms. Moreover, we forego the definition
of a semantics in terms of operations on model classes or of pushouts/colimits.
Rather, we view our structuring tools as syntactic devices that abbreviate certain

H. de Swart (Ed.): RAMICS 2011, LNCS 6663, pp. 1–21, 2011.
� Springer-Verlag Berlin Heidelberg 2011



2 B. Möller

compounds of formulas and can be re-used and instantiated to exhibit common
and recurring parts of specifications. For their meaning we rely on the standard
semantics of first-order and higher-order logic.

In motivating the particular ingredients of the theories we present we fre-
quently resort to their use in specifying the semantics of transition systems
and the like. However, as it has been demonstrated in many excellent papers
throughout this series of conferences, the theories have much wider applicability,
and we hope that our methods of structuring will help in extending the algebraic
treatment to many further areas.

2 Theories and Definitions

A theory has a name and may have an imports clause that specifies on which
other theories it depends, a list of sorts (i.e., names for carrier sets), a list of
operators and a list of predicates, each with their typing, a list of axioms (which
should be independent) and a list of properties, starting with the keyword de-
rives, that follow from the axioms. We will only write down the non-empty ones
of these; list items are separated by the symbol |

| or line breaks, sometimes also by
a horizontal line. For space limitations we usually list only a few of the more in-
teresting/important derived properties. The operators and predicates are called
the constituents of the theory. Occasionally we will mark certain constituents as
hidden, since they only have auxiliary character for formulating certain axioms
in a more convenient and generic way. All non-hidden constituents are visible to
the outside and can be imported by other theories. A theory may also contain a
list of typed variables that are used in the axioms or derived properties. We omit
the explicit definition of variables whose type can be inferred from the typing
of the operators and predicates that are applied to them. We use the standard
convention that all free variables in a logical formula are implicitly universally
quantified.

Definitions are similar to theories except that they do not contain axioms.
Rather they give, following the keywords defined by, definitional equalities or
equivalences for each of their constituents. The only exception are new constants
that may be added without giving particular properties for them.

The distinction between theories and definitions is purely for documentation
purposes. For brevity we will refer to them uniformly as (building) blocks . Blocks
may be freely imported and/or instantiated , possibly under renaming. For the
latter we use simple positional notation, listing the new names between paren-
theses after the block name. The meaning of an import is simple replacement
of the block name by its body (with renaming if specified). If no renaming list
is given, the block is imported with its original names. Hence upon import of
several blocks into another one, identical names mean identical constituents.

An instantiated block may also be used in the axioms, defined by or derives
parts of other blocks; in this case its constituent information is ignored and only
the logical formulas in its body are copied in (under renaming if specified). In this
case the block serves as a function from constituent names to sets of formulas.
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By this twofold use of blocks we achieve a certain notational economy, as will be
seen in the examples.

Types may be simple identifiers or Cartesian product, function or power set
types. Mostly, however, we will use the higher types only in auxiliary blocks to
improve the structuring; they will then disappear again after instantiation of
these blocks. Only at the very end of the paper, when we talk about quantales,
some higher types persist. A unary predicate is identified with the subset of
elements that satisfy it. Use of such a predicate in the position of a type then
achieves subsorting. In particular, if variables are declared to be of such a subsort
type, quantifiers involving them range over the subsort only.

As first examples to show our notation at work we specify some aspects of
comparison, in particular, of preorders and partial orders. First we just introduce
the type of the comparison predicate.

theory COMPARE

sorts S

predicates ≤ ⊆ S × S

Next, even without any assumptions on the predicate ≤, we define the con-
cepts of isotony and antitony. This already involves predicates of higher type
that take functions as arguments.

definition ISO ANTI

imports COMPARE

predicates isotone , antitone ⊆ S → S

defined by isotone(f) ⇔df ∀x, y . x ≤ y ⇒ f(x) ≤ f(y)
antitone(f) ⇔df ∀x, y . x ≤ y ⇒ f(y) ≤ f(x)

We now introduce a general mechanism for propagating properties like isotony
and antitony to binary operators. This again involves higher-order concepts.

theory LEFT ARG

sorts S

operators g : S × S → S

predicates P ⊆ S → S

hidden right const : S → (S → S)

axioms right const(y)(x) = g(x, y)
∀ y . P (right const(y))

Now for instance LEFT ARG(T, ◦, isotone) expresses that an operator ◦ : T ×
T → T on some set T is isotone in its left argument. A symmetrical theory
RIGHT ARG propagates a predicate to the right argument of a binary operator.
Below we will also use this mechanism to express left and right distributivity of
a binary operator in terms of distributivity of a unary one.

Next, we specify preorders and partial orders.
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theory PREORDER

imports COMPARE
axioms x ≤ x

x ≤ y ∧ y ≤ z ⇒ x ≤ z

theory POSET

imports PREORDER
axioms x ≤ y ∧ y ≤ x ⇒ x = y

The fact that a set T with a binary relation � on it forms a partial order can
then be expressed as POSET(T,�).

With a similar theory BOOLEAN ALG(S,�,�,¬,⊥,	) one specifies Boolean
algebras; we omit the detailed axioms and properties. We also introduce some
standard notation for Boolean algebras without listing derived properties:

definition BOOLEAN OPS

imports BOOLEAN ALG
operators − , → : S × S → S

defined by x − y =df x 	 ¬y
|
| x → y =df ¬x 
 y

3 Sequential Composition

We start our treatment of semantic theories with sequential composition which
occurs in many quite different contexts. Sequentiality can concern time and
space, like in sequences of events or elements of a list or an array.

We will denote sequential composition abstractly by ·. Concrete instances
are concatenation of formal languages (with finite or infinite words), relational
composition or gluing of sets of trajectories or program sequencing.

For now we do not require any laws about sequential composition. This is
captured by our first block:

theory GROUPOID

sorts S

operators · : S × S → S

Already with this extremely general structure we can describe interesting and
important computational phenomena, as will be shown in the next section.

But first we specify commutativity and idempotence:

theory COMMUTATIVE

imports GROUPOID

axioms x · y = y · x

theory IDEMPOTENT

imports GROUPOID

axioms x · x = x

4 Annihilation

An element x is a left annihilator w.r.t. to sequential composition if composition
with any element on the right does not change it.
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definition LEFT ANNI

imports GROUPOID
predicates left anni ⊆ S

defined by left anni(x) ⇔df ∀ y . x · y = x

Left annihilation means absolute domination. It can be used to model catas-
trophic failure: after an annihilating element “nothing else can happen”. Note,
however, that sometimes left annihilation is a highly desirable property: when
studying infinite computations, like the ones initiated by (hopefully) always con-
tinuing operating systems, we usually do not want to take “behaviour after infin-
ity” into account, hence the desired sets of behaviours of such systems should be
left annihilators. In general, there may be various left annihilators in a groupoid.
For instance, in UTP [21] both the totally undefined and the totally unreliable
process are left annihilators. Symmetrically one specifies a right annihilator using
a definition RIGHT ANNI with a predicate right anni .

5 Characterising Failure

Although it seems almost paradoxical, something useful can be achieved with
annihilators. The ideas here are inspired by [11,48] and were generalised in [44].

We assume that there is a distinguished left annihilator. It is intended to rep-
resent systems about which nothing definitive can be said and which hence can
be viewed as “failing” in some sense. Since we are denoting sequential composi-
tion by ·, a fitting notation for such an element is 0.

theory FAILURE

imports LEFT ANNI

operators 0 : S

axioms left anni(0)

We will now, in our diction, adopt the view that an element x is “failing” iff it
represents a system that fails to terminate. Hence, as discussed above, x should
be a left annihilator. As all the computations of such a system are infinite, we
will call x purely infinite. Dually, an element x will be called purely finite if it
“notices” subsequent nontermination, i.e, if x·0 = 0. Notice that 0 is both purely
infinite and purely finite, but is the only such element. A semantic algebra is
strict if all its elements are purely finite, i.e., iff 0 is also a right annihilator.

definition FIN INF

imports FAILURE
predicates purely inf ⊆ S

purely fin ⊆ S

defined by purely inf (x) ⇔df left anni(x)
purely fin(x) ⇔df x · 0 = 0

theory STRICT COMP

imports FAILURE
|
| RIGHT ANNI

axioms right anni(0)
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6 Further Aspects of Sequential Composition

Typically one requires at least associativity of sequential composition. This is
captured by our next blocks. We specify left associativity; a symmetric theory
R ASSOC provides the predicate right assoc of right associativity.

theory L ASSOC

imports GROUPOID

predicates left assoc ⊆ S

axioms left assoc(x) ⇔df ∀ y, z . x · (y · z) = (x · y) · z

Left-associativity and pure infiniteness show interesting connections:

theory L ASSOC INF

imports FAILURE
|
| L ASSOC

derives purely inf (x) ⇒ left assoc(x)
left assoc(x) ⇒ (purely inf (x) ⇔ x = x · 0)

Using the associativity predicates we can talk about semigroups.

theory SEMIGROUP

imports L ASSOC
|
| R ASSOC

axioms left assoc(x)

derives right assoc(y)

Frequently, one also assumes a unit 1 of composition. Concrete instances are
the language ε consisting just of the empty word, the identity relation or the
empty program skip. This leads to the next block, which can further be combined
with pure finiteness.

theory MONOID

imports SEMIGROUP
operators 1 : S

axioms 1 · x = x = x · 1

theory ONE FIN

imports MONOID
|
| FIN INF

derives purely fin(1)

7 Concurrency

A well studied algebraic framework for concurrency are the various process cal-
culi (ACP, CCS, CSP, . . . ), with varying properties of choice and sequential
composition. We will here treat some aspects of the recent approach of concur-
rent Kleene algebras [22]. Next to sequential composition · these offer a parallel
composition ‖. A basic idea is that the elements of such an algebra abstractly
represent sets of traces of some kind. These traces consist of events that are
occurrences of certain primitive actions such as communications or assignments.
One assumes that there are certain causal or temporal dependences between
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events. Sequential composition has to respect these dependences, i.e., in a com-
position x · y no event in a trace in x may depend on a “future” event in a
trace in y. Parallel composition is much more liberal in that it does not impose
such a restriction (at the expense of allowing “hazardous” programs with race
conditions on the resources involved).

To capture this algebraically, one introduces a comparison relation ≤ where
x ≤ y expresses that y is more liberal than x. Let us now look at the terms
(x ‖ y) · (z ‖u) and (x · z) ‖ (y · u). The first of these is a sequential composition
of two parallel compositions. Therefore neither x nor y may depend on z or u.
The second one is a parallel composition of two sequential compositions with
the same basic constituents. This is more liberal than the first one, since only
dependence of x on z and of y on u must be excluded. This fundamental property
is the basis of the algebraic axiomatisation.

theory CONCURRENT BIGROUPOID

imports GROUPOID(S, ·) |
| GROUPOID(S, ‖)

|
| COMPARE

axioms (x ‖ y) · (z ‖u) ≤ (x · z) ‖ (y · u)

Since one wants to construct longer derivation chains, one frequently requires
≤ to be a partial order to admit transitivity steps. Moreover, in the basic model
of [22] these operators are associative and there is an idle process 1 which is a
common unit of · and ‖.

theory CONCURRENT BIMONOID

imports CONCURRENT BIGROUPOID

operators 1 : S

axioms MONOID(S, ·, 1)
|
| MONOID(S, ‖, 1)

An extension of this basic theory admits, a.o., a simple algebraic treatment of
the rely/guarantee calculus of [33]. The details would lead too far here. Further
applications are under way.

8 The Frame Rule and Separation Logic

Over every ordered groupoid one can define a very general form of Hoare triple,
for which the classical rules of sequencing and weakening hold:

definition GROUPOID HOARE TRIPLE

imports GROUPOID
|
| POSET

predicates { } ⊆ S × S × S

defined by x {y} z ⇔df x · y ≤ z

derives x{u · v} z ⇔ ∃ y . x {u} y ∧ y {v} z
x ≤ u ∧ u {y} v ∧ v ≤ z ⇒ x{y} z

If the groupoid is even a monoid one can also infer the classical rule for skip,
viz. x{1} z ⇔ x ≤ z. In the presence of parallel composition one obtains
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the concurrency rule, and the so-called frame allows modular reasoning where a
disjoint context may be added in parallel to a program without invalidating the
reasoning using triples:

theory CONCURRENT HOARE TRIPLE

imports CONCURRENT BIGROUPOID
|
| GROUPOID HOARE TRIPLE

derives x {y} z ∧ u {v} w ⇒ (x ‖u) {y ‖ v} (z ‖w)
x {y} z ⇒ (u ‖x) {y} (u ‖ z)

A variant of the frame rule is of particular interest in the so-called separa-
tion logic [54] which allows modular reasoning about shared and mutable data
structures with pointers. Again, the details would lead too far.

9 Choice

The second fundamental concept that occurs in many circumstances is that of
choosing — in a more or less biased way — between a number of possibilities. If
the number of these possibilities is finite one speaks of bounded choice, otherwise
of unbounded choice. Bounded choice is mostly represented by a binary operator
for choosing between two alternatives, which under suitable assumptions allows
an inductive definition of choosing between any positive number of possibilities.
We will see below how to deal with zero possibilities. Frequent notations for that
operator are �� ,�,� and +, of which we will use the latter. Its typical axioms
are associativity, commutativity and idempotence, which are the axioms for a
meet or join semilattice.

theory SEMILATTICE

sorts S

operators + : S × S → S

axioms SEMIGROUP(S, +)
|
| COMMUTATIVE(S, +)

|
| IDEMPOTENT(S, +)

It is well known that every semilattice induces an order. In this paper we
interpret + as a join operator and write ≤ for the induced order, which is a
derived concept and hence not specified by a theory but by a definition. It
develops its full power in combination with a semilattice.

definition SUBSUMPTION

imports GROUPOID(S, +)

predicates ≤ ⊆ S × S

defined by x ≤ y ⇔df x + y = y

theory SEMILATTICE WITH SUBSUMPTION

imports SEMILATTICE
|
| SUBSUMPTION

|
| ISO ANTI

derives POSET(S,≤)

x ≤ x + y
|
| x + y ≤ z ⇔ x ≤ z ∧ y ≤ z

LEFT ARG(S, +, isotone)
|
| RIGHT ARG(S, +, isotone)
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In many cases, a semilattice of sets under union as join is used; the subsump-
tion order there coincides with set inclusion.

Over semilattices we can specify the property of distributivity:

definition DIST

imports SEMILATTICE WITH SUBSUMPTION

predicates distributive , super distributive ⊆ S → S

defined by distributive(f) ⇔df ∀ x, y . f(x + y) = f(x) + f(y)
super distributive(f) ⇔df ∀ x, y . f(x) + f(y) ≤ f(x + y)

derives distributive(f) ⇒ isotone(f)
super distributive(f) ⇔ isotone(f)

Often a unit for choice is assumed. It represents the choice between zero
possibilities. Its interpretation ranges from catastrophic error over failure to
chaos. Since we denote choice by +, a fitting notation for its unit is 0. The
definition of the subsumption order implies that 0 is its least element. Moreover,
the fact that 0 is the unit of choice means that choice is angelic; a 0 branch will
always be eliminated in favour of the other branch: 0 + x = x = x + 0.

theory SEMILATTICE WITH MIN

imports SEMILATTICE

operators 0 : S

axioms MONOID(S, +, 0)

derives x + y = 0 ⇒ x = 0 = y

definition SUBSUMPTION WITH MIN

imports SEMILATTICE WITH MIN
SUBSUMPTION

derives 0 ≤ x

10 Choice and Composition: Idempotent Semirings

An idempotent left semiring combines choice and composition such that compo-
sition is distributive in its left argument and isotone in its right one. As usual,
we have composition bind tighter than choice.

theory IL SEMIRING

imports
SEMILATTICE WITH MIN

MONOID
|
| FAILURE

|
| SUBSUMPTION

|
| ISO ANTI

|
| DIST

predicates right dist ⊆ S

axioms LEFT ARG(S, ·, distributive)
|
| RIGHT ARG(S, ·, isotone)

In a left idempotent semiring we can study pure infiniteness a bit further.

definition IL SEMIRING INF

imports IL SEMIRING
|
| FIN INF

operators inf : S → S

defined by inf x =df x · 0

derives purely inf (x) ⇒ right dist(x)

inf x ≤ x
|
| purely inf (y) ∧ y ≤ x ⇒ y ≤ inf x
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The last property means that inf x is the greatest purely infinite element below
x. Therefore we call inf x the purely infinite part of x.

A number of applications use weak idempotent semirings, in which composi-
tion is right-distributive while 0 need not be a right annihilator:

theory WEAK I SEMIRING

imports IL SEMIRING
axioms RIGHT ARG(S, ·, distributive)

If additionally 0 is also a right annihilator and composition also distributes
over choice in its right argument one speaks of an idempotent semiring.

theory I SEMIRING

imports WEAK I SEMIRING
|
| STRICT COMP

11 Converse and Relation Algebra

In many cases one is interested in reverting the “flow of control” as underlying
sequential composition. To this end one uses the converse x� of an element x:

theory CONVERSE

imports GROUPOID

operators � : S → S

axioms (x · y)� = y� · x�

Abstract relation algebra results from combining converse with a Boolean
idempotent semiring:

theory RELATION ALGEBRA

imports BOOLEAN ALG
|
| I SEMIRING(S,
,⊥, ·, 1)

|
| CONVERSE

SUBSUMPTION
|
| ISO ANTI

axioms (x 
 y)� = x� 
 y�
|
| x · x� · y ≤ y

derives isotone( �)
x · y 	 z = ⊥ ⇔ x� · z 	 y = ⊥ ⇔ z · y� 	 x = ⊥

There is no need to tell the RAMiCS audience that there are many more
interesting and useful consequences of the axioms.

12 Iteration

Following Kleene’s seminal work [37], arbitrary finite iteration of an element x
is denoted by x∗. The axiomatisation follows [38].
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theory LEFT KLEENE ALG

imports IL SEMIRING
|
| SUBSUMPTION

|
| ISO ANTI

operators ∗ : S → S

axioms 1 + x · x∗ ≤ x∗ |
| y + x · z ≤ z ⇒ x∗ · y ≤ z

derives isotone( ∗)

x∗ · x∗ = x∗ = (x∗)∗
|
| (x · y)∗ · x = x · (y · x)∗

|
| (x + y)∗ = x∗ · (y · x∗)∗

x ≤ 1 ⇒ x∗ = 1

The symmetrical axioms that describe “iteration at the right” may need
adjustments due to the application circumstances (e.g. in probabilistic alge-
bras) [42, 64, 43]. Infinite iteration is added using seminal ideas from [53]; the
axiomatisation follows [5].

theory LEFT OMEGA ALG

imports LEFT KLEENE ALG
|
| SUBSUMPTION

|
| ISO ANTI

operators ω : S → S

axioms xω = x · xω |
| z ≤ y + x · z ⇒ z ≤ xω + y · x∗

derives isotone( ω)

0ω = 0
|
| x∗ · xω = xω |

| xω · y ≤ xω |
| (xω)ω ≤ xω

(x · y)ω = x · (y · x)ω |
| (x + y)ω = (x∗ · b)ω + (x∗ · b)∗ · xω

x ≤ 1ω

The last derived property motivates the following definition.

definition OMEGA TOP

imports LEFT OMEGA ALG
operators  : S

defined by  =df 1ω

derives x ≤ x · x ⇒ xω = x ·  |
| xω = xω · 

The latter property makes xω, e.g., not adequate for the precise description
of Zeno effects in hybrid systems. Hence again an adjustment may be needed.

13 Tests: Modelling Sets of States

Elements of semirings frequently represent sets of transitions. To represent sets
of states one may use special transitions that abstract assert statements as
known from programming. A statement assertB skips (i.e., leaves the state un-
changed) if B holds and aborts otherwise. Considered as a relation, it is a subset
of the identity relation on program states. Hence sets of program states or predi-
cates characterising such sets are in one-to-one correspondence with subidentity
relations. A central property is that for them intersection and composition co-
incide. All this lays the basis for an algebraic representation of general sets of
states. Such an approach was presented, e.g., in [41] by distinguishing particular
semiring elements which, following [39], we call tests . Since we want the tests, the
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algebraic counterparts of predicates, to form a Boolean algebra, we first specify
complementation.

definition IL SEMIRING WITH COMPL

imports IL SEMIRING
predicates are complements ⊆ S × S

test ⊆ S

defined by are complements(p, q) ⇔df p + q = 1 ∧ p · q = 0 ∧ q · p = 0
test(p) ⇔df ∃ q . are complements(p, q)

derives are complements(p, q) ⇔ are complements(q, p)
are complements(p, q) ⇒ p ≤ 1 ∧ q ≤ 1

are complements(p, q) ∧ are complements(p, r) ⇒ q = r
are complements(0, 1)

Now we can specify the notion of an idempotent left semiring with tests.

theory IL SEMIRING WITH TESTS

imports IL SEMIRING WITH COMPL

operators ¬ : test → test

axioms COMMUTATIVE(test, ·)
¬p = q ⇔df are complements(p, q)

derives BOOLEAN ALG(test , +, ·,¬, 0, 1)
I SEMIRING ⇒ COMMUTATIVE(test, ·)

The commutativity requirement for tests is equivalent to distributivity of
composition over choice also in its right argument on the subset of tests. However,
in concrete algebras it usually is more onerous to check distributivity, a property
involving three variables, than commutativity, which only involves two.

The above specification is somewhat unsatisfactory in that it is not purely
equational and involves subsorting. This makes automatic verification quite cum-
bersome or even excludes the use of some automatic verification systems. We will
discuss alternative specifications below.

Using tests we can give algebraic semantics to a simple programming language.
Composition and choice are already present in semirings. We can enrich this by
case distinction:

definition IFTHENELSE

imports IL SEMIRING WITH TESTS

operators if then else : test × S × S → S

defined by if p thenx else y =df p · x + ¬p · y

Using finite iteration we can also define a while loop:

definition WHILE

imports IL SEMIRING WITH TESTS
|
| LEFT KLEENE ALG

operators while do : test × S → S

defined by while p dox =df (p · x)∗ · ¬p
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Moreover, we can give an algebraic definition of standard Hoare triples;
it appears in [39] and admits a simple algebraic soundness proof of Hoare
logic.

definition HOARE TRIPLE

imports IL SEMIRING WITH TESTS

predicates { } { } ⊆ test × S × test

defined by {p} x {q} ⇔df p · x · ¬q = 0

14 Domain and Antidomain

An important concept for transition systems is the set of enabled states, i.e., the
set of states from which transitions are possible. For a transition relation R, this
is the domain of R. We apply this nomenclature also to the general case. Using
tests, a predomain operator can be characterised algebraically by quite simple
equational axioms [9]. The domain operator shows a stronger interplay between
predomain and composition, which can be used, e.g., for an algebraic proof of
relative completeness of the Hoare calculus [46].

theory PREDOMAIN

imports IL SEMIRING WITH TESTS
operators � : S → test

variables p : test
|
| x, y : S

axioms x ≤ �x · x |
| �(p · x) ≤ p

derives �(x + y) = �x + �y |
| �(x · y) ≤ �(x · �y)

�(p · x) = p · �x |
| �p = p

theory DOMAIN

imports PREDOMAIN

axioms �(x · �y) ≤ �(x · y)

In a similar fashion one can specify a codomain operator. If one assumes an
idempotent semiring with tests, the axioms are just the mirror images of the ones
for domain. In case of a general idempotent left semiring, however, distributivity
of codomain over choice needs to be stated as an additional axiom [44].

Let us now briefly discuss the mentioned alternative axiomatisation of tests
and the domain operator. This has been carried out in a form specific to re-
lation algebra in [31] and in the general semiring setting in [8]. The idea is to
avoid explicit subsorting and to characterise the tests implicitly as the image
of an antidomain operator @ which yields the negation of the domain of its
argument. Over a full idempotent semiring the axiomatisation is surprisingly
simple — however, to fully grasp it, good knowledge about tests and domain
is almost mandatory. This is why we introduced their theories beforehand. In
using the antidomain theory, rather than quantifying over a variable p : test
one uses a variable x : S and writes @x instead of p. For the case of general
left semirings additional axioms are necessary; this is the subject of ongoing
work.



14 B. Möller

theory ANTIDOMAIN

imports I SEMIRING
operators @ : S → S

axioms @x · x = 0
|
| @x + @@x = 1

@(x · y) ≤ @(x · @@y)

definition DERIVED DOMAIN

imports ANTIDOMAIN

operators �: S → S
|
| ¬ : test → test

predicates test ⊆ S

defined by test(x) ⇔df ∃ y . x = @y

�x =df @@x
|
| ¬p = @@p

derives DOMAIN

15 Modal Operators: Diamond and Box

Many properties of transition systems can be described by the modal operators
diamond and box, which express existential and universal quantification over the
successor or predecessor states of a given set of states. We show exemplarily how
to define the forward modal operators in terms of domain; the backward ones
can be defined analogously in terms of codomain. Given a transition system x,
a state s satisfies the predicate 〈x〉q iff s has a successor under x that satisfies
q. This is equivalent to saying that s lies in the inverse image of q under x. The
box operator [x]q is the De Morgan dual of diamond. This is the basis of the
following specification.

definition FORWARDMODAL

imports DOMAIN
operators 〈 〉 , [ ] : S × test → test

defined by 〈x〉q =df �(x · q)
|
| [x]q =df ¬〈x〉¬q

variables u : purely fin
|
| z : right dist

|
| p, q : test

|
| x, y : S

derives 〈u〉0 = 0
|
| [u]1 = 1

〈z〉(p + q) = 〈z〉p + 〈z〉q |
| [z](p · q) = [z]p · [z]q

〈z〉p − 〈z〉q ≤ 〈z〉(p − q)
|
| [z](p → q) ≤ [z]p → [z]q

〈x + y〉p = 〈x〉p + 〈y〉p |
| [x + y]p = [x]p · [y]p

〈x · y〉p = 〈x〉(〈y〉p)
|
| [x · y]p = [x]([y]p)

{p} x {q} ⇔ p ≤ [x]q

The last property shows that [x]q is the algebraic counterpart of the weakest
liberal precondition operator wlp.x.q used in program correctness calculi [10].

Equivalently, one can axiomatise one of the modal operators directly and
define the other one and domain in terms of it. For instance, one can use the
last property above to axiomatise the box operator. Then the diamond operator
is defined as the De Morgan dual of box: 〈x〉q =df ¬[x]¬q. Finally, domain can
be retrieved as �x =df 〈x〉1.

Interestingly, in presence of star no special axioms are needed to establish star
induction for diamond and box:
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theory MODAL STAR

imports LEFT KLEENE ALG
|
| FORWARDMODAL

variables p, q : test
|
| x : S

derives p ≤ q ∧ p ≤ [x]p ⇒ p ≤ [x∗]q
({p · r} x {p}) ∧ p · ¬r ≤ q ⇒ ({p} while p dox {q})

The second property is a special case of the first one and corresponds to the
familiar inference rule for the while loop. More generally, box calculus does not
only admit an algebraic soundness proof of Hoare logic, but also one of relative
completeness [46].

Moreover, box can also be used to model total and general correctness and
the wp operator. In fact, wp turns out to be the box operator in an algebra of
commands [47]. Hence the abstract relative completeness result can immediately
be re-used to show relative completeness of wp-based Hoare logic.

16 Logics of Knowledge and Belief

In this section we use some of our blocks to build algebraic theories of knowledge
and belief. The idea is to abstract the access relations of Kripke models for
multiagent systems to elements of an idempotent semiring with tests and to
represent the knowledge and belief operators as instances of the general box
operator with suitable additional axioms. The monomodal case is obtained by
setting set �p =df [x]p for some fixed transition element x.

definition MULTIAGENTn

imports MODAL ISEMIRING
|
| MODAL STAR

operators a1, . . . , an, a : S
|
| K1, . . . , Kn, E, C : test → test

defined by K1p =df [a1]p
|
| . . .

|
| Knp =df [an]p

a =df a1 + · · · + an
|
| Ep =df [a]

|
| Cp =df [a+]

derives Cp ≤ C(Cp)
|
| Cp · Cq ≤ C(Cp · Cq)

|
| Cp · Cq ≤ C(Cp · q)

The positive and negative introspection axioms are captured as follows.

definition INTROSPECTION

imports IL SEMIRING WITH TESTS

predicates sat posintro , sat negintro ⊆ test → test

axioms sat posintro(f) ⇔df ∀ p . f(p) ≤ f(f(p))
sat negintro(f) ⇔df ∀ p .¬f(p) ≤ f(¬f(p))

This allows specifying belief logic:

theory MULTIBELIEFn

imports MULTIAGENTn
|
| INTROSPECTION

axioms sat posintro(K1)
|
| · · · |

| sat posintro(Kn)

sat negintro(K1)
|
| · · · |

| sat negintro(Kn)
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The axiom of truth (or reflexivity of the access elements) is expressed by

definition TRUTH

imports IL SEMIRING WITH TESTS

predicates sat truth ⊆ test → test

axioms sat truth(f) ⇔df ∀ p . f(p) ≤ p

Then multiagent knowledge logic is specified by

theory MULTIKNOWn

imports MULTIBELIEFn
|
| TRUTH

axioms sat truth(K1)
|
| · · · |

| sat truth(Kn)

derives C(p→Ep) ≤ p→Cp
|
| Cp · Cq = CCp · CCq = C(Cp · Cq)

It should be clear how further special-purpose multimodal logics can be con-
structed along these lines.

17 Quantales and Temporal Logics

Now we really leave the first-order setting. For a number of applications it is
important that the underlying left semiring is not only a semilattice, but even
a complete lattice in which composition distributes over arbitrary/non-empty
suprema in its left/right argument. Such structures are known as left quantales
and, in case the underlying semiring is even full, quantales [49,55]. For systematic
reasons we call the supremum operator lub (least upper bound) rather than sup.

theory LQUANTALE

imports SEMIGROUP
|
| POSET

operators lub :P(S) → S

axioms lub T ≤ y ⇔ ∀ x . x ∈ T ⇒ x ≤ y
lubT · y = lub {x · y | x ∈ T}

T �= ∅ ⇒ y · lub T = lub {y · x | x ∈ T}

Again, frequently a unit of composition is useful.

theory UL QUANTALE

imports LQUANTALE
|
| MONOID

From a unital left quantale we can derive an idempotent left semiring.

definition UL QUANTALE AS SEMIRING

imports UL QUANTALE

operators 0 : S
|
| + : S × S → S

defined by 0 =df lub ∅ |
| x + y =df lub ({x} ∪ {y})

derives IL SEMIRING
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In a unital left quantale, star and omega can be defined as least/greatest
fixpoints. To this end we first enrich left quantales by an infimum operation glb
(greatest lower bound).

definition UL QUANTALE WITH GLB

imports UL QUANTALE

operators glb :P(S) → S

defined by glb T =df lub {x ∈ S | ∀ y ∈ T . x ≤ y}

Least and greatest fixpoints are defined using the Tarski/Knaster theorem.

definition FIXPOINTS

imports UL QUANTALE WITH GLB
|
| ISO ANTI

operators μ, ν : isotone → S

defined by μf =df glb {z ∈ S | f(z) ≤ z}
νf =df lub {z ∈ S | z ≤ f(z)}

Now we can specify iteration in a quantale.

definition UL QUANTALE WITH ITERATION

imports UL QUANTALE AS SEMIRING
|
| FIXPOINTS

operators ∗,ω : S → S

hidden f : S × S → (S → S)

defined by f(x, y)(z) =df x + y · z
y∗ =df μf(1, y)

|
| yω =df νf(0, y)

derives LEFT KLEENE ALG
FULLY DIST ⇒ LEFT OMEGA ALG

where

theory FULLY DIST

imports UL QUANTALE AS SEMIRING
|
| FIXPOINTS

axioms glb {x + y | y ∈ T} = x + glb T

Further applications of left quantales concern, e.g., hybrid systems and the
various temporal logics. For instance, to capture CTL∗ one can interpret the
quantale elements as abstracting sets of computation paths (the semantics of
path formulas) and tests as abstracting sets of states (the semantics of state
formulas); a distinguished element n abstracts the single-step transition rela-
tion. Then we can define an until operator U as xU y =df μz . y + (x � n · z).
This admits proving all standard CTL laws purely algebraically [45]. Moreover,
for the sublogics CTL and LTL the general CTL∗ semantics can be transformed
into simplified versions in ω-regular form. These do no longer use the full power
of quantales but just star and omega. Finally, for LTL even just star is used.
This provides interesting connections between μ-calculus representations and
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star/omega-algebra. Other logics like ITL, IL, DC or NL can also be captured
in this setting. For lack of space we cannot spread out the details in form of
structured theories here.

18 Conclusion and Outlook

The algebraic structures presented form a comprehensive and flexible framework.
They cover various semantic models in a uniform algebraic fashion. Further ap-
plications have concerned residuals (e.g., to define generalised modal operators
as in [65,57]), predicate transformer semantics (e.g., as demonic refinement alge-
bra [66, 59] or command/design algebra [47, 18, 19]), probabilistic programs [42,
64,43], game algebra [51,52], hybrid systems [26,27], neighbourhood logic [25] and
linked object structures and separation logic [13,7]. There is even a greater variety
of applications outside the realm of program semantics. Many of them use stan-
dard relation algebra; for these the ideas in the present paper are not as useful,
since the underlying theory is fixed. However, we mention a few that use variants
of the semiring setting, for which the idea of building blocks of theories may have
some profit. For instance [17, 24] provide algebraic descriptions of some aspects
of routing systems. But also the cardinality operator in Dedekind categories and
allegories as used for flow problems [35,36], or collagories [34] could be organised
in the form of structure theories as proposed here.

As mentioned in the introduction, machine support for this type of theories
has been intensively studied. This has resulted in large, modularised collections
of theories and automatic proofs on the web [28, 23, 32, 50, 62]. Moreover, there
are strong links with the TPTP project [63].

As a continuation of that and the ideas in the present paper we envisage a
system for composing and analysing structured theories, of course with check
for syntactic well-formedness including type constraints. Moreover, the system
should perform a normalisation of a structured theory into a “flattened” un-
structured one and then determine which fragment of logic is actually used, in
particular, whether the overall theory is equivalent to a first-order one. It should
then make suggestions which of the existing automatic theorem provers look
most promising for use with that theory.

We are convinced that there is much more potential in the algebraic approach.
What needs to be done is to explore further areas to see whether the structuring
mechanisms we have proposed in the present paper are sufficient and maybe can
notationally be streamlined further.

Acknowledgement. I am grateful for valuable comments by H.-H. Dang, R.
Glück, P. Höfner, P. Roocks and A. Zelend.
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44. Möller, B.: Kleene Getting Lazy. Sci. Comput. Program. 65, 195–214 (2007)
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Abstract. We deliver a short overview of different centrality measures
and influence concepts in social networks, and present the relation-algebraic
approach to the concepts of power and influence. First, we briefly discuss
four kinds of measures of centrality: the ones based on degree, closeness, be-
tweenness, and the eigenvector-related measures. We consider centrality of
a node and of a network. Moreover, we give a classification of the centrality
measures based on a topology of network flows. Furthermore, we present a
certain model of influence in a social network and discuss some applications
of relation algebra and RelView to this model.
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1 Introduction

Social networks play a central role in our activities, in social phenomena, in
economic and political life. It is therefore crucial to provide an exhaustive anal-
ysis of social network structures and to study the impact they may have on
human’s behavior. Many scholars are particularly interested in measures that
allow to compare networks. Also measures that compare nodes (representing
agents) within a network and show how a node relates to the network are of
interest. The question appears how central a node is and what its position and
prestige in a network are. The concept of centrality as applied to human commu-
nication was introduced already in the late 1940’s, and since then many different
measures of centrality have been developed. They usually capture complemen-
tary aspects of a node’s position, any hence a particular measure can be more
appropriate for some applications and less for others.
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One of the aims of this paper is to deliver a brief overview of the main central-
ity measures. Four kinds of measures are presented: degree centrality, closeness
centrality, betweenness centrality, Katz prestige and Bonacich centrality. We
also briefly discuss a categorization of centrality measures based on a topology
of network flows.

Social networks are particularly important in studying all kinds of influence
phenomena. They are very useful for analyzing the diffusion of information and
the formation of opinions and beliefs. It is therefore not surprising that there
are numerous works in different scientific fields on the ‘network approach’ to
interaction and influence.

One of the leading dynamic models on information transmission, opinion and
consensus formation in networks is introduced by DeGroot [14]. Individuals start
with initial opinions on a subject and put some weights on the current beliefs
of other agents in forming their own beliefs for the next period. These beliefs
are updated over time. Several variations and generalizations of the DeGroot
model are presented e.g. in [15,20,21,22,36]. Surveys of models of influence and
different approaches to this phenomenon can be found e.g. in [27,29,36,38].

Another framework of influence in networks is introduced in [33]. In the orig-
inal one-step model, agents have to make their acceptance-rejection decision on
a specific issue. Each agent has an inclination to say either ‘yes’ or ‘no’, but due
to possible influence of the other agents, his final decision (‘yes’ or ‘no’) may be
different from his initial inclination. This framework is extensively investigated
e.g. in [24,25,26,28,29,30,39].

Relation algebra is used very successfully for formal problem specification,
prototyping, and algorithm development. For details on relations and relational
algebra, see e.g. [13,16,17,40]. RelView is a BDD-based tool for the visualization
and manipulation of relations and for prototyping and relational programming. It
has been developed at Kiel University. The tool is written in the C programming
language and makes full use of the X-windows graphical user interface. Details
and applications can be found e.g. in [3,4,9].

Several of our works are devoted to applications of relation algebra and Rel-
View to Game Theory and Social Choice Theory. In [5] we present such an
application to coalition formation, where with the help of relation algebra and
RelView the set of all feasible stable governments is determined. A stable gov-
ernment is by definition not dominated by any other government. In [6] we deal
with the case where all governments are dominated. By using notions from rela-
tion algebra, graph theory and social choice theory, and by using RelView we
can compute a government that is as close as possible to being non-dominated.
In [7] we apply relation algebra and RelView to networks, i.e., to compute some
measures of agents’ strength in a network, like power, success, and influence. In
[8] we present relation-algebraic models of simple games and develop relational
specifications for solving some basic game-theoretic problems. We test funda-
mental properties of simple games, compute specific players and coalitions, and
apply relation algebra to determine power indices.
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In this paper we also aim at presenting a relation-algebraic approach to the
concepts of influence in a social network. We recapitulate relation-algebraic spec-
ifications (presented in [7]) of the following concepts of the model of influence
([25,33,39]): the inclination and decision vectors, the group decision, the Hoede-
Bakker index, the inclination vectors of potential and observed influence, and
the set of followers.

The paper is structured as follows. In Section 2 the basic concepts in net-
work theory are recalled. In Section 3 we discuss the main centrality measures.
Section 4 concerns the model of influence in a social network. In Section 5
the relation-algebraic preliminaries are presented. Section 6 is devoted to the
relation-algebraic approach to the concepts of influence. In Section 7 we present
some concluding remarks.

2 The Basic Concepts in Network Theory

In this section we present the preliminaries on networks. For textbooks on net-
work theory, see e.g. [23,36,44].

Let N = {1, 2, ..., n} be a (finite) set of nodes. By gij ∈ {0, 1} we denote a
relationship between nodes i and j, where

gij =
{

1 if there is a link between i and j
0 otherwise. (1)

In what follows we only consider undirected links, i.e., we assume that gij = gji.
A network g is defined as a set of nodes N with links between them. Let G

denote the collection of all possible networks on n nodes.
By Ni(g) we denote the neighborhood (the set of neighbors) of node i in net-

work g, i.e., the set of nodes with which node i has a link:

Ni(g) = {j ∈ N : gij = 1}. (2)

The degree di(g) of a node i in g is the number of i’s neighbors in g, i.e.,

di(g) = |Ni(g)|. (3)

A network g is said to be regular if every node has the same number of neighbors,
i.e., if for some d ∈ {0, 1, ..., n− 1}, di(g) = d for each i ∈ N .

A complete network is a regular network with d = n− 1. The empty network
is a regular network with d = 0.

One of the concerns when analyzing a network is to check how one node may
be reached from another one. We distinguish between the following definitions:

- A walk is a sequence of nodes in which two nodes have a link (they are
neighbors), and a node or a link may appear more than once. Its length is
simply the number of links in the walk.

- A trail is a walk in which all links are distinct.
- A path is a trail in which all nodes are distinct.
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- A cycle is a trail with at least 3 nodes in which the initial node and the end
node are the same.

- A geodesic between two nodes is a shortest path between them.

If there is a path between i and j in g, then the geodesic distance d(i, j; g)
between these two nodes i and j is therefore equal to

d(i, j; g) = the number of links in a shortest path between i and j. (4)

If there is no path between i and j in g, we set d(i, j; g) = ∞.
A star is a network in which there exists some node i (referred to as the center

of the star) such that every link in the network involves node i.
Two nodes belong to the same component if and only if there exists a path

between them. A network is connected if there exists a path between any pair of
nodes i, j ∈ N . Consequently, a network is connected if and only if it consists of
a single component.

The adjacency matrix G of a (undirected or directed) network g is defined
as G = [gij ] with gij as in (1). In other words, an entry in the matrix G
corresponding to the pair {i, j} signifies the presence or absence of a link between
i and j. Let Gk denote the kth power of G, i.e., Gk = [gk

ij ], where gk
ij measures

the number of walks of length k that exist between i and j in network g. We
have G0 = I, where I is the n× n identity matrix.

3 Different Measures of Centrality in Networks

The concept of centrality captures a kind of prominence of a node in a network.
The economic and sociological literature offers several such concepts. For surveys
of different notions of centrality, see e.g. [19,23,36]. In this paper, we recapitulate
several well-known centrality measures. The presentation is based on the three
references mentioned above.

As presented in [36], measures of centrality can be categorized into the fol-
lowing main groups:

(1) Degree centrality
(2) Closeness centrality
(3) Betweenness centrality
(4) Prestige- and eigenvector-related centrality.

3.1 Degree Centrality

The degree centrality indicates how well a node is connected in terms of direct
connections, i.e., it keeps track of the degree of the node. This measure can be
seen as an index of the node’s communication activity.

The degree centrality Cd(i; g) of node i in network g is given by

Cd(i; g) =
di(g)
n− 1

=
|Ni(g)|
n− 1

(5)
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where Ni(g) and di(g) are defined in (2) and (3). Obviously, 0 ≤ Cd(i; g) ≤ 1.

Let i∗ be a node which attains the highest degree centrality Cd(i∗; g) in g.
The degree centrality Cd(g) of network g is given by

Cd(g) =
∑n

i=1 [Cd(i∗; g)− Cd(i; g)]
maxg′∈G [

∑n
i=1 [Cd(i∗; g′)− Cd(i; g′)]]

. (6)

Since the minimum degree is 1 and the maximum degree is (n − 1), one can
easily see that the denominator of (6) is equal to (n−2)(n−1)

(n−1) , and hence

Cd(g) =
∑n

i=1 [Cd(i∗; g)− Cd(i; g)]
n− 2

.

Note that Cd(g) = 1 if g is a star, and Cd(g) = 0 if g is a regular network.

3.2 Closeness Centrality

The closeness centrality is based on proximity and measures how easily a node
can reach other nodes in a network. It is a kind of a measure of the node’s
independence or efficiency.

The closeness centrality Cc(i; g) of node i in network g is defined as

Cc(i; g) =
n− 1∑

j �=i d(i, j; g)
(7)

where d(i, j; g) is the geodesic distance between i and j as defined in (4), and
(n − 1) is the minimum possible total distance from i to all other nodes in g.
There is a whole family of closeness measures [44] based on different conventions
for dealing with non-connected networks and other possible measures of distance.

Let i∗ be a node which attains the highest closeness centrality Cc(i∗; g) in g.
The closeness centrality Cc(g) of network g is given by

Cc(g) =
∑n

i=1 [Cc(i∗; g)− Cc(i; g)]
maxg′∈G [

∑n
i=1 [Cc(i∗; g′)− Cc(i; g′)]]

. (8)

One can show (see e.g. [19]) that

Cc(g) =
∑n

i=1 [Cc(i∗; g)− Cc(i; g)]
(n− 2)(n− 1)/(2n− 3)

.

Note that Cc(g) = 1 if g is a star, and Cc(g) = 0 if g is a cycle. Obviously,
although Cd(g) = Cc(g) for g being a star or a cycle, in general Cd(g) �= Cc(g).

3.3 Betweenness Centrality

The betweenness centrality (introduced in [18]) is based on how important a node
is in terms of connecting other nodes. It is useful as an index of the potential of
a node for control of communication.
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By Pi(kj) and P (kj) we denote the number of geodesics between k and
j containing i /∈ {k, j}, and the total number of geodesics between k and j,
respectively.

The betweenness centrality Cb(i; g) of node i in network g is defined as

Cb(i; g) =
2

(n− 1)(n− 2)

∑
k �=j:i/∈{k,j}

Pi(kj)
P (kj)

. (9)

Note that Pi(kj)
P (kj) is the probability that i falls on a randomly selected geodesic

linking k and j, and the number of all pairs of nodes (different from i) is equal
to
(
n−1

2

)
= (n−1)(n−2)

2 . In particular, if g is a star, then Cb(i; g) = 1 for i being
the center and Cb(i; g) = 0 otherwise.

Let i∗ be a node which attains the highest betweenness centrality Cb(i∗; g) in
g. The betweenness centrality Cb(g) of network g is given by

Cb(g) =
∑n

i=1 [Cb(i∗; g)− Cb(i; g)]
n− 1

. (10)

3.4 Prestige- and Eigenvector-Related Centrality Measures

There exist other measures of centrality that take into account a richer range
of direct and indirect influences in networks. The measures developed e.g. in
[10,11,37] are based on the idea that a node’s importance is determined by the
importance of its neighbors.

The Katz prestige PK
i (g) of node i in g is defined as

PK
i (g) =

∑
j �=i

gij

PK
j (g)
dj(g)

. (11)

This means that the Katz prestige of i is equal to the sum of the prestiges of
i’s neighbors divided by their respective degrees. In other words, the measure
is corrected by the number of neighbors of node j (if j has more relationships,
then i gets less prestige from being connected to j). Note that this definition is
self-referential. (11) can be rewritten as

PK(g) = G′PK(g)

(I−G′)PK(g) = 0

where PK(g) is the n× 1 vector of PK
i (g), i ∈ N , I is the n×n identity matrix,

and G′ = [g′ij ] is the normalized adjacency matrix with g′ij = gij

dj(g) . In other
words, calculating the Katz prestige is reduced to finding the unit eigenvector
of G′. Obviously, PK(g) is determined up to a scale factor.
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Katz [37] introduced another measure of prestige, where the prestige of a node
is a weighted sum of the walks that emanate from it, and a walk of length k is
worth ak, for some parameter 0 < a < 1. The second prestige measure of Katz
is given by

PK2(g, a) = (I− aG)−1aG1 (12)

where 1 is the n× 1 vector of 1s, and a is sufficiently small.
The Bonacich centrality is an extension of the second prestige measure of Katz

and is expressed by
CB(g, a, b) = (I− bG)−1aG1 (13)

where a > 0 and b > 0 are scalars, and b is sufficiently small.

3.5 Categorizing Centrality Measures by a Topology of Network
Flows

The relation between the major centrality measures and different flow processes
is extensively discussed in [12]. Centrality measures make implicit assumptions
about network flow, and hence they are matched to the kinds of flows they are
appropriate for.

The typology of network flows is based on two dimensions:

– the trajectory dimension - kinds of trajectories that traffic may follow: geode-
sics, paths, trails, walks;

– the transmission dimension - methods of spread: parallel (simultaneous) du-
plication, serial (once at a time) duplication, transfer.

Table 1 classifies different kinds of traffic based on these two dimensions.

Table 1. Topology of flow processes (see [12])

parallel duplication serial duplication transfer
geodesics - mitotic reproduction package delivery

paths internet name-server viral infection mooch
trails e-mail broadcast gossip used goods
walks attitude influencing emotional support money exchange

Table 2 classifies the major centrality measures presented above, based on flow
processes.

Since each centrality measure is appropriate for particular kinds of flows,
applying these measures to other flow processes that they are not designed for
leads to wrong results. For example, one can use the closeness and betweenness
centrality measures for package delivery, but it is inappropriate to use them
to indicate who will receive news early in a gossip. For a discussion on this
classification, see [12].
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Table 2. Flow processes and major centrality measures (see [12])

parallel duplication serial duplication transfer
geodesics closeness closeness

betweenness
paths closeness, degree
trails closeness, degree
walks closeness, degree

Bonacich eigenvector
Katz prestige

4 The Model of Influence in a Social Network

In this section we present a framework of influence originally introduced in [33]
and refined in [25,39].

4.1 The Hoede-Bakker Index

We consider a social network with a set of agents (players, actors, voters) denoted
by N := {1, 2, ..., n} who are to make a certain acceptance-rejection decision
on a specific proposal. Each agent k ∈ N has an inclination ik either to say
‘yes’ (denoted by +1) or ‘no’ (denoted by −1). Let i = (i1, i2, ..., in) denote an
inclination vector and I := {−1,+1}n be the set of all inclination vectors.

It is assumed that agents may influence each other, and due to the influences,
the final decision of an agent may be different from his original inclination.
Formally, each inclination vector i ∈ I is transformed into a decision vector
Bi = ((Bi)1, (Bi)2, ..., (Bi)n), where B : I → I, i �→ Bi is the influence function.
Let B(I) be the set of all decision vectors under B and let B denote the set of
all influence functions.

We also assume a group decision function gd : B(I) → {−1,+1}, having the
value +1 if the group decision is ‘yes’, and the value −1 if the group decision is
‘no’. The set of all group decision functions will be denoted by G.

In [39] we introduce the following generalized index. Given B ∈ B and gd ∈ G,
the generalized Hoede-Bakker index of player k ∈ N is defined as

GHBk(B, gd) :=
|I++

k | − |I+−
k |+ |I−−

k | − |I−+
k |

2n
(14)

where
I++
k := {i ∈ I | ik = +1 ∧ gd(Bi) = +1}
I+−
k := {i ∈ I | ik = +1 ∧ gd(Bi) = −1}
I−−
k := {i ∈ I | ik = −1 ∧ gd(Bi) = −1}
I−+
k := {i ∈ I | ik = −1 ∧ gd(Bi) = +1}.

Obviously all the four sets depend on (B, gd), which has been skipped for con-
venience of notation.
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Note that the generalized Hoede-Bakker index, although defined in the influ-
ence setup, does not measure any influence. As remarked in [39] the GHB index
is a kind of ‘net Success’, i.e., ‘Success - Failure’.

4.2 The Influence Indices

Measures of influence, the so called influence indices, are defined in [25]. Below
we recall these definitions.

Concerning notation, for convenience we omit braces for sets, e.g., N \ {j}
is written as N \ j. For any S ⊆ N , |S| ≥ 2, we introduce the set IS of all
inclination vectors in which all members of S have the same inclination

IS := {i ∈ I | ∀k, j ∈ S [ik = ij]} (15)

and Ik := I, for any k ∈ N . For i ∈ IS we denote by iS the value ik for some
k ∈ S. Let for each S ⊆ N and j ∈ N \ S, IS→j denote the set of all inclination
vectors of potential influence of S on j, that is,

IS→j := {i ∈ IS | ij = −iS}. (16)

Moreover, for each B ∈ B, let I∗S→j(B) denote the set of all inclination vectors
of observed influence of S on j under B ∈ B, that is,

I∗S→j(B) := {i ∈ IS→j | (Bi)j = iS}. (17)

In [25] we introduce the weighted influence indices, whose main idea is to
give a relative importance to the different inclination vectors. For each S ⊆ N ,
j ∈ N \S and i ∈ IS , we introduce a weight αS→j

i ∈ [0, 1] of influence of coalition
S on j ∈ N \ S under the inclination vector i ∈ IS . There is no normalization
on the weights, but we assume that for each S ⊆ N and j ∈ N \ S, there exists
i ∈ IS→j such that αS→j

i > 0.
Given B ∈ B, for each S ⊆ N , j ∈ N \ S, the weighted influence index of

coalition S on player j is defined as

dα(B,S → j) :=

∑
i∈I∗

S→j(B) α
S→j
i∑

i∈IS→j
αS→j

i

∈ [0, 1]. (18)

It is the (weighted) proportion of situations of observed influence among all situ-
ations of potential influence. Two particular ways of weighting lead to the possi-
bility influence index d(B,S → j) and the certainty influence index d(B,S → j).
We have for each S ⊆ N , j ∈ N \ S and B ∈ B

d(B,S → j) = dα(B,S → j), where αS→j
i = 1 for each i ∈ IS

and
d(B,S → j) = dα(B,S → j), where for each i ∈ IS
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αS→j
i =

{
1, if ∀p /∈ S ∪ j, ip = −iS
0, otherwise.

Consequently, we have

d(B,S → j) =
|I∗S→j(B)|
|IS→j | ∈ [0, 1] (19)

d(B,S → j) =
|{i ∈ I∗S→j(B) | ∀p /∈ S [ip = −iS]}|

2
∈ {0, 1

2
, 1}. (20)

The possibility influence index gives therefore the fraction of potential influence
situations that happen to be situations of observed influence indeed. The cer-
tainty influence index measures also such a fraction, except that it focuses only
on situations in which the coalition in question is the only one which influences
the agent.

4.3 Followers and Kernel

The key concept of the influence framework is the concept of follower of a given
coalition, that is, an agent who always follows the inclination of that coalition
when all members of the coalition have the same inclination. The follower func-
tion of B ∈ B is a mapping FB : 2N → 2N defined as

FB(S) := {k ∈ N | ∀i ∈ IS , (Bi)k = iS}, ∀S ⊆ N,S �= ∅ (21)

and FB(∅) := ∅. We say that FB(S) is the set of followers of S under B. The
set of all follower functions is denoted by F . In [25] it is shown that

dα(B,S → j) = 1, ∀j ∈ FB(S) \ S.
Another important concept of the influence model is the concept of kernel of

an influence function, which is the set of ‘truly’ influential coalitions. Assume
FB is not identical to the empty set. The kernel of B is defined as

K(B) := {S ∈ 2N | FB(S) �= ∅, and S′ ⊂ S ⇒ FB(S′) = ∅}. (22)

In [25] we also define some specific influence functions and study their prop-
erties, e.g., the sets of followers and kernels of these functions.

4.4 Further Research on Influence

The model of influence presented above, i.e., the model of initial inclinations and
final decisions, is studied extensively in several other works:

– In [26] we generalize the basic yes-no model of influence to a framework in
which every agent has a totally ordered set of possible actions, the same
for each player, and he has an inclination to choose a particular action. We
investigate the generalized influence indices, different influence functions,
and other tools related to the influence in the multi-choice model.
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– In [28] we consider the influence model with a continuum of actions. In
this generalized framework we introduce and study measures of positive and
negative influence and other tools for analyzing influence. Also the set of
fixed points under a given influence function is analyzed. Furthermore, we
study linear influence functions.

– The results presented in [24] concern a comparison of the influence model
with the framework of command games [34,35]. We show that the framework
of influence is more general than the framework of the command games. In
particular, we define several influence functions which capture the command
structure. For some influence functions we define the equivalent command
games.

– In [30] we establish the exact relations between the key concepts of the
influence model and the framework of command games. We deliver sufficient
and necessary conditions for a function to be a follower function, and describe
the structure of the set of all influence functions that lead to a given follower
function. We also deliver sufficient and necessary conditions for a function to
be a command function, and describe the minimal sets generating a normal
command game. In addition, we study the relation between command games
and influence functions.

– We also study the dynamics of influence. In [29] the yes-no model with a
single step of mutual influence is generalized to a framework with iterated
influence. We analyze the decision process in which the mutual influence
does not stop after one step but iterates, and we study the convergence
of an influence function. In particular, we investigate stochastic influence
functions and apply the theory of Markov chains to the analysis of such
functions. Moreover, we propose a general framework of influence based on
aggregation functions.

5 Relation-Algebraic Preliminaries

In this section we present the basics of relation algebra.
If X and Y are sets, then a subset R of the Cartesian product X × Y is

called a (binary) relation with domain X and range Y . We denote the set (also
called type) of all relations with domain X and range Y by [X↔Y ] and write
R : X↔Y instead of R ∈ [X↔Y ]. If X and Y are finite sets of size m and n
respectively, then we may consider a relation R : X↔Y as a Boolean matrix
with m rows and n columns and entries from {0, 1}. The Boolean matrix inter-
pretation of relations is used as one of the graphical representations of relations
within the RelView tool. We can speak about rows, columns and entries of a
relation and write Rx,y instead of 〈x, y〉 ∈ R or xR y.

The basic operations on relations are RT (transposition, conversion), R (com-
plement, negation), R ∪ S (union, join), R ∩ S (intersection, meet), RS (compo-
sition, multiplication), and the special relations O (empty relation), L (universal
relation), and I (identity relation). If R is included in S we write R ⊆ S, and
equality of R and S is denoted as R = S.



Social Networks: Prestige, Centrality, and Influence 33

A membership relation E : X↔ 2X relates x ∈ X and Y ∈ 2X iff x ∈ Y .

The expression syq(R,S) := RT S ∩ R
T
S is by definition the symmetric

quotient syq(R,S) : Y ↔Z of two relations R : X↔Y and S : X↔Z. Many
properties of this construct can be found e.g. in [40]. In particular, for all y ∈ Y
and z ∈ Z the relationship syq(R,S)y,z holds iff for all x ∈ X the equivalence
Rx,y ↔ Sx,z is true, i.e., if the y-column of R and the z-column of S coincide.

Given a Cartesian product X×Y of two sets X and Y , there are two projection
functions which decompose a pair u = (u1, u2) into its first component u1 and its
second component u2. For a relation-algebraic approach it is useful to consider
the corresponding projection relations π : X×Y ↔X and ρ : X×Y ↔Y such
that for all pairs u ∈ X × Y and elements x ∈ X and y ∈ Y we have πu,x iff
u1 = x and ρu,y iff u2 = y.

Projection relations enable us to describe the well-known pairing operation
of functional programming relation-algebraically as follows: For relations R :
Z↔X and S : Z↔Y we define their pairing (frequently also called fork or
tupling) [R,S] : Z↔X×Y by [R,S] := RπT ∩SρT. Then for all z ∈ Z and pairs
u = (u1, u2) ∈ X×Y a simple reflection shows that [R,S]z,u iff Rz,u1 and Sz,u2 .

Column vectors are relations v with v = vL. As for a column vector the range
is irrelevant, we consider only vectors v : X↔1 with a specific singleton set
1 := {⊥} as range. A column vector v : X↔1 can be considered as a Boolean
matrix with exactly one column, i.e., as a Boolean column vector, and it describes
the subset {x ∈ X | vx,⊥} of its domain X . If v : X↔1 describes the subset S
of X in the sense above, then the injective mapping inj(v) : S↔X is obtained
from the identity relation I : X↔X by removing all rows which correspond to
a 0-entry in v. Hence, we have inj(v)j,k iff j = k.

A non-empty column vector v is a column point if vvT ⊆ I, i.e., it is injective
in the relational sense. In the Boolean matrix model, a column point v : X↔1
is a Boolean column vector in which exactly one entry is 1.

Vectors also allow to formalize the notions of y-columns and x-rows. For a
relation R : X↔Y and y ∈ Y , the column vector v : X↔1 equals the y-column
of R if for all x ∈ X we have vx,⊥ iff Rx,y.

Row vectors are relations defined as the transposes of column vectors. We
only need row vectors v of the specific type [1↔Y ] that correspond to Boolean
row vectors. Then v describes the subset {y ∈ Y | v⊥,y} of its range Y .

If v : 2M ↔1 represents the subset S of 2M and the size of the domain of
w : W↔1 is at most |M |+ 1, then for all X ∈ 2M we have cardfilter(v, w)X,⊥
iff X ∈ S and |X | < |W |. Hence, the complement of cardfilter(L, w) represents
the subset of 2M whose elements have at least size |W |.

6 Applying Relation Algebra to the Model of Influence

In this section we deal with the relation-algebraic approach to the model of
influence in a social network. We recall some selected results presented in [7].
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6.1 Modeling the Inclination and Decision Vectors

For modeling inclination vectors and decision vectors, we use column vectors.
For modeling subsets of the sets I and B(I), we use row vectors .

We assume a social network with a set N of players. Let D : N↔N be the
relation of the dependency graph of the network. This means that there is an
arc from an agent j ∈ N to an agent k ∈ N iff Dj,k holds. Then the set of the
dependent agents is described relation-algebraically by the column vector

depend(D) := DTL (23)

of type [N↔1], where L has type [N↔1] as well.
The set I of all inclination vectors can immediately be modeled by the columns

of the membership relation E : N↔ 2N . Hence, we regard inclination vectors and
the corresponding decision vectors as relational column vectors i : N↔1 and
Bi : N↔1, respectively.

We develop a column-wise enumeration of the set B(I) of decision vectors
with relation-algebraic means. The influence function B is given by the rule
‘following only unanimous trend-setters’, which means that an agent follows his
trend setters only if they all have the same inclination. In [7] we prove that:

Theorem 6.1. For each inclination vector i : N↔1, the decision vector Bi :
N↔1 under the rule ‘following only unanimous trend-setters’ is given by

Bi = (i ∩ ( d ∪ (d ∩DTi ∩DT i ))) ∪ (d ∩ DT i ),

where d := depend(D).

The relation-algebraic expression (i ∩ ( d ∪ (d ∩ DTi ∩ DT i ))) ∪ (d ∩ DT i ) is
built from i using unions, intersections, complements and left-compositions with
constants only. If we replace the column vector i : N↔1 by the membership
relation E : N↔ 2N that column-wisely enumerates all inclination vectors and
adapt simultaneously the type [N↔1] of d to the type [N↔ 2N ] of E by a
right-composition with the universal row vector L : 1↔ 2N , we get the relation

Dvec(D) := (E ∩ ( dL ∪ (dL ∩DTE ∩DT E ))) ∪ (dL ∩ DT E ) (24)

of type [N↔ 2N ] that column-wisely enumerates the set B(I) of decision vectors.

6.2 Computing the Group Decisions

Next, we deliver a relation-algebraic specification of the group decisions under
majority as decision rule via a row vector.

We assume that a row vector m : 1↔ 2N is available such that for all X ∈ 2N

we have m⊥,X iff |X | ≥ [ |N |
2 ] + 1. In RelView such a vector can be easily

obtained with the help of the base operation cardfilter as

m := cardfilter(L, w)
T
, (25)



Social Networks: Prestige, Centrality, and Influence 35

where the first argument L : 2N ↔1 describes the entire powerset 2N , and the
second argument w : W ↔1 determines the threshold for majority by its length,
i.e., fulfills |W | = [ |N |

2 ] + 1. In [7] we show the following result:

Theorem 6.2. Let, based on the specifications (24) and (25), the row vector
gdv (D) of type [1↔ 2N ] be defined by

gdv (D) := m syq(E,Dvec(D)),

where E : N↔ 2N is the membership relation. Then we have for all X ∈ 2N : If
the decision vector Bi : N↔1 equals the X-column of Dvec(D), then gdv(D)⊥,X

holds iff the number of 1-entries in Bi is at least [ |N |
2 ] + 1.

6.3 Computing the Hoede-Bakker Index

We assume that the player k ∈ N , on which the sets I++
k , I+−

k , I−+
k and I−−

k

depend, is described by a column point p : N↔1 in the relational sense. As the
definitions of the sets use the values gd(Bi) for i ∈ I, we assume that the group
decision row vector g := gdv (D) is at hand. In [7] we prove the following:

Theorem 6.3. Let, depending on the column point p : N↔ 1 and the row vector
g : 1↔ 2N , the four vectors ipp(p, g), ipm(p, g), imp(p, g) and imm(p, g) of type
[1↔ 2N ] be defined as follows, where E : N↔ 2N is the membership relation:

ipp(p, g) := pTE ∩ g ipm(p, g) := pTE ∩ g

imp(p, g) := pT E ∩ g imm(p, g) := pT E ∩ g

Then we have for all X ∈ 2N : If the X-column of E equals the inclination vector
i : N↔ 1, then we have that ipp(p, g)⊥,X holds iff i ∈ I++

k , ipm(p, g)⊥,X holds
iff i ∈ I+−

k , imp(p, g)⊥,X holds iff i ∈ I−+
k , and imm(p, g)⊥,X holds iff i ∈ I−−

k .

In other words, the row vector ipp(p, g) precisely designates those columns of
the membership relation E which belong to the set I++

k , and the remaining three
row vectors do the same for the sets I+−

k , I−+
k and I−−

k , respectively.

6.4 Computing the Influence Indices

We assume a coalition S of agents to be described by a column vector s : N↔1,
and an agent j ∈ N to be described by a column point p : N↔1. We compute
the possibility influence index of S on j. Since it is defined by means of the sizes
of the sets IS→j and I∗S→j(B), we need to describe these sets within relation
algebra. IS→j and I∗S→j(B) are subsets of IS . In [7] the following is shown:

Theorem 6.4. Assume s : N↔ 1 to be a description of the coalition S ⊆ N
and the row vector is(s) of type [1↔ 2N ] to be defined as

is(s) := [sT, sT] (πE ∪ ρE) ∩ ( ρE ∪ πE) ,
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where E : N↔ 2N is the membership relation, and π : N×N↔N and ρ :
N×N↔N are the projection relations. Then we have for all X ∈ 2N : If the
X-column of E equals the inclination vector i : N↔1, then is(s)⊥,X holds iff
i ∈ IS .

Hence, the row vector is(s) precisely designates those columns of the membership
relation E which belong to the set IS . Next, we deliver the relation-algebraic
specification of the set IS→j , where j ∈ N is described by the column point
p : N↔1. In [7] we prove the following theorem:

Theorem 6.5. Assume s : N↔1 describes the coalition S ⊆ N , the column
point p : N↔ 1 describes agent j ∈ N , the column point q ⊆ s describes agent
k ∈ S, and the row vector potinf (s, p) of type [1↔ 2N ] is defined by

potinf (s, p) := ((r ∪ r′) ∩ r ∩ r′ ) inj(is(s)T),

where r := pTE inj(is(s)T)
T

and r′ := qTE inj(is(s)T)
T

with E : N↔ 2N as
membership relation. Then we have for all X ∈ 2N : If the X-column of E equals
the inclination vector i : N↔ 1, then potinf (s, p)⊥,X holds iff i ∈ IS→j .

Hence, we relation-algebraically specify a row vector that precisely designates
those columns of E which are inclination vectors of potential influence of S on j.

To obtain a row vector inf (s, p,D) of type [1↔ 2N ] that precisely designates
those columns of the membership relation E : N↔ 2N which are inclination
vectors of influence of S on j, i.e., members of I∗S→j(B), we use the equation

I∗S→j(B) = IS→j ∩ {i ∈ IS | (Bi)j = iS}.
The relation-algebraic specification of I∗S→j(B) is given by the row vector

inf (s, p,D) := potinf (s, p) ∩ (r ∪ r′) ∩ r ∩ r′ inj(is(s)T) (26)

with r and r′ given by r := pTDvec(D) inj(is(s)T)
T

and r′ := qTE inj(is(s)T)
T

.

6.5 Computing the Sets of Followers

For modeling sets of followers we use column vectors. The relations R and Q
column-wisely enumerate IS and B(IS), respectively, and the column point q is
used for specifying for i ∈ IS the specific Boolean value iS . In [7] we show that:

Theorem 6.6. Assume s : N↔1 to describe the coalition S ⊆ N , and the
column point q ⊆ s to describe some player k ∈ S. Furthermore, let E : N↔ 2N

be the membership relation. If the column vector follow (D, s) of type [N↔1] is
defined as

follow (D, s) := syq(QT, RTq)

with relations R := E inj(is(s)T)
T

and Q := Dvec(D) inj(is(s)T)
T

, then for all
j ∈ N we have follow (D, s)j,⊥ iff j ∈ FB(S).
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7 Concluding Remarks

We have presented different measures of centrality that capture complementary
aspects of a node’s position in a network. As remarked in [19], the measures based
on degree, closeness, and betweenness imply different “theories” of how central-
ity might affect group processes: centrality as activity, as independence, and as
control. Despite this fact, all centrality measures should have some features in
common, e.g., they should rank highest the most central node. As concluded in
[19] all the three measures of network centrality agree in assigning the maxi-
mum centrality score to the star, and the minimum centrality score to a cycle
and complete networks. Between these extremes, the three measures of network
centrality may differ significantly in their rankings of networks. In a given ap-
plication, one centrality measure or a combination of some measures might be
more appropriate than another measure or a combination of measures.

Many centrality measures have not been discussed in this paper. A very in-
teresting work is e.g., [1], where the intercentrality of a node in a network is
investigated. Roughly speaking, it is the sum of the node’s Bonacich centrality
and its contribution to Bonacich centrality of other nodes. Apart from several
sociological contributions to measuring centrality in social networks, also a game
theoretic approach to centrality concepts is presented in the literature. For ex-
ample, in [31] the authors propose a new definition of degree of centrality based
on some extension of the Banzhaf index [2]. Also many works by Van den Brink
and his co-authors deliver game theoretic measures of centrality in networks; see
e.g. [32,41,42,43].

Despite the existence of numerous centrality measures, as remarked in [12]
most of the sociologically interesting processes are not covered by the major
measures. For instance, there are no measures appropriate for infection and
gossip processes. It seems therefore important to investigate centrality measures
that could fill that gap.

It has been proved by numerous works (see e.g. [5,6,7,8]) that the relation-
algebraic approach to game theoretic problems is very appropriate and useful.
There are still many more possibilities for combining relation algebra and Rel-
View to investigate and solve problems from Game Theory and Social Choice
Theory. One of them might be an application of the tools in question to some
centrality measures.
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Abstract. Tableau-based deduction is an active and well-studied area
of several branches of logic and automated reasoning. In this paper we
discuss the challenge of automatically generating tableau calculi from
the semantic specification of logics, while guaranteeing soundness, com-
pleteness and termination, when possible.

1 Introduction

Tableau-based deduction has a long tradition in several branches of logic and
automated reasoning, with the history going to the nineteen sixties, and very
early work in the nineteen thirties. Tableau calculi are now available for all kinds
of logics, from classical logic and first-order logic to non-classical logics including
intuitionistic logic, modal logics and description logic, and second-order logic.
Tableau calculi come in many flavours, from ground semantic Smullyan-type
calculi, to hypertableau, free-variable tableau calculi and disconnection tableau
calculi. They are being used in many applications, from multi-agent systems, on-
tology reasoning and the semantic web, to diagnosis, testing and non-monotonic
reasoning. And many implemented tableau provers are available.

Despite the multitudes of ways tableau calculi can be defined, even for the
same class of logics, the body of work in the literature suggests that it is possible
to develop tableau calculi in a systematic way for large classes of logics. This has
been shown by studies such as [16,12,20] for modal logics, and [2] for intuitionistic
logics. From overview papers such as [15] for modal logics, and [3] for description
logics, it is apparent that, using the same techniques, tableau calculi can be
systematically developed for large classes of logics.

The question arises if these techniques can be used to develop tableau calculi
automatically from the specification of logics. The problem of finding sound
and complete axiomatisations for arbitrary logics is known to be undecidable;
so is finding sound and complete tableau calculi, or other kinds of deduction
calculi. The problem of determining the decidability of a logic is also inherently
undecidable. Even developing terminating deduction calculi for logics known to
be decidable is undecidable. This means there can be no general solution to the
problem of automatically generating sound, complete and terminating tableau
calculi, even where it is possible.
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For certain classes of logics it is however easy to write down sets of sound
and complete tableau rules. In [22] I have shown that it is possible to synthesise
tableau calculi for modal logics by translation to first-order clauses and refine-
ment of first-order resolution.

It is also possible to synthesise tableau calculi directly. In our most recent
work we have introduced a general framework for synthesising tableau calculi
directly from the specification of a logic [25]. The framework incorporates a
powerful blocking mechanism recently introduced for deciding expressive de-
scription logics [23]. This mechanism can be used in conjunction with other
logics, including full first-order logic [5,6], and can be shown to unify standard
blocking approaches. Although not many case studies have been undertaken yet,
we believe this framework can accommodate the generation of tableau calculi
for most known modal logics, description logics and relational logics, and many
non-classical logics. In contrast to [22], the generated calculi are based only on
standard tableau-style elimination rules.

This paper is an overview of the tableau synthesis framework introduced
in [25,26]. In brief, the tableau synthesis method works as follows. The user
defines the formal semantics of the given logic in a many-sorted first-order lan-
guage. The semantic specification is then transformed into tableau rules. The
tableau synthesis process consists of three stages: (i) Automated synthesis of a
tableau calculus from the specification of the semantics of a logic or logical theory
(Section 2), (ii) refining the rules (Section 3), and (iii) adding blocking to ensure
termination, for decidable logics (Section 4). These stages are described in the
next three sections. Cases where the framework has been applied are discussed
in Section 5.

2 Tableau Calculus Synthesis

The first stage of the tableau synthesis framework is the rule synthesis stage. In
this stage an initial set of tableau rules is generated from the specification of the
semantics of a logic that must be specified by the user.

There are two high-level specification languages: the object language for defin-
ing the syntax of the logic and the meta-language for specifying the semantics of
the logic. The object language L is a many-sorted propositional language expres-
sive enough to define the syntax of modal logics, description logics, relational
logics and other non-classical logics.

The meta-language FO(L) is an extension of the object language L in which
formulae of the logic are represented as terms and connectives as functions. The
meta-language is a many-sorted language with a designated domain sort and
designated domain symbols for encoding the semantics of the connectives of
the logic and encoding properties of characteristic interpretations. The meta-
language has the full expressivity of many-sorted first-order logic with function
symbols and equality.
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Let E denote any formula of the object language L, and let φ+ and φ− denote
any formulae of the meta-language FO(L). We say a semantic specification S is
normalised, if it consists of three types of sentences:

∀x (ν(E(p), x) → φ+(p, x))(S+)

∀x (φ−(p, x) → ν(E(p), x))(S−)

Any FO(L)-sentence without occurrences of non-atomic L-formulae.(Sb)

Here, ν denotes the ‘holds’ predicate. x denotes a sequence of n variables ranging
over the domain sort, where E is a formula (with free variables p) interpreted
as an n-ary relation. p denotes a sequence of m propositional variables of the
object language.

The idea is that S+ and S− sentences define the semantics of positive and
negative occurrences of formulae E—typically connectives of L. For example,
for defining the semantics of the modal box operator, E(p) would be �p, and
φ+(p, x) and φ−(p, x) might be ∀y(R(x, y) → ν(p, y)

)
, where R denotes the

accessibility relation in the underlying semantics. Intuitively, this specifies that
for any modal formula p, �p is true in a state x iff p is true in every R-successor
of x. In general, φ+(p, x) and φ−(p, x) do not need to coincide.

Any additional properties, such as frame correspondence properties of the
accessibility relation in modal logic, can be specified as type Sb sentences. For
example, that R is a transitive relation can be specified by the formula

∀x∀y∀z ((R(x, y) ∧ R(y, z))→ R(x, z)
)
.

A specification is transformed into tableau rules by first transforming each
sentence into Skolemised implicational form and then rewriting it as a rule. The
three types of sentences are transformed respectively to:

ν(E(p), x) →
J∨

j=1

Kj∧
k=1

ψjk(1)

¬ν(E(p), x) →
J∨

j=1

Kj∧
k=1

ψjk(2)

J∨
j=1

Kj∧
k=1

ψjk.(3)

The ψjk denote literals (with free variables p and x). These are then recast as
these tableau rules:

ν(E(p), x)
ψ11, . . . , ψ1K1 | · · · | ψJ1, . . . , ψJKJ

(ρ+)

¬ν(E(p), x)
ψ11, . . . , ψ1K1 | · · · | ψJ1, . . . , ψJKJ

(ρ−)

ψ11, . . . , ψ1K1 | · · · | ψJ1, . . . , ψJKJ

.(ρb)
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The antecedents of the implications (1) and (2) have respectively become the
premises of the ρ+ and ρ− rules. The succedents of the implications are respec-
tively the disjunctive normal forms of the right hand and left hand sides of the
S+ and S− sentences. These have become the conclusions of the ρ+ and ρ− rules.
The ρ+ rule is the decomposition rule for positive occurrences of formulae of the
form E(p) and the ρ− rule is the decomposition rule for negative occurrences of
formulae of the form E(p).

The Sb sentences (3) are first transformed into Skolemised disjunctive normal
form and then reformulated as ρb rules. The ρb rules are referred to as theory
rules.

For example, the generated decomposition rules for the modal box operator
are

ν(�p, x)
¬R(x, y) | ν(p, y)

and
¬ν(�p, x)

R(x, f(p, x)), ¬ν(p, f(p, x))
.(4)

f(p, x) in the right rule is the Skolem term introduced during the transformation
to Skolemised implicational form for the quantifier ∃y of the semantic definition
of �. Because of the way that Skolemisation is defined, f(p, x) is uniquely asso-
ciated with �, p and x. The intuition of the right rule is that for each formula of
the form ¬ν(�ψ, s) on the current branch a domain element f(ψ, s) is created
and the appropriate instantiations of the conclusions, namely R(s, f(ψ, s)) and
¬ν(ψ, f(ψ, s)) are added to the current branch. An alternative to using Skolem
terms is to introduce fresh constants, uniquely associated with the premise, in
term-introducing rules.

The transitivity property of R is transformed to the rule

¬R(x, y) | ¬R(y, z) | R(x, z)
.

In addition, the generated calculus includes default closure rules, one for each
L sort and each interpreted predicate symbol. These are the closure rules added
for modal logics.

ν(p, x), ¬ν(p, x)
⊥

R(x, y), ¬R(x, y)
⊥(5)

Let SL denote the semantic specification of a logic L. We denote the tableau
calculus generated from SL by TL. The generated calculi are Smullyan type
tableau calculi with either two premises (in the case of closure rules), one premise
(in the case of positive and negative decomposition rules) or no premises (in the
case of theory rules). The rules operate on ground formulae of the form (¬)ν(ψ, s)
or literals where the predicate symbol are interpreted symbols, such as R(s, t)
and ¬R(s, t) in the case of modal logic.

A tableau derivation, or tableau, for a calculus TL is a finitely branching,
ordered tree whose nodes are sets of ground formulae in the tableau language.
At the start, the tableau derivation is initialised with the set {ν(φ, a) | φ ∈ S},
where S is a set of L-formulae to be tested for satisfiability and a denotes a fresh
constant of the domain sort.
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In the inference process we take for granted that any rule is applied only once
to the same set of premises. This ensures that tableau derivations are strict. We
also take for granted that any variables occurring in the conclusions of a rule,
that do not occur in any of the premises of the rule, are instantiated only with
(ground) Skolem terms occurring on the current branch. In the left rule of (4), y is
an example of a variable that occurs in the conclusions but not in the premises
of the rule. Further, we assume that the rules are applied non-deterministically
in a tableau derivation.

Let TL(S) denote a complete tableau derivation built by applying the rules
of the calculus TL and starting with a set S of L-formulae as input. That is,
we assume that all branches in the tableau derivation are either closed or fully
expanded (in the limit).

We say a calculus TL is sound iff for every set S of formulae satisfiable in an
SL-model, any complete tableau derivation TL(S) is open. A calculus TL is said
to be complete iff for any SL-unsatisfiable set S of formulae there is a tableau
derivation TL(S) that is closed.
Theorem 1 ([25]). If SL is any normalised semantic specification of a logic L
then TL is sound.

If a normalised semantic specification satisfies certain well-definedness condi-
tions (for definitions see [25]) then the generated tableau calculus is also com-
plete.
Theorem 2 ([25]). If SL is any well-defined semantic specification of a logic
L then TL is complete.

Actually we prove that generated tableau calculi are constructively complete,
which is a slightly stronger property than completeness. It means that for ev-
ery open branch in a tableau there is a model, which reflects all the formulae
occurring on the branch [25].

3 Tableau Calculus Refinement

The second stage of the tableau calculus synthesis process involves refinement
of the generated rules, because the degree of branching in the generated rules is
higher than is necessary. What is exploited is that under certain conditions it is
possible to replace rules by rules with better properties.

One refinement modifies rules one-by-one by attempting to move formulae in
conclusion positions to premise positions and appropriate sign switching. This
replaces one premise or no premise rules by multiple premise rules, thereby
constraining rule application. For example, rule refinement of the rules

ν(�p, x)
¬R(x, y) | ν(p, y)

and ¬R(x, y) | ¬R(y, z) | R(x, z)

leads to the replacement of these with the rules

ν(�p, x), R(x, y)
ν(p, y)

and
R(x, y), R(y, z)

R(x, z)
.
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When a certain general admissibility condition is satisfied (for details, see [25])
this kind of rule refinement preserves soundness and constructive completeness.
The condition is inductive and, hence, second-order. Automatic verification of
this condition is therefore not possible in general.

The condition can be proved in the two cases above, thus justifying the re-
finement. Replacing the disjunction rule

ν(¬(p ∧ q), x)
¬ν(p, x) | ¬ν(q, x)

by
ν(¬(p ∧ q), x), ν(p, x)

¬ν(q, x)

is however not justified in the framework without other changes to the calculus.
When there is enough expressivity in the language of the logic for capturing its

own semantics, the rules of the generated calculi can be reformulated without
the use of the ν predicate. For hybrid logics the refined calculus is similar to
semantic labelled tableau calculi with explicit accessibility relations.

If the last refinement is not possible, the calculi obtained can be viewed as
semantic tableau calculi operating on signed formulae.

4 Adding Blocking

The third stage of the tableau calculus synthesis process is attempting to ensure
termination. Obviously, such an attempt can only be successful if the logic of
interest is decidable. For some logics, for example, propositional logic and modal
logic K, the synthesised tableau calculi are already terminating, and no further
effort is needed. This is the exception rather than the norm.

A tableau calculus TL is terminating (for satisfiability) iff for every finite set
of concepts S every closed tableau TL(S) is finite and every open tableau TL(S)
has a finite open branch.

A standard way of turning ground semantic tableau methods into decision
procedures is to add blocking. The idea of blocking is to modify the tableau
inference process in such a way so that ideally finite models are found if they
exist. This can be done by reusing or identifying domain terms. Loop checking
mechanisms developed for modal logic, hybrid logic and description logic tableau
algorithms are typically based on comparing sets of formulae that hold for the
same domain terms [18,3,17,7,13]. They have been principally designed and used
for logics with some form of tree model property. Approaches based on system-
atically reusing domain terms have been used for minimal model generation for
classical logic [10,11]. This approach finds finite models when they exist. Another
possibility is using conjectured equality constraints between domain terms and
equality reasoning [19,5,23,8].

Any of these blocking approaches can be integrated into the generated tableau
calculi. Here, we discuss the integration of the unrestricted blocking mechanism
introduced in [23] into the framework. This approach is based on a blocking rule
and equality reasoning. An advantage of this form of blocking is that
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– it is generic and can be combined with most logics,
– it can be added to existing calculi with minimal intervention (and not only

tableau calculi),
– it can be restricted for particular purposes [19,5,6], for example, to simulate

the other blocking techniques [19],
– it can be used speculatively, and
– it can be used even for logics that are not decidable.

The idea of restricted and unrestricted blocking is that two terms on a branch
are identified, possibly restricted by certain effectively testable side conditions
being true. If this leads to a contradiction then this choice was not good and
needs to be undone. This can be realised by adding the following cut rule, called
unrestricted blocking rule, to a calculus.

x ≈ y | x �≈ y

As this rule adds equalities and inequalities to branches, equality reasoning
will need to be provided by the calculus. This means the calculus needs to be
extended, unless the calculus already makes provision for appropriate equality
reasoning. An easy solution is to extend the calculus with the standard equality
rules. In our framework, putting the standard equality axioms into the semantic
specification leads to the generation of standard equality rules.

Equality reasoning requires special care to keep the search space under control.
First, it is essential to prevent the same inferences being performed repeatedly
with equal terms. This can be prevented by restricting the application of the
rules in the calculus to one representative term in each equivalence class of
terms. Alternatively, it can be achieved by endowing the set of terms with a
well-founded ordering and limiting the application of all rules just to the terms
that are minimal under the ordering in any equivalence class. The ordering could
be the subterm ordering, or the order in which terms are introduced by term-
introducing rules (δ rules).

Because the rules operate on ground formulae, another possibility is to realise
equality reasoning via ordered rewriting [21]. This is how equality reasoning
for restricted and unrestricted blocking has been implemented in the MetTeL
prover [29,30] and the MSpass prover [6].

Regardless of how equality reasoning is realised it is crucial that tableau
derivations are constructed in a fair way. In general, this means that formu-
lae are selected fairly for rule application and also branches are selected fairly
during the derivation [26,21].

Let TL be a sound and constructively complete tableau calculus for a se-
mantic specification SL of a logic L. We have shown [24,27] that TL extended
with the unrestricted blocking mechanism is sound and constructively complete
for SL. Furthermore, the extended calculus is terminating for L, if the following
conditions both hold:

– There is a finite closure operator sub (defined on sets of formulae of the
language of L) such that TL is compatible with sub, that is, for every set S
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of formulae, all L-formulae occurring in a tableau derivation T (S) belong
to sub.

– L has the effective finite model property with respect to SL.

This implies that the extensions of the generated and refined tableau calculi with
unrestricted blocking are sound and (constructively) complete. Moreover, if it is
known that the given logic has the effective finite model property with respect
to a finite semantic specification then they are terminating as well.

5 Applying the Framework

Concrete applications of the tableau synthesis framework can be found in [25],
where propositional intuitionistic logic is considered as an example, and the long
version [26], where also the description logic SO is considered. The semantics
of propositional intuitionistic logic is not Boolean and it is restricted by a back-
ground theory. SO is the extension of the description logic ALC with singleton
concepts (nominals) and transitive roles, and is an analogue of the hybrid version
of the multi-modal logic K4. The tableau calculi produced for these logics after
refinement resemble those of existing calculi but the termination mechanism is
different.

In [4] we have applied the framework to develop a tableau-based algorithm for
testing the admissibility of modal rules. For this we needed to devise a tableau
calculus for a modal logic that has not been considered before.

By design the method can generate terminating tableau calculi for expres-
sive description logics such as ALBO [23] and ALBOid [26]. ALBO extends the
description logic ALC with the Boolean role operators, role inverse, and single-
ton concepts (nominals). ALBOid includes also role identity and is expressively
equivalent to the relational calculus [28] without relational composition or Peirce
logic (the logical version of Peirce algebras [9]) without relational composition.

6 Concluding Remarks

The tableau synthesis framework ensures that the generated tableau calculi are
sound and constructively complete for logics defined by well-defined semantic
specifications. Adding the unrestricted blocking mechanism produces a termi-
nating tableau calculus, whenever the logic is known to have the effective finite
model property.

One of the difficulties has been to design the framework in such a way that
the specification languages are not too complicated and over-burdening, while
at the same time covering as many logics as is possible. In many cases semantic
definitions found in the literature can be directly encoded in the specification
languages of the framework. In some cases some reformulation of the syntac-
tic and semantic definitions might be necessary, but because of the inherent
undecidability of deduction calculus synthesis, there is no hope that adequate
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reformulations can always be found. Nevertheless, we believe that the frame-
work is applicable to most known first-order definable modal, description and
relational logics. Non first-order definable logics such as propositional dynamic
logic are certainly beyond the scope of the framework as it is currently defined.

Our immediate goal is to implement the framework as a tableau calculus syn-
thesis tool. Given the semantic specification of a logic the tool will automatically
generate the corresponding rules and output them as a calculus. This tool could
then be combined with prover engineering platforms such as LoTREC [14] and
the Tableau Workbench [1] (possibly extended with unrestricted blocking) to
obtain implemented tableau provers. Our ultimate goal is to develop a tool for
automatically generating implemented tableau provers from logic specifications,
which I think is within the realm of current possibilities.
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Abstract. Perhaps the most influential result in social choice theory
is Arrow’s impossibility theorem, which states that a seemingly modest
set of desiderata cannot be satisfied when aggregating preferences [1].
While Arrow’s theorem might appear rather negative, it can also be
interpreted in a positive way by identifying what can be achieved in
preference aggregation.

In this talk, I present a number of variations of Arrow’s theorem–
such as those due to Mas-Colell and Sonnenschein [8] and Blau and Deb
[2]–in their choice-theoretic version. The critical condition in all these
theorems is the assumption of a rationalizing binary relation or equiva-
lent notions of choice-consistency. The bulk of my presentation contains
three escape routes from these results. The first one is to ignore consis-
tency with respect to a variable set of alternatives altogether and require
consistency with respect to a variable electorate instead. As Smith [12]
and Young [14] have famously shown, this essentially characterizes the
class of scoring rules, which contains plurality and Borda’s rule. For
the second escape route, we factorize choice-consistency into two parts,
contraction-consistency and expansions-consistency [11]. While even the
mildest dose of the former has severe consequences on the possibility of
choice, varying degrees of the latter characterize a number of appeal-
ing social choice functions, namely the top cycle, the uncovered set, and
the Banks set [3,9,4]. Finally, I suggest to redefine choice-consistency
by making reference to the set of chosen alternatives rather than indi-
vidual chosen alternatives [6]. It turns out that the resulting condition
is a weakening of transitive rationalizability and can be used to char-
acterize the minimal covering set and the bipartisan set. Based on a
two decades-old conjecture due to Schwartz [10], the tournament equi-
librium set can be characterized by the same condition or, alternatively,
by a weak expansion-consistency condition from the second escape route.
Whether Schwartz’s conjecture actually holds remains a challenging com-
binatorial problem as well as one of the enigmatic open problems of social
choice theory.

Throughout the presentation I will discuss the algorithmic aspects
of all considered social choice functions. While some of the mentioned
functions can be easily computed, other ones do not admit an efficient
algorithm unless P equals NP [13,5,7].
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Abstract. We present a new integration of relational and algebraic
methods in the Isabelle/HOL theorem proving environment. It consists
of a fine grained hierarchy of algebraic structures based on Isabelle’s type
classes and locales, and a repository of more than 800 facts obtained by
automated theorem proving. We demonstrate further benefits of Isabelle
for hypothesis learning, duality reasoning, theorem instantiation, and
reasoning across models and theories. Our work forms the basis for a
reference repository and a program development environment based on
algebraic methods. It can also be used by mathematicians for exploring
and integrating new variants.

1 Introduction

Kleene and relation algebras provide semantics for programs and a basis for
integrating logics for computing systems. Relational and algebraic reasoning is
at the core of popular program development methods for imperative, concur-
rent and functional programs. Algebraic approaches seem particularly useful for
modelling and analysing the information and control flow in computing sys-
tems. Specifications are often very compact, concise and generic in this setting;
proofs are based on first-order equational reasoning, hence calculational, and
often much shorter than set-theoretic ones. This makes such approaches very
suitable for automation. Applications in program development, however, may
require additional mechanisms for reasoning about data structures or data types
and higher-order features for fixed points or (co)recursion.

Interactive theorem proving (ITP) systems such as Isabelle/HOL [29] and
Coq [6], and special-purpose systems [1], have been used to implement Kleene
and relation algebras [32,21,30]. It has also been shown that automated theorem
proving (ATP) systems are quite successful at proving algebraic theorems at
textbook level [16,17] and able to support simple program analysis tasks [4].

The strengths and weaknesses of ITP and ATP are almost orthogonal: Apart
from supporting theory hierarchies and proof management, ITP systems offer
the expressiveness of higher-order logic for modelling and reasoning. But they
require considerable mathematical expertise and sophisticated tactics for feeding
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manual proofs into the tool. ATP systems, in contrast, have traditionally been
optimised towards proof search performance; even non-expert users can discharge
many calculational proof obligations fully automatically. But these tools are
typically limited to first-order logic, and proof management, hypothesis learning
and modular reasoning are usually not supported.

Currently, however, there are strong trends to make these two worlds converge.
Isabelle, in particular, is being transformed into a theorem proving environment
that combines higher-order modelling and reasoning with ATP systems, satisfi-
ability modulo theories (SMT) solvers, decision procedures and counterexample
generators. So does this make the best of both worlds available for the automated
engineering of relational and algebraic methods?

This paper comes to an overall very positive answer. It proposes Isabelle as a
way forward in engineering relational and algebraic methods. Algebraic theorem
proving is now perhaps just as easy with Isabelle as with ATP systems. Im-
portant additional benefits arise from Isabelle’s higher-order features and SMT
integration. Our main contributions are as follows.

We implement a theory hierarchy for relation and Kleene algebras using
Isabelle’s local specification facilities. This hierarchy includes many popular vari-
ants such as basic process algebras, probabilistic Kleene algebras, demonic refine-
ment algebras, omega algebras, Kleene algebras with (anti)domain and modal
Kleene algebras. Theorems are inherited across the hierarchy by subclass and
sublocale proofs, and the difference between reasoning in Kleene algebras and
relation algebras often vanishes.

We prove more than 800 facts in this setting, all of them by ATP using
Isabelle’s Sledgehammer tool [8]. It turns out that Sledgehammer is very good
at learning hypotheses for proofs. Since Isabelle reconstructs all proofs produced
by Sledgehammer’s external ATP systems with an internally verified tool, the
degree of automation is slightly lower than by standalone ATP, and a few difficult
theorems do not succeed by ATP alone in one full sweep. Nevertheless, most of
the basic facts attempted could be proved automatically in one single step.

We show that Isabelle’s higher-order features are very valuable for automated
theory engineering. Dualities can be formalised and used to obtain theorems for
free. Higher-order variables can be used for instantiating theorems, for instance,
from abstract Galois connections or conjugations. Set-theoretic specifications
of algebras with explicit carrier sets support mechanised reasoning in universal
algebra. By formally linking abstract algebras with concrete models, we obtain
a seamless transition between pointwise and pointfree reasoning.

These results suggest that our Isabelle/HOL formalisation has considerable
potential for turning relation and Kleene algebras into program development
and verification tools that are relatively lightweight yet offer a high degree of
automation. We propose it as the basis for a standardised repository for al-
gebraic methods from which further variants, a more extensive library of the-
orems and proofs, and more concrete program analysis environments can be
engineered.
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Beyond these technical contributions, another main purpose of this paper
is to serve as a tutorial introduction to the relational and algebraic methods
community.

2 Isabelle/HOL

Isabelle/HOL [29] is a popular ITP system based on higher-order logic. It has
recently mutated from a metalogical framework for specifying logics [31] into a
theorem proving environment with integrated decision procedures, ATP systems,
SMT solvers and counterexample generators. Intricate mathematical proofs and
industrial verification tasks have been carried out with this tool (e.g. [25,22]).
For our purposes, the following features of Isabelle are particularly interesting.

First, Isabelle offers a user interface with notation support [29, §4]. Standard
notations for Kleene and relation algebras can therefore be defined and used.
LATEX code can automatically be generated from proofs and specifications. In
fact, this paper was generated from our Isabelle theory files, with the added
benefit that its entire technical content has been formally verified.

Second, the proof language Isar [36] supports a proof style that is natural and
easily readable for humans. Equational reasoning, in particular, can be translated
almost unchanged into Isabelle [3], and Isar proofs could be published directly
in mathematical texts.

Third, Isabelle offers facilities for theory hierarchies and modules through local
specifications [15]. A local specification consist of parameters and assumptions:
for instance, the operations of Boolean algebra, and the axioms satisfied by
these operations. Hierarchies of local specifications can be established through
extension or proof. Relation algebra, for instance, can be specified as an extension
(subclass in Isabelle parlance) of Boolean algebra, and all theorems proved in
the latter context become automatically available in the former.

Fourth, Isabelle’s Sledgehammer tool [8] integrates various external ATP sys-
tems. To obtain trustworthy facts, all external ATP proofs are reconstructed ei-
ther by proof search using the internal Isabelle-verified theorem prover Metis [18],
or more directly by Isar. Sledgehammer selects hypotheses among local verified
lemmas and calls the external ATP systems. Since Metis is less efficient, the ex-
ternal provers can be used iteratively to minimise hypothesis sets before Metis
is called. Alternatively, an Isar proof can be generated that attempts a step-
wise reconstruction of external proofs. SMT solvers, notably Z3, have recently
been integrated [9] as an alternative to ATPs. Finally, counterexample genera-
tors such as Nitpick [7] are now part of Isabelle, too. They allow a game of proof
and refutation when developing and prototyping theories.

In contrast to previous rather monolithic ATP proofs in Kleene and relation
algebra, where theorems were often attempted directly from the axioms, the
user now owns the means of production: proofs can be performed at any level
of granularity, from fully automated proofs to textbook-style manual Isar proof
scripts, in which the individual proof steps can be automated.
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Examples of these features and the different styles of proof are given in the
remainder of this paper. Isabelle is well documented; and more information can
be found at the tool web site [19]. Our complete repository, including all facts
used in this paper, can be found online [33]. All hypotheses used in the proofs
presented can easily be found by searching their names in the repository.

3 Implementing a Kleene Algebra Hierarchy

We informally use the term “Kleene algebra” for a family of algebras based
on variants of idempotent semirings—or dioids—which are extended with op-
erations for finite or infinite iteration. Different variants correspond to different
system semantics and different intended applications, including processes, proba-
bilistic systems, program refinement, sequential or concurrent program analysis.
Program semantics for partial or total correctness and formalisms such as dy-
namic, temporal or Hoare logics can be obtained by adding further axioms.

Isabelle’s local specification facilities allow us to build a modular theory hi-
erarchy for Kleene algebras and to inherit theorems across theories and models.
We outline the approach in this section. To simplify the presentation, the code
in this paper sometimes differs slightly from that in the repository.

Our hierarchy starts with the axiomatic class of join semilattices.

Class join-semilattice = plus-ord +
assumes add-assoc: (x+y)+z = x+(y+z)
and add-comm: x+y = y+x
and add-idem: x+x = x

It expands a predefined class plus-ord, which provides notation for addition and
order and connects them via x ≤ y ≡ x + y = y by the semilattice axioms.

Linking the equational view on semilattices with the order-based one requires
showing that join semilattices are partial orders.

Sublass (in join-semilattice) order
Proof
fix x y z
show x ≤ x by (metis add-idem leq-def )
show x ≤ y =⇒ y ≤ x =⇒ x = y by (metis add-comm leq-def )
show x ≤ y =⇒ y ≤ z =⇒ x ≤ z by (metis add-assoc leq-def )
show x < y ←→ x ≤ y ∧ ¬ (y ≤ x) by (metis strict-leq-def )

qed

The individual proof goals are prescribed by Isabelle, in particular that for <
which is usually a definition. Isabelle’s built-in ATP system Metis is called on
each goal with the hypotheses indicated. More information about such proofs
can be found in the following sections. All Isabelle theorems for partial orders
are now available for join semilattices.

The next level of our hierarchy implements variants of semirings and dioids,
whose multiplication symbol is provided by a predefined class mult.
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Class near-semiring = plus + mult +
assumes mult-assoc: (x ·y)·z = x ·(y ·z)
and add-assoc ′: (x+y)+z = x+(y+z)
and add-comm ′: x+y = y+x
and distr : (x+y)·z = x ·z+y ·z

Class near-dioid = near-semiring + plus-ord +
assumes idem: x+x = x

Near-dioids form the basis of process algebras like CCS or ACP [5]. By definition,
near-diods are near-semirings, and all near-semiring theorems are automatically
inherited. But the link with semilattices requires proof.

Sublass (in near-dioid) join-semilattice — automatic proof omitted

Other variants of semirings and dioids can be obtained by extension, e.g.,

Class pre-dioid = near-dioid +
assumes subdistl : z ·x ≤ z ·(x+y)

Class semiring = near-semiring +
assumes distl : x ·(y+z) = x ·y+x ·z

Class dioid = semiring + near-dioid

Predioids form the basis for game algebras [14] and probabilistic Kleene alge-
bras [27]. Semirings and dioids have various applications in different fields of
mathematics and computing. We have extended these structures with additive
and multiplicative units in the usual ways. Different variants are needed again
for different applications.

At the next level of the hierarchy we add a Kleene star to our variants of
semirings with 1. We only show the extremal points of this level.

Class left-near-kleene-algebra = near-dioid-one + star +
assumes star-unfoldl : 1+x ·x� ≤ x�

and star-inductl : z+x ·y ≤ y −→ x�·z ≤ y

Class kleene-algebra = left-kleene-algebra-zero +
assumes star-inductr : z+y ·x ≤ y −→ z ·x� ≤ y

Isolation of the left star unfold and left induction axiom is important for variants
such as probabilistic Kleene algebras. A right unfold law can be proved from the
three axioms for all variants except near Kleene algebras.

At the final level of the hierarchy we extend different algebraic variants with
an omega operation for infinite iteration. Since omega algebras [10] will not
appear any further in this paper, we refer to our repository for details.

Our repository also contains semigroups, semirings and Kleene algebras with
domain and antidomain [11,13], including modal Kleene algebras [28] and de-
monic refinement algebras [37]. Domain semirings essentially subsume Kleene
algebras with tests [23]. Most theories have been developed to the present state
of knowledge. A proof environment for dynamic logics, temporal logics or Hoare
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logic can be obtained from them with minor effort. Structures such as concurrent
Kleene algebras, action algebras and action lattices, and Kleene algebras with
converse are under development.

4 Integrating Relation Algebras

Our implementation of relation algebras follows Roger Maddux’s book [26],
which itself is based on Alfred Tarski’s original paper [35]. It uses Hunting-
ton’s axioms for Boolean algebras. These are rather minimalist, and we have
added definitions for the partial order, the maximal and minimal element, and
meet.

Class boolean-algebra = plus-ord + uminus + one + zero + mult +
assumes join-assoc: (x+y)+z = x+(y+z)
and join-comm: x+y = y+x
and compl : x = −((−x)+(−y))+(−((−x)+y))
and one-def : x+(−x) = 1
and zero-def : (− 1 ) = 0
and meet-def : x ·y = −((−x)+(−y))

For applications in Section 6, we introduce the concept of conjugate functions
over a Boolean algebra [20], which gives rise to Boolean algebras with operators
and Galois connections. In particular, they yield theorems for free.

Definition (in boolean-algebra)
conjugation-p f g ≡ ∀ x y . (f (x)·y = 0 ←→ x ·g(y) = 0 )

Next we obtain relation algebras from Boolean algebras and show that every
relation algebra is a dioid.

Class relation-algebra = boolean-algebra + composition + unit + converse +
assumes comp-assoc: (x ;y);z = x ;(y ;z)
and comp-unitr : x ;e = x
and comp-distr : (x+y);z = x ;z + y ;z
and conv-invol : (x�)� = x
and conv-add : (x+y)� = x�+y�

and conv-contrav : (x ;y)� = y�;x�

and comp-res: x�;(−(x ;y)) ≤ −y

Sublocale relation-algebra ⊆ dioid-one-zero (op +) (op ;) (op ≤) (op <) 0 e
— automatic proof omitted

In this case, we establish a sublocale (instead of a subclass) relationship because
different signatures need to be matched.

To link relation algebras with Kleene algebras, we add a reflexive-transitive
closure operation.

Class relation-algebra-rtc = relation-algebra + star +
assumes rtc-unfoldl : e+x ;x� ≤ x�

and rtc-inductl : z+x ;y ≤ y −→ x�;z ≤ y
and rtc-inductr : z+y ;x ≤ y −→ z ;x� ≤ y
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Sublocale relation-algebra-rtc ⊆
kleene-algebra (op +) (op ;) (op ≤) (op <) 0 e (op �)

— automatic proof omitted

All facts for Kleene algebra are now available for relation algebras; the difference
between reasoning in Kleene algebra and relational reasoning becomes often
invisible for users.

Our implementation of relation algebra includes the most important textbook
concepts and theorems about functions, subidentities or tests, domain and range
elements, vectors and points.

Relation algebras have previously been implemented in Isabelle/HOL by
Gritzner and von Oheimb [30]. At that time, however, type classes, locales and
ATP integration were not available, and proving relational theorems required
strong user interaction. Their system therefore uses a translation to relational
atom structures and complex algebras to increase the degree of automation,
which was certainly impressive in 1997. A comparison nicely illustrates the tech-
nological advances in automated and interactive theorem proving over the last
decade.

5 Automated Algebraic Proofs with Isabelle

Our development of a repository of verified theorems for relational and algebraic
methods in Isabelle is largely based on ATP via Sledgehammer. To our knowl-
edge, it is the first larger case study on automated algebraic reasoning within
Isabelle.

In this paper, we can only present a few examples out of the more than
800 proofs in our repository. Our main intention is to illustrate the range of
possibilities available and to compare this new approach to our previous work
with standalone ATP systems.

We show that, in Kleene algebras, the Kleene star indeed axiomatises the
reflexive transitive closure. (In our repository, these proofs have been obtained
in slightly weaker algebras.) The first proof goal, namely that x � is reflexive,
transitive, and extends x, can be stated as follows.

Lemma (in kleene-algebra) star-rtc1 : 1+x+x�·x� ≤ x�

— proof below

To prove this lemma we called Sledgehammer, which itself called a number of
external ATP systems. In this case the external ATPs returned with proofs
within seconds. In a second round, the ATP systems were rerun to minimise the
hypothesis set needed. Finally, Isabelle’s built-in ATP system Metis performed
proof search on a selected hypothesis set to reconstruct the external proof within
Isabelle. In our example, this yields

by (metis add-lub star-ext star-ref star-trans)

This list shows that Sledgehammer has “learned” appropriate hypotheses for
proving this fact. Instead of the star axioms, for instance, two lemmas are used
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that have previously been verified. This sort of proof management is not sup-
ported by standalone ATP systems.

Alternatively, the SMT solver Z3 can be used, whose proof is again recon-
structed internally:

by (smt add-lub star-ext star-ref star-trans)

On our repository, the overall performance of Z3 is comparable to Metis, but both
are less successful than the external ATP systems. This explains why hypothesis
minimisation is an important feature of Sledgehammer.

A third variant is asking Sledgehammer for an Isar proof. In our example, the
following Isar proof script is generated for lemma star-rtc1.

Proof −
have 1 ≤ x� by (metis star-ref )
hence 1 ≤ x� ∧ x ≤ x� by (metis star-ext)
hence 1 + x ≤ x� by (metis add-lub)
hence 1 + x ≤ x� ∧ x� · x� ≤ x� by (metis star-trans)
thus 1 + x + x� · x� ≤ x� by (metis add-lub)

qed

Individual proof steps are again verified by Metis, but, due to the change of
granularity, Isar proofs can often be checked more quickly. The Isar proof feature
of Sledgehammer is, however, still experimental and often rather unstable.

It now remains to show that x � is the least element above x that is reflexive
and transitive. The proof, which can be found in our repository, can again be
fully automated, but Metis takes several minutes.

A particular benefit of the ITP approach is that users own the means of
production. Instead of fully automated proofs, textbook-style proofs can be given
as Isar scripts whenever Sledgehammer fails or the user chooses so. The following
example shows such a proof in which, of course, the user’s expertise is needed.

Lemma (in kleene-algebra) star-slide: (x ·y)�·x = x ·(y ·x)�

Proof −
have x ·(y ·x)� ≤ x ·(y ·(x ·y)�·x+1 )
by (metis add-comm mult-assoc star-unfoldr-eq star-slide1

mult-isor add-iso mult-isol)
hence x ·(y ·x)� ≤ (x ·y ·(x ·y)�+1 )·x
by (metis distl mult-assoc mult-oner distr mult-onel)

hence x ·(y ·x)� ≤ (x ·y)�·x
by (metis add-comm star-unfoldl-eq)

thus ?thesis by (metis antisym-conv star-slide1 )
qed

In the first step, the well-known star unfold law 1 + x� · x = x�, which has
previously been verified, is used. The second and third step use essentially dis-
tributivity and star unfold. The slide law (x · y)� · x ≤ x · (y · x )�, which again
has been verified before, is used in the final step.

Our experiments suggest that handwritten proofs in relation algebra and
Kleene algebra can usually be translated directly into readable Isar scripts.
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The theory hierarchy, combined with ATP systems and counterexample gen-
erators, helps finding the weakest structure in which theorems hold. We were
able, for instance, to prove all identities that were known to hold in Kleene
algebras and all formulas in omega algebras—including the above slide rule—
without right star induction. These empirical observations suggest that weaker
variants of Kleene (and omega) algebras may already be complete for the algebra
of (omega-)regular events.

6 Higher-Order Features

Apart from managing ATP proofs, Isabelle’s higher-order features are very use-
ful for theory engineering. Here we give only two examples: the exploitation of
duality for domain and range semirings, and the instantiation of theorems of
Boolean algebras with operators in relation algebras.

The domain of a relation is the set of all states on which a relation is en-
abled. In the semiring of relations, domain(x) ≡ {(p, p) | ∃q. (p, q) ∈ x}. More
abstractly, we use a domain operation d and the following axioms [13].

Class domain-semiring = semiring-one-zero + plus-ord + domain-op +
assumes d1 : x+(d(x)·x) = d(x)·x
and d2 : d(x ·y) = d(x ·d(y))
and d3 : d(x)+1 = 1
and d4 : d(0 ) = 0
and d5 : d(x+y) = d(x)+d(y)

We can prove that domain elements are precisely the fixpoints of the domain
operation. This domain characterisation is not merely an equivalence between
domain semiring identities; it involves an existential quantifier.

Lemma (in domain-semiring) d-fixpoint : (∃ y . x = d(y)) ←→ d(x) = x
— automatic proof omitted

Semiring duality is duality with respect to opposition, that is, the order of mul-
tiplication is swapped. The notion extends to semirings with one and zero, and
preservation of theorems can be expressed by the following lemma, which states
that the opposite contravariant multiplication induces again a semiring1.

Definition (in mult) x � y ≡ y · x

Lemma (in semiring-one-zero) dual-semiring-one-zero:
class.semiring-one-zero 0 1 (op +) (op �) — automatic proof omitted

In the context of domain semirings, the dual of domain is range:

Class range-semiring = semiring-one-zero + plus-ord + range-op +
assumes r1 : x+(x ·r(x)) = x ·r(x)
and r2 : r(x ·y) = r(r(x)·y)

1 The logically equivalent Sublocale semiring-one-zero ⊆ semiring-one-zero 0 1
(op +) (op �) is not accepted by Isabelle for technical reasons.
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and r3 : r(x)+1 = 1
and r4 : r(0 ) = 0
and r5 : r(x+y) = r(x)+r(y)

Sublocale range-semiring ⊆ domain-semiring r (op +) (op ≤) (op <) 0 1 (op �)
— automatic proof omitted

This sublocale expression states that range semirings are duals of domain semir-
ings with respect to opposition. It allows us to obtain statements about range
directly by dualising domain statements. In fact, all statements about range in
our repository have been obtained this way. The following range export law, for
instance, is automatically derived from its dual domain export law, which has
been proved by other means.

Lemma (in range-semiring) range-export : r(x ·r(y)) = r(x)·r(y)
by (metis dual .domain-export opp-mult-def )

In the proof, the domain export law d(d(x)·y) = d(x)·d(y), which has previously
been proved, is dualised by the sublocale statement above. The above definition
of  is also needed in the proof. The hypotheses have been found automatically
by Sledgehammer.

Next we show how abstract theorems about conjugate functions in Boolean
algebras with operators can automatically be instantiated to concrete theorems
about relation algebras. In our hierarchy, relation algebras form a subclass of
Boolean algebras. Hence conjugation is available for relation algebras as well.

The following lemma shows that the functions λy. x; y and λy. x�; y are con-
jugate in relation algebras. This is, in fact, one of the famous Schröder rules.

Lemma (in relation-algebra) schroeder-1 : (x ;y)·z = 0 ←→ y ·(x�;z) = 0
Proof −
have (x ;y)·z = 0 ←→ (z�;x)·y� = 0 by (metis conv-invol peirce)
thus ?thesis by (metis conv-invol conv-zero conv-contrav conv-times meet-comm)

qed

Lemma (in relation-algebra) schroeder-1-var :
conjugation-p (λ y . x ; y) (λ y . x� ; y)
by (metis conjugation-p-def schroeder-1 )

Lemma schroeder-1 proves the Schröder law explicitly from Peirce’s formula
(x; y) · z� = 0 ←→ (y; z) · x� = 0, which can be found in our repository. It is
used in the proof of Lemma schroeder-1-var to express the conjugation property.
The following modular law of relation algebra, for instance, can then be obtained
automatically by instantiating an abstract modular law of Boolean algebras with
operators that holds for conjugate functions.

Lemma (in boolean-algebra) modular-1 :
assumes conjugation-p f g shows f (x)·y ≤ f (x ·g(y))·y
— proof omitted

Corollary (in relation-algebra) modular-1 ′: (x ;y)·z ≤ (x ;(y ·(x�;z)))·z
by (metis schroeder-1-var modular-1 )
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Such higher-order features are particularly useful for modal semirings and
modal Kleene algebras, where dualities, conjugations and Galois connections re-
late the forward and backward box and diamond operators. Dualities can then be
used as theorem transformers and conjugations as theorem generators. Theorems
for free can thus be effectively realised by theory engineering in Isabelle.

7 Abstract versus Set-Theoretic Classes

This section discusses an alternative set-theoretic specification of algebraic struc-
tures that uses explicit carrier sets. The abstract type-based approach described
in the previous sections is usually sufficient to reason in algebraic structures,
e.g., to prove identities in Kleene algebra. However, limitations show up when
reasoning about these structures, for instance about subalgebras. Explicit carrier
sets overcome these limitations in Isabelle/HOL. They allow specifications that
are more appropriate for mechanising model theory or universal algebra.

To keep our example simple, we show a carrier-based specification for domain
semigroups [11] instead of domain semirings.

Class carrier-semigroup = mult +
fixes carrier :: ′a set
assumes m-closed : [[x∈carrier ; y∈carrier ]] =⇒ x ·y ∈ carrier
and m-assoc: [[x∈carrier ; y∈carrier ; z∈carrier ]] =⇒ (x ·y)·z = x ·(y ·z)

Class carrier-domain-semigroup = carrier-semigroup + domain-op +
assumes d-closed : x∈carrier =⇒ d(x) ∈ carrier
and d1 : x∈carrier =⇒ d(x)·x = x
and d2 : [[x∈carrier ; y∈carrier ]] =⇒ d(x ·d(y)) = d(x ·y)
and d3 : [[x∈carrier ; y∈carrier ]] =⇒ d(d(x)·y) = d(x)·d(y)
and d4 : [[x∈carrier ; y∈carrier ]] =⇒ d(x)·d(y) = d(y)·d(x)

In contrast to our previous abstract specifications, each assumption is now rel-
ativised to the carrier set and closure conditions for the operations have been
added, as usual in algebra.

By using carrier sets, we can now prove automatically that the set of do-
main elements in a domain semigroup forms a domain subsemigroup. Because
Isabelle/HOL does not offer dependent types, this would be difficult, if not im-
possible, to express without explicit carrier sets.

Lemma (in carrier-domain-semigroup) domain-subsemigroup:
class.carrier-domain-semigroup (op ·) {x∈carrier . d(x)=x} d
— automatic proof omitted

The lemma states that the set of all elements x in the carrier that satisfy d(x) = x
endowed with the operations · and d forms a domain semigroup with carrier.

This example suggests that metalogical statements could still be proved by
ATP when using classes with explicit carrier sets, although set theory is now
involved. Additional experiments suggest that carrier sets may cause substantial
overhead and more fragile proof automation, but further evidence is needed.
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The abstract and the set-theoretic level can be linked, and theorems can be
transferred between them. Given an abstract algebraic structure, the universal
set over its type, i.e., {x . True}, constitutes a suitable carrier set for the cor-
responding set-theoretic structure. Conversely, given a structure with explicit
carrier set C, the subtype of all elements in C constitutes a suitable base type
for the corresponding abstract structure. However, due to Isabelle/HOL’s lack
of dependent types, this subtype can be defined only when C does not depend
on local parameters.

8 Integrated Point-Wise and Point-Free Reasoning

We have discussed how a hierarchy of algebraic structures can be defined in
Isabelle, and we explained how this hierarchy is useful for organising theory
engineering. However, in intended models, the theorems thus obtained are con-
ditional: that is, 0∗ = 1, provided 0, 1 and ·∗ denote the respective operations of,
for instance, a Kleene algebra. We cannot apply these theorems in concrete mod-
els unless we know that the operations in these models satisfy the axioms of (in
this case) Kleene algebra. Three important models of Kleene algebras are sets of
traces, formal languages, and binary relations [12]. In this section we sketch how
abstract “point-free” reasoning in relation and Kleene algebra can be formally
linked with “point-wise” reasoning in concrete models. A full account can again
be found in our repository.

A trace is given by a list of odd length whose first element is a state, and in
which states and actions alternate. Isabelle provides pair types ′α × ′β and a
polymorphic list type ′α list, but has limited support for predicative subtypes.
Therefore, the following (equivalent) characterisation of traces is easier to work
with formally: a trace is a pair consisting of an initial state and a list of transi-
tions, where each transition is a pair of action and successor state.

Types ( ′σ, ′α) trace = ′σ × ( ′α × ′σ) list

We define functions first and last that extract the first and last state of a trace,
respectively. Multiplication of traces t and u is a partial operation that is defined
when the last state of t is equal to the first state of u.

Definition t · u ≡ if last(t) = first(u) then (π1(t), π2(t) @ π2(u)) else undefined

Here π1, π2 are the projections for pairs, and @ denotes list concatenation.
Multiplication can be lifted to a complex product on sets of traces in the

usual way. HOL is a logic of total functions; undefined above—contrary to com-
mon mathematical usage—is a constant of the logic that merely denotes some
completely unspecified value. In the complex product, we only consider pairs of
traces whose product is defined.

Definition T · U ≡ ⋃ t∈T .
⋃

u∈{u ∈ U . last(t) = first(u)}. {t · u}
The empty set is the multiplicative zero, and the set

⋃
p {(p, [])} of all single-

state traces is the multiplicative unit. In fact, sets of traces form a Kleene algebra
(where addition is given by set union, the order coincides with the subset relation,
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and the star operation is given by arbitrary iterations of multiplication, as in
language theory). Isabelle provides the Interpretation command to formally
establish this relationship.

Interpretation kleene-algebra (op ∪) (op ·) (op ⊆) (op ⊂) ∅ (
⋃

p. {(p, [])}) (·�)
— proof omitted

Isabelle sets up a proof obligation that requires the user to show that the op-
erations listed indeed satisfy the axioms of Kleene algebras. Simple axioms can
be verified automatically, while harder ones—in particular verification of the
star axioms, which now require induction—need user interaction. The hierar-
chical approach leads to well-structured interpretation proofs: the fact that sets
of traces form left Kleene algebras (with 0) and Kleene algebras (with 0) in
which also the right star induction axiom holds can be verified incrementally.
This is useful, for instance, when attempting completeness proofs for the weakest
possible axiomatisation.

In addition to the trace model of Kleene algebras, we have formalised the
models of formal languages (i.e., sets of words, where words are implemented as
lists, and word multiplication is given by list concatenation) and binary relations
(i.e., sets of ordered pairs, with multiplication given by relative product).

Having established, for instance, that binary relations form a Kleene algebra,
Isabelle immediately makes all abstract theorems of Kleene algebra proved in
the system available for binary relations as well. For instance,

Lemma y� ◦ x� ≤ x� ◦ y� =⇒ (x + y)� ≤ x� ◦ y�

— automatic proof omitted

is the instance of the abstract Church-Rosser theorem of Kleene algebra for bi-
nary relations (with ◦ denoting relative product and ·� the reflexive-transitive
closure of a relation). We can therefore seamlessly switch back and forth between
point-free abstract reasoning (at the algebraic level) and point-wise concrete rea-
soning (in the model of binary relations). Krauss and Nipkow [24] artfully explore
this connection to decide (in)equations of binary relations using an equivalence
checker for regular expressions. Making their integrated decision procedure for
regular expressions available for deciding identities in Kleene algebra could in-
crease the proof automation for this class significantly.

Models such as traces, languages and binary relations carry, of course, a richer
structure than what has been captured by Kleene or relation algebras. This can
to a certain extent be captured abstractly by defining Kleene algebras over quan-
tales or relation algebras over complete Boolean algebras. While a specification
of these structures in Isabelle is straightforward, the suitability of Sledgehammer
in this higher-order context remains another interesting open question.

9 Future Directions

The work in this paper documents only the initial steps towards an Isabelle
repository for algebraic methods. The directions for future work that arise from
this work are perhaps more important than the results obtained so far. We
envisage three main directions:



Automated Engineering of Relational and Algebraic Methods 65

(a) The creation of a standardised repository for relational and algebraic meth-
ods that includes the most important variants, models and theorems, and
reflects the state of the art in the field.

(b) The integration of this repository into a development and verification en-
vironment for programs and computing systems that combines lightweight
relational specification languages with heavyweight automation.

(c) The exploration of more advanced mathematics, e.g., the model theory and
universal algebra of Kleene algebras and relation algebras within Isabelle.

These directions can best be addressed through a joint effort within the RAM-
iCS community, and the repository, its notation, conceptualisation, structure
and design is therefore open to additions and debate. A possible way forward
is the creation of a Wiki to which any researcher in the area will be able to
contribute through a moderated process. A minimal requirement would be that
all documents checked in must compile with Isabelle.

Using standalone ATP systems for reasoning automatically about Kleene and
relation algebras showed that proofs of calculational statements at textbook level
can usually be automated. But there are several limitations, in particular the fact
that reasoning about data structures and data types such as numbers, arrays,
lists is not sufficiently supported, and that proofs by induction are not possible.
The presence of both SMT solvers and higher-order features in Isabelle/HOL
seems of great benefit here and certainly deserves further exploration. Automat-
ing large parts of program analyses in this new setting seems possible, although
we cannot provide any empirical evidence yet. The development and integration
of decision procedures for fragments of Kleene algebras and relation algebras
seems also very beneficial in this respect.

Finally, we are not aware that a systematic formalisation of model theory or
universal algebra in Isabelle/HOL has so far been attempted. Our proof exper-
iments show that some simple metamathematical concepts and proofs can effi-
ciently be handled by ATP, which might facilitate this endeavour. Completeness
proofs for variants of Kleene algebras are particularly important for integrating
decision procedures and further enhancing automation.

10 Conclusion

We have shown that Isabelle/HOL is a highly useful environment for automated
theorem proving in relation algebras and variants of Kleene algebras that over-
comes previous limitations of standalone ATP proofs with these structures. Main
advantages include theory hierarchies, proof management, hypothesis learning,
cross-theory reasoning, automatisation of duality and abstraction/instantiation,
integration of abstract and model-based reasoning and other higher-order fea-
tures that enable metatheory reasoning. These suitably complement the sheer
proof power of ATP systems on calculational proofs. The integration of SMT
solvers into Isabelle promises additional benefits for reasoning about data struc-
tures and data types.
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These results provide further evidence that algebraic and relational methods
are very suitable as lightweight formal methods with heavyweight automation;
and that our Isabelle repository is a significant step in that direction.

But there is still scope for improvement from the tool side, too. The existing
automation gap between the external ATP systems and the internal proof recon-
struction needs to be closed, and a wider range of ATP systems should be inte-
grated. For this purpose, ATP output should be further standardised (cf.
TSTP [34]). Other valuable features would be better ATP support for order-based
reasoning (ordered chaining calculi [2]), better sort or type support, and enhanced
techniques for hypothesis learning and, more generally, large hypothesis sets.
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Abstract. What makes the field of social choice so fascinating is that it
is full of complexities, assertions about the impossibility of doing what
seems quite natural to do, and many mysteries. Adding to its allure is
the importance of the topic; these mysteries can indicate and predict
sources of societal complications. While some of these difficulties will be
described in this tutorial, be assured that this will not be still another
hand-wringing, ‘what can go wrong’ session. Instead, a main theme will
be to provide hope coupled with positive assertions and new research
directions. To accomplish this objective, it is necessary to explain why
many of these difficulties arise, and that will be done with an emphasis
on ‘intuition’. In fact, expect a ‘hands-on’, interactive session.

As examples, the year 2011 is the sixtieth anniversary of Arrow’s seminal Im-
possibility Theorem and the forty-first anniversary of Sen’s ‘Impossibility of a
Paretian Liberal’. The starkly negative assertions of both results have imposed
roadblocks to progress by indicating that what we want to do cannot be done.
In simplified terms, Arrow’s result implies that once there are more than two
candidates, ‘no voting rule is fair’. Indeed, it is not uncommon for a new voting
method to be challenged in terms of Arrow’s result. Sen’s assertion, on the other
hand, suggests that individual rights are impossible in that even a surprisingly
minimal level of liberalism cannot coexist with Pareto’s requirement of societal
acceptance when there is universal agreement.

Although both assertions have proved to be strongly influential (in part be-
cause they impose barriers for progress), the issue raised in the tutorial is whether
they really mean what we have thought they have for these many decades. As it
will be shown, they do not. Instead, as it will be developed, both results admit
new and radically different conclusions, where some of them replace discourage-
ment with hope!

An important gain offered by this analysis is that it opens new directions of
research. As hints of what they may be, a new interpretation of Arrow’s result
immediately suggests a wide array of previously unrecognized concerns that arise
in almost all disciplines from social choice to computing to even engineering and
nanotechnology. A similar added value comes from knowing what really causes
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Sen’s result; it opens the door to provide new ways to examine philosophical
issues such as the dysfunctional behavior that can accompany society when it is
evolving from one social norm to another.

Similarly, for centuries, even millennia, knowledgeable people have been deeply
concerned about the paradoxes of voting. They should be; rather than amusing
mathematics oddities, these paradoxes indicate how an election ‘winner’ need
not be the one whom the voters really wanted. What adds significance to the
concern is that ‘winners’ affect our future. This uncomfortable reality is what
motivates ‘electoral reform’ movements, such as what is going on in the US
and UK.

Complexities associated with voting paradoxes, however, have made voting
systems difficult to analyze. Because of this, it is fair to say that ‘reform move-
ments’ tend to fight the ‘last war’; the proposed ‘reform’ may correct a problem
that emerged in a previous election, but it need not prevent other, new kinds of
difficulties from occurring.

Fortunately, a new approach has been developed to analyze voting rules. This
methodology makes it much easier to address many of these ‘voting theory’
concerns. The fundamentals of this procedure will be introduced in an intuitive
manner. Armed with the basics of this technique, participants will be able to
construct any number of new paradoxical behaviors, and to analyze all three-
candidate settings.
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Most information we encounter on a daily basis is flooded with imprecision and
uncertainty. For example, we might say that Peter is tall without having a precise
definition of tallness . Peter might be 2.00m high and is, therefore, considered tall.
On the other hand, there might be Jon, measuring 1.60m, which we probably do
not consider to be tall. It is not clear whether Charles with a height of 1.80m is
tall or not. Most likely we would say that Charles is somewhat tall, meaning that
’tall’ better describes Charles than it does Jon, but not as good as it describes
Peter. To handle such kind of information, Zadeh [24] introduced the concept of
fuzzy sets. A fuzzy set is a mapping d from a set X , the so-called universe, to the
unit interval [0, 1]. The value d(x) is called the degree of membership of x in the
fuzzy set d. For example, the fuzzy set t of tall persons will probably assign the
degree 1 to Peter, the degree 0 to Jon, and some suitable value in between such as
0.5 to Charles. Using the minimum and the maximum operation on [0, 1] one can
easily define intersection and union of fuzzy sets. This has been generalized by us-
ing so-called triangular norm/conorms instead of minimum and maximum. Two
years after Zadeh’s initial paper, Goguen [5] generalized the concept of fuzzyness
even further to L-fuzzy sets. He replaced the unit interval [0, 1] by an arbitrary
complete distributive lattice L to represent degrees of membership. One applica-
tion of L-fuzziness is given when multiple criteria contribute towards the degree
of membership. For example, we might consider a car hot if it is fast and if it has
a powerful AV system, i.e., the speed as well as the AV system contribute towards
the degree of membership of any car in the set of hot cars. Consequently, a car that
has both will probably have degree 1 (largest element of the lattice), and a car that
does not have either will probably have degree 0 (smallest element of the lattice).
However, there might be a car that is fast without having an AV system and an-
other car that is slow but does have a powerful AV system. Both cars should get a
degree of membership somewhere between 0 and 1. Using the unit interval would
require to rank the cars with respect to ’hotness’ since every pair of values in [0, 1]
can be compared. Using distributive lattices allows to model this situation without
an artificial ranking. Similar to fuzzy sets, one can define intersection and union of
L-fuzzy sets based on the lattice meet and join or, alternatively, using semigroup
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operations on L. Based on either theory, fuzzy sets or L-fuzzy sets, one may also
define fuzzy relations as fuzzy sets of pairs. All standard operations on relations
such as converse and composition can be generalized using arbitrary joins, binary
meet (or minimum), or suitable semigroup operations.

A fuzzy controller is a controller based on fuzzy methods. The so-called Mam-
dani approach for constructing such a controller is based on several components,
the rule base, a decision module, a fuzzification, and a defuzzyfication. This
structure is summarized in the figure below.

Fuzzy Controller

Fuzzy values

Fuzzi-
fication

Decision
Module

Rule base

Defuzzi-
fication

Process

�
�

� � �

�
Crisp values

A fuzzy controller is usually formulated using linguistic entities, i.e., abstract
notions represented by common words from every day language such as ’ex-
tremely high speed’, ’hot water’, ’very heavy rain’ and so on. Variables ranging
over those abstract entities are called linguistic variables. They are understood
as variables over suitable L-fuzzy sets. As indicated in the example above, lin-
guistic entities are often built up from two components. First of all, there is
a basic notion of an abstract entity as ’high speed’. This basic notion may be
modified by an adverb as ’very’, ’roughly’, ’more or less’ or ’extremely’. These
adverbs can be seen as linguistic modifiers, i.e., functions mapping L-fuzzy sets
to L-fuzzy sets. The rule base is given by a set of simple rules using linguistic
variables. In most cases those rules are formulated as conditional expressions
of the form: If x is in M , then y = N . In such a rule x and y are linguistic
in/output variables and M and N are fuzzy sets. The decision module describes
to which degree a rule of the rule base is applied to a given input. Finally, the
fuzzyfication and the defuzzyfication convert crisp input values into fuzzy inputs
and fuzzy results into crisp results, respectively.

The calculus of binary relation in its different forms [2,8,9,10,13,16] has been
used intensively in applications of mathematics and computer science. For some
examples we refer to [1,11,12], the COST Action 274 TARSKI [14,15], and the
conference series on Relational Methods in Computer Science (RelMiCS), of
course. All of the approaches above are based on algebraic properties of rela-
tions, i.e., they handle relations as first-order entities instead of defining them
as sets of pairs of certain elements. As a consequence (semi)automatic proof
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systems become easily available and can be used in applications. On the other
hand, relation algebras may not be representable as binary relations on a set (or
between multiple sets). In addition, the calculus of relations also includes fuzzy
and L-fuzzy relations as models. For example, it is well-known that a reason-
able category of L-relations constitutes a Dedekind category as introduced in
[9]. There have been multiple attempts to capture fuzzyness and fuzzy concepts
within these theories. The papers [3,6,7] introduce and investigate the concept
of fuzzy relation algebras as an algebraic formalization of fuzzy relations. Those
algebras are equipped with a semi-scalar multiplication, i.e., an operation map-
ping an element from [0, 1] and a fuzzy relation to a fuzzy relation. Using this
operation it was even possible to characterize when a fuzzy relation is crisp, i.e.,
all degrees of membership are either 0 or 1. Unfortunately, this approach cannot
be generalized to arbitrary lattices L because such a semi-scalar multiplication
might not exist. Furthermore, it was shown in [17] that there is no formula in
the theory of Dedekind categories expressing the fact that a given L-fuzzy re-
lation is crisp. Therefore, the concept of Goguen categories was introduced and
studied in a series of papers [17,18,19,20,21] and summarized in a book [22].
Goguen categories are based on a Dedekind category with two extra operators
R↑, the support of R, and R↓, the kernel of R, mapping a relation R to two crisp
relations. In fact, R↑ is the greatest crisp relation contained in R, and R↓ is the
smallest crisp relation containing R. Recently, weaker theories based on fewer
axioms and/or only one of the two operators have been studied [4,23].

In this tutorial we want to provide an overview of the theory of Goguen cate-
gories and related structures. In particular, we want to investigate their relation-
ship, opportunities to define relational operators based on semigroup operations,
the representation theory of Goguen categories, and the uniqueness of the kernel
operation with respect to a given Dedekind category. A major part of the tutorial
will focus on applying this theory to the development of an L-fuzzy controller.
We will describe how to model every component of a controller including linguis-
tic variables, rules, linguistic modifiers, and the fuzzyfication and defuzzyfication
procedure as elements, operations, and construction in a Goguen category. The
controller itself is described by a single term in that language. This allows mathe-
matical reasoning about the controller using the relational calculus. In particular,
properties such as totality of the controller, i.e., the property that the controller
produces an output for every possible input, can be proven. Alternatively one
could even use a converse approach by taking a desired property such as totality
and consider it as invariant in a stepwise refinement process leading to the actual
controller. We will illustrate the whole approach by constructing a concrete con-
troller regulating the temperature of a chamber growing bacteria colonies. During
the development process we will treat the totality of the controller as an invariant
property. In particular, we will make the controller parametric in certain semi-
group operations and compute simple conditions for them guaranteeing the total-
ity of the controller. This example will also demonstrate the advantage of using
lattices instead of the unit interval [0, 1] in the development of certain controllers
where the notion of an optimal solution is based on multiple criteria.
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Abstract. In this paper we present a language and first-order calculus
for formal reasoning about relations based on the theory of allegories.
Since allegories are categories, the language is typed in Church-style. We
show soundness and completeness of the calculus and demonstrate its us-
ability by presenting the RelAPS system; a proof assistant for relational
categories based on the calculus presented here.

1 Introduction

Binary relations and categories of relations in particular have been widely used
in mathematics and computer science for various purposes. For some very inter-
esting applications we refer to [4,5,10,16,17,18]. The most general and probably
most influential theory is given by the notion of an allegory and its extensions
due to P. Freyd and A. Scedrov [5,10]. Further extensions of this theory including
fuzzy relations have been proposed throughout the literature, e.g., [15,16,17,20].

Many systems supporting theorem proving in general and for relations in par-
ticular have been developed during the past years. However, most systems show
serious disadvantages if the theory of allegories is considered. In the following
we want to explore some of those systems.

A typical example for a fully automated system is Prover9 [13]. Prover9 is
an automated theorem prover for first order and equational logic. Automatic
features are very helpful in any theorem prover, whether fully automatic or
interactive. However, system like Prover9 normally share two problems. First
of all, the language of the system is not typed. The typing contained in the
theory of allegories could be modeled by partial operations within an untyped
language. However, this would produce additional proof obligations verifying
that all entities are well defined. This is a serious disadvantage of the system
in this context since the type information could be part of the language and
checked in advance. Secondly, the calculus used and the proofs generated are
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tailored for automatic proving. As a consequence they are usually very hard to
read for a human being.

In another project, a semi-automated proof system has been developed for ba-
sic category-theoretic reasoning [12]. It is based on a first order sequent calculus
that captures the basic properties of categories, functors and natural transfor-
mations as well as a small set of proof tactics that automate proof search in
this calculus. Since it is a automated system, it has similar problems as Prover9.
Typing is not part of its languages, hence, like Prover9, this would produce
additional proof obligations. The system is also based on fixed theory and no
additional operations or theories can be added to it. Therefore, it is not possi-
ble to work within the theory of allegories since the system only supports basic
category theory.

RALF [3] was designed as a special purpose proof assistant for heterogeneous
relation algebras with the goal of supporting proofs in a calculational style.
RALF has a graphical user interface which represents theorems as trees, i.e.,
every term is displayed as a tree where the leaves are constants and variables
and the nodes are the relational operations. This makes some terms hard to read.
The system is based on a fixed axiomatization; the axioms of a heterogeneous
relation algebra. It is not possible to work with weaker and/or stronger theories
within the system. Furthermore, the system is no longer supported and there is
no working version any longer available.

RALL [14] is another theorem proving system for heterogeneous relation al-
gebra which has the ability of automatic proving for small theorems. It uses
the Isabelle/HOL type system to support reasoning within abstract heteroge-
neous relation algebras with minimal effort. However, RALL limits itself to rea-
soning within representable relation algebras. The system works by translating
relation-algebraic formulas into higher-order logic. As a consequence the system
is incomplete. Moreover, this method cannot be applied to weaker structures
like allegories. A further consequence of this method is that the proofs gen-
erated are proofs of the translated formulas within a fully automated system,
which explains why they are very hard to read. Nevertheless, the idea to utilize
Isabelle/HOL and similar systems like PVS in order to implement the theory
of allegories is an interesting idea that should be investigated in future work.
The first-order theory presented in this paper can be used to achieve a sound
and complete implementation. Even a combination of both systems, the RelAPS
system of the current paper and the implementation in HOL, is of interest. For
example, certain automation could be done via one of those systems.

In this paper we present a language and first-order calculus for formal rea-
soning about relations. We use the theory of allegories as an underlying axiom
system, i.e., a theory that is based on categories. Therefore, relations are typed
and the regular operations on relations are partial, i.e., can only be applied if
the relations involved have suitable type. The goal of designing the language
and the calculus was to mimic human reasoning as closely as possible. The ba-
sic language was already presented and used in [19,20] in the context of fuzzy
relations.
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Instead of using the theory of allegories as a basis it would be possible to
have a more general system and to define allegories and its operations as a
theory. Notice that this could not be done with equality because equality is not
finitely axiomatizable in first-order logic. However, we did not take this route
because of the following reason. The equational theory of allegories as well as the
equational theory of representable allegories are decidable [5,9]. Furthermore,
even though the latter theory cannot finitely be axiomatized, a hierarchy of
theories starting with allegories leading to representable allegories can be defined.
The decision procedure indicates which theory is needed to proof the equation
in question. The decision algorithm as well as a proof generation procedure have
been implemented and integrated into the system [8]. Unfortunately, this feature
is currently disabled because an error in the proof presented in [9] ([5] does not
provide a detailed proof) was identified. Once this problem is resolved the feature
will be available again.

The rules of natural deduction mimic human reasoning very closely. However,
the explicit tree structure together with the practice of making assumptions and
discarding them later by applying certain rules seems not to be very suitable for
computer support. In particular, discarding assumptions is not a local operation;
it affects whole subtrees. On the other hand, the sequent calculus keeps track of
assumptions on the left-hand side of a sequent which makes every rule a local
rule. The fact that the right-hand side of a sequent, i.e., the assertion or the goal
of the proof, is also a list of formulas (including the empty list) does not really
model human reasoning. There are versions of the sequent calculus that have a
single conclusion on the right hand side, called single-conclusion calculi or intu-
itionistic sequent calculi. However, these calculi only cover intuitionistic logic,
and, hence, they are weaker in their expressive power. Therefore, we developed
a calculus which is mixture of both calculi. It is based on a sequent, i.e., keeps
rules local, but has exactly one formula on the right-hand side of that sequent,
i.e., there is exactly one assertion or goal at any time of the proof.

The language and the calculus have been implemented in the RelAPS sys-
tem. This system is an interactive proof assistant that was designed in order to
work with allegories and any possible extension thereof avoiding the problems
mentioned in the systems above.

The rest of the paper is organized as follows. In Section 2 we present the
basics of the theory of allegories. The Sections 3 and 4 are dedicated to the
formal language and the new calculus. Finally, we present a short introduction
to the RelAPS system in Section 5.

2 Relational Preliminaries

Throughout this paper, we use the following notation. To indicate that a mor-
phism R of a category R has source A and target B we write R : A → B. The
collection of all morphisms R : A → B is denoted by R[A,B] and the compo-
sition of a morphism R : A → B followed by a morphism S : B → C by R;S.
Last but not least, the identity morphism on A is denoted by IA.
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We recall briefly some fundamentals on allegories [5] and relational construc-
tions within them. For further details we refer to [5,16,20]. Furthermore, we
assume that the reader is familiar with the basic notions from category theory.
For unexplained material we refer to [2].

Definition 1. An allegory R is a category satisfying the following:

1. For all objects A and B the collection R[A,B] is a meet semi-lattice, whose
elements are called relations. Meet and the induced ordering are denoted by
� and ", respectively.

2. There is a monotone operation � (called converse) such that for all relations
Q : A → B and R : B → C the following holds: (Q;R)� = R�;Q� and
(Q�)� = Q.

3. For all relations Q : A→ B, R,S : B → C we have Q; (R�S) " Q;R�Q;S.
4. For all relations Q : A → B,R : B → C and S : A → C the modular law

Q;R � S " Q; (R �Q�;S) holds.

In this paper we only need some basic properties of relations in some examples.
We have listed those properties in the following lemma:

Lemma 1. Let Q;Q′ : A → B and R,R′ : B → C be relations. Then we have
the following:

1. Composition is monotonic, i.e., Q " Q′ and R " R′ implies Q;R " Q′;R′.
2. Q " Q;Q�;Q.
3. IA

� = IA.

A proof of the previous lemma can be found in any of [5,10,16,17,18,20].
Besides the basic theory of allegories, the following two extension are of par-

ticular interest.

Definition 2. An allegory R is called distributive if:

1. For every pair of objects A and B the class R[A,B] is a distributive lattice
with smallest element ⊥⊥AB. Union is denoted by �.

2. For all relations Q : A → B, R,S : B → C we have Q; ⊥⊥BC = ⊥⊥AC and
Q; (R � S) = Q;R �Q;S).

A distributive allegory is called a division allegory if for all relations R : B → C
and S : A → C there is a relation S/R : A → B (called the left residual of S
and R) so that for all Q : A→ B we have Q;R " S iff Q " S/R.

3 A First-Order Language for Allegories

The language of allegories is two-sorted. One kind of terms will denote objects,
and the other kind denotes relations. In addition, the language is typed, i.e., every
relational term has a source and a target. We have chosen a Church-style typing
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system, i.e., every relational variable, constant symbol, and function symbol has
a fixed (and known) type.

Because of its differences to a regular language for first-order logic we describe
the syntax of our language in the following section in detail. In particular the
dependency of relational variables on object terms, and, hence, the notion of free
and bound variables, is unusual and needs a proper definition.

3.1 Syntax

In order to provide a proper language for allegories, we require a countable set
of object variables Vobj and a countable set of object constant symbols Cobj .
The two sets Vobj and Cobj as well as similar sets introduced later are supposed
to be disjoint, i.e., Vobj ∩ Cobj = ∅. Notice that the current version does not
allow function or predicate symbols in object terms. As indicated in Section 6
this will be added in a future version allowing several extension to user defined
operations.

Definition 3. The set of object terms consists of object variables and object
constant symbols.

We also require the following components:

– Vrel is a countable set of relational variables. Each variable r has a type
t1 → t2 where t1 and t2 are object terms. To indicate that the variable r has
type t1 → t2 we write r : t1 → t2,

– Crel is a countable set of relational constant symbols. Each constant symbol
c has a type t1 → t2 where t1 and t2 are object terms. To indicate that the
constant symbol c has type t1 → t2 we write c : t1 → t2,

– F is a countable set of typed function symbols. Each function symbol f has
a type {(t1 → s1), ..., (tn → sn)} → (t → s) where t1, s1, ..., tn, sn, t, s are
object terms. To indicate that the variable f has type {(t1 → s1), ..., (tn →
sn)} → (t→ s) we write f : {(t1 → s1), ..., (tn → sn)} → (t→ s).

Notice that the type information of all three entities are given by object terms.
This allows to specify dependency and relationship between the type of pa-
rameters. For example, distributive allegories add a smallest relation ⊥⊥ and
a union operation � to the theory of allegories. The smallest relation exists
between every pair of morphisms, and union can be applied to relations be-
tween the same objects. This can be specified by defining ⊥⊥ : a → b and
� : {(a→ b), (a→ b)} → (a→ b) where a and b are object variables.

Based on the components above we define relational terms as follows:

Definition 4. The set of relational terms of type s1 → s2, where s1 and s2 are
object terms is defined recursively as follows:

1. If r : s1 → s2 is a relational variable, then r is a relational term of type
s1 → s2.
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2. If c : s1 → s2 is a relational constant symbol, then c is a relational term of
type s1 → s2.

3. If s is an object term, then Is is a relational term of type s→ s.
4. If t is a relational term of type s1 → s2, then t� is a relational term of type

s2 → s1.
5. If t1 and t2 are relational terms of type s1 → s2, then t1 � t2 is a relational

term of type s1 → s2.
6. If t1 and t2 are relational terms of type s1 → s2 resp. s2 → s3, then t1; t2 is

a relational term of type s1 → s3.
7. If t1,...,tn are relational terms of type s1 → s′1,..., sn → s′n and f is a n-ary

function symbol with type f : {(s1 → s′1), ..., (sn → s′n)} → (s → s′), then
f(t1, ..., tn) is a relational term of type s→ s′.

In order to define formulas we need an additional component, a countable set
P of typed predicate symbols. Each predicate symbol p has a type {(t1 →
s1), ..., (tn → sn)} where t1, s1, ..., tn, sn, are object terms. To indicate that the
predicate symbol p has type {(t1 → s1), ..., (tn → sn)} we write p : {(t1 →
s1), ..., (tn → sn)}. Finally we can define the set of formulas.

Definition 5. The set of formulas is defined recursively as follows:

1. ⊥ is a formula.
2. If t1 and t2 are relational terms of type s1 → s2, then t1 = t2 is a formula.
3. If t1, . . . , tn are relational terms of type s1 → s′1,..., sn → s′n and p is a n-ary

predicate symbol with type {(s1 → s′1), ..., (sn → s′n)}, then p(t1, . . . , tn) is a
formula.

4. If ϕ1 and ϕ2 are formulas, then ϕ1 ∧ ϕ2 is a formula.
5. If ϕ1 and ϕ2 are formulas, then ϕ1 ∨ ϕ2 is a formula.
6. If ϕ1 and ϕ2 are formulas, then ϕ1 → ϕ2 is a formula.
7. If ϕ is a formula, then ¬ϕ is a formula.
8. If ϕ is a formula and r : s1 → s2 is a relation variable, then (∀r : s1 → s2)ϕ

is a formula.
9. If ϕ is a formula and a is an object variable, then (∀a)ϕ is a formula.

10. If ϕ is a formula and r : s1 → s2 is a relation variable, then (∃r : s1 → s2)ϕ
is a formula.

11. If ϕ is a formula and a is an object variable, then (∃a)ϕ is a formula.

Notice that there is no equality on object terms. This predicate is not invariant
under isomorphisms, i.e., constitute a property that is of no/minor interest in
category theory since almost all concepts are defined ’up to isomorphism’. A
property not invariant under isomorphisms is sometimes called ’evil’.

In the next step, we want to introduce the concept of free variables in a for-
mula. Obviously, there are two kinds of variables: object variables and relational
variables. The set of object variables in an object term is defined as usual. Since
relational variables and constants are typed with object terms, the notion of an
object variable in a relational term is not standard.
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Definition 6. The set of object variables OV (t) and the set of relational vari-
ables RV (t) of a relational term t is defined recursively as follows:

1. OV (r) = OV (s1) ∪OV (s2) for a relational variable r : s1 → s2,
2. OV (c) = OV (s1) ∪ OV (s2) for a relational constant symbol c : s1 → s2 in

Crel,
3. OV (t�) = OV (t),
4. OV (t1; t2) = OV (t1 � t2) = OV (t1) ∪OV (t2),
5. OV (f(t1, ..., tn)) = OV (t1)∪...∪OV (tn) for every function symbol f : {(s1 →

s′1), ..., (sn → s′n)} → (s→ s′).
6. RV (r) = {r} for every relational variable r,
7. RV (c) = ∅ for every relational constant symbol c in Crel,
8. RV (t�) = RV (t),
9. RV (t1; t2) = RV (t1 � t2) = RV (t1) ∪RV (t2),

10. RV (f(t1, ..., tn)) = RV (t1) ∪ ... ∪RV (tn) for every function symbol f .

Now we can define free object and relational variables in a formula.

Definition 7. The set of free object variables OFV (ϕ) and the set of free rela-
tional variables RFV (ϕ) of a formula ϕ is defined as follows:

1. OFV (⊥) = ∅,
2. OFV (t1 = t2) = OV (t1) ∪OV (t2),
3. OFV (p(t1, ..., tn)) = OV (t1) ∪ ... ∪OV (tn),
4. OFV (ϕ1 ⊗ ϕ2) = OFV (ϕ1) ∪OFV (ϕ2) where ⊗ ∈ {∧,∨,→},
5. OFV (¬ϕ) = OFV (ϕ),
6. OFV ((Qa)ϕ) = OFV (ϕ) \ {a} where Q ∈ {∀, ∃},
7. OFV ((Qr : s1 → s2)ϕ) = OFV (ϕ) ∪OV (r) where Q ∈ {∀, ∃},
8. RFV (⊥) = ∅,
9. RFV (t1 = t2) = RV (t1) ∪RV (t2),

10. RFV (p(t1, ..., tn)) = RV (t1) ∪ ... ∪RV (tn),
11. RFV (ϕ1 ⊗ ϕ2) = RFV (ϕ1) ∪RFV (ϕ2) where ⊗ ∈ {∧,∨,→},
12. RFV (¬ϕ) = RFV (ϕ),
13. RFV ((Qa)ϕ) = RFV (ϕ) where Q ∈ {∀, ∃},
14. RFV ((Qr : s1 → s2)ϕ) = RFV (ϕ) \ {r} where Q ∈ {∀, ∃},

3.2 Semantics

As for the syntax, the dependency of relational variables on object terms requires
a careful definition of the semantics of the language. In particular, the notion
of an environment, i.e., a function mapping variables to values, is not standard
since the collection of possible values for a relational variable may depend on the
values of certain object variables. For example, assume a is an object variable,
r : a→ a is a relational variable, and that the environment maps a to the object
A and r to a relation R : A→ A. An update of a to the object B now requires
that r is mapped to a relation with source and target B since r : a→ a.

As a first step to a proper definition of the semantics we need a universe where
all syntactic entities can be interpreted by suitable values.
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Definition 8. A pre-model P consists of the following data:

1. |P| a non-empty allegory,
2. For each constant symbol c ∈ Cobj a constant cP ∈ Obj|P|.

In order to define the semantics of terms and formulas we have to replace the
free variables of the formula by actual values. Those values are stored in so called
environments.

Definition 9. An object environment σo over a pre-model P is a function from
the set of object variables to the objects of |P|.
We are now ready to define the value of an object term in a pre-model.

Definition 10. The value VP of object terms under the environment σo is de-
fined by:

– VP(a)(σo) = σo(a) for every object variable a,
– VP(c)(σo) = cP for every constant symbol c ∈ Cobj.

In the next definition we define an environment for both relational and object
variables.

Definition 11. An environment σ = (σo, σr) over a pre-model P is a pair of
functions so that σo is an object environment over P and σr maps each relational
variable r : s1 → s2 to a relation σr(r) : VP(s1)(σo) → VP(s2)(σo).

In the following σo and σr will always refer to the object and relational part of
an environment σ, respectively. Similarly, we will write σ(a) instead of σo(a) for
object variables a, and σ(r : s1 → s2) instead of σr(r : s1 → s2) for relational
variables r : s1 → s2.

Storing a new value for a variable in an environment is called update. Such an
update of an environment yields again an environment. Recall that updating an
object variable may change the collection of relations that a relational variable
might be mapped to.

Definition 12. The update σ[A/a] of σ at the object variable a with the object
A is defined by:

σ[A/a](b) =
{
σ(b) iff a �= b,
A iff a = b,

σ[A/a](r : s1 → s2) =
{
σ(r : s1 → s2) iff s1 �= a and s2 �= a,
R : σ[A/a](s1) → σ[A/a](s2) iff s1 = a or s2 = a

for an arbitrary relation R : σ[A/a](s1) → σ[A/a](s2).
The update σ[R/r : s1 → s2] at the relation variable r : s1 → s2 with the relation
R : σ(s1) → σ(s2) is defined by:

σ[R/r : s1 → s2](a) = σ(a),

σ[R/r : s1 → s2](q : s1 → s2) =
{
σ(q : s1 → s2) iff r : s′1 → s′2 �= s1 → s2,
R iff r : s′1 → s′2 = q : s1 → s2.
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To ascribe meaning to all formulas, we need, besides a non empty allegory,
an appropriate interpretation of each of the constant, function and predicate
symbols.

Definition 13. A relational model M is a pre-model with the following data:

1. For each c : s1 → s2 in Crel and environment σ a constant cMσ : σ(s1) →
σ(s2) so that σ(s1) = σ′(s1) and σ(s2) = σ′(s2) implies cMσ = cMσ′ ,

2. For each function symbol f : {(t1 → s1), ..., (tn → sn)} → (t→ s) in F and
environment σ, a n-ary function fM

σ which is mapping |M|[σ(t1), σ(s1)] ×
... × |M|[σ(tn), σ(sn)] to |M|[σ(t), σ(s)] so that σ(t1) = σ′(t1), ..., σ(tn) =
σ′(tn), σ(t) = σ′(t) and σ(s1) = σ′(s1), ..., σ(sn) = σ′(sn), σ(s) = σ′(s)
implies fM

σ = fM
σ′ ,

3. For each predicate symbol p in P with type (t1 → s1), ..., (tn → sn) and envi-
ronment σ, a subset pMσ ⊆ {|M|[σ(t1), σ(s1)]× ...×|M|[σ(tn), σ(sn)]}so that
σ(t1) = σ′(t1), ..., σ(tn) = σ′(tn), σ(t) = σ′(t) and σ(s1) = σ′(s1), ..., σ(sn) =
σ′(sn), σ(s) = σ′(s) implies pMσ = pMσ′ .

Notice that the interpretation of constant, function, and predicate symbols de-
pend on (object) environments. Simply indexing these entities with objects of
the allegory does not work because the type information is given by object terms
which contain variables, constants, and dependencies between parameters.

In the previous definition, an object environment would be sufficient because
it is just needed to get the value of an object term. Note that the value of an
object term in a model M is the same as that in the pre-model P it contains,
i.e., VM(s)(σ) = VP(s)(σo).

Now we are ready to define the value of relational terms and the validity of
formulas. Both definitions are done inductively on the structure of the language.

Definition 14. Let M be a relational model and σ be an environment. The
value VM of terms under the environment σ is defined by:

1. VM(r : s1 → s2)(σ) = σ(r : s1 → s2) for every relational variable r : s1 →
s2,

2. VM(c : s1 → s2)(σ) = cMσ for every constant c : s1 → s2 in Crel,
3. VM(f(t1, ..., tn))(σ) = fM

σ (VM(t1)(σ), ...,VM(tn)(σ))
4. VM(Ia)(σ) = Iσ(a),
5. VM(t�)(σ) = (VM(t)(σ))�,
6. VM(t1 � t2)(σ) = VM(t1)(σ) � VM(t2)(σ),
7. VM(t1; t2)(σ) = VM(t1)(σ);VM(t2)(σ).

The next step is to define the validity of formulas.

Definition 15. Let M be a relational model, and σ be an environment. The
validity of a formula in M under σ is defined inductively as follows:

1. M |=σ t1 = t2 iff VM(t1)(σ) = VM(t2)(σ),
2. M |=σ p(t1, . . . , tn) iff (VM(t1)(σ), . . . ,VM(tn)(σ)) ∈ pMσ ,
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3. M |=σ ϕ1 ∧ ϕ2 iff M |=σ ϕ1 and M |=σ ϕ2,
4. M |=σ ϕ1 ∨ ϕ2 iff M |=σ ϕ1 or M |=σ ϕ2,
5. M |=σ ϕ1 → ϕ2 iff M |=σ ¬ϕ1 or M |=σ ϕ2,
6. M |=σ ¬ϕ iff M �|=σ ϕ
7. M |=σ (∀r : s1 → s2)ϕ iff M |=σ[R/r:s1→s2] ϕ for all relations R : σ(s1) →

σ(s2),
8. M |=σ (∀a)ϕ iff M |=σ[A/a] ϕ for all objects A,
9. M |=σ (∃r : s1 → s2)ϕ iff M |=σ[R/r:s1→s2] ϕ for some relation R : σ(s1) →

σ(s2),
10. M |=σ (∃a)ϕ iff M |=σ[A/a] ϕ for some object A.

As usual we write M |= ϕ if M |=σ ϕ holds for all environment σ and |= ϕ if
M |= ϕ holds for all relational models M.

For our language versions of a coincidence and a substitution lemma hold.

Lemma 2. Let a be an object variable, r : s1 → s2 be a relational variable,
s, s′ be object terms, t, t′ be relational terms, ϕ be a formula, and M be a rela-
tional model. Furthermore, suppose σ1 and σ2 are environments over M so that
σ1(a) = σ2(a) for all free object variables in s, t or ϕ and σ1(r : s1 → s2) =
σ2(r : s1 → s2) for all free relational variables r in t or ϕ, respectively. Then we
have the following:

1. VM(s)(σ1) = VM(s)(σ2)
2. VM(t)(σ1) = VM(t)(σ2).
3. M |=σ1 ψ iff M |=σ2 ψ.
4. VM(s′[s/a])(σ) = VM(s′)(σ[VM(s)(σ)/a]).
5. VM(t′[t/r])(σ) = VM(t′)(σ[VM(t)(σ)/r]).
6. VM(t′[s/a])(σ) = VM(t′)(σ[VM(s)(σ)/a]).
7. M |=σ ϕ[t/r] iff M |=σ[VM(t)(σ)/r] ϕ.
8. M |=σ ϕ[s/a] iff M |=σ[VM(s)(σ)/a] ϕ.

For a proof of the lemma above we refer to [1].

4 A First-Order Calculus

In this section we introduce our first-order logic calculus for relational categories.
The calculus is formulated in a sequent style [6] but with exactly one formula on
the right-hand side. It has three different types of rules; axioms, which represent
the basic tautologies of logic and the axioms of the theory of allegories, structural
rules, which operate on the sequent of formula in a judgment, and logical rules,
which are concerned with the logical operations.

Definition 16. The axioms in Figures 1 and the rules of Figure 2 and 3 con-
stitute the formal calculus of allegories. If Γ is a sequence of formulas and ϕ
is a formula, then we write Γ % ϕ to indicate that there is a derivation in the
calculus ending in that sequence.
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ϕ � ϕ (Axiom)

� (∀a)(∀b)(∀r : a → b)Ia; r = r

� (∀a)(∀b)(∀r : a → b)r; Ib = r

� (∀a1)(∀a2)(∀a3)(∀a4)(∀r : a1 → a2)(∀q : a2 → a3)(∀u : a3 → a4)(r; q); u = r; (q; u)

� (∀a)(∀b)(∀r : a → b)r 	 r = r

� (∀a)(∀b)(∀r : a → b)(∀q : a → b)(∀u : a → b)(r 	 q) 	 u = r 	 (q 	 u)

� (∀a)(∀b)(∀r : a → b)(r�)� = r

� (∀a)(∀b)(∀r : a → b)(∀q : a → b)(r 	 q)� = r� 	 q�

� (∀a)(∀b)(∀r : a → b)(∀q : b → c)(r; q)� = q�; r�

� (∀a)(∀b)(∀r : a → b)(∀q : b → c)(∀u : b → c)r; (q 	 u) = r; (q 	 u) 	 r; q 	 r; u

� (∀a)(∀b)(∀r : a → b)(∀q : b → c)(∀u : a → c)r; q 	 u = r; (q 	 r�; u) 	 r; q 	 u

Fig. 1. Axioms

Weakening rule

Γ � ψ

Γ, ϕ � ψ
Weak

Contraction rule

Γ, ϕ, ϕ � ψ

Γ, ϕ � ψ
Cont.

Permutation rule

Γ, ϕ2, ϕ1 � ψ

Γ, ϕ1, ϕ2 � ψ
Perm.

Cut rule

Γ � ϕ Γ, ϕ � ψ

Γ � ψ
Cut

Fig. 2. Structural rules

Note that the =L rule in the form presented here (and implemented in the
system) is not really a left rule since the equation appears on the right-hand side
of %. The rule can alternatively be formulated as

Γ, t1 = t2 % ψ[t1/r]
Γ, t1 = t2 % ψ[t2/r]

=L′



A First-Order Calculus for Allegories 85

left logical rules right logical rules

Γ � t1 = t2 Γ � ψ[t1/r]

Γ � ψ[t2/r]
=L � t = t

=R

Γ, ϕ1, ϕ2 � ψ

Γ, ϕ1 ∧ ϕ2 � ψ
∧L

Γ � ϕ1 Γ � ϕ2

Γ � ϕ1 ∧ ϕ2
∧R

Γ, ϕ1 � ψ Γ, ϕ2 � ψ

Γ, ϕ1 ∨ ϕ2 � ψ
∨L

Γ � ϕ1

Γ � ϕ1 ∨ ϕ2
∨R

Γ � ϕ2

Γ � ϕ1 ∨ ϕ2
∨R

Γ � ϕ1 Γ, ϕ2 � ψ

Γ, ϕ1 → ϕ2 � ψ
→L

Γ, ϕ1 � ϕ2

Γ � ϕ1 → ϕ2
→R

Γ � ϕ

Γ,¬ϕ � ψ
¬L

Γ, ϕ � ⊥
Γ � ¬ϕ

¬R

Γ, ϕ[t/r] � ψ

Γ, (∀r : s1 → s2)ϕ � ψ
∀L (rel)

Γ � ϕ

Γ � (∀r : s1 → s2)ϕ
∀R (rel)

If r does not occur free in
any formula of Γ .

Γ, ϕ[s/a] � ψ

Γ, (∀a)ϕ � ψ
∀L (obj)

Γ � ϕ

Γ � (∀a)ϕ
∀R (obj)

If a does not occur free in
any formula of Γ .

Γ, ϕ � ψ

Γ, (∃r : s1 → s2)ϕ � ψ
∃L (rel)

Γ � ϕ[t/r]

Γ � (∃r : s1 → s2)ϕ
∃R (rel)

If r does not occur free in any for-
mula of Γ and in ψ.

Γ, ϕ � ψ

Γ, (∃a)ϕ � ψ
∃L (obj)

Γ � ϕ[s/a]

Γ � (∃a)ϕ
∃R (obj)

If a does not occur free in any for-
mula of Γ and in ψ.

Γ,¬ϕ � ⊥
Γ � ϕ

PBC

Fig. 3. Logical rules
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having the equation on the left-hand side. We have chosen the version presented
in Figure 3 because that version seems more convenient to use. In particular this
rule models the way equational reasoning is implemented using the ’Working
Area’ in RelAPS (see Section 5).

Theorem 1 (Soundness and Completeness). The calculus is sound and
complete, i.e., % ϕ iff |= ϕ for all formulas ϕ.

The previous theorem was shown in [1]. The soundness proof uses a straight-
forward induction on the structure of the derivation. The completeness result
was obtained following Henkin’s method, i.e., it was actually shown that every
consistent theory in our language has a model in the sense of Definition 13.
Significant modifications to the original proof had to be made in order to cope
with the categorical structure of the models.

5 The System RelAPS

The RelAPS system is an interactive theorem prover that can be downloaded
via the following web page: http://www.cosc.brocku.ca/∼mwinter/RelAPS/.
The purpose of the RelAPS system is to provide an environment in which a user
may construct a proof of certain theorems as close to a hand-written proof as
possible. This provides the benefits of having a system ensuring that an indi-
vidual proof-step is executed properly, while it remains the responsibility of the
user to complete the proof. It should be mentioned that it is not the aim of the
system to provide automated deduction.

In order to achieve the goal mentioned above the following design decisions
have been made:

1. Allegories are only the beginning of a whole hierarchy of relational categories.
For an overview we refer to [11]. Therefore, the system was designed to handle
extensions of the theory of allegories such as distributive allegories, division
allegories and so on.

2. A lot of proofs in the theory of relations are either based on equational
and/or inclusion based reasoning or on a chain of equivalences. For example,
in order to proof that a partial identity is idempotent, i.e., Q " I implies
Q = Q;Q, one could argue as follows:

Q " Q;Q�;Q Lemma 1(2)

" Q; I�;Q assumption
= Q; I;Q Lemma 1(3)
= Q;Q, identity axiom

and Q;Q " Q; I assumption
= Q. identity axiom
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Another example is the following proof of (Q/R)/S = Q/(S;R) for suitable
relations in a division allegory:

X " (Q/R)/S ⇐⇒ X ;S " Q/R residual axiom
⇐⇒ X ;S;R " Q residual axiom
⇐⇒ X " Q/(S;R). residual axiom

In both examples we use a chain of inclusion or equivalences, and in each
step we apply an axiom, an assumption or a lemma. The RelAPS system
has a special ‘working area’ to perform proofs in that style. On a first look
it seems that there is a mismatch between the calculational style and the
calculus presented. Actually, the calculational style can be seen as a different
presentation of a proof in natural deduction using some derived rules such
as transitivity and symmetry of equality and equivalence and previously
shown properties of the operations such as monotonicity of ’;’. In order to
use this style the user has to specify and to proof the required properties
of the operations in advance. After that converting the proof above into a
natural deduction version and vice versa is straight forward. A more detailed
discussion on this topic was presented in [7].

3. The previous examples also show that humans usually use certain properties
of operations and predicates without mentioning. Composition is associative
which is used in the second proof. Both, composition and converse, are mono-
tonic which is used in the first proof. Similar examples can be constructed in
which the symmetry or an anti-monotonic behavior is used implicitly. The
RelAPS system is capable of handling this kind of reasoning.

4. As already mentioned in the introduction we have chosen a logic calculus
that mimics human reasoning closely. The proofs is constructed bottom-up
and it is complete when all its subtrees have been ended by the application
of axioms.

5.1 A Short Tour through the System

Upon starting RelAPS a dialog requires the user to specify which theory should
be loaded. When the program is started for the first time, the only option pre-
sented is the (default) theory of allegories. Later on, user defined theories to-
gether with their set of operations and constants will also be available. After
selecting an appropriate theory the user may access the RelAPS interface, which
is shown in Figure 4.

The ‘Assertions’ (or goal) window displays the assertion of the current proof
corresponding to the right-hand side of % in a derivation. The text area of the
‘Assertions’ window simply displays the current state of the assertion being
worked with. The user may only work with one assertion at a time.

The ‘Assumptions’ window displays the assumptions that are associated with
the current proof. This corresponds with the sequence Γ on the left-hand side of
%. The text area of the ‘Assumptions’ window allows to select any assumption in
order to apply logical rules. Therefore, the order of the formulas is not important,
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Fig. 4. The RelAPS Interface

i.e., the Permutation rule is implemented implicitly. The ‘Weakening’ button
corresponds to the Weakening rule and removes a selected assumption from
the current proof. The ‘Duplicate’ button implements the Contraction rule by
duplicating a selected assumption.

The buttons on the right side of ‘Working Area’ are used to apply the logical
rules, introduced in Section 4. All derivation buttons are disabled by default
except PBC and Cut since the corresponding rules can always be applied. The
right-hand rule buttons are enabled based on current formula in the ‘Assumption’
window. An appropriate left-hand rule button will be enabled when the user
selects an assumption in the ‘Assumptions’ window. There are no button for the
(=L) and (=R) rules. These rules can be applied by using the ‘Working Area’
window described below.

When the user selects a term of either an equation or inclusion in the ‘As-
sertions’ or ‘Assumption’ window, the corresponding ‘Derive’ button (|=) will
become enabled. This allows the user to move the selection to the ‘Working
Area’ in order to use equation or inclusion based reasoning. A proof in the
‘Working Area’ is based on the equational rules (=L) and (=R). If a subterm of
the current term is selected, a menu immediately pops up allowing the user to
apply an axiom, an assumption, or a previously proved theorem to the current
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selection. By pressing the Apply button (⇑) the original term in the ‘Assertions’
or ‘Assumption’ window will be replaced by latest term in the ‘Working Area’.
Instead of selecting a term, the user can also select an equation or inclusion
and move the whole formula to the ‘Working Area’ in order to start a chain of
equivalences. Notice that in the ‘Working Area’ certain properties of operations
such as monotonicity, associativity, and symmetry are applied automatically.
The system keeps track of those properties for each of the operations defined.

Each time a rule is applied the Axiom rule is automatically checked by the
system. In that step the system actually checks whether the assertion is among
the formulas in the assumption window, i.e., the Weakening rule is implicitly
used in this process.

There are two additional buttons in the ‘Assertion’ window allowing the user
to split an equation into two inclusions, and to split an equivalence into two
implications.

In the ‘Proof Explorer’ window the tree of the current proof is displayed.
The user can switch between the different subtrees by clicking the appropriate
assertion in that tree view. Subtrees that have already successfully been proved
are tagged by ‘thumb up’, and all other subtrees are tagged by ‘thumb down’.
This window also contains buttons to save and load proofs and to enter a new
theorem.

A user may define a new theory. In order to do so the user has to define new
operations and axioms, which can be done by selecting the appropriate function of
the ‘Tools’ menu. During this process the user may also specify certain properties
of operations such as monotonicity, associativity, and symmetry. Once specified
the system requires the property of the operation either as an axiom or that it is
shown as a theorem. Afterwards the property can be used in the ‘Working Area’
automatically as described above. A new theory can be saved and used later. In
particular, it will be available as a selection in the staring dialog.

6 Conclusion and Future Work

There is plenty of further work that could improve the RelAPS system. In this
section we want to sketch four of those projects.

The main focus in the future should be on automating some proof steps, par-
ticularly very basic steps. Certain sub-theories of allegories, such as the equa-
tional theory, are known to be decidable. Once it has been implemented, the
system could suggest to the user that the current proof obligation is in a certain
sub-theory that can be decided. If the user chooses to let the system finish the
proof, the corresponding algorithm is used to find that proof.

More flexible user-defined operations is another way to extend the system.
Currently it is not possible to define functions that take objects as parameters
and return objects. The user only can define functions that return relations. In
addition, function symbols could take a mixture of relational and object terms as
parameters which would be useful for relational constructions such as splittings.
Such an extension would also require a modification of the language studied in
this paper.
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Even though user defined predicate symbols are already part of the language,
they have not been implemented in the RelAPS system, i.e., the only defined
predicate symbols are ‘<’, ‘>’, and ‘=’. Here the same flexibility as outlined in
the previous paragraph for function symbols might be useful.

Producing LATEX output of the proofs is another possible project. A researcher
could use the system to prove theorems which are then automatically checked
for correctness and use the LATEX output for publications. For any textual rep-
resentation of a RelAPS proof it would be very helpful if the user could specify
the level of detail in which the proof should be presented. Depending on that
level each step in the textual representation could summarize several steps in
the actual derivation.
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Abstract. We describe a simple computing technique for solving inde-
pendence and domination problems on rectangular chessboards. It rests
upon relational modelling and uses the BDD-based tool RelView for the
evaluation of the relation-algebraic expressions that specify the problems’
solutions and the visualization of the computed results. The technique
described in the paper is very flexible and especially appropriate for ex-
perimentation. It can easily be applied to other chessboard problems.

1 Introduction

Problems concerning chessboards have been of interest for puzzle solvers as well
as mathematicians and computer scientists for a very long time. A classical prob-
lem is the 8-queens problem. It asks for the number of possibilities to place 8
non-attacking queens on the classical chessboard with 64 squares. In the year
1850 the 92 possibilities have been found by F. Nauck [13], and E. Pauls [14]
showed about 20 years later that 92 is indeed the total number of possibilities.
Later on the 8-queens problem was modified and generalized in manifold ways
by considering other chessboard topologies (rectangles, toroidal boards, stair-
case boundaries, boards with holes) and chess pieces (kings, rooks, bishops and
knights). See, for example, [1,17,18] for more details.

The 8-queens problem is related to the independence (that is, mutually ex-
clusive attacks) of chess pieces. Another interesting class of chessboard problems
concerns domination, In the case of queens and the classical chessboard the
queens domination problem asks for the minimum number of queens needed to
dominate (i.e., attack) all squares of the chessboard and the number of possi-
bilities to achieve such minimal dominations. It is known that 5 queens suffice
and there are 4860 possibilities. Also chessboard domination has been studied
already in the 19th century. According to [9], the first explicit statement of this
problem was due to Abbe Durand in the year 1861, followed one year later by
C.F. de Jaenisch [10]. Domination in view of queens and bishops is e.g., inves-
tigated in [8] and the rook domination problem is e.g., studied in [7]. As in the
case of chessboard independence problems also the monographs [17,18] have to
be mentioned because of their fundamental results.

Backtracking is one of the oldest techniques for solving chessboard problems.
In this paper we propose another technique. It is based on relation algebra [15] as

H. de Swart (Ed.): RAMICS 2011, LNCS 6663, pp. 92–108, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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methodological modelling means and consists essentially in the relation-algebraic
specification of extremal independent and dominating sets of vertices of a given
graph and the enumeration of these sets, as well as the specification of the
“attack graphs” of the chess pieces in the same way. To evaluate the resulting
relation-algebraic expressions and to visualize the solutions, the tool RelView
[2] is used. Integral parts of our technique are membership relations and size-
comparison relations on powersets. If these specific relations are implemented
via simple Boolean arrays, then exponential space is required and classical back-
tracking is head and shoulders above the relation-algebraic approach. However,
based on [11,12], in RelView relations and a lot of operations on them are imple-
mented very efficiently via binary decision diagrams (BDDs) [6] and, therefore,
our method is no longer considerably slower than backtracking. We believe that
it possesses some advantages. It is simple. The correctness proofs of the algo-
rithms are very formal and they use only elementary properties of relations. All
this drastically reduces the danger of making errors. Furthermore, our method is
flexible and can easily be adapted to other board topologies and kinds of moves.
In combination with the concise RelView programs and the tool’s visualization
facilities this is ideal for experimenting while avoiding unnecessary overhead.

2 Relation Algebra and RelView

If X and Y are sets, then a subset R of the direct product X × Y is a relation
with source X and target Y . We denote the set (type) of all relations with
source X and target Y (i.e., the powerset 2X×Y of X×Y ) by [X↔Y ] and write
R : X↔Y instead of R ∈ [X↔Y ]. A (typed) relation R : X↔Y corresponds
to a predicate on X × Y . If X and Y are finite, then we may consider R also as
a Boolean matrix. These interpretations are well suited for many purposes and
Boolean matrices are also used as one of the graphical representations of relations
within RelView. Therefore, in this paper we often use predicate and Boolean
matrix terminology and notation. In particular, we speak of rows, columns and
components of relations and write R(x, y) instead of 〈x, y〉 ∈ R or xR y. We will
use the following basic operations on relations: R (complement), R∪S (union),
R ∩ S (intersection), RT (transposition) and R;S (composition). Furthermore,
we will use the special relations O (empty relation), L (universal relation), and I
(identity relation). Here we overload the symbols, i.e., avoid the binding of types
to them. Finally, if R : X↔Y is included in S : X↔Y we write R ⊆ S and
equality of R and S is denoted as R = S.

A vector is a relation v with the specific set 11 := {⊥} as target. Since in
v(x,⊥) the argument ⊥ is irrelevant, we write in the following v(x) instead of
v(x,⊥). Vectors correspond to predicates on their sources and in the Boolean
matrix model they are Boolean column vectors. We say that v : X↔11 describes
the subset Y of X if for all x ∈ X we have x ∈ Y iff v(x). In such a case
inj(v) : Y ↔X denotes the embedding relation of Y into X . This means that for
all y ∈ Y and x ∈ X we have inj(v)(y, x) iff y = x. To model sets we also will use
the relation-level equivalents of the set-theoretic symbol “∈”, i.e., membership



94 R. Berghammer

relations M : X↔ 2X . These specific relations are defined by M(x, Y ) iff x ∈ Y ,
for all x ∈ X and Y ∈ 2X . A Boolean matrix representation of M requires
exponential space. However, in [11] a BDD-implementation is presented, the
number of vertices of which is linear in the size ofX . A combination of embedding
and membership relations allows a column-wise enumeration of a subset of a
powerset. More specifically, if v : 2X ↔11 describes a subset S of 2X in the sense
defined above, then for all x ∈ X and Y ∈ S we have (M; inj(v)T)(x, Y ) iff
x ∈ Y . Using Boolean matrix terminology this means that the elements of S are
described precisely by the columns of the relation M; inj(v)T : Y ↔X .

Given a direct product X × Y , there are the projections which decompose a
pair u = 〈u1, u2〉 into its first component1 u1 and its second component u2. For a
relation-algebraic approach, it is very useful to consider instead of these functions
the corresponding projection relations π : X×Y ↔X and ρ : X×Y ↔Y such
that, given any u ∈ X×Y , it holds that π(u, x) iff u1 = x and that ρ(u, y)
iff u2 = y. Projection relations algebraically allow us to specify the pairing
R ‖ S : X×X ′↔Y×Y ′ of relations R : X↔Y and S : X ′↔Y ′ in such a way
that (R‖S)(u, v) is equivalent to R(u1, v1) and S(u2, v2), for all u ∈ X×X ′ and
v ∈ Y×Y ′. We get this property via the definition R ‖ S = π;R;σT ∩ ρ;S; τT,
where π : X×X ′↔X and ρ : X×X ′↔X ′ are the two projection relations of
X ×X ′ and σ : Y×Y ′↔Y and τ : Y×Y ′↔Y ′ are those of Y ×Y ′.

As already mentioned, we use RelView to evaluate the relation-algebraic
expressions we will develop in this paper. RelView is a specific purpose com-
puter algebra system for the visualization and manipulation of relations and for
relational prototyping and programming. It is written in C and makes full use
of the X-windows graphical user interface. The underlying technique is based on
a very efficient BDD-implementation of relations. Details and applications can
be found, for example, in [2,3,4,5,11,12].

3 Chessboard Independence and Domination Problems

Given a classical chessboard and a chess piece P , an undirected graph may be
formed with the 64 squares of the board as vertices and with two vertices being
adjacent if they are different and P situated at one is able to move by one step
to the other. This directly generalizes to boards with m > 0 rows and n > 0
columns. E.g., if the mn squares of the m×n board correspond to the elements of
the direct product V := X×Y of the sets X := {1, . . . ,m} and Y := {1, . . . , n},
then the pairs u, v ∈ V form an edge {u, v} in the (undirected) rooks graph iff
they are different and, furthermore, u1 = v1 or u2 = v2, i.e., if the corresponding
rooks are arranged on different squares and the squares are in the same row or
the same column. In a similar way the kings graph, the bishops graph, the queens
graph and the knights graph are defined by means of the chess pieces’ moves.

With regard to independence, for the chess piece P and an m× n chessboard
then the following two questions are equivalent:
1 Throughout this paper, pairs u are assumed to be of the form u = 〈u1, u2〉, i.e., the

first component of u is denoted by u1 and the second component by u2.
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a) What is the largest number of non-attacking copies of P that can be placed
on the board?

b) What is the independence number α(GP ) of the chessboard graph GP for P?

The independence number α(G) of an undirected graphG = (V,E) is the size of a
maximum independent set, where an independent (or stable) set is a subset of the
set V of vertices in which no pair of different vertices is adjacent. Furthermore,
the number of possibilities to arrange a largest number of non-attacking copies
of P on the chessboard equals the size of the set of all maximum independent
sets of the undirected graph GP ,

In the same way the chess domination problem for the chess piece P can be
reduced to a classical graph-theoretic problem. Namely, if a set of vertices of
an undirected graph G = (V,E) is called dominating (or absorbing) if for all
vertices outside of it there exists at least one adjacent vertex inside of it, then
the following questions are equivalent:

a) What is the least number of copies of P that have to stand on the board to
ensure that each empty square is attacked by at least one copy of P?

b) What is the domination number γ(GP ) of the chessboard graph GP for P?

The domination number γ(G) of an undirected graph G = (V,E) is the size of a
minimum dominating set of vertices. Again the number of possibilities to arrange
a least number of copies of P such that all squares, where no piece stands, are
attacked equals the size of the set of all minimum dominating sets of GP .

The upper domination number Γ (G) of an undirected graph G is the largest
size of a minimal (wrt. set inclusion) dominating set. In the literature indepen-
dence and domination are also combined, leading to the problem of determining
the smallest size of a subset that is at the same time independent and domi-
nating, i.e., a kernel of the given graph. The corresponding graph parameter is
called independent domination number and denoted by i(G).

4 Computation of Independent and Dominating Sets

Having reduced the chessboard problems we consider in this paper to classical
graph-theoretic problems, in this section we show how to solve the latter ones
using relation algebra. The remaining task of relation-algebraically specifying
the undirected graphs for given row and column numbers and chess pieces is
postponed to the next section.

Assume G = (V,E) to be an undirected graph. Then we can construct from
G a directed graph G∗ = (V,R) with relation R : V ↔V by defining R(x, y)
iff {x, y} ∈ E, i.e., iff x and y are adjacent in G, for all x, y ∈ V . The relation
R is symmetric, that is, we have R = RT. As edges of undirected graphs are
2-element sets of vertices, R is also irreflexive, i.e., R ⊆ I . Obviously, there is a
1-1-correspondence between undirected graphs on V and directed graphs on V
with symmetric and irreflexive edges relations. Since directed graphs are nothing
else than relations on sets of vertices, in the following we identify G∗ = (V,R)
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with R : V ↔V and investigate independence and domination in the context of
symmetric and irreflexive relations only. We, furthermore, assume the carrier sets
to be finite. This assumption is needed when we ask for extremal sets w.r.t. size.

Let R : V ↔V be a symmetric and irreflexive relation. If we specify indepen-
dence and domination within predicate logic, then Y ∈ 2V is independent iff the
following formula (I) holds, and dominating iff the following formula (D) holds.

(I) ∀x, y : x ∈ Y ∧ y ∈ Y → ¬R(x, y) (D) ∀x : x /∈ Y → ∃y : y ∈ Y ∧R(x, y)

In both formulae (I) and (D) the quantifiers range over the set V . Starting with
(I), we can calculate as given below, where M : V ↔ 2V is a membership relation
and the relation L has type [11↔V ], i.e., is a transposed universal vector:

∀x, y : x ∈ Y ∧ y ∈ Y → ¬R(x, y) ⇔ ∀x : x ∈ Y → ∀y : y ∈ Y → ¬R(x, y)
⇔ ∀x : M(x, Y ) → ¬∃y : M(y, Y ) ∧R(x, y)
⇔ ∀x : M(x, Y ) → ¬(R; M)(x, Y )
⇔ ¬∃x : M(x, Y ) ∧ (R; M)(x, Y )
⇔ ¬∃x : L(⊥, x) ∧ (M ∩R; M)(x, Y )
⇔ ¬(L; (M ∩R; M))(⊥, Y )

⇔ L; (M ∩R; M)
T

(Y )

As a consequence, the set Y is independent iff the Y -component of the vector
L; (M ∩R; M)

T
is true so that, by the definition given in Section 2, the vector

indset(R) := L; (M ∩R; M)
T

(1)

of type [2V ↔11] describes the set I of all independent sets of V as a subset of
2V in the sense of Section 2. To get from (D) a relation-algebraic specification
of the set D of all dominating sets, we calculate for Y ∈ 2V as follows:

∀x : x /∈ Y → ∃y : y ∈ Y ∧R(x, y) ⇔ ∀x : ¬M(x, Y ) → ∃y : M(y, Y ) ∧R(x, y)
⇔ ∀x : M (x, Y ) → (R; M)(x, Y )
⇔ ¬∃x : M (x, Y ) ∧ ¬(R; M)(x, Y )
⇔ ¬∃x : L(⊥, x) ∧ ( M ∩ R; M )(x, Y )
⇔ ¬(L; ( M ∩ R; M ))(⊥, Y )

⇔ L; ( M ∩ R; M )
T

(Y )

This leads to the following vector domset(R) : 2V ↔11 that describes D as a
subset of the powerset 2V , where the relations M and L in (2) are as (1):

domset(R) := L; ( M ∩ R; M )
T

(2)

To obtain from (1) and (2) vectors that describe the set Im of all maximum
independent sets and the set Dm of all minimum dominating sets, resp., there
are two possibilities.
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The first one is to use relation-algebraic specifications of greatest and least ele-
ments in combination with the size-comparison relation C : 2V ↔ 2V that relates
X,Y ∈ 2V iff |X | ≤ |Y |. Then we get for the set of all maximum independent
sets the vector description maxindset(R) : 2V ↔11, where

maxindset(R) := max(C, indset(R)). (3)

In (3) the vector max(S, v) = v ∩ S
T

; v : X↔11 describes for a pre-order
relation S : X↔X and a vector v : X↔11 the set of all greatest elements; cf.
[15]. Analogously, for the set of all minimum dominating sets we obtain

mindomset(R) := min(C, domset(R)) (4)

of type [2V ↔11], where now min(S, v) = max(ST, v) = v ∩ S ; v : X↔11
describes, for S and v as above, the set of all least elements.

In [12] it is shown that a size-comparison relation C : 2V ↔ 2V can be imple-
mented by a BDD with O(|V |2) vertices. By a modification of this implemen-
tation in the same thesis also an operation filter is developed such that for all
k > 0 the vector filter(k) : 2V ↔11 describes the subset {Y ∈ 2V | |Y | < k}
of the powerset 2V . This offers an alternative method for obtaining the sets of
extremal sets of I and D. Consider the vector card(k) := filter(k+1)∩ filter(k) .
As it describes the set of all subsets of V with size k, by the vector

indset(R, k) := indset(R) ∩ card(k) (5)

of type [2V ↔11] the set Ik of all sets of I with size k is described, and by

domset(R, k) := domset(R) ∩ card(k), (6)

a vector of the same type, the set Dk of all sets of D with size k is described,
both as subsets of 2V . Practical experiments with RelView have shown that in
the case of larger boards the specifications (5) and (6) are much more efficient
than the specifications (3) and (4) and lead, even when applied iteratively, much
faster to the solutions of our chessboard problems. The efficiency of (5) and
(6) even can be increased if the filter-process via the vector card(k) and the
descriptions of the sets I and D are intertwined. E.g., in the case of independent
sets we worked with the variant

indset′(R, k) := L; M ∩R; M ∩ (card(k); L)T
T

(7)

that follows from (5) by simple relation-algebraic reasoning. Let c abbreviate the
expression card(k). Then we obtain the equivalence of (5) and (7) by

L; (M ∩R; M)
T ∩ c = L; (M ∩R; M)

T ∩ L; c; L
T

T

= L; (M ∩R; M) ∪ L; c; L
T

T

= L; ((M ∩R; M) ∪ c; L
T

)
T

= L; ( M ∩R; M ∪ c; L
T

)
T

= L; M ∩R; M ∩ (c; L)T
T

,
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where c = c; L ; L = L; c; L
T

T

is used in the first step. The position of the
filter expression (card(k); L)T in (7) was found with the help of RelView, since
during the evaluation of (1) the explosion of the number of BDD-vertices was
caused by the composition of L and M∩R; M. But we won’t go into details here.

It is obvious that the specifications of this section also can be used to compute
largest minimal dominating sets, i.e., Γ (G), and minimum kernels, i.e., i(G),
if the undirected graph G is described by a symmetric and irreflexive edges
relation. Furthermore, all sets of sets we have specified in this section can be
enumerated as columns of relations using the technique described in Section 2.
For instance, M; inj(indset(R))T : V ↔ I column-wisely enumerates the set I
of all independent sets and M; inj(maxindset(R))T : V ↔ Im the set Im of all
maximum ones. Executing such column-wise enumerations with RelView not
only immediately leads to the graph parameters and solutions of chess problems
we are interested in. The tool also allows us to mark vertices of graphs with
vectors, i.e., columns of relations. This is very useful for the visualization of
results.

5 Computation of Chessboard Relations

To model an m × n chessboard, we assume sets X := {1, . . . ,m} and Y :=
{1, . . . , n} for the rows and columns, resp., and represent the squares by the
elements of V := X × Y . In Section 3 we have already mentioned the notion
of an (undirected) chessboard graph for a chess piece P and in Section 4 that
it suffices to consider instead of the graphs the corresponding symmetric and
irreflexive relations. As the specifications of (extremal) independent and domi-
nating sets in Section 4, also the specifications of the chessboard relations in this
section are based on relation algebra, supported by one additional fact. As al-
ready mentioned, all carrier sets are assumed to be finite. Now, we suppose them
to be equipped with a linear strict-order and the corresponding partial successor
function to be available as a relation. To be more precise, if z1 < z2 < . . . < zn

is the ordering of a given finite set Z, then we suppose a relation SZ : Z↔Z
to be available such that for all x, y ∈ Z it holds SZ(x, y) iff there exists i ∈ N
such that x = zi and y = zi+1. In terms of order theory, SZ is the cover relation
(or the Hasse diagram) of the strict-order < and, thus, the latter relation equals
the transitive closure of the former. In RelView, the strict-order is implicitly
given via the internal enumeration of the set Z within the tool, and the relation
SZ may be computed by the pre-defined operation succ.

For given m,n > 0, we assume 1 < 2 < . . . < m to be the ordering of the
m × n chessboard’s row set X and 1 < 2 < . . . < n to be the ordering of its
column set Y . Graphically, we suppose the rows to be numbered from bottom to
top and the columns from left to right, both in ascending order so that 〈1, 1〉 is
the lowermost-leftmost square and 〈m,n〉 is the uppermost-rightmost one. Using
the pairing construction of Section 2, the building blocks for the construction of
the chessboard relations (except the knights relation) can be specified, viz. by

up(SX) := SX ‖ I right(SY ) := I‖SY (8)
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for the unidirectional vertical and horizontal one-square moves, resp., and by

pdiag(SX , SY ) := SX ‖SY ndiag(SX , SY ) := ST
X ‖SY (9)

for the unidirectional one-square moves in the positive diagonal direction (“↗”)
and the negative diagonal direction (“↖”) of the chessboard, resp. That these
four relations, each of type [V ↔V ], in fact specify the claimed moves can be
seen as follows. Assume u, v ∈ V to be squares of the chessboard. With the help
of the point-wise description of pairing, we can calculate as follows:

up(SX)(u, v) ⇔ (SX ‖ I)(u, v)
⇔ SX(u1, v1) ∧ I(u2, v2) ⇔ u1 + 1 = v1 ∧ u2 = v2

This equivalence shows that up(SX) specifies for all squares u ∈ V the move
from u to the square 〈u1 + 1, u2〉, i.e., to the vertical upper neighbour square, if
it exists. Furthermore, for all u, v ∈ V the subsequent equivalence holds:

pdiag(SX , SY )(u, v) ⇔ (SX ‖SY )(u, v)
⇔ SX(u1, v1) ∧ SY (u2, v2) ⇔ u1 + 1 = v1 ∧ u2 + 1 = v2

So, pdiag(SX , SY ) specifies for all squares u ∈ V the move to its neighbour square
〈u1 + 1, u2 + 1〉 w.r.t. the positive diagonal direction, again only if it exists. In
the same way it can be shown that right(SY ) specifies the moves to neighbour
squares on the right, i.e., it holds right(SY )(u, v) iff u1 = v1 and u2+1 = v2 for all
u, v ∈ V , and ndiag(SX , SY ) specifies the moves to the neighbour squares w.r.t.
the negative diagonal direction, i.e., it holds ndiag(SX , SY )(u, v) iff u1 − 1 = v1
and u2 + 1 = v2 for all u, v ∈ V .

Having specified the basic moves relation-algebraically, it is rather simple to
specify the rooks and the bishops chessboard relations. A rook precisely attacks
all squares of its row and its column. Using the building blocks (8) for the vertical
and horizontal one-square moves, this leads to the rooks chessboard relation (or
rooks “attack relation”) rook(SX , SY ) : V ↔V as

rook(SX , SY ) := up(SX)♦ ∪ right(SY )♦, (10)

where R♦ := R+∪(R+)T denotes the symmetric closure of the transitive closure
R+ :=

⋃
i>0 R

i of a relation R (the powers of R are inductively defined by
R1 := R and Ri+1 := R;Ri). In (10) the expression up(SX)♦ specifies the moves
on the columns and the expression right(SY )♦ those on the rows. The rule that
a bishop precisely attacks the squares of the two diagonals he stands on, can be
expressed with the help of the building blocks of (9) for diagonal moves as

bishop(SX , SY ) := pdiag(SX , SY )♦ ∪ ndiag(SX , SY )♦; (11)

this specifies the bishops chessboard relation bishop(SX , SY ) : V ↔V . A queen
can move as a rook and as a bishop. As a consequence, the queens chessboard
relation queen(SX , SY ) : V ↔V is the union of the rooks chessboard relation
and the bishops chessboard relation, i.e., we have

queen(SX , SY ) := rook(SX , SY ) ∪ bishop(SX , SY ). (12)
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A king precisely attacks all squares adjacent to the square he stands on. If we
translate this rule into the language of relation algebra, use R�� := R ∪ RT as
symmetric closure of a relation R and (R ∪ S)�� = R�� ∪ S��, then we get

king(SX , SY ) := (up(SX) ∪ right(SY ) ∪ pdiag(SX , SY ) ∪ ndiag(SX , SY ))�� (13)

as specification of the kings chessboard relation king(SX , SY ) : V ↔V .
What remains is the knights chessboard relation knight(SX , SY ) : V ↔V .

A knight precisely attacks those squares which can be reached by moving two
squares horizontally and then one square vertically or by moving two squares ver-
tically and then one square horizontally. Obviously, the property (SX ‖S2

Y )(u, v)
holds iff the square v ∈ V is reached from the square u ∈ V by vertically moving
one square upwards and then horizontally moving two squares to the right. In
the same way all other possibilities for a knight’s move can be specified. If we
use again the symmetric closure notation and the law (R ∪ S)�� = R�� ∪ S�� for
symmetric closures, then we get the knights chessboard relation as

knight(SX , SY ) := ((S2
X ‖SY ) ∪ (SX ‖S2

Y ) ∪ ((S2
X)T ‖SY ) ∪ (ST

X ‖S2
Y ))��. (14)

The informal arguments we have used to obtain the relation-algebraic speci-
fications (10) to (14) also can be replaced by formal reasoning. We will demon-
strate this for the rooks chessboard relation only. The pairing of relations fulfills
(R1 ‖R2); (S1 ‖S2) = (R1;S1) ‖ (R2;S2). Consequently it holds that (R‖S)n =
Rn ‖Sn for all n > 0. Using this fact, the equation I = In, and that the strict-
orders on X and Y are the transitive closures of their covering relations SX and
SY , resp., we can calculate for all u, v ∈ V as follows (n ranges over N)

(SX ‖ I)+(u, v) ⇔ ∃n : n > 0 ∧ (SX ‖ I)n(u, v)
⇔ ∃n : n > 0 ∧ Sn

X(u1, v1) ∧ In(u2, v2)
⇔ S+

X(u1, v1) ∧ u2 = v2
⇔ u1 < v1 ∧ u2 = v2

and, applying this and the corresponding results for the remaining three expres-
sions (SX ‖ I)+(v, u), (I‖SY )+(u, v) and (I‖SY )+(v, u), we get

rook(SX , SY )(u, v)
⇔ up(SX)♦(u, v) ∨ right(SY )♦(u, v)
⇔ (SX ‖ I)+(u, v) ∨ (SX ‖ I)+(v, u) ∨ (I‖SY )+(u, v) ∨ (I‖SY )+(v, u)
⇔ (u1 < v1 ∧ u2 = v2) ∨ (v1 < u1 ∧ v2 = u2) ∨

(u1 = v1 ∧ u2 < v2) ∨ (v1 = u1 ∧ v2 < u2)
⇔ (u1 �= v1 ∧ u2 = v2) ∨ (u1 = v1 ∧ u2 �= v2)
⇔ u �= v ∧ (u1 = v1 ∨ u2 = v2).

The last line of this equivalence is the formalization of the fact that a rook on
square u attacks the square v,

In RelView relations and graphs interactively can be manipulated on the
screen. This allows to play and experiment with further board topologies without
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large effort. Very regular non-standard chessboards, like cylindric and toroidal
ones, even automatically can be constructed using variants of the relation-
algebraic specifications developed in this section.

6 Experimental Results Concerning Independence

The specifications of the last sections can be transformed immediately into code
for RelView. In the following we only present some of the results on chess-
board independence we have obtained with the tool and do not mention results
concerning dominance. For symmetry reasons we may assume m ≤ n.

It is rather obvious that for such a chessboard the largest number of non-
attacking rooks equals m and that there are exactly n(n − 1) · · · (n − m + 1),
that is, n!

(n−m)! possibilities to arrange m rooks on the board. This result was
confirmed by our RelView experiments, as shown by the left-hand table of
Figure 1 for the values 3 ≤ m ≤ n ≤ 8.

In the other table of Figure 1 the largest numbers of non-attacking kings and,
separated by a slash, the numbers of possibilities to arrange them, are shown. The
largest number of non-attacking kings is given by ,m+1

2 �,n+1
2 �, where the floor

expression ,r� specifies the integer part of the real number r. This generalizes the
result of [18] for quadratic chessboards. Our result can be proved by a simple
generalization of the proof of [18,17], since also an m × n chessboard can be
partitioned into ,m

2 �,n
2 � 2×2 parts and, if m and/or n are odd, additional 1×2

parts for the bottom row, 2 × 1 parts for the rightmost column, and a 1 × 1
part for the lower right-hand corner. For the four board sizes 2× 8, 2× 9, 3× 8,
and 3× 9, resp., this partitioning is illustrated in Figure 2 (again produced with
the help of RelView), where the black squares denote the positions of the 4,
5, 8, and 10 kings, resp. Very little is known about the number of possibilities
to arrange a maximum number of non-attacking kings. The only result we are
aware of is from [17] and says that for m and n being odd numbers there is
only one arrangement. This is due to the fact that the placement of the king
in the 1 × 1 part uniquely determines the arrangement of all other kings. See
again Figure 2 and compare also with the entries of the right-hand table of
Figure 1.

The two tables of Figure 3 show some of the experimental resulta we have
obtained for the arrangement of non-attacking knights (left-hand table) and

3 4 5 6 7 8

3 6 24 60 120 210 336
4 24 120 360 840 1680
5 120 720 2520 6720
6 720 5040 20160
7 5040 40320
8 40320

3 4 5 6 7 8

3 4/1 4/9 6/1 6/16 8/1 8/25
4 4/79 6/27 6/408 8/81 8/1847
5 9/1 9/64 12/1 12/125
6 9/3600 12/256 12/26040
7 16/1 16/625
8 16/281571

Fig. 1. Independence for rooks and kings



102 R. Berghammer

Fig. 2. Partitioning of rectangular chessboards

3 4 5 6 7 8

3 5/2 6/3 8/2 9/4 11/1 12/2
4 8/6 10/3 12/3 14/3 16/3
5 13/1 15/2 18/1 20/2
6 18/2 21/2 24/2
7 25/1 28/2
8 32/2

3 4 5 6 7 8

3 4/8 6/1 7/3 8/4 9/5 10/9
4 6/16 8/1 8/81 10/9 10/400
5 8/32 10/1 11/9 12/25
6 10/64 12/1 12/729
7 12/128 14/1
8 14/256

Fig. 3. Independence for knights and bishops

bishops (right-hand table). In [17] it is shown that for 3 ≤ m = n the largest
number of non-attacking knights equals ,m2+1

2 �. The used arguments can be
modified in such a way that they also prove the equality of ,mn+1

2 � and the
largest number of non-attacking knights under the assumption m ≤ n. The
number ,mn+1

2 � is the maximum of the number w of white squares and the
number b of black squares, resp. If both m and n are odd and, as usual, the
lowermost-leftmost square 〈1, 1〉 is black, then it holds w = b − 1 and there
exists for m,n ≥ 5 exactly one maximum arrangement: Put the knights on the
black squares. Otherwise, we have w = b. If additionally m > 4, the arrangement
of all knights on the black squares or, alternatively, on the white squares, are
the only maximum independent arrangements. In the case m = 4 and n ≥ 5
besides these two possibilities there is a third one: Place n knights on row 1 and
n knights on row 4 (note, that , 4n+1

2 � = 4n
2 = 2n). For m = n = 4 even three

further possibilities exist, as demonstrated by the RelView-pictures of Figure
4. Each of them shows the 4 × 4 knights chessboard graph and three of the six
maximum independent sets; the latter indicated by black vertices.

The largest numbers of non-attacking bishops for m = n is 2m− 2 and there
are 2m possibilities. This result of [18] is indicated by the diagonal of the right-
hand table of Figure 3. Experimental results for the arrangement of bishops on
rectangular boards also can be found in [16]. In almost all cases they coincide

Fig. 4. Three of the 6 arrangements of 8 non-attacking knights on the 4×4 chessboard
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with our results; we only have corrected the case m = 4 and n = 8 (in [16] m = 8
and n = 4) from 10/144 to 10/400 and the case m = 6 and n = 8 (in [16] m = 8
and n = 6) from 12/324 to 12/729. Our results also indicate that for m < n it
is possible to arrange at most m + n− 2 non-attacking bishops if m and n are
even, and m+n−1 non-attacking bishops otherwise. This corresponds with the
results given in [16]. Furthermore, our RelView experiments have shown that
on non-quadratic boards maximum arrangements of non-attacking bishops are
possible such that some of the bishops are placed in the interior of the board. In
the case of quadratic boards all bishops of a maximum independent arrangement
have to be placed on the outer ring of squares; cf. [17,18].

A bishop always stays on squares of a single colour. Hence the bishops graph
possesses two connected components. This fact can be used to reduce the costs for
solving the bishops independence problem. Suppose B : V ↔V to be the bishops
chessboard relation. If we use the vector p : V ↔11 to describe the set {〈1, 1〉}
(i.e., the black lowermost-leftmost square), then the vector b := p∪B+; p : V ↔11
describes the subset Vb of V consisting of the black squares and, hence, its
complement b describes the subset Vw of the white squares. The restriction of
B to Vb is obtained via Bb := inj(b);B; inj(b)T : Vb↔Vb and its restriction to
Vw via Bw := inj( b );B; inj( b )T : Vw↔Vw. If we identify undirected graphs and
their edges relations, then from the independence numbers of Bb and Bw we get
that of B as their sum. Furthermore, the number of maximum independent sets
of B is the product of the numbers of maximum independent sets of Bb and
Bw. We have computed via this approach e.g., the numbers for the relation B of
the 13× 16 chessboard. RelView delivered for Bb as well as for Bw the bishops
independence number 14 and exactly 233 maximum independent sets. Hence, for
the 13× 16 board the largest number of non-attacking bishops is 14 + 14 = 28,
as expected, and the number of possibilites to place them is 233 · 233 = 54289.
These results also can be found in [16].

7 Proof of the Bishops Independence Number

Without giving a proof, in [16] it is mentioned that for m < n it is possible to put
at most m+n− 1 non-attacking (independent) bishops on an m×n chessboard
if m is odd or n is odd, and m + n− 2 non-attacking bishops otherwise. In this
section we present a proof of this result. In contrast to rooks, kings and knights
where, as mentioned in the last section, proofs of the corresponding independence
numbers can be obtained by modifications of the proofs of [17,18], for bishops
new ideas and a more complex construction are necessary. Only the basic idea is
the same: To prove that α is the independence number of a chess piece P , give an
arrangement of α copies of P on the board and then show that an arrangement
of more than α copies is impossible.

In the case of bishops the first step is constructive and has been found with
the help of RelView experiments by considering the cases n = m+1, n = m+2
and so forth. To enhance its presentation, we divide it into two parts and start
with the following fact.
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part A part B part C

Fig. 5. Maximum arrangements of non-attacking bishops

Proposition 7.1. Assume an m × n chessboard to be given, where 0 < m <
n ≤ 2m. Then it is possible to arrange on it m + n− 1 non-attacking bishops if
m is odd or n is odd, and m + n− 2 non-attacking bishops otherwise.

Proof. First, let m be odd and d := m+1
2 . Then m+n−1 non-attacking bishops

can be arranged in form of three groups as follows:

a) Arrange m bishops along the board’s first column, that is, on the squares
〈1, y〉, where 1 ≤ y ≤ m.

b) Arrange n −m − 1 bishops along row d of the board starting with square
〈d, d + 1〉 and ending with square 〈d, n− d〉.

c) Arrange m bishops along the board’s last column, that is, on the squares
〈y, n〉, where 1 ≤ y ≤ m.

For m = 7 and n = 12 this arrangement is visualized in the left-hand picture
of Figure 5, where the black squares denote the positions of the 18 bishops,
and for n = m + 1 the second group of bishops becomes empty since here
n − d = m + 1 − m+1

2 = d. That on row d exactly n −m − 1 bishops stand as
second group follows from n− d− (d+ 1) + 1 = n− 2d = n− 2m+1

2 = n−m− 1.
By a case analysis it can be checked that all m+ (n−m− 1) + m = m + n− 1
bishops of the entire board are in fact non-attacking: Since the three groups
of bishops are placed on the same column and row, resp., there are no attacks
possible within the groups. Attacks between the first and the third group are
impossible, since the range of coverage to the right of a bishop on column 1 ends
with column m and m < n, and the range of coverage to the left of a bishop on
column n ends with column n−m+ 1 and 1 < n−m+ 1. Let pd be the positive
diagonal through 〈d, d〉 and nd be the negative diagonal through 〈d, d〉. Then
attacks between the first and the second group are impossible, since bishops of
the first group only can attack pieces standing on or above pd or on or below
nd and, conversely, bishops of the second group only can attack pieces standing
below pd or above nd. Similar considerations show that attacks between the third
and the second group are impossible.

Next, we assume that m is even and n is odd. We define d := n+1
2 and proceed

as in the first case. The only difference is that we now use the middle column of
the board for the arrangement of the second group of bishops, i.e., replace b) as
follows:

d) Arrange n−m−1 bishops along column d of the board starting with square
〈m− d+ 2, d〉 and ending with square 〈d− 1, d〉.
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That 1 ≤ m − d + 2 and d − 1 ≤ m follows from the assumption n ≤ 2m. In
the case n = m + 1 we get m − d + 2 = m

2 + 1 and d − 1 = m
2 and the second

group becomes empty. Again a simple case analysis shows that all bishops on
the entire board are non-attacking. Since the calculation d−1−(m−d+2)+1 =
2d−m−2 = 2n+1

2 −m−2 = n−m−1 proves that n−m−1 is in fact the number
of bishops of the second group that, now vertically, is arranged on the board’s
column d, we get the total number of non-attacking bishops on the entire board
as m + (n−m− 1) + m = m + n− 1.

What remains is the case that m and n are even. Here we can arrange the
second group of bishops either horizontally or vertically. If we use the first pos-
sibility, this means that we replace b) as follows, using d := m

2 as number of the
row the bishops are placed on.

e) Arrange n −m − 2 bishops along row d of the board starting with square
〈d, d + 2〉 and ending with square 〈d, n− d− 1〉.

By the calculation n− d− 1− (d+ 2) + 1 = n− 2d− 2 = n− 2m
2 − 2 = n−m− 2

we prove that there stand in fact n−m− 2 bishops along row d. Hence on the
entire board there are m + (n −m − 2) + m = m + n − 2 bishops. Again their
independence can be proved by a simple case analysis. ��
Next, we show that the restriction n ≤ 2m in Proposition 7.1 is unnecessary.
The proof of the proposition can be seen as a recursive arrangement algorithm,
with the arrangement of the proof of Proposition 7.1 as termination case.

Proposition 7.2. Given an m × n chessboard with 0 < m < n, it is possible
to arrange on it m + n − 1 non-attacking bishops if m is odd or n is odd, and
m + n− 2 non-attacking bishops otherwise.

Proof. We use induction on d := n − 2m. The induction base is d ≤ 1. In this
case we have n ≤ 2m and the claim follows from Proposition 7.1.

For the induction step, assume d > 1. Then it holds that 2m < n. We divide
the given board into three parts. PartA consists of the m columns from 1 until m,
part B of the n−2m columns from m+1 until n−m, and part C of the m columns
from n−m+1 until n. Since m > 0 implies n−2m−2m < n−2m = d and n−2m
is odd iff n is odd, from the induction hypothesis we get for the m × (n − 2m)
board given by part B that it is possible to arrange on it m + n− 2m− 1 non-
attacking bishops if m is odd or n is odd, and m + n − 2m − 2 non-attacking
bishops if m is even and n is even, resp.

We complete these two arrangements in each case by m non-attacking bishops
along the leftmost column of part A, i.e., the first column of the entire board,
and m non-attacking bishops along the rightmost column of part C, i.e., the last
column of the entire board. For m = 7 and n = 26 the result is visualized in the
right-hand picture of Figure 5, where part B equals the chessboard of the figure’s
left-hand picture. By a case analysis it is again easy to verify that all positioned
bishops are non-attacking. Their number is m+(m+n−2m−1)+m = m+n−1
if m is odd or n is odd, and m+ (m+n− 2m− 2) +m= m+m− 2 if m is even
and and n is even. This concludes the induction step. ��
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And here is the claimed result with regard to independence of bishops on proper
rectangular chessboards. Note that m �= n is necessary since for quadratic boards
the largest number of non-attacking bishops is always m+ n− 2 – and does not
depend on the fact that m and/or n are even or odd, resp.

Proposition 7.3. The largest number of non-attacking bishops that can be pla-
ced on an m× n chessboard, where 0 < m < n, is m + n− 1 if m is odd or n is
odd, and m + n− 2 if m is even and n is even.

Proof. Let α denote the largest number of non-attacking bishops standing on
the board. Since the board has m+n− 1 positive diagonals and there can stand
at most one non-attacking bishop on each, it holds that α ≤ m + n− 1.

If m is odd or n is odd, then Proposition 7.2 shows m + n − 1 ≤ α. In
combination with α ≤ m + n− 1 this yields m + n− 1 = α. As we will show in
a moment, if m and n are even it holds that α ≤ m+ n− 2. Hence, in this case
Proposition 7.2 yields α = m + n− 2.

We prove α ≤ m + n − 2 for even m and n by contradiction. So, assume
an arrangement of m + n − 1 non-attacking bishops on the board. Then there
is exactly one bishop on each of the m + n − 1 positive diagonals. As already
mentioned, we assume the lowermost-leftmost square 〈1, 1〉 to be black. Since
m and n are even, we have m+n

2 − 1 black positive diagonals and m+n
2 white

positive diagonals. Hence, m+n
2 −1 of the m+n−1 bishops are on black squares

and the remaining m+n
2 ones are on white squares. But there is also exactly

one of the m + n − 1 non-attacking bishops on each of the m + n − 1 negative
diagonals. In the given case we have m+n

2 black negative diagonals and m+n
2 − 1

white negative diagonals. This leads to the contradiction that now m+n
2 of the

m + n− 1 bishops are on black squares and m+n
2 − 1 are on white squares. ��

In [17,18] it is shown that for m = n the arrangement of the bishops on the
top row of the chessboard determines the arrangement of all m + n − 2 non-
attacking bishops because all bishops are placed on the outer ring of squares.
Hence, there are 2m possible arrangements (cf. again the diagonal of the right-
hand table of Figure 3). If m < n, then some of the bishops of a maximum
independent arrangement may occur in the interior of the board and the simple
argument of [17,18] does not work anymore. We have not found a general formula
for the number of maximum independent arrangements of bishops on proper
rectangular boards. Only the case m+ 1 = n is simple. Here there exists exactly
one arrangement for the m+m+ 1− 1 = 2m non-attacking bishops: Place m of
them on column 1 and the remaining m on column n.

8 Conclusion

We have described a simple computing technique for solving independence and
domination problems on rectangular chessboards. It uses relation algebra as
a methodological means and consists of the development of relation-algebraic
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specifications for independent and dominating sets of graphs and relations, resp.,
and a representation of the chess pieces’ graphs as relations. To evaluate the spec-
ifications and to visualize the computed results we have used the tool RelView.
We have provided some of our experimental results concerning independence.
Based on them, we have given a proof of the bishops independence number for
proper rectangular boards.

Because of the global approach that RelView takes, of course, it cannot
compete for all intents and purposes with specifically tailored algorithms for
chess problems. An example for the latter is the FPGA-based approach to solve
the n-queens problem for n = 26, yielding 22.317.699.616.364.044 possibilities
(TU Dresden, 2009, for details see URL http://queens.inf.tu-dresden.de).

Nowadays, systematic experiments are accepted as a way for obtaining new
mathematical insights and, hence, tools for symbolic manipulation, prototypic
computations, animation and visualization become increasingly important as one
proceeds in investigations. Our opinion is that the attraction and general useful-
ness of our approach in this area lies in its flexibility, its large application area,
the formal precision of the calculations and the concise form of the developed
algorithms and, particular in view of RelView, the computational power of the
tool as a result of the use of BDDs and the manifold animation and visualization
possibilities. We hope that the readers agree after reading the present paper.
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Abstract. We show how formally and systematically to develop a purely
functional version of Warshall’s algorithm for computing transitive clo-
sures by combining the unfold-fold technique, relation-algebra and data
refinement. It is based on an implementation of relations by lists of
successor lists. The final version can immediately be implemented in
Haskell. This resulting Haskell program has the same runtime com-
plexity as the traditional imperative array-based implementation of
Warshall’s algorithm. We also demonstrate how it can be re-used as
component in other functional algorithms.

1 Introduction

The computation of the transitive closure R+ of a (binary) relation R on a
set X has many practical applications. This is mainly due to the fact that, if
R specifies the set of edges of a directed graph G = (X,R) with X as set of
vertices, then the relation R+ relates two vertices x, y ∈ X of G if and only if
y is reachable from x via a nonempty path. Usually the task of computing the
transitive closure R+ is solved by Warshall’s algorithm (published in [26]). Its
traditional implementation in an imperative programming language is based on
a representation of the relation R by a 2-dimensional Boolean array. This leads to
a simple and efficient in-situ program with three nested loops that needs O(m3)
steps, where m is the cardinality of the carrier set X of R.

In the last years also some array-based algorithms for the computation of
reflexive-transitive closures have been published, which have sub-cubic runtime.
Most of them are based upon sub-cubic algorithms for matrix multiplication,
that is, on Strassen’s seminal method (see [24]) and its refinements. There is
also a refinement of Warshall’s algorithm (more precisely, Floyd’s extension for
the all-pairs shortest paths problem [14]) that computes the transitive closure
of a relation in time O(n2.5); cf. [15]. But all these algorithms pay for their
exponents by an intricacy that, particularly with regard to practice, makes it
difficult to implement them correctly (w.r.t. the input/output behaviour as well
as the theoretical runtime bound) in a conventional programming language. The
complexity of the algorithms also leads in the O-estimation to such large constant
coefficients that, again concerning practice, results are computed faster normally
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only in the case of very dense relations or very large carrier sets. However, both
cases hardly appear in practical applications.

In a lot of practical applications arrays are unfit for representing relations and
graphs. In particular this holds if both R and R+ are of “medium density” or even
sparse. Such relations/graphs appear, for instance, in computational linguistics
when computing the so-called subtype relation in HPSG-type signatures (see,
for example, [21]), in XML-query processing since XML structures are (directed)
trees plus few reference links (see, e.g., [11]), and in the context of ordered sets
if a partial order is computed from the cover relation (the Hasse diagram). In
all these applications a representation of relations by, say, successor lists (also
known as adjacency lists), lists of pairs or even look-up tables (i.e., characteris-
tic functions) is much more economic. But such a representation sacrifices the
simplicity and efficiency of the above mentioned imperative implementation of
Warshall’s algorithm. Moreover, the traditional method of imperatively updat-
ing an array representing the relation/graph is alien to the purely functional
programming paradigm which restricts the use of side effects.

In the present paper we show how systematically and by applying formal
methods a purely functional version of Warshall’s algorithm can be developed
that uses an implementation of relations by lists of successor lists and also has
a cubic runtime. In the first step we develop from a relation-algebraic problem
specification by a combination of the unfold-fold-technique and relation-algebraic
reasoning a functional algorithm for computing R+ that solely is based on re-
lation algebra and the generation of (relational) vectors via disjoint unions of
(relational) points. To obtain from it a version that works on lists of successor
sets we then use data refinement. In the first refinement step we represent re-
lations on a set X by functions from X to its powerset 2X and vectors on X
by elements of the powerset 2X . Next, we refine the functions to lists over 2X

and the subsets of X to lists over X . Going at last from the lists over 2X to
lists of lists over X , we obtain a version in the functional programming language
Haskell. Finally, we demonstrate how this Haskell program can be re-used
as component to construct further functional algorithms that solve well-known
graph-theoretic problems.

The computation of transitive closures of relations and many of the
applications can be seen as graph-theoretic problems. Related to our work are,
therefore, all the approaches to program graph algorithms in a functional pro-
gramming language. In the meantime functional graph algorithms have a tradi-
tion of more than two decades. Here we only want to mention some papers that
deal with different aspects; for more references see the second section of [13]. In
[4] transformational programming is applied to develop some simple functional
reachability algorithms. The papers [18,19] deal with the specification and func-
tional computation of the depth-first search forest and presents some classical
applications (like topological sorting, testing for cycles, strongly connected com-
ponents) in the functional style. To achieve a linear runtime as in the imperative
case, monads are used to mimic the imperative marking technique. How rela-
tion algebra and the features of the functional-logic extension Curry (see [3]) of
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Haskell can be employed to solve some problems on relations and graphs in a
very high-level declarative style is shown in [7]. All the papers just mentioned
regard graphs as monolithic data. In contrast with this, in [12,13] graphs are
inductively generated. This approach allows to write many graph algorithms in
the typical functional style using pattern matching. Also [16] discusses an induc-
tive definition of graphs, but restricted to directed cycle-free graphs and without
presenting an implementation.

2 Relation-Algebraic Preliminaries

We denote the set (or type) of all (binary) relations with source X and target
Y by [X↔Y ] and write R : X↔Y instead of R ∈ [X↔Y ]. If the sets X and
Y are finite, we may consider R as a Boolean matrix with |X | rows and |Y |
columns. We assume the reader to be familiar with the basic operations on re-
lations, viz. RT (transposition), R (complement), R ∪ S (join), R ∩ S (meet),
R;S (composition), the predicate indicating R ⊆ S (inclusion) and the special
relations O (empty relation), L (universal relation) and I (identity relation). Fur-
thermore, we assume the reader to know the most fundamental laws of relation
algebra like I;R = R, RTT = R, (R;S)T = ST;RT, R; (S∪T ) = R;S∪R;T , and
the following one, in [22] called Schröder equivalences.

Q;R ⊆ S ⇐⇒ QT; S ⊆ R ⇐⇒ S ;RT ⊆ Q (1)

We also will use the relation-algebraic specifications of the following properties:
reflexivity I ⊆ R, irreflexivity R ⊆ I , transitivity R;R ⊆ R, symmetry R = RT,
injectivity R;RT ⊆ I and surjectivity L;R = L. For more details concerning the
algebraic treatment of relations and its manifold connections to graph theory we
refer to the textbooks [22,8].

A (relational) vector is a relation v which satisfies v = v; L and a (relational)
point is an injective and surjective vector. For vectors the targets are irrelevant.
We, therefore, consider in the following mostly vectors v : X↔11 with a specific
singleton set 11 = {⊥} as target and omit in such cases the second component
⊥ in a pair, i.e., write x ∈ v instead of (x,⊥) ∈ v. Then v describes the subset
{x ∈ X | x ∈ v} of X . If X is finite, a vector of [X↔11] can be considered as a
Boolean matrix with |X | rows and exactly one column, i.e., as a Boolean column
vector in the usual sense, and the set it describes is given by the components with
entry 1. In the Boolean matrix model a point of [X↔11] is a Boolean column
vector in which exactly one entry is 1. This means that a point p : X↔11
describes a singleton subset of X , or an element of X if we identify a singleton
set {x} ⊆ X with the only element x ∈ X it contains. Later we will use that if
p describes x ∈ X , then (y, z) ∈ p; pT is equivalent to y = x and z = x.

3 Transitive Closures and Warshall’s Algorithm

Given R : X↔X, its reflexive-transitive closure R∗ : X↔X is defined as the
least reflexive and transitive relation that contains R and its transitive closure
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R+ : X↔X is defined as the least transitive relation that contains R. It is well-
known (cf. [22,1,8]) that R∗ and R+ can also be specified via least fixed point
constructions. The least fixed point of τR : [X↔X ] → [X↔X], that is defined
by τR(Q) = I∪R;Q, is R∗, and the least fixed point of σR : [X↔X] → [X↔X ],
where σR(Q) = R ∪ R;Q, is R+. From these specifications we obtain by fixed
point considerations (see e.g., again [22,1]) the following equations.

O∗ = I R∗ = I ∪R+ R+ = R;R∗ (R ∪ S)∗ = R∗; (S;R∗)∗ (2)

A simple fixed point argument also shows that R is a transitive relation if
and only if R = R+. In [1] the rightmost equation of (2) is called the star-
decomposition rule. This rule has a nice graph-theoretic interpretation. If in a
directed graph G = (X,R ∪ S) the edges are coloured with two colours, say r
and s, then each path in G can be decomposed into a (possibly empty) initial
part p0 with r-edges only, followed by a list of paths p1, . . . , pm, where m = 0 is
possible and each path pi from the list starts with an s-edge and then consists
of n ≥ 0 subsequent r-edges only.

Now, let R : X↔X be the relation of a finite directed graph G = (X,R)
with vertex set X = {v1, . . . , vm}. The idea behind Warshall’s algorithm is to
consider for i, with 0 ≤ i ≤ m, the subset Xi := {v1, . . . , vi} of X and the
relation Ri : X↔X such that for all x, y ∈ X it holds

(x, y) ∈ Ri ⇐⇒
{

there exists a path (z1, . . . , zk) from x to
y such that k > 1 and z2, . . . , zk−1 ∈ Xi.

(3)

Using graph-theoretic reasoning, for all x, y ∈ X and i such that 1 ≤ i ≤ m it
can be shown that (x, y) ∈ Ri if and only if (x, y) ∈ Ri−1 or (x, vi) ∈ Ri−1 and
(vi, y) ∈ Ri−1. Since, furthermore, for all x, y ∈ X it holds that (x, y) ∈ R0 if and
only if (x, y) ∈ R and (x, y) ∈ Rm if and only if (x, y) ∈ R+, the transitive closure
R+ is the limit of the finite chain R = R0 ⊆ R1 ⊆ . . . ⊆ Rm−1 ⊆ Rm = R+.
The generation of this chain is exactly what the traditional implementation of
Warshall’s algorithm realizes in-situ by means of a Boolean array as follows.

for i = 1 to m do
for j = 1 to m do
for k = 1 to m do
R[j, k] := R[j, k] ∨ (R[j, i] ∧R[i, k])

(4)

If in the algorithm of (4) the Boolean array is assumed to be initialized with the
relationships of the relation R, then after the i-th turn of the loop it holds for
all j, k, with 1 ≤ j, k ≤ m, the equivalence of R[j, k] and (vj , vk) ∈ Ri. The two
inner loops serve for the transformation of the Ri-realization via the array into
the Ri+1-realization.

4 Computing Transitive Closures Using Relation Algebra

In the following we develop a purely functional algorithm for computing R+ that
solely is based on relation algebra. The main idea is to express (3) in terms of
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relation algebra. To this end we consider for a given relation R : X↔X a vector
v : X↔11 and the partial identity relation Iv := I ∩ v; vT induced by v. If we
assume that v describes the subset Xv of X , then a little reflection shows for all
x, y ∈ X that (x, y) ∈ R; (Iv;R)∗ if and only if there exists a path (z1, . . . , zk)
from x to y such that k > 1 and z2, . . . , zk−1 ∈ Xv. This motivates the following
relation-algebraic specification as starting point.

warsh(R, v) : X↔X warsh(R, v) = R; (Iv;R)∗ (5)

Using the first equation of (2), the definition of warsh in (5) implies for the
empty vector O : X↔11 that

warsh(R,O) = R; (IO;R)∗ = R; (O;R)∗ = R; O∗ = R; I = R,

which corresponds (since O describes ∅) to the equivalence of (x, y) ∈ R0 and
(x, y) ∈ R for all x, y ∈ X . In the same manner we get from the third equation
of (2) for the universal vector L : X↔11 the equation

warsh(R, L) = R; (IL;R)∗ = R; (I;R)∗ = R;R∗ = R+,

which corresponds (since L describes X) to the equivalence of (x, y) ∈ Rm and
(x, y) ∈ R+ for all x, y ∈ X . Our goal is to obtain an inductive specification of (5)
so that a later implementation in Haskell can be based on pattern matching.
In respect thereof, the two equations just shown correspond to the induction
base and the termination case. They, therefore, motivate to consider a vector
v : X↔11 such that v �= L, to take an arbitrary point p : X↔11 for that p ⊆ v
holds, and to express warsh(R, v ∪ p) in terms of warsh(R, v).

As a preparatory step we consider the corresponding partial identity relations.
Because of the Schröder equivalences (1) the assumption p ⊆ v is equivalent to
v; pT ⊆ I and also to p; vT ⊆ I . Using these two properties we can calculate as
follows.

I ∩ (v ∪ p); (v ∪ p)T = I ∩ (v; vT ∪ v; pT ∪ p; vT ∪ p; pT)
= I ∩ (v; vT ∪ p; pT) v; pT ∪ p; vT ⊆ I
= (I ∩ v; vT) ∪ p; pT p; pT ⊆ I

Hence, we have Iv∪p = Iv∪p; pT. Now, the induction step of the inductive specifi-
cation of the function warsh of (5) we are looking for follows from the subsequent
calculation that uses the unfold-fold technique known from Burstall and Dar-
lington’s transformational programming system [10].

warsh(R, v ∪ p) = R; (Iv∪p;R)∗ unfold
= R; ((Iv ∪ p; pT);R)∗ see above
= R; (Iv;R ∪ p; pT;R)∗

= R; (Iv;R)∗; (p; pT;R; (Iv;R)∗)∗ by (2)
= warsh(R, v); (p; pT; warsh(R, v))∗ fold
= warsh(R, v); (I ∪ (p; pT; warsh(R, v))+) by (2)
= warsh(R, v); (I ∪ p; pT; warsh(R, v)) see below
= warsh(R, v) ∪warsh(R, v); p; pT; warsh(R, v)
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Here the correctness of the last but one step (hint: see below) follows from

p; pT; warsh(R, v); p; pT; warsh(R, v) ⊆ p; L; pT; warsh(R, v)
= p; pT; warsh(R, v) p vector

because this is the transitivity of p; pT; warsh(R, v) and, as a consequence (see
Section 3), the relation equals its transitive closure.

If we apply, as customary in functional programming, a let-clause to avoid
the multiple calls of the function warsh, then the three equations just shown
lead to the functional algorithm (6) for computing transitive closures. It only
uses the constants and operations of relation algebra on the data structure side.

transcl : [X↔X] → [X↔X ]
transcl(R) = warsh(R, L)

warsh : [X↔X ]× [X↔11] → [X↔X ]
warsh(R,O) = R
warsh(R, v ∪ p) = let S = warsh(R, v)

in S ∪ S; p; pT;S

(6)

In the second equation of the auxiliary function warsh it is implicitly assumed
that v �= L and that p is a point of type [X↔11] with p ⊆ v . If X is finite
and of the form X = {v1, . . . , vm}, then the universal vector L : X↔11 can be
represented as union p1∪. . .∪pm of m pairwise disjoint points p1, . . . , pm : X↔11,
where pi describes the element vi ∈ X , with 1 ≤ i ≤ m. In such a case the call
transcl(R) of the main function transcl leads to the total number of m+ 1 calls
of the function warsh.

It should be mentioned that the implicit assumption on v and p in (6) can
be avoided if we suppose a choice function point to be at hand (as, for instance,
in the relation-algebraic tool RelView [6]) such that a call point(v) yields a
point that is contained in the nonempty vector v. For the point p := point(v)
then it holds that v = (v ∩ p ) ∪ p. Using this property in combination with a
conditional, the inductive specification of the function warsh of (6) then can be
reformulated as a recursive function (that now decreases the vector argument)
as follows.

warsh : [X↔X]× [X↔11] → [X↔X]
warsh(R, v) = if v = O then R

else let p = point(v)
S = warsh(R, v ∩ p )

in S ∪ S; p; pT;S

(7)

But the version of the function warsh given in (7) does not directly lead to
the final Haskell program in the typical inductive (pattern matching based)
functional style we are aiming at. Therefore, in the remainder of the paper we
concentrate on the development of the function warsh of (6). It also should be
mentioned that (6) and (7) can immediately be translated into Haskell if a
Haskell library for relation algebra is at hand. The only such libraries we are
aware of are described in [17] and [23]. But their use leads to a less efficient final
program compared with the one we will develop in the next sections.
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5 From Relation Algebra to Successor Functions

In the next two sections we show how, by the application of data refinement,
the functional algorithm (6) can be transformed step-wise into a version that is
based on a representation of relations by means of lists of successor sets and (as
we will demonstrate in Section 7) can immediately be implemented in Haskell
using the pre-defined Haskell datatype for lists only.

The first data refinement, which is treated in this section, represents relations
F : X↔X by functions f : X → 2X such that for all x, y ∈ X it holds that
(x, y) ∈ F if and only if y ∈ f(x). In terms of graph theory, relations are
represented by functions which map the vertices to their successor sets, i.e., by
so-called successor functions. Furthermore, we represent vectors (and points) of
type [X↔11] by the subsets (and elements, respectively) of X they describe.

Now, suppose that the input relation R : X↔X of transcl is represented by
the function r : X → 2X . Since the universal vector L : X↔11 describes (i.e., is
represented by) the set X we obtain the following version of the main function
transcl of (6) that now works on functions instead of relations,

transcl : (X → 2X) → (X → 2X)
transcl(r) = warsh(r,X) (8)

To obtain a corresponding new version of the auxiliary function warsh of (6)
we assume again that r : X → 2X represents R : X↔X. The induction base
warsh(r, ∅) = r is a consequence of the fact that the empty vector O : X↔11
is represented by the empty set ∅. For the remaining case, assume that the
vector v : X↔11 is represented by the subset V of X , the point p : X↔11 is
represented by the element e ∈ X \ V and the relation S : X↔X of the let-
clause of (6) is represented by the function s : X → 2X . For all x, y ∈ X we
then can calculate as follows, where the fist steps use the definition of relational
union and composition and the point-property mentioned at the end of Section
2. The conditional is introduced in the sixth step to enhance readability and to
prepare a later translation into Haskell.

(x, y) ∈ S ∪ S; p; pT;S
⇐⇒ (x, y)∈S ∨ (x, y)∈S; p; pT;S
⇐⇒ (x, y)∈S ∨ ∃ i, j ∈ X : (x, i)∈S ∧ (i, j) ∈ p; pT ∧ (j, y) ∈ S

⇐⇒ (x, y)∈S ∨ ∃ i, j ∈ X : (x, i)∈S ∧ i = e ∧ j = e ∧ (j, y) ∈ S

⇐⇒ (x, y)∈S ∨ ((x, e)∈S ∧ (e, y) ∈ S)
⇐⇒ y∈s(x) ∨ (e∈s(x) ∧ y∈s(e))
⇐⇒ y∈s(x) ∨ if e∈s(x) then y∈s(e) else false
⇐⇒ y∈s(x) ∨ if e∈s(x) then y∈s(e) else y∈∅
⇐⇒ y∈s(x) ∨ y ∈ if e∈s(x) then s(e) else ∅
⇐⇒ y ∈ if e∈s(x) then s(x) ∪s(e) else s(x)

If we apply the familiar λ-notation to denote anonymous functions, then the rela-
tionship just proved in combination with β-conversion shows that the anonymous
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function λx • if e ∈ s(x) then s(x) ∪ s(e) else s(x) (where x ranges over X)
represents the relation S ∪ S; p; pT;S : X↔X. Using additionally that the vec-
tor v ∪ p : X↔11 is represented by the subset V ∪ {e} of X we, finally, obtain
the following new version of the auxiliary function warsh of (6).

warsh : (X → 2X)× 2X → (X → 2X)
warsh(r, ∅) = r
warsh(r, V ∪ {e}) = let s = warsh(r, V )

in λx • if e∈s(x) then s(x) ∪ s(e) else s(x)

(9)

In analogy to the version of the function warsh of (6) in the second equation of
its version of (9) it is implicitly assumed that V �= X and e ∈ X \ V .

6 From Successor Functions to Lists of Sets

Having replaced relations by functions, vectors by sets and points by elements,
in the second refinement step we now represent the arguments and the results
of the function transcl of (8) and the function warsh of (9) by lists. For the
argument and the result of transcl and, hence, also for the first argument and
the result of warsh we take lists over 2X , i.e., elements of (2X)∗, and for the
second argument of warsh we take lists over X , i.e., elements of X∗. To simplify
the presentation we assume for the following that the set X consists of the natural
numbers 0, 1, . . . ,m. The additional number 0 (in Section 3 we assumed X =
{v1, . . . , vm} as carrier set1) is motivated with a view to a later use of Haskell
lists. Here 0 is the index of the first list element.

The just made assumption on the carrier set X of all relations we consider
allows to represent the function r : X → 2X of (8) and (9) by the list rs ∈ (2X)∗

of length m+1 such that for all x ∈ X the x-th component of rs — in the sequel
we use the Haskell notation rs !!x for this construction — equals the set r(x).
In the same way the function s : X → 2X used in the let-clause of warsh is
represented by a list ss ∈ (2X)∗ of length m + 1 such that ss!!x = s(x) for all
x ∈ X . The second argument of warsh is represented by the increasingly sorted
list of the elements it contains, where we additionally do not allow multiple
occurrences of elements.

Because the set X is represented by the increasingly sorted list of the natural
numbers from 0 to m and m equals the length of the list rs minus 1, from the
just introduced list representation we get the following new version of the main
function transcl of the algorithm. In this version we apply the Haskell notation
[0..m] for the increasingly sorted list of the natural numbers from 0 to m to
prepare the later translation into Haskell.

transcl : (2X)∗ → (2X)∗

transcl(rs) = warsh(rs , [0..|rs | − 1]) (10)

1 Using X = {v0, v1, . . . , vm} in Section 3 would cause problems with the definition of
the subsets Xi := {v0, . . . , vi}, since ∅ = Xi then requires i to be −1.
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To obtain a list-based version of the auxiliary function warsh, first, we rep-
resent the anonymous function of the let-clause of (9) by a list over 2X . By
assumption it holds that ss !!x = s(x) for all x ∈ X , that is, all elements x of the
list [0..m]. Using a notation similar to Haskell’s well-known list comprehen-
sion we, therefors, get for the function λx•if e∈s(x) then s(x)∪s(e) else s(x)
the list representation [if e∈ ss !!x then ss!!x ∪ ss !!e else ss !!x | x ∈ [0..m]].
It is obvious that this list comprehension coincides with the list comprehension
[if e ∈ ms then ms ∪ ss!!e else ms | ms ∈ ss]. If we suppose that the list
vs ∈ X∗ represents the set V of the function of (9), then the list e : vs with the
additional first element e ∈ X \ V represents the set V ∪ {e}. This property in
connection with the equality of the above list comprehensions and the fact that
the empty list [] represents the empty set ∅ shows that the function warsh of
(9) is correctly implemented by the subsequent version on lists of sets.

warsh : (2X)∗ ×X∗ → (2X)∗

warsh(rs , []) = rs
warsh(rs , e : vs) = let ss = warsh(rs , vs)

in [if e∈ms then ms ∪ ss !!e else ms | ms ∈ ss]

(11)

By (11) we have reached the desired inductive functional style for the function
warsh. Note that in the algorithm no longer an implicit assumption on the list
vs and the element e in the second pattern is required.

The use of lists to represent the arguments and results of the function transcl
of (8) and the function warsh of (9) is an important design decision of the data
refinement process. Since the sizes of the lists are not changed by the algorithm,
functional arrays would constitute an alternative manner of representation. Our
decision for lists is motivated by the anonymous function appearing in (9) since
such constructions frequently immediately and elegantly can be implemented
in Haskell by list comprehensions. For arrays Haskell does not provide a
corresponding language construct.

7 From Lists of Sets to List of Lists and Haskell

Now, we are in the position to translate the functions of (10) and (11) into
the functional programming language Haskell and to show that the resulting
Haskell program runs in cubic time, i.e., has the same runtime complexity as
the traditional imperative array-based implementation of Warshall’s algorithm.
We assume the reader to be familiar with Haskell. Otherwise, he may consult
one of the well-known textbooks about it, for example [9,25].

To obtain an implementation of the functions transcl and warsh of (10) and
(11), respectively, in Haskell we apply again data refinement and represent
lists over 2X , i.e., lists of sets of integers, by lists of lists of integers. For the
appearing lists of integers we require the same properties as in Section 5. That
is, these lists (and, as a consequence, all successor lists of the input of the main
function) have to be increasingly sorted and without multiple occurrences of
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elements. The reason for this design decision — a precondition on the input —
will become clear later when we consider the program’s runtime complexity.

If we go from lists of sets of integers to list of lists of integers and formulate
the result in Haskell using the type-declarations

type Vertex = Int
type Vertexset = [Vertex]
type Relation = [Vertexset]

(12)

for the universe containing the relation’s carrier sets, its subsets and the relations,
and the Haskell function

vertices :: Relation -> Vertexset
vertices rs = [0..length rs - 1]

(13)

that yields the carrier set (vertices) of a relation (graph), then version (10) of
the main function of the algorithm becomes the following Haskell function.

transcl :: Relation -> Relation
transcl rs = warsh rs (vertices rs)

(14)

Subsets of X are implemented by Haskell lists. Hence, set-membership e ∈
ms can directly be implemented by the pre-defined Haskell function elem.
Assuming additionally a Haskell function cup to be at hand that implements
set union on the list implementations of sets, a straightforward translation of
the function of (11) into Haskell code looks as follows.

warsh :: Relation -> Vertexset -> Relation
warsh rs [] = rs
warsh rs (e:vs) =
let ss = warsh rs vs
in [if elem e ms then cup ms (ss!!e) else ms | ms <- ss]

(15)

From Section 4 we know already that a call transcl rs leads to the total number
of |X |+ 1, that is, m+ 2 calls of the Haskell function warsh. The list specified
by the list comprehension of warsh consists of |X | = m + 1 successor lists.
Since each of these |X | successor lists possesses at most |X | elements and the
elem test of Haskell requires linear time in the length of the list argument,
the entire list comprehension of the Haskell function of (15) can be evaluated
in time O(|X |2) if the call cup ms (ss!!e) only requires time O(|X |). The list
component ss!!e of ss can be computed in time O(|X |).

A straightforward implementation of set union on a list implementation of
sets (like Haskell’s pre-defined union function) requires quadratic runtime.
But we can do better using that, because of the precondition, the two lists
ms and ss!!e appearing in the list comprehension of warsh are increasingly
sorted and without multiple occurrences of elements. On such specific lists an
obvious linear implementation of set union is given by the following Haskell
function cup that merges two sorted lists into a sorted one and removes at the
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same time all multiple occurrences of elements. The declarations (12) until (16)
constitute a Haskell program for computing transitive closures that is based
on a representation of relations via lists of successor lists and runs in cubic time
like the traditional imperative version of Warshall’s algorithm.

cup :: Vertexset -> Vertexset -> Vertexset
cup [] ys = ys
cup xs [] = xs
cup (x:xs) (y:ys) =
case compare x y of EQ -> x : cup xs ys

LT -> x : cup xs (y:ys)
GT -> y : cup (x:xs) ys

(16)

We conclude this section with two modifications of the Haskell program we
have developed so far.

The first modification concerns the precondition on the input of the whole
program. The cubic runtime remains preserved if in the Haskell function of
(14) the call warsh rs (vertices rs) is replaced by the following call:

warsh (map (nub.sort) rs) (vertices rs) (17)

In the Haskell expression (17) the pre-defined Haskell function nub removes
duplicate elements from a list, sort is the pre-defined Haskell sorting function
on lists, the dot “.” denotes Haskell’s function composition operation and map
is Haskell’s pre-defined higher-order function that applies a function to each
component of a list. The advantage of this modification is that its correctness
does no longer depend on the fact that the successor lists of the input are strictly
increasing, without sacrificing the runtime complexity.

The second modification concerns the element test in the list comprehension of
(15). Again the cubic runtime of the whole Haskell program remains preserved
if in the Haskell function warsh of (15) the call elem e ms is replaced by the
call iselem e ms of the following Haskell function.

iselem :: Vertex -> Vertexset -> Bool
iselem x [] = False
iselem x (y:ys) =
case compare x y of EQ -> True

GT -> iselem x ys
LT -> False

(18)

Practical experiments have shown that by this modification the runtime — de-
pending on the input — to a greater or lesser extent is improved. This is because
(18) takes advantage of the fact that the successor lists are increasingly sorted.

8 Some Graph-Theoretic Applications

As shown e.g., in [22,8], a lot of problems are closely related to transitive closures.
In this section we present some simple functional graph algorithms which are
formulated in Haskell and are based on the Haskell program of Section 7.
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Suppose that C : X↔X denotes the reflexive-transitive closure R∗ of a re-
lation R : X↔X. Due to the second equation of (2), the list representation cs
of C in the sense of Section 6 is obtained from the list representation rs of R
by inserting each x ∈ X into the x-component of cs if not yet contained. In
Haskell the latter modification can easily be realized as follows.

rtc :: Relation -> Relation
rtc rs =
let insert x xs = cup xs [x]
in zipWith insert (vertices rs) (transcl rs)

(19)

Here we use an auxiliary function insert for list insertion and the pre-defined
Haskell function zipWith that takes a binary function and two lists and re-
turns the list of corresponding pairs via zipping with the function. From (19)
we immediately get (rtc rs)!!x as Haskell expression for the graph-theoretic
descendants (reachable vertices), since the set of descendants of x ∈ X in the
directed graph G = (X,R) is given by the x-component of the list cs.

As next application we consider cycles. Given a directed graph G = (X,R), a
vertex x ∈ X lies on a cycle if and only if (x, x) ∈ R+. The latter is equivalent
to x∈ cs !!x, where now cs is the list representation of the transitive closure R+.
We, therefore, obtain the set of the vertices lying on a cycle by the elements of
X that satisfy the predicate λx • x∈ cs !!x, For the latter, Haskell provides a
pre-defined function filter. Altogether, we obtain the following result.

oncycle :: Relation -> Vertexset
oncycle rs =
let cs = transcl rs
in filter (\ x -> elem x (cs!!x)) (vertices rs)

(20)

Using (20) and the pre-defined emptiness test null on lists testing for cycle-
freeness is now possible via null (oncycle rs).

Our third application deals with sources and the testing of strong connected-
ness. A vertex x ∈ X is called a source or an initial vertex of the directed graph
G = (X,R) if the set of its descendants equals X , and G is strongly connected if
each vertex is a source. From the latter description we get at once the following
Haskell test function.

connected :: Relation -> Bool
connected rs = (sources rs) == (vertices rs)

(21)

What remains is the task to formulate the Haskell function sources that
computes the set of sources. Here we follow exactly the pattern of (20).

sources :: Relation -> Vertexset
sources rs =
let cs = rtc rs
in filter (\ x -> cs!!x == (vertices rs)) (vertices rs)

(22)
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For the fourth application, we assume R : X↔X as relation of a cycle-free
directed graph G = (X,R). Then the relation R− := R ∩ R;R+ is called the
transitive reduction of R. It is obtained from R by removing all edges which can
be bypassed by a path with at least two edges and constitutes the least subre-
lation S of R such that S+ = R+. (In case of a partial order P the transitive
reduction (P ∩ I )− coincides with the cover relation — the Hasse diagram —
of P .) From the definition of R− as (set-theoretic) difference of R and R;R+

we immediately obtain that if R : X↔X is represented (in the sense of Section
5) by r : X → 2X and R;R+ is represented by s : X → 2X , then R− is
represented by λx • r(x) \ s(x). Going from successor functions to lists of sets
and afterwards to lists of lists and Haskell leads to the following program for
transitive reductions, where \\ is the pre-defined Haskell operation for list
difference2 and comp implements the composition of relations.

transred :: Relation -> Relation
transred rs = zipWith (\\) rs (comp rs (transcl rs))

(23)

What remains is the development of the Haskell function comp. Here we follow
exactly the method applied in the Sections 5 to 7. Let R,S : X↔X and suppose
R and S to be be represented by the functions r : X → 2X and s : X → 2X ,
respectively. Then we have for all x, y ∈ X that

(x, y) ∈ R;S ⇐⇒ ∃ i ∈ X : (x, i) ∈ R ∧ (i, y) ∈ S
⇐⇒ ∃ i ∈ X : i ∈ r(x) ∧ y ∈ s(i)
⇐⇒ y ∈ ⋃{s(i) | i ∈ r(x)}.

Hence, the relation R;S is represented by the function λx •⋃{s(i) | i ∈ r(x)}.
If we now represent the functions r and s by lists rs and ss, respectively, i.e., as
in Section 6, then the function λx •⋃{s(i) | i ∈ r(x)} is represented by the list
comprehension [

⋃{ss!!i | i ∈ rs !!x} | x ∈ X]. For the translation into Haskell
we assume rs and ss to be the Haskell counterparts of rs and ss , respectively.
Then the Haskell list for the set

⋃{ss !!i | i ∈ rs !!x} is obtained by the union
(via the function cup) of all sorted lists ss!!i, where i ranges over the elements
of rs!!x. Such a repeated application of cup corresponds to a fold over a list
that exactly consists of all lists ss!!i, with the empty list [] as initial value. If
we use right-fold, in Haskell realized by the pre-defined function foldr, we get
foldr cup [] [ss!!i | i <- rs!!x] as implementation of

⋃{ss!!i | i ∈ rs !!x}
and the above list comprehension, that represents the composition R;S we want
to implement, immediately yields the following Haskell function.

comp :: Relation -> Relation -> Relation
comp rs ss =
[foldr cup [] [ss!!i | i <- rs!!x] | x <- (vertices rs)]

(24)

2 As in the case of the functional version of Warshall’s algorithm the practical runtime
of (23) is improved if a user-defined Haskell function for list difference is used that
takes advantage of the fact that all successor lists are increasingly sorted.
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Having a Haskell program for relational composition at hand, it is very
simple to compute for a directed graph G = (X,R) the set of vertices which
lie on an odd cycle. A little reflection shows that x ∈ X lies on an odd cycle
if and only if (x, x) ∈ R; (R;R)∗, Assuming ss as list representation of the
relation R; (R;R)∗, the latter property holds if and only if x∈ ss!!x. From this an
application of filter with the Haskell version of the predicate λx • x∈ ss !!x
immediately leads to the following result.

onoddcycle :: Relation -> Vertexset
onoddcycle rs =
let ss = comp rs (rtc (comp rs rs))
in filter (\ x -> elem x (ss!!x)) (vertices rs)

(25)

By means of (25) it is very easy to test an undirected graph (i.e., a graph with
an irreflexive and symmetric relation) to be bipartite. This is the case if and
only if the expression onoddcycle rs evaluates to the empty list.

For our final application we need a Haskell function for the transposition of
relations R : X↔X. From the equivalence of (y, x) ∈ R and (x, y) ∈ RT for all
x, y ∈ X we get that if R is represented by r : X → 2X , then RT is represented
by λx• {y∈X | x∈r(y)}. As a consequence, the list representation rs of R leads
to the list representation [{y ∈X | x∈ rs !!y} | x∈X] of RT. A translation of
the latter into Haskell leads to the following function.

transp :: Relation -> Relation
transp rs =
let ve = vertices rs
in [filter (\ y -> elem x (rs!!y)) ve | x <- ve]

(26)

The application treats confluence. A directed graph G = (X,R) is confluent if
any two vertices with common ancestors have common descendants. Relation-
algebraically this can be described by the inclusion R∗T;R∗ ⊆ R∗;R∗T or, equi-
valently, the equation R∗T;R∗ ∩ R∗;R∗T = O. Let the Haskell lists ss and
ts represent the relations R∗ and R∗T, respectively. Then the list comp ts ss
represents R∗T;R∗, the list comp ss ts represents R∗;R∗T and, along the lines
of (23), the list zipWith (\\) (comp ts ss) (comp ss ts) represents their dif-
ference. It remains to test whether the difference is the empty relation. Since
this means to check whether each of the successor lists of its list representation
is empty, it can be done by concatenating all successor lists and then testing
the result to be empty. Altogether we arrive at the following solution, where the
pre-defined Haskell function concat concatenates a list of lists to a single list.

confluent :: Relation -> Bool
confluent rs
let ss = rtc rs

ts = transp ss
in null (concat (zipWith (\\) (comp ts ss) (comp ss ts)))

(27)

In [22] it is shown that the inclusions R∗T;R∗ ⊆ R∗;R∗T and RT;R∗ ⊆ R∗;R∗T

are equivalent. Hence, in (27) the expression comp ts ss can be replaced by
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comp (transp rs) ss. Experiments have shown that by this modification the
practical runtimes are slightly improved.

9 Concluding Remarks

A detailed analysis shows that the Haskell function comp of (24) has a cubic
runtime (like classical matrix multiplication) and the same holds for the function
transred for computing transitive reductions. In [2] it is shown that algorithms
for transitive reductions in general have the same runtime complexity as algo-
rithms for (reflexive-)transitive closures. The complexity of testing confluence
usually is studied for rewriting systems (see e.g., [20]) and not for general re-
lations / graphs as we do. Our test function confluence requires cubic runtime
and we are not aware of a faster algorithm for testing confluence in our general
setting.

In view of runtime complexity the Haskell functions oncycle, connected,
sources and onoddcycle we have presented in Section 8 cannot compete with
the well-known quadratic algorithms (in the number of vertices) or linear al-
gorithms (in the number of edges) specifically tailored for the given problems,
since their runtime complexities are dominated by the cubic costs for computing
transitive closures. Despite of this disadvantage we believe that they (and a lot
of others which can be obtained from purely relation-algebraic problem spec-
ifications in a similar way) have their benefits and usefulness. Such programs
are easy to construct, lead to high-level and succinct solutions and the correct-
ness proofs are usually relatively simple. For many practical problems even their
performance is satisfactory. Due to these properties they are very suitable for
prototyping purposes and as oracles for algorithm testing.

Another aspect is teaching. At present there exist only a few textbooks on
algorithmics that base on the functional paradigm. All of them treat graphs
and other relational structures sparsely, in contrast with books that base on
imperative programming. Graphs are nothing else as relations on vertices and
a lot of questions of graph theory are closely related to relational properties
and problems. We think that — as extension of e.g., [22,5,8], where relation-
algebra and imperative programming is combined for problem soving — also
a combination of relation algebra and functional programming is an excellent
means to teach the development and programming of graph algorithms and, in
excess thereof, also of algorithms on other relation-based discrete structures like
orders, lattices, Petri nets and games.
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Abstract. When reasoning within separation logic, it is often neces-
sary to provide side conditions for inference rules. These side conditions
usually contain information about variables and their use, and are given
within a meta-language, i.e., the side conditions cannot be encoded in
separation logic itself. In this paper we discuss different possibilities how
side conditions of variables—occurring e.g. in the ordinary or the hy-
pothetical frame rule—can be characterised using algebraic separation
logic. We also study greatest relations; a concept used in the soundness
proof of the hypothetical frame rule. We provide one and only one level
of abstraction for the logic, the side conditions and the greatest relations.

1 Introduction

Over the last years, separation logic (SL) (e.g. [11]) has been established as
a formal system that allows reasoning and verification of imperative programs
including shared mutable data structures. It is a proper extension of Hoare logic
and has been used (a) to split data structures into logically connected regions
which can then be analysed and reasoned about separately; (b) for the analysis
of pointer variables and their update; and (c) for the dynamic assignment of
“owners” of data regions under concurrent access to them.

One major instrument of SL is the frame rule. It allows adding arbitrary
disjoint storage to the resources which are actually used by a command. Proof
rules like the frame rule are often constrained by side conditions on the variables
involved. Usually, they are formulated within a meta-language. This complicates
reasoning in general and, more particularly, when building tools for automated
reasoning (e.g. Smallfoot [1]) two layers have to be considered.

In a companion paper [5], an algebra for separation logic based on a relational
semantics of commands has been presented. On this basis a restricted version
of the frame rule has been proved in an abstract way. The proof itself is based
on three assumptions: safety monotonicity, a frame property and preservation.
The first two were also used by Reynolds [11], the third one was intended as an
algebraic counterpart of the side condition of the frame rule.

In this paper we show that the concept of preservation as presented in [5] is
too strict. Motivated by this observation, we discuss to which extent variable
side conditions can be embedded into the algebraic framework. As a result we
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characterise various side conditions at an algebraic level and provide one and
only one level of abstraction for both the logic and the side conditions. Moreover
we bring the hypothetical frame rule into our setting. This rule allows more
general reasoning than the original one. As a further application for algebraic
separation logic we give pointfree characterisations for greatest relations which
play an important role in proving soundness of this particular frame rule.

2 The Frame Rule and the Set of Modified Variables

The frame rule [8] describes that a command can also be executed using a larger
storage—as long as the command does not influence the additional storage:

{p}C{q}
{p ∗ r}C{q ∗ r} MV(C) ∩ FV(r) = ∅ . (1)

The expression {p}C {q} denotes a slightly modified Hoare triple in partial cor-
rectness semantics where p and q are predicates about states and C is a com-
mand: as usual, the command C establishes the postcondition if the precondition
is met. Additionally, the command C can always be executed whenever p is satis-
fied. The disjoint storage part, characterised by r, will remain unchanged as long
as no free variable of r will be touched by any execution of C. This restriction
on the usage of variables is described by the formula MV(C) ∩ FV(r) = ∅.

Next to the side condition, two further assumptions on commands C are
needed to prove the frame rule in SL: safety monotonicity and the frame property.
The former guarantees that if C is executable from a state, it can also run on
a state with a larger heap; the latter states that every execution of C can be
tracked back to an execution of C running on states with a possible smaller heap.

Let us now take a closer look at the side condition of the frame rule and on
the set MV(C) of variables modified by a command C. Formally, the syntax of
a command is given by1

exp ::= var | seq.var | tail(seq) | head(seq) | ...
comm ::= var := exp | dispose exp

| skip | comm ; comm | if bexp then comm else comm
| var := cons (exp, . . . , exp) | var := [exp] | [exp] := exp ,

where var denotes variables, exp expressions and bexp boolean expressions. More-
over seq stands for sequences of values, . denotes concatenation and head, tail
return the head or tail of a sequence resp. The command v := cons (e1, ..., en)
allocates n contiguous fresh cells and places the values of the expressions ei in
the current store as the contents of the i-th cell. The address of the first cell is
stored in v while the following cells can be accessed via address arithmetic. The
assignment v := [e] dereferences the heap cell at the address given by the value
of e and stores its value in v. An execution of [e1] := e2 assigns the value of e2
1 We provide more details on the commands used later on.
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Table 1. MV(C)-set for commands C

C MV(C)

[e1] := e2 ∅
v := [e] {v}
dispose e ∅

v := cons (e1, ..., en) {v}
C1 ; C2 MV(C1) ∪ MV(C2)

if (b) then C1 else C2 MV(C1) ∪ MV(C2)

to a cell located at the value of e1. Finally, the command dispose e deallocates
the heap cell located at the address which is the value of e.

Based on that, the set MV(C) of modified variables (not heap cells!) of a
command C can be determined inductively by the rules given in Table 1.

These definitions seem straightforward; however, they depend in an essential
way on the syntax and structure of a command and not on its semantics.

For the following commands we assume that two variables x, y are available.
C1 =df (x := y) and C2 =df (x := y ; y := 3 ; y := x) .

After execution, both commands C1 and C2 have set the variable x to y
and the value of y is the same as it was before the execution. However, C2

modifies y during the execution. Hence MV(C1) = {x} and MV(C2) = {x, y}.
To connect commands with relations, the algebraic approach of [6] describes each
command by an input-output relation between states, or, in other words, by a
state transformer. (The details will be explained in the following sections). These
relations only reflect the overall behaviour, hence cannot look at the syntactic
structure of a given command. In particular, the commands C1 and C2 are
indistinguishable for the algebraic approach. Usually, the set MV of modified
variables lists all variables to which values are assigned. However, it would be
interesting to determine the set of all variables which are “really changed” by a
command as a relation. For the commands C1 and C2 this would be the set {x}.

3 Algebraic Separation Logic

Before looking at side conditions algebraically, we have to recapitulate the foun-
dations of algebraic separation logic and its relational semantics.

A system’s state is a pair consisting of a store and a heap; stores and heaps
are partial functions from variables or addresses to values. To simplify the formal
treatment, values and addresses are assumed to be integers.

Values = ZZ , Stores = Vars � Values ,
{nil} ·∪Addresses ⊆ Values , Heaps = Addresses � Values ,

States = Stores ×Heaps ,

where Vars is the set of program variables, ·∪ denotes the disjoint union of sets
and M � N denotes the set of partial functions between M and N . Stores
and heaps will be denoted by s and h, resp., while σ and τ stand for states. The
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store and heap part of a state σ are denoted by sσ and hσ, resp. As usual we
define a domain operator dom and a range operator cod on relations and partial
functions. For example, dom(s) for a store s returns the set of all variables
with defined values; for a relation R a partial identity relation is returned. The
constant nil denotes an improper reference and therefore heaps must not map nil
to any value.

We follow the idea of [4,6] and define based on states, a command as a relation
C ∈ Cmds =df P(States × States). Relations offer a number of operations,
including sequential composition ; , choice ∪, converse ˘ and complementation

. In general, relations and the structure (Cmds , ⊆ , ; , I) in particular form
Boolean quantales [2], where I is the identity relation. For the purpose of the
paper, we restrict ourselves to relations; although most of the results could be
also achieved in the more general quantale setting.

Next we recapitulate the relational semantics for the above mentioned con-
crete commands. For that we define FV(e) as the set of all free variables occurring
in an expression e. The value es of an expression is defined for an arbitrary store s
only if FV(e) ⊆ dom(s). Moreover, we define an update operator on partial func-
tions by f | f ′ =df f∪{(v, c) : (v, c) ∈ f ′∧v �∈ dom(f)} and abbreviate {(v, c)} | f
to (v, c) | f . We characterise the commands linking input states (s, h) and out-
put states (s′, h′) by R =̂ P to abbreviate the clause (s, h)R (s′, h′) ⇔df P . We
require for each of the following commands C and expressions e occurring in C
that FV(e) ⊆ dom(s).

[[[e1] := e2]]c =̂ s′ = s ∧ es1 ∈ dom(h) ∧ h′ = (es1 , es2) |h ,

[[v := [e]]]c =̂ s′ = (v, h(es)) | s ∧ es ∈ dom(h) ∧ h′ = h ,

[[ dispose e]]c =̂ s′ = s ∧ es ∈ dom(h) ∧ h′ = h− {(es, h(es))} ,
[[v := cons (e1, ..., en)]]c =̂ ∃ a ∈ Addresses . s′ = (v, a) | s ∧

a, . . . , a+ n− 1 �∈ dom(h)∧
h′ = {(a, es1 ), . . . , (a + n− 1, esn)} |h .

If a command is executable on a state, we assume that it can also run on
larger states containing more variable declarations. Moreover, we assume that
the command does not change the set of defined program variables. We assume
C ∈ Cmds . σ C τ ⇒ dom(sσ) = dom(sτ ) and for all X ⊆ Vars . σ ∈ dom(C) ⇒
∃ τ. τ ∈ dom(C) ∧ dom(sτ ) = dom(sσ) ∪X . The semantics of an if–statement
is defined as usual. Due to readability we will omit brackets [[ ]]c and have each
statement stand for its semantics.

This forms the basis of algebraic separation logic—except for separating con-
junction ∗ which is described in the next section.

4 States: Compatibility and Splitting

The separating conjunction ∗ of SL unites disjoint heap regions and allows rea-
soning about separate storage. The algebraic approach is more general and
lifts this operation to general commands: a command is split into executions
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running on disjoint heap parts. By splitting we describe a generalised version of
the separating conjunction ∗.

– Two stores s and s′ are compatible iff s = s′ ∨ dom(s) ∩ dom(s′) = ∅.
– Two states σ1 = (s1, h1) and σ2 = (s2, h2) are combinable iff

(s1, h1) # (s2, h2) ⇔df s1, s2 are compatible ∧ dom(h1) ∩ dom(h2) = ∅ .
– The split relation � is defined for states σ, σ1 and σ2 as

σ�(σ1, σ2) ⇔df σ1 # σ2 ∧ σ = σ1 ∗ σ2 ,

where σ1 ∗ σ2 = (s1 ∪ s2, h1 ∪ h2) if σ1 = (s1, h1) and σ2 = (s2, h2).
– The join relation � is the converse of �, i.e., � = � .̆
– The Cartesian product C1×C2 of two commands C1, C2 is given, as usual, by

(σ1, σ2) (C1 × C2) (τ1, τ2) ⇔df σ1 C1 τ1 ∧ σ2 C2 τ2 .
It is well known that × and ; satisfy the exchange property

(R1 ×R2) ; (S1 × S2) = (R1 ; S1)× (R2 ; S2) . (2)

We assume for the rest of this paper that ; binds tighter than ×.
– The ∗ composition is defined by C1 ∗ C2 =df � ; (C1 × C2) ; �.

By store compatibility it is required that both involved stores are either equal
or both map from a disjoint set of variables. Therefore when joining and split-
ting states we are more liberal as in standard separation logic. The standard
separating conjunction requires the stores involved to be equal.

For later properties we need to define a relation w.r.t. a command C that
only allows store changes of C and excludes heap alteration. For states σ, σ′, the
store-change relation SC for a command C is defined by

σ SC σ′ ⇔df hσ = hσ′ ∧ changed(C) ⊆ dom(sσ) ∧
(∃σc, σ

′
c . σc C σ′

c ∧
sσc ⊆ sσ ∧ sσ′

c
⊆ sσ′ ∧ sσ − sσc = sσ′ − sσ′

c
) ,

where changed(C) =df

⋃
(τ1,τ2)∈C

dom(sτ1 − sτ2). This latter definition is moti-

vated by the fact that x ∈ dom(sτ1 − sτ2) ⇔ x ∈ dom(sτ1) ∧ sτ1(x) �= sτ2(x).
Given a command C the relation SC changes each store variable of an input
state as C would do. The first line of the definition ensures that all stores involved
mention at least all variables that are changed by an arbitrary execution of C.
This is necessary to ensure certain preservation properties given later. Next, we
briefly sum up some results for the relation SC needed later on.

Lemma 4.1. For an arbitrary test r and commands C,D we have

1. Sr ⊆ I ,
2. C ∗ SC ⊆ C ∗ I. In particular, C ∗ (emp ; SC ) ⊆ C where σ emp σ′ ⇔df

sσ = s′σ ∧ hσ = ∅ = hσ′ ,
3. If C ⊆ D then C ∗ (r ; SD ) ⊆ C ∗ (r ; SC ).
4. If r ; SC;D ⊆ r ; SC ; r ; SD then (C ;D) ∗ (r ; SC;D ) ⊆ (C ∗ (r ; SC )) ; (D ∗

(r ; SD )).
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Proof. (1) follows immediate from the definition. For (2) consider σ (C ∗ SC ) σ′.
Then by definition there exist states σc, σ

′
c, σS , σ

′
S with σ = σc ∗ σS ∧ σc #

σS ∧ σ′ = σ′
c ∗ σ′

S ∧ σ′
c # σ′

S ∧ σc C σ′
c ∧ σS SC σ′

S . By the definition of
SC this implies sσc = sσS and sσ′

c
= sσ′

S
. Now set σI =df (∅, hσS ), then

σ = σc ∗ σI ∧ σc # σI ∧ σc C σ′
c ∧ σI ∈ I ∧ σ′

c # σI ∧ σ′ = σ′
c ∗ σI holds.

Furthermore assume σ C ∗ (r ; SD ) σ′. Again there exist σc, σ
′
c, σr, σS with

σ = σc ∗σr ∧ σc #σr ∧ σr ∈ r ∧ σr SD σS ∧ σc C σ′
c ∧ σ′ = σ′

c ∗σS ∧ σ′
c #σS

which implies sσc = sσr and sσ′
c

= sσS . Therefore, by C ⊆ D and the definition
of SC also σr SC σS holds. Finally to prove (4), we calculate

(C ;D) ∗ (r ; SC;D ) = � ; ((C ;D)× (r ; SC;D )) ; �
⊆� ; ((C ; D)× (r ; SC ; r ; SD )) ; �
= � ; ((C × (r ; SC )) ; (D × (r ; SD ))) ; �
⊆� ; ((C × (r ; SC )) ; � ; � ; (D × (r ; SD )) ; �
= (C ∗ (r ; SC )) ; (D ∗ (r ; SD )) .

This uses the definition of ∗, assumption, associativity, Exchange (2), neutral-
ity of (I × I) and (I × I) ⊆ � ; �. ��
Informally, considering any execution of C then by C ∗ SC only disjoint heap
cells are added to the states involve, i.e., SC changes exactly the same variables
as C does. In particular in C ∗ (r; SD ), SD alters the same variables of r as C
does if C ⊆ D. Finally, the assumption r ; SC;D ⊆ r ; SC ; r ; SD states that r
is not changed after all variable assignments of C.

5 The Frame Rule Algebraically

Besides commands the frame rule uses slightly modified Hoare triples {p}C {q}
(see Section 2). In the algebraic setting predicates (pre- and postconditions) can
be modelled by tests as e.g. in [7]. In Cmds , tests are given by partial identity
relations of the form {(σ, σ) | σ ∈ p} for some set p ∈ States. We further
abbreviate (σ, σ) ∈ p to σ ∈ p. Using tests, an if–statement if p thenC elseC′ is
described by p ;C ∪ ¬p ;C′, where ¬p =df p∩ I. It has further been shown that
a (standard) Hoare triple {p}C {q} is equivalent to p ;C ⊆ C ; q, where p, q are
test elements. It expresses that q is reached under all C-transitions from p, i.e.,
the precondition p guarantees the postcondition q. The modified Hoare triples
are characterised by

{p}C{q} ⇔df p ⊆ dom(C) ∧ p ; C ⊆ C ; q . (3)

Note that dom(C) for a relation C denotes the corresponding partial iden-
tity relation. This means that dom(C) is a subidentity of states. Informally,
p ⊆ dom(C) states that C can be executed in all states satisfying p. By these
definitions, the frame rule turns into the implication

p ; C ⊆ C ; q ⇒ (p ∗ r) ; C ⊆ C ; (q ∗ r) . (4)
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The frame rule as well as its algebraic counterpart (4) do not hold in general.
As mentioned before, three assumptions are made to prove the frame rule: safety
monotonicity, the frame property and the side condition.

Formally, a command C is safety monotone iff for all σ, σ′ ∈ States. σ # σ′ ∧
σ ∈ dom(C) ⇒ σ ∗ σ′ ∈ dom(C); a command C satisfies the frame property iff
for all σ, σSC , σ1 ∈ States. σ ∈ dom(C) ∧ σSC ∈ dom(SC ) ∧ σ # σSC ∧ (σ ∗
σI) C σ1 ⇒ ∃σ2, σS . σ C σ2 ∧ σSC SC σS ∧ σ2 #σS ∧ σ1 = σ2 ∗σS [6]. These
definitions can be given pointfree and purely algebraically:

– C is safety-monotonic iff dom(C) ∗ I ⊆ dom(C) ;
– C has the frame property iff (dom(C)×dom(SC )) ;� ;C ⊆ (C× SC ) ;� .

Equivalence proofs2 can be found in [6]. In the next section, we will have a closer
look on the third assumption, namely the side condition.

6 Variable Preservation and Variable Side Conditions

Side conditions are often used to restrict the behaviour of commands. In the
frame rule, MV(C)∩FV(r) = ∅ guarantees that r still holds in the postcondition.
In other words, C preserves r.

A first attempt to tackle this variable side conditions of the frame rule alge-
braically is given in [5]:

� ; (C × r) ⊆ C ; � . (5)

This equation states that whenever a state σ can be split into two states σc and
σr such that C can be executed on σc, and σr satisfies r then each execution
of C ends up in a state where σr can be retained completely unchanged. Using
this, it is possible to prove the frame rule (4).

Unfortunately, Equation (5) is very restrictive and makes the algebraic ap-
proach incomplete. This means that not all instances satisfying the original frame
rule satisfy the additional assumption (5). For example taking C = (x := 1) and
r = (true) yields � ; (C × r), which is not contained in C ; �. In particular,
consider a pair (σ, (τ1, τ2)) ∈� ; (C × r). We can assume that sτ2(x) = 2. But
there exists no such splitting in C ;� since each τi has to satisfy sτi(x) = 1. This
means the domain as well as the image of C need to be checked for combinability.

This yields another version of preservation. For arbitrary states σ1, σ2, τ1 and
τ2, the combinability (joinability) relation �� on pairs of states is defined by

(σ1, σ2) �� (τ1, τ2) ⇔df σ1 # σ2 ∧ σ1 = τ1 ∧ σ2 = τ2 .

The relation �� is a test (a partial identity relation) that characterises those
pairs of states that are combinable w.r.t. #. We will use this relation to obtain
the subcommand of a command that maintains combinability with a test r.

Using combinability, we can now define another version of side conditions. A
command C weakly preserves r iff

�� ;(C × r) ; �� �= ∅ . (6)
2 In this paper we deviate slightly from [6]. But the proofs can be adapted.
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Pointwise this means that ∃σ1, σ2, σr. σ1 # σr ∧ σ1 C σ2 ∧ σr ∈ r ∧ σ2 # σr .
Informally, there is at least one execution of C such that an input state σ1 as
well as an output state σ2 are combinable with a state σr. More precisely the
relation �� ;(C × r) ; �� is removing all executions in C that do not maintain r. If
the set is empty then r will definitely be changed by C. Simple consequences of
the definition are that if C1 and C2 preserve r then C1 ∪C2 preserves r as well.
Moreover, I and emp preserve r provided r �= ∅.

In some sense, Equation (6) behaves really angelically: for an assertion r it
searches for one “execution-path” in C that preserves r. Let us give an example:
with C =df if (x = 0) then skip elsex := 2 and r =df (x �= 2) we have �� ;(C ×
r) ; �� = �� ;((x = 0)× r) ; �� �= ∅ since �� ;((x �= 0 ; x := 2)× r) ; �� = ∅.

Therefore this approach is not strong enough to capture the side conditions
of the frame rule. Another disadvantage of Equation (6) is that algebraically
inequalities cannot easily be used for equational (automated) reasoning.

Moreover, weak preservation is not closed under composition. Consider com-
mands C1 =df (x := 1), C2 =df (y := 2) and an assertion r =df (x = 3 ∨ y =
4). Then �� ;(Ci × r) ; �� �= ∅ but �� ;(C1 ;C2× r) ; �� = ∅. It is not possible to force
weak preservation to be closed under composition. This is based on the fact that
relations cannot distinguish commands like y := x from y := x ; x = 0 ; x := y
(cf. Section 2). By equivalence of these commands this would imply that y := x
does not preserve r =df (x = 1).

To give a more appropriate definition we look at downward closure: a com-
mand C downward-preserves a test r iff r �= ∅ and

∀C′ ⊆ C : �� ;(C′ × r) ; �� = ∅ ⇒ C′ = ∅ . (7)

Obviously, every command C �= ∅ that downward-preserves r also weakly pre-
serves r. But this definition is much more restrictive. Informally, the definition
states that C preserves r only if all possible “executions of C” already preserve r.
By this side condition, the above problem of the if-statement can be avoided: the
problem of weak preservation is that if there is a choice between two execution
paths, it suffices if one of these preserves r. If there is a choice of execution paths
“inside” a command C, it can be split into two subcommands C1 and C2 with
C = C1 ∪ C2. Both commands have now to preserve r, i.e., �� ;(Ci × r) ; �� �= ∅
(i ∈ {1, 2}). Moreover the definition is closed under ∪, but still not under ;.

Now, we present a fourth possibility for algebraic side conditions. It is dis-
cussed in more detail since we will apply this condition in a small case study.

A command C preserves a test r iff

C ∗ (r ; SC ) ⊆ C ∗ r . (8)

Pointwise this spells out for all σ, σ′ ∈ States:
∃σc, σr, σ

′
c, σS . σ = σc ∗ σr ∧ σc C σ′

c ∧ σr ∈ r ∧ σr SC σS ∧ σ′ = σ′
c ∗ σS

⇒ ∃σc, σr , σ
′
c. σ = σc ∗ σr ∧ σc C σ′

c ∧ σr ∈ r ∧ σ′ = σ′
c ∗ σr

assuming σc #σr , σ′
c #σS and σ′

c #σr. Informally, this inequation characterises
commands that only modify variables which do not influence r.
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Lemma 6.1. For arbitrary commands C1, C2 and test r:

– If C1, C2 preserve r then C1 ∪C2 preserves r.
– Assume C,D preserves r. If r ; SC;D ⊆ r ; SC ;r ; SD and (C ∗ r) ; (D ∗ r) ⊆

(C ; D) ∗ r then C ; D preserves r.
– I and emp preserve r, i.e., I ∗ (r ; SI ) ⊆ I ∗ r and emp ∗ (r ; Semp ) ⊆ r.
– C preserves I and emp.

The proof is by straightforward calculations and by Lemma 4.1.
Using this definition of preservation (together with safety monotonicity and

the frame property), it is again possible to prove the frame rule purely alge-
braically. Therefore the algebraic approach is still sound, but maybe still not
complete. However, these new definitions make the algebraic frame rule more
widely applicable and the restrictions are far smaller than before.

We use these results to model more complex side conditions of SL in the
following section. In particular, we look at a variant of the frame rule and describe
to which extent its side conditions can be included in the relational framework.

7 Variable Conditions in Information Hiding

In this section we present an approach to include more complex variable preser-
vation conditions into the relational setting. For such side conditions we consider
the hypothetical frame rule introduced in [9]. It uses the concept of information
hiding. We give only some key concepts of that rule and present how reasoning
with this proof rule can be captured by our relational approach. For more details
concerning the frame rule we refer to [9].

We only treat a special case of the hypothetical frame rule. The ideas given
can be easily generalised. The inference rule reads

{p1}k1{q1}[X1], {p2}k2{q2}[X2] % {p}C{q}
{p1 ∗ r}k1{q1 ∗ r}[X1, Y ], {p2 ∗ r}k2{q2 ∗ r}[X2, Y ] % {p ∗ r}C{q ∗ r} ,

where the side conditions are skipped for the moment. They will be given below.
The semantics of % is as follows: if the triples on the left hand side of % hold,
then C satisfies {p}C{q}. To explain the new type of triples above we consider
{pi}ki{qi}[Xi]. ki denotes an identifier, i.e., a placeholder for a local command
Ci, that is, a command that satisfies safety monotonicity and the frame prop-
erty. Such commands are determined by environments η, i.e., mappings from
identifiers to local commands. In particular the premise is quantified over all
environments η that make % holds. The sets Xi in the triples list the variables
which each ki is allowed to change. Replacing ki in the triple {pi}ki{qi} with a
concrete Ci = η(ki), the triple can be interpreted with usual semantics.

The general hypothetical frame rule only considers an arbitrary number of
{pi}ki{qi}[Xi] triples and therefore does not introduce any new concepts. To get
an idea for the usage of this proof rule we consider again its premise. The com-
mand C denotes a command that uses during its execution the local commands
η(ki) for an actual considered environment η. Now the hypothetical frame rule
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allows us to infer triples with more information. The pre- and postconditions of
ki now come with additional disjoint heap cells satisfying the predicate r. More-
over the sets of variables that the ki may modify are extended by a common set
Y . Intuitively this means that all ki together can be seen as a module or package
providing some functionality through its public methods, namely the ki. Usually
the concrete implementation remains hidden by an import of such module.

The premise of the proof rule expresses the described situation. The con-
sequent of the rule gives a view of the module from its inside. It reveals all
internally used variables and heap cells used by ki. All ki share some private
variables and storage. In particular, to be able to work correctly on those re-
sources, each ki has to maintain a resource invariant r. Due to this behaviour the
inference rule comes with more complex variable conditions than the ordinary
frame rule. However, it is much more flexible than the ordinary frame rule and
allows reasoning in a more realistic setting. The following side conditions come
with the hypothetical frame rule to restrict the behaviour for ki and C

(a) C does not modify any free variables of r, except through k1 and k2

(b) Y is disjoint from X1, X2, FV(pi), FV(qi), FV(p), FV(q) and MV(C).

By these conditions module variables can only be modified within a module.
Before tackling these side conditions we first show that the hypothetical frame

rule can be included in our relational approach. The first construct we consider
are the triples of the form {pi}ki{qi}[Xi]. For such triples we first define for an
arbitrary set X of variables a command CX by

CX =df {(σ, σ′) : X ⊆ dom(sσ) ∩ dom(sσ′), sσ|X = sσ′ |X , hσ = hσ′}
where X = Vars −X . This command is used to ensure that all variables which
are not in a set X have to preserve their value from the input to the output
states. Each variable in X can be changed to an arbitrary value. In analogy to
Equation (8) we say that a command k preserves CX if k ∗ (CX ; Sk ) ⊆ k ∗CX

By this we further define the new triples by
{pi}ki{qi}[Xi] ⇔df {pi}ki{qi} ∧ ki preserves CXi .

Note again that we cannot restrict variable modifications “inside” a command
(cf. the example given at the end of Section 2). This is a major restriction of
our relational approach. To verify the side condition (a) within Cmds we assume
a syntactically given command C by the grammar of Section 2. The idea is to
split the command C into subsequences Ck of C where no ki occurs and verify
preservation of [[Ck]]c relationally. To ensure that each Ck of C before and after a
ki preserves r, we apply the following routine to C. We start by a set Z =df {C}.
1. Repeat until no Cj ∈ Z contains if then else : if there exists Ci with C ≡ C1;

( if p thenC2 elseC3) ;C4 then Z := Z−{C}∪{C1 ;p ;C2 ;C4, C1 ;¬p ;C3 ;C4}
2. Repeat until no Cj ∈ Z contains a ki : if ∃Ci . C ≡ C1 ; ki ; C2 then Z :=

Z − {C} ∪ {C1, cod(C1 ; ki) ; C2}
≡ denotes syntactical equivalence. Since C2 is reached after C1 ; ki it remains
to consider cod(C1 ; ki) ; C2. To consider the right command relation in Cj the
routine appends tests to commands e.g. in p ;Cj although p is syntactically not
a command. A concrete example is given in the next section.
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Now each of these subcommands has to preserve r, i.e., it has to maintain the
values of all free variables of r. By knowing the concrete structure of a command,
Assumption (a) can be checked completely at the relational level.

Next we introduce an approach to characterise Assumption (b) relationally.
We constrain the use of the internal variables Y of a module by the following
inequations which are to be add to the premises of the proof rule.

ki preserves vY , i ∈ {1, 2} (9)
C preserves vY , (10)

where vY =df {(σ, σ) : σ = (s, h), Y ⊆ dom(s), h ∈ Heaps}.
By Assumption (9) no variable in Y is changed by any execution of ki. There-

fore also each execution of ki starting from pi and finishing in qi preserves Y
which the intention of requiring Y to be disjoint from FV(pi) and FV(qi). The
same argumentation holds for requiring each Xi to be is disjoint from Y . By the
second assumption also C does not modify any variables of Y .

In summary, the intended restrictions by all meta-level variable conditions
of the hypothetical frame rule can be checked pointfree and purely relationally
when knowing the concrete structure and syntax of commands. To demonstrate
and clarify these conditions we present a short example in the next section.

8 A Relational Treatment of a Queue Module

In this section, we exemplarily replay the queue module example given in [9].
This module offers two methods to enqueue and to dequeue elements from a list
which represents the shared and hidden storage of the module procedures. From
the outside of the module the list cannot be seen, i.e., from that point of view
only values will be cut off from or appended to an abstract sequence α stored in
a variable Q. The following two interface specifications3 are given

{Q = α ∧ z = n ∧ emp} enq{Q = α · n ∧ emp}[{Q}] ,
{Q = n · α ∧ emp} deq{Q = α ∧ z = n ∧ emp}[{Q}]

and will be part of the antecedent of the hypothetical frame rule. The precondi-
tion for enq ensures that Q stores the sequence α of the hidden list while z stores
an arbitrary value n to be appended at the end of the sequence. An environment
η1 could e.g. return η1(enq) = (Q := Q · z). In deq, the head of the sequence
α is assigned to z and then deleted from α. A possible local command for that
could be η1(deq) = (z := head(α) ; Q := tail(α)).

These specifications can be embedded into the relational framework by simply
requiring η1(enq)∗ (C{Q} ; Sη1(enq) ) ⊆ η1(enq)∗C{Q} and (Q = α ;z = n ;emp) ;
η1(enq) ⊆ η1(enq) ; (Q = α · n ; emp). The same can be done for deq.

The conclusion of the hypothetical frame rule reveals the resource invariant of
the module. Concretely the resource invariant r for this module is listseg(Q, x, y)∗
(y �→ −,−) which ensures a list segment from x to y representing a sequence

3 In [9] the specifications are used parametrical; for simplicity reasons we use values.
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stored in Q. The predicate listseg(Q, x, y) is defined by (x = y ∧ α = ε ∧ emp) ∨
(x �= y ∧ ∃ v, z. x �→ v, z ∗ listseg(tail(Q), z, y)). The last two cells starting from
y reserve storage for a value that an execution of enq will append. By this an
internal implementation mapped by η2, i.e., local commands for enq and deq
might look as follows

Q := Q · z;
t := cons (−,−);
[y] := z ; [y + 1] := t ; y := t

Q := tail(Q);
z := [x] ; t := x ; x := [x+ 1];
dispose t

In particular the following triples are inferred by the hypothetical frame rule.

{(Q = α ∧ z = n ∧ emp) ∗ r} enq{(Q = α ·n ∧ emp) ∗ r}[{Q}, {t, x, y}],
{(Q = n ·α ∧ emp) ∗ r} deq{(Q = α ∧ z = n ∧ emp) ∗ r}[{Q}, {t, x, y}].

Again we can formulate these triples relationally with the variable condition
modelled by η2(enq) ∗ (C{Q}∪{t,x,y} ; Sη2(enq) ) ⊆ η2(enq) ∗ C{Q}∪{t,x,y}. Next
we consider for the hypothetical frame rule the command

C = if b then (η2(deq) ; z = 1 ; η2(enq)) else (η2(deq) ; z = 0 ; η2(enq)) .
It is split into C1 = (b = true) ; (η2(deq) ; z := 1 ; η2(enq)) and C2 = (b = false) ;
(η2(deq) ; z := 0 ; η2(enq)). Consequently we split both commands recursively at
η2(deq) and η2(enq). This results in commands C11 = (b = true), C12 = (cod(b =
true ; η2(deq)) ; z := 1), C13 = cod(b = true ; η2(deq) ; z := 1), C21 = (b = false),
C22 = (cod(b = false ; η2(deq)) ; z := 0) and C23 = cod(b = false ; η2(deq) ; z :=
0). All commands Cij preserve r. For example it can be shown for C12 that
C12 ∗ (r ; SC12

) ⊆ C12 ∗ r.
This shows that restrictions by side conditions of the hypothetical frame rule

and the rule itself can be expressed in the presented relational framework. Only
the subcommands as given by the structure of a command is needed for a relation
based argumentation which facilitates algebraic reasoning with this rule.

9 Greatest Local Relations

To conclude this work, we introduce the concept of greatest local relations4.
As discussed before, the premise and the conclusion of the hypothetical frame
rule are quantified over all possible environments η. According to [9], proving
soundness of the inference rule can be simplified. It suffices to consider so-called
greatest environments since those environments already capture any other envi-
ronment. A greatest environments maps an identifier ki of {pi}ki{qi}[Xi] to the
greatest local relation satisfying it. For further details see [9].

Our basic intention in this work is to include greatest local relations and their
variable conditions into our setting. This underpins that the relational approach
is also able to capture concepts used in the hypothetical frame rule. We give
a pointfree characterisation for these commands in the relational setting and
explain how their variable conditions can be included.
4 A local relation of [9] is a local command in our approach.
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Definition 9.1. [[9]] Consider a triple {p}ki{q}[X ]. We define the greatest local
relation great(p, q,X) satisfying that triple by the following conditions assuming
σ = (s, h) and σ′ = (s′, h′)

1. σ is safe for great(p, q,X) ⇐⇒ σ ∈ p ∗ true
2. σ great(p, q,X) σ′ ⇐⇒

(a) ∀x �∈ X. s(x) = s′(x)
(b) ∀hp, hI . (h = hp ∪ hI ∧ hp ∩ hI = ∅ ∧ (s, hp) ∈ p)

⇒ ∃hq. hq ∩ hI = ∅ ∧ h′ = hq ∪ hI ∧ (s′, hq) ∈ q

By this definition every state σ = (s, h) which great(p, q,X) is executed at can
be split into two disjoint states (s, hp) ∈ p and an arbitrary state (s, hI). Every
variable of dom(s)−X cannot be modified by great(p, q,X) and a resulting state
σ′ can be split again into states (s′, hI) and (s′, hq) ∈ q.

We implicitly treat the variable condition (2a) by an extra assumption. Hence
we omit X in great(p, q) and include the variable condition (2a) by requiring for
the rest of this section great(p, q) preserves CX with CX as in Section 4.

For a relational characterisation of the remaining properties of Definition 9.1
we use the concept of residuals. In REL, the right residual R\S is defined as
R̆ ; S (e.g., [12]). Residuals can equally be defined by the Galois connection x ≤
a\b ⇔df a ·x ≤ b in the general setting of quantales [2]. Therefore the presented
theory lifts to a more abstract setting. The definition entails a · (a\b) ≤ b.

Moreover, for this section we define S =df SCX and let 	 denote the uni-
versal relation. By these definitions, we characterise in our relational terms
great(p, q) satisfying the properties (1) and (2b) as follows:

Lemma 9.2. For tests p, q the greatest local relation great(p, q) can be charac-
terised by

great(p, q) = (p ∗ I) ; res(p, q),

where res(p, q) = ((p× dom(S)) ; �) \ ((	 ; q × S) ; �).

Proof. We show that (2b) is satisfied by res(p, q). We have for arbitrary σ and τ

σ ((p× dom(S)) ; �) \ ((	 ; q × S) ; �) τ

⇔ σ � ; (p× dom(S)) ; (	 ; q × S) ; � τ
⇔ ¬(∃σp, σS . σ = σp ∗ σS ∧ σp # σS ∧ σp ∈ p ∧ σS ∈ dom(S)

∧¬((σp, σS) (	 ; q × S) ; � τ))
⇔ ¬(∃σp, σS . σ = σp ∗ σS ∧ σp # σS ∧ σp ∈ p ∧ σS ∈ dom(S)

∧¬(∃σq , σ
′
S . σp 	 σq ∧ σq ∈ q ∧ σS S σ

′
S ∧ τ = σq ∗ σ′

S ∧ σq # σ′
S))

⇔ ∀σp, σS . σ = σp ∗ σS ∧ σp # σS ∧ σp ∈ p
⇒ ∃σq, σ

′
S . σq ∈ q ∧ σS S σ

′
S ∧ τ = σq ∗ σ′

S ∧ σq # σ′
S

Moreover, by (1), in Definition 9.1 we know dom(great(p, q)) ⊆ p ∗ I and by
pointwise calculations above we have p∗I ⊆ dom(res(p, q)). Then p∗I = (p∗I)∗
(p ∗ I) ⊆ (p ∗ I) ; dom(res(p, q)) = dom((p ∗ I) ; res(p, q)) = dom(great(p, q)). ��
The assumption σS S σ

′
S is used to change all variables of X in sσS . Notice also

that res(p, q) does not work on pairs of states, i.e., res(p, q) ⊆ States × States .
With this characterisation, we can give relational proofs for the following results.
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Lemma 9.3. For all p, q, we have that great(p, q) satisfies {p}great(p, q){q}.

Proof. For the proof we need a standard result from relation algebra: if R1, R2

and S1 are subidentities with R1 ⊆ S1 then (R1 ×R2) ; (S1 × I) = R1 ×R2.
To show p ; great(p, q) ⊆ great(p, q) ; q it remains to prove p ; great(p, q) ⊆

	 ;q. Both inequations are equivalent by standard semiring theory. We calculate
assuming p = p ∗ emp = p ∗ (emp; dom(S))

p ; great(p, q)
= � ; (p× emp) ; � ; res(p, q)
= � ; (p× emp) ; (p× dom(S)) ; � ; res(p, q)
⊆ � ; (p× emp) ; (	 ; q × S) ; �
= � ; (p ;	 ; q)× (emp ; S) ; �
⊆ p ;	 ; q ⊆ 	 ; q

Moreover, p ⊆ dom(great(p, q)) follows from p ⊆ p ∗ I = dom(great(p, q)). ��

Next we characterise great(p, q) also as a local command. Informally, the in-
equation below is similar to the frame property and also characterises arbitrary
storage not needed for great(p, q) to remain untouched.

Lemma 9.4. For arbitrary tests p and q we have

((p ∗ I)× dom(S)) ; � ; great(p, q) ⊆ ((p ∗ I) ; great(p, q)× S) ; �

Proof. We calculate for all σp ∈ p, σ2 ∈ dom(S) and arbitrary σ1, σ
′

σp # σ1 ∧ (σp ∗ σ1, σ2) ((p ∗ I)× dom(S)) ; � ; great(p, q) σ′

⇔ σp #σ1 ∧ σp∗ σ1 ∈ p∗I ∧ (σp ∗ σ1) # σ2 ∧ (σp ∗ σ1) ∗ σ2 great(p, q) σ′

⇔ σp # σ1 ∧ σp ∈ p ∧ σp # (σ1 ∗ σ2) ∧ σp ∗ (σ1 ∗ σ2) great(p, q) σ′

⇒ σp # σ1 ∧ σp ∈ p ∧ (σp ∗ σ1) # σ2 ∧ (σp ∗ σ1) ∗ σ2 great(p, q) ∗ S σ′

⇒ ∃σ′
1, σS . σp # σ1 ∧ σp ∈ p ∧ (σp ∗ σ1) # σ2 ∧ (σp ∗ σ1) great(p, q) σ′

1 ∧
σ2SσS ∧ σ′

1 # σS ∧ σ′
1 ∗ σS = σ′

⇔ ∃σ′
1. (σp ∗ σ1, σ2) ((p ∗ I) ; great(p, q)× S) ; � σ′.

��

Lemma 9.5. The relation great(p, q) is local, i.e., it satisfies the frame property
and safety monotonicity.

Proof. To see that great(p, q) satisfies the frame property, we know by Lemma 9.4

((p ∗ I)× dom(S)) ; � ; great(p, q) ⊆ ((p ∗ I) ; great(p, q)× S) ; �.

By dom(great(p, q)) = p ∗ I and isotony the claim follows. Finally for safety
monotonicity: dom(great(p, q)) ∗ I = (p ∗ I) ∗ I = p ∗ I = dom(great(p, q)). ��

Lemma 9.6. Consider an arbitrary local command C that satisfies the triple
{p}C{q} and SC ⊆ S, i.e., C modifies variables in X. Then p ;C ⊆ great(p, q).
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Proof. First we show C ⊆ ((p×dom(S));�) \ ((	;q×S);�) which is equivalent
to (p× dom(S)) ; � ; C ⊆ (	 ; q × S) ; �. We calculate

(p× dom(S)) ; � ; C
⊆ (p× dom(S)) ; (dom(C)× dom(S)) ; � ; C
⊆ (p× dom(S)) ; (C × SC ) ; �
⊆ (p ; C × S) ; �
⊆ (C ; q × S) ; � ⊆ (T ; q × S) ; �.

Then p ; C ⊆ (p ∗ I) ; C ⊆ (p ∗ I) ; res(p, q) = great(p, q). ��
It can be seen that if a command C satisfies {p}C {q}[X ] then p ; C is a subset
of great(p, q), i.e., great(p, q) captures every such local command C.

10 Related Work

There exist different approaches to the issue of variable preservation in proof
rules. We briefly sum up some proposals of [3,10]. One idea is to omit the store
and to put variable declarations on the heap, i.e., treat variables the same way as
heap cells. Although this would give a uniform treatment, the logic itself would
become more complicated, especially Hoare’s variable assignment axiom. For our
purpose this seems inadequate since the presented case study requires variable
declarations to be present for disjoint states; such a resource-based treatment of
variables would exacerbate treating standard examples.

The main approach taken in [3,10] was to introduce ownership predicates
for variables that remain unchanged by variable substitutions. It ensures the
permission to write to certain variables. This approach tracks ownership rights
of variables in states and treats them by a special ∗ operation. This also shifts
the treatment of variable conditions to the logic layer. Therefore the conditions
can be verified within the logic. Our goal is rather constraining our relational
approach by equations that model the side conditions. This allows including
plain the store-heap model into our abstract and pointfree treatment without
adding additional information like ownership rights. In addition our treatment
also enables reasoning purely at the relational level.

11 Conclusion and Outlook

We have studied to which extent side conditions that naturally appear in the
frame rule of separation logic can be handled with the same mechanism as the
logic itself. The approach presented expresses the side conditions in the same
algebra as the logic. In classical logic, side conditions require the introduction of
a meta-language; in our algebraic version this is not the case.

As a further application of our approach we have formulated the hypothetical
frame rule and its more complex variable side conditions in our relational setting.
The result of this formulation is that our abstract approach can also be used
for information hiding proof rules. Especially, greatest local relations can be
characterised in a pointfree way in our setting.
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As further work we will try to overcome the deficit of the relational approach
by working on strings to represent the concrete structure of commands. More-
over, an abstract treatment of the hypothetical frame rule seems to be possible
since its meta-level conditions can be lifted to an abstract level. As a consequence
a wider range of models can be considered.
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remarks and comments. We are also most grateful to the referees who pointed
out several flaws and helped to significantly increase the quality.

References

1. Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: Modular Automatic Assertion
Checking with Separation Logic. In: de Boer, F.S., Bonsangue, M.M., Graf, S.,
de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 115–137. Springer,
Heidelberg (2006)

2. Birkhoff, G.: Lattice Theory, Colloquium Publications, 3rd edn., vol. XXV. Amer-
ican Mathematical Society, Providence (1967)

3. Bornat, R., Calcagno, C., Yang, H.: Variables as resource in separation logic.
Electronic Notes in Theoretical Computer Science 155, 247–276 (2006)
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Abstract. We define a class of structures – preference algebras – such
that properties of preference relations can be expressed with their op-
erations. We prove a discrete duality between preference algebras and
preference relational structures.

1 Introduction

The concept of a preference structure appears in a variety of fields such as social
choice theory, economics, and game theory [14,8,11], fuzzy logic [3,12], among
others. For a recent concise introduction to preference structures we refer the
reader to [7], and for a general presentation of relations and their applications
the reader is invited to consult [13]. Typically, a preference is viewed as a binary
relation, say P on a set of alternatives. The statement xPy is intuitively inter-
preted as x is preferred to y. Together with a preference relation a binary relation
of indifference, I, it is often assumed; here, xIy is interpreted as x is similar to
y or there is no preference for x or y. In any particular theory there are various
axioms assumed for preference and indifference relations. Reusch [9,10] proposes
the following (minimal) set of requirements on preference and indifference: For
all alternatives x and y,

1. If x is preferred to y, then it is not the case that y is preferred to x.
2. If x is preferred to y, then it is not the case that x is indifferent to y.
3. x is indifferent to x.
4. If x is indifferent to y, then y is indifferent to x.

Postulates 1 and 2 may be interpreted as saying that the underlying preference
structure is conflict-free.

In this paper we define a class of preference algebras which will be shown to
correspond to the class of preference structures in the precise sense of discrete
duality.

A preference algebra is a join of two mixed algebras, see [1], such that the
properties of the preference and indifference relations can be expressed with their
operations. The method of discrete duality employed in the paper enables us to

H. de Swart (Ed.): RAMICS 2011, LNCS 6663, pp. 141–147, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



142 I. Düntsch and E. Or�lowska

consider logics of preference either with an algebraic semantics determined by
preference algebras or with relational semantics determined by preference struc-
tures. The representation theorems presented in the paper yield the equivalence
of these two semantics as it is shown in [5].

Given a class of preference algebras, Alg, and a class of preference relational
structures (preference frames), Frm, a discrete duality between Alg and Frm is
a tuple 〈Alg,Frm,Cf,Cm〉 such that Cf is a mapping from Alg to Frm, Cm is a
mapping from Frm to Alg every A in Alg is embeddable into Cm Cf(A), and every
F in Frm is embeddable into Cf Cm(F ).

2 Definitions and Notation

Suppose that 〈B,∧,∨,¬, 0, 1〉 is a Boolean algebra. With some abuse of language
we will identify algebras with their base set. If A ⊆ B and h : B → B a function,
then h[A] df= {h(a) : a ∈ A} is the complex image of A under h. A modal operator
on B is a function f : B → B which satisfies f(0) = 0, and f(a∨b) = f(a)∨f(b)
for all a, b ∈ B. A sufficiency operator on B is a function g : B → B which
satisfies g(0) = 1, and g(a ∨ b) = g(a) ∧ g(b) for all a, b ∈ B.

A mixed algebra (MIA) [1] is a structure 〈B, f, g〉 where B is a Boolean algebra
and f, g : B → B are functions on B such that

f is a modal operator on B,(2.1)
g is a sufficiency operator on B.(2.2)

and, for all ultrafilters F,G of B,

F ∩ g[G] �= ∅ ⇐⇒ f [G] ⊆ F.(2.3)

The condition 2.3 is easily seen to be equivalent to the one originally given
in [1].

A weak MIA is complete and atomic Boolean algebra with a modal operator
f and a sufficiency operator g such that f(p) = g(p) for all atoms p of B. Each
MIA is a weak MIA, and the converse does not necessarily hold.

Mixed algebras are an extension of Jónsson – Tarski Boolean algebras [4]
which add additive and normal operators to the Boolean operations by sufficiency
operators which are co–additive and co–normal. Not every modal algebra can
be extended to a MIA: If, for example, f is the identity function in a Boolean
algebra B, then there is no sufficiency operator such that 〈B, f, g〉 is a MIA [1].

In terms of canonical structures, a modal operator f talks about R, while its
sufficiency operator talks about −R. Reflexivity, for example, can be expressed
by a modal operator, but to express irreflexivity one needs a sufficiency operator.
Also, antisymmetry can be expressed by a mixed modal–sufficiency expression,
but not by a modal or sufficiency expression alone [2].

Observe that condition (2.3) is second order, and it is known that the class of
mixed algebras is not first order axiomatizable [2].
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If 〈B, f, g〉 is a MIA, define a binary relation RB on Ult(B) by 〈F,G〉 ∈
RB

df⇐⇒ f [G] ⊆ F . The structure Cf(B) df= 〈Ult(B), RB〉 is called the canonical
structure of B.

The set of all binary relations on a set U is denoted by Rel(U); if x ∈ U ,
we let R(x) df= {z ∈ U : xRz}; the relational converse is denoted by R ˘ . For
R ∈ Rel(U), we define two operators on 2U by

〈R〉(S) df= {x : (∃y)[xRy and y ∈ S]} = {x : R(x) ∩ S �= ∅}.(2.4)

[[R]](S) df= {x : (∀y)[y ∈ S ⇒ xRy]} = {x : S ⊆ R(x)}.(2.5)

It is well known that 〈R〉 is a complete modal operator on the power set algebra
of U , and that [[R]] is a complete sufficiency operator, see e.g. [1]. Furthermore,
〈2U , 〈R〉, [[R]]〉 is a MIA [1], called the complex algebra of 〈U,R〉.

The following correspondences are well known:

Lemma 1. 1. R is reflexive if and only if X ⊆ 〈R〉(X) for all X ⊆ U .
2. R is symmetric if and only if X ⊆ [[R]]([[R]](X)) for all X ⊆ U .

3 Preference Frames and Preference Algebras

In this section we introduce preference frames and preference algebras. Here, we
use as a basis the “most traditional preference model” [7], also known as a 〈P, I〉
– structure: A preference frame is a structure 〈X,P, I〉, where X is a nonempty
set and P, I, are binary relations on X which satisfy

F1. P ∩ P ˘ = ∅.
F2. P ∩ I = ∅.
F3. I is reflexive.
F4. I is symmetric.

These axioms reflect the postulates 1 - 4 from Section 1. We shall usually denote
a preference frame 〈X,P, I〉 just by its universe X .

A preference algebra

〈B,∨,∧,¬, 0, 1, f1, g1, f2, g2〉
is a structure such that 〈B,∨,∧,¬, 0, 1〉 is a Boolean algebra, 〈B, f1, g1〉 and
〈B, f2, g2〉 are MIAs, and, for all a ∈ B,

A1. a ∧ f1(g1(a)) = 0.
A2. a ∧ f1(g2(a)) = 0.
A3. a ≤ f2(a).
A4. a ≤ g2(g2(a)).

These axioms correspond to the frame axioms listed above in the precise sense
of the modal correspondence theory.

In Section 4 (resp. Section 5) we present an example of a preference algebra
(resp. a preference frame). While we are not aware of any universal-algebraic
preference structures, a great variety of preference frames can be found in the
literature devoted to applications of preference relations.
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4 The Complex Algebra of a Preference Frame

Let X be a preference frame. The complex algebra BX of X has as its universe
the powerset algebra of X , and the following distinguished operators: If A ⊆ X ,
then

fP (A) df= 〈P 〉(A), gP (A) df= [[P ]](A),

fI(A) df= 〈I〉(A), gI(A) df= [[I]](A).

BX is called the complex algebra of the preference frame X , denoted by
Cm(X).

Theorem 1. The complex algebra of a preference frame is a weak MIA satisfy-
ing A1 – A4.

Proof. We have shown in [1] that both 〈2X , 〈P 〉, [[P ]]〉 and 〈2X , 〈I〉, [[I]]〉 are
weak MIAs.

A1: Let A ⊆ X, x ∈ A, and assume that x ∈ 〈P 〉[[P ]](A). Then, there is some
y such that xPy and y ∈ [[P ]](A). From the latter we infer that for all s, s ∈ A
implies yPs. Since x ∈ A, by the hypothesis we obtain yPx, which, together
with xPy, contradicts the asymmetry F1 of P .

A2: Let A ⊆ X, x ∈ A, and assume that x ∈ 〈P 〉[[I]](A). Similar to A1

there is some y such that xPy and yIx. Since I is symmetric, we also have xIy,
contradicting F2.

A3 and A4 follow directly from Lemma 1.

5 The Canonical Frame of a Preference Algebra

Suppose that 〈B, f1, g1, f2, g2〉 is a preference algebra, and let Ult(B) be the set
of ultrafilters on the Boolean algebra B. Define binary relations PB and IB on
Ult(B) by

FPBG⇐⇒ f1[G] ⊆ F,(5.1)
FIBG⇐⇒ f2[G] ⊆ F.(5.2)

The structure 〈Ult(B), PB , IB〉 is called the canonical frame of the preference
algebra B, denoted by Cf(B).

Theorem 2. The canonical frame of a preference algebra is a preference frame.

Proof. It is well known that A3 implies the reflexivity of I, and A4 implies the
symmetry of I, see e.g. [1].

F1: Assume that PB is not asymmetric. then, there are ultrafilters F,G such
that f1[G] ⊆ F and f1[F ] ⊆ G. By the latter condition and (2.3), there is some
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a ∈ F such that g1(a) ∈ G. From f1[G] ⊆ F we obtain that f1(g1(a)) ∈ F . Since
a ∈ F and F is a proper filter, we have 0 �= a ∧ f1(g1(a)), contradicting A1.

F2: Assume that there are F,G ∈ Ult(B) such that FPBG and FIBG. Since
IB is symmetric, we also obtain GIBF , i.e. f1[G] ⊆ F and f2[F ] ⊆ G. Then, by
(2.3), G ∩ g2[F ] �= ∅, so there is some a ∈ B such that a ∈ F and g2(a) ∈ G.
Using f1[G] ⊆ F we see that f1(g2(a)) ∈ F , hence, a∧ f1(g2(a)) ∈ F . Since F is
a proper filter, this contradicts A2.

6 The Duality Result

Theorem 3. Suppose that 〈X,P, I〉 is a preference frame, and 〈B, f1, g1, f2, g2〉
a preference algebra.

1. The mapping h : B → CmCf(B) defined by h(a) = {F ∈ Ult(B) : a ∈ F} is
an embedding of preference algebras.

2. The mapping k : X → CfCm(X) defined by k(x) = {A ∈ 2X : x ∈ A} is an
embedding of preference frames.

Proof. 1. We have shown in [1], Proposition 12, that the mapping h embeds
a MIA 〈B, f, g〉 into the complex algebra of its canonical frame. Following a
referee’s request, we make this fact explicit.

Since h is a Stone mapping it, is a Boolean embedding, and it is sufficient
to show that h preserves the modal and sufficiency operators of preference alge-
bras. Following [6] we show preservation of the operator g1, that is h(g1(a)) =
gP(2X )

(h(a)).
First, observe that

F ∈ gP(2X )
(h(a)) ⇐⇒ F ∈ [[PB]]h(a) ⇐⇒ (∀G ∈ Ult(B))[G ∈ h(a) ⇒ FPBG],

and therefore by (2.3),

f1(G) ∈ F ⇐⇒ (∀G ∈ Ult(B))[a ∈ G⇒ F ∩ g1(G) �= ∅].

“⊆”: Take G ∈ Ult(B) such that a ∈ G. Since g1(a) ∈ F, F ∩ g1(G) �= ∅.
“⊇”: Suppose g1(a) /∈ F . Consider set Zg1 = {b ∈ B : gd

1(b) /∈ F}, where
gd
1(b) = ¬g1(¬b) and ¬ is the Boolean complement. Let G′ be a filter generated

by Zg1 ∪ {a}. G′ is a proper filter, for suppose otherwise, then there is a′ ∈ Zg1

such that a′ ∧ a = 0, which yields a ≤ ¬a′. Since g1 is antitone, g1(¬a′) ≤ g1(a).
By definition of Zg1 , gd(a′) /∈ F and since F is maximal, g1(¬a′) = ¬gd(a′) ∈ F .
Hence, g1(a) ∈ F , a contradiction. Thus G′ can be extended to a prime filter, say
G, containing it. Since a ∈ G′, a ∈ G. Hence, by the assumption, F ∩ g1(G) �= ∅.
It follows that for some b ∈ G, g1(b) ∈ F . Then ¬g1(b) = gd

1(¬b) /∈ F and hence
¬b ∈ Zg1 ⊆ G, which yields b /∈ G, a contradiction.

The proof of preservation of modal operators can also be found in [6].
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2. Since k(x) is the principal ultrafilter of 2X generated by {x}, the mapping
k is well defined. Let x, y ∈ X ; we need to show that xPy ⇐⇒ k(x)P(2X )k(y)
and xIy ⇐⇒ k(x)I(2X )k(y). First, observe that

k(x)P(2X )k(y) ⇐⇒ 〈P 〉[k(y)] ⊂ k(x)(6.1)

⇐⇒ (∀Y ⊆ X)[y ∈ Y ⇒ x ∈ 〈P 〉(Y )](6.2)
⇐⇒ (∀Y ⊆ X)[y ∈ Y ⇒ P (x) ∩ Y �= ∅].(6.3)

“⇒”: Let xPy and y ∈ Y . Then, P (x) ∩ Y �= ∅, and hence by (6.3) we have
k(x)P(2X )k(y).

“⇐”: Suppose that k(x)P(2X )k(y) for some x, y ∈ X . Setting Y
df= {y} and

using (6.3) we obtain xPy.

Corollary 1

1. Any preference frame can be embedded into the canonical frame of its complex
algebra.

2. Any preference algebra can be embedded into the complex algebra of its canon-
ical frame.

7 Conclusion and Outlook

In this paper we introduced a class of preference algebras corresponding to the
class of traditional 〈P, I〉 preference frames. We proved representation theorems
for these classes, thus obtaining a discrete duality between them.

The preference structures considered in the paper can be extended in a natural
way to the structures with multiple pairs of preference and indifference relations
associated with agents making choices on a set of alternatives. Algebraic counter-
parts to these structures will be preference algebras constructed from multiple
mixed algebras. Then some axioms reflecting relationships among preferences
of various agents may be added. The duality results for those structures will
open the way to a study of aggregation of preferences of the agents both in an
algebraic and a relational framework.

Other directions for future work may include studying restrictions of the
preference and/or indifference relation. In particular, transitivity of preference
and/or indifference is of importance. The corresponding algebraic axioms are
well known from correspondence theory. In some approaches to preference mod-
eling, a third relation of incomparability, J , is introduced and postulated to be
irreflexive and symmetric. In such preference structures, it is usually assumed
that the relations P , P ˘, I, and J form a partition of the set of all the pairs of
alternatives. Further work is planned on discrete dualities for such and similar
structures as, for example, interval orders or semi–orders.

Acknowledgment. We should like to thank the referees for thoughtful com-
ments and pointers to further literature.
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Abstract. Brown and Gurr have shown a relational representation the-
orem for quantales. Complete idempotent left semirings are a relaxation
of quantales by giving up strictness and distributivity of composition
over arbitrary joins from the left. We show a relational representation
theorem for them. Multirelations are generalisation of relations. We also
show a multirelational representation theorem for complete idempotent
left semirings.

1 Introduction

A quantale has been introduced by Mulvey [6] as a complete sup-lattice together
with an associative composition satisfying the distributive laws. The same struc-
ture was also investigated by Conway [3] under the name of standard Kleene alge-
bras (S-algebras). In [1], a relational quantale has been defined to be a quantale
whose elements are relations on a set, ordered by inclusion and forming a monoid
under relational composition. Then, Brown and Gurr have shown a relational
representation theorem for quantales. The construction of a relational quantale
from a quantale uses a subset of the given quantale’s underlying set satisfying
two conditions, which has been called a generating set for the quantale.

Complete idempotent left semirings are a relaxation of quantales by giving
up strictness and distributivity of composition over arbitrary joins from the left.
In this paper, we define a relational complete idempotent left semiring similarly
to relational quantales. Then, following the idea of [1], we show a relational
representation theorem for complete idempotent left semirings. The relational
representation theorem in [1] is a special case of our relational representation
theorem.

Multirelations are a generalisation of relations. These are studied as a seman-
tic domain of programs [9] and game logic [8]. In the context of modal logics,
multirelations appear as neighbourhood models or Scott-Montague models [2].
Up-closed multirelations are known as one of the typical models for complete
idempotent left semirings [7]. We also define a multirelational complete idem-
potent left semiring to be a complete idempotent left semiring whose elements
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are multirelations on a set, ordered by inclusion and forming a monoid un-
der multirelational composition. Then, we show a multirelational representation
theorem for complete idempotent left semirings. In the case of multirelational
representation, one of the conditions for generating sets may be dropped.

Brown and Gurr has shown that every completely coprime algebraic quantale
is isomorphic to a relational complete quantale in which all joins are given by
unions in [1]. In this paper, we investigate if analogous results hold for complete
idempotent left semirings. This investigation exhibits a difference between the
relational representation and the multirelational representation.

In Section 2, we recall notions and some basic results about complete idem-
potent left semirings. In Section 3, we introduce relational complete idempotent
left semirings and show that every complete idempotent left semiring is isomor-
phic to a relational complete idempotent left semiring. This result is extended
to an equivalence of categories between the category of complete idempotent left
semirings and the category of relational complete idempotent left semirings. In
Section 4, we introduce multirelational complete idempotent left semirings and
show that every complete idempotent left semiring is isomorphic to a multirela-
tional complete idempotent left semiring. This result is extended to an equiva-
lence of categories between the category of complete idempotent left semirings
and the category of multirelational complete idempotent left semirings. In Sec-
tion 5, we prove that every completely coprime algebraic complete idempotent
left semiring is isomorphic to a multirelational complete idempotent left semiring
in which all joins are given by unions. Section 6 summarises this paper.

2 Complete Idempotent Left Semirings

Idempotent left semirings [5] are defined as follows.

Definition 1. An idempotent left semiring, or briefly an IL-semiring is a tuple
(S,+, ·, 0, 1) with a set S, two binary operations + and ·, and 0, 1 ∈ S satisfying
the following properties:

– (S,+, 0) is an idempotent commutative monoid.
– (S, ·, 1) is a monoid.
– For all a, b, c ∈ S, a · c+ b · c = (a+ b) · c, a · b+a · c ≤ a · (b+ c), and 0 ·a = 0,

where the natural order ≤ is given by a ≤ b iff a + b = b.

We often abbreviate a · b to ab.

Remark 1. An IL-semiring S satisfying ab + ac = a(b + c) and a0 = 0 for all
a, b, c ∈ S is an idempotent semiring.

Definition 2. A complete IL-semiring S is an IL-semiring satisfying the follow-
ing properties: For each A ⊆ S,

– the least upper bound
∨

A of A exists in S, and

– (
∨

A)a =
∨
{xa | x ∈ A} for each a ∈ S.
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A complete IL-semiring preserving right directed joins is a complete IL-semiring
satisfying

a(
∨

A) =
∨
{ax | x ∈ A}

for each element a and each non-empty directed subset A. A complete IL-
semiring preserving the right 0 is a complete IL-semiring satisfying a0 = 0 for
each element a. A complete IL-semiring preserving the right + is a complete
IL-semiring satisfying ab + ac = a(b + c) for any elements a, b, and c.

Remark 2 (Nishizawa et al. [7]). Let Q be a complete IL-semiring.

1. Q preserves the right + and right directed joins iff · distributes over all
non-empty joins even from the left hand side.

2. Q preserves the right 0, + and right directed joins iff Q is a quantale.

The following example is found by using the model searcher Mace4 [4].

Example 1. Let B = {⊥, 1, a,	} with an ordering defined by

	

��
��

��
�

��
��

��
��

1

��
��

��
� a

��
��

��
��

⊥

and binary operator · defined by

· ⊥ 1 a 	
⊥ ⊥ ⊥ ⊥ ⊥
1 ⊥ 1 a 	
a ⊥ a a 	
	 ⊥ 	 a 	 .

Then, (B,+, ·,⊥, 1) is a complete IL-semiring. Observe that this complete IL-
semiring is not a quantale since a(1 + a) = 	 �= a = a1 + aa.

We write CILS for the category whose objects are complete IL-semirings and
whose arrows are completely join-preserving homomorphisms between them. We
write CILSD for the full subcategory of CILS whose objects are complete IL-
semirings preserving right directed joins. Similarly, we define CILS0,+, CILS0,+,D,
and so on. The eight categories and forgetful functors between them form the
cube of Fig. 1.

For a subset X of a complete IL-semiring S and for each a ∈ S, the set
{x ∈ X | x ≤ a} is denoted by dX(a). The mapping a �→ dX(a) determines the
function dX from S to ℘(S).
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CILS0,+,D

��

��

������������
CILS0,+

��

���
��������

CILS0,D

��

�� CILS0

��

CILS+,D

������������
�� CILS+

���
��������

CILSD
�� CILS

Fig. 1. The cube of complete IL-semirings

Definition 3. Let S be a complete IL-semiring. A subset G ⊆ S is a generating
set for S if a ≤

∨
dG(a) for each a ∈ S. A generating set G is decompositional

if for all g ∈ G and a, b ∈ S, if g ≤ ab then there exists h ∈ G such that g ≤ ah
and h ≤ b.

Let S be a quantale. A generating set for S in the sense of [1] is a decompositional
generating set in this paper. As in the case of quantales [1], the decomposition-
ality enables us to make multiplications in a complete IL-semiring correspond
with relational compositions in the relational complete IL-semiring induced by
it, which may be shown in Lemma 2 (via 4 of Remark 3) in this paper.

Example 2. Consider the complete IL-semiring B from Example 1. Though {1, a}
is a generating set for B, it is not decompositional since 1 �≤ a = a1 = aa in
spite of 1 ≤ a	. Also, {⊥, 1, a} is a non-decompositional generating set for B.
On the other hand, B is the unique decompositional generating set for B.

Remark 3. Let S be a complete IL-semiring and G a generating set for S. Then,
for any g ∈ G and a, b, c ∈ S, the following holds.

1. a =
∨

dG(a).
2. a ≤ b iff dG(a) ⊆ dG(b).
3. g ≤ abc iff there exists z ∈ S such that g ≤ az and for each h ∈ dG(z),

h ≤ bc.1

4. If G is decompositional, g ≤ abc iff there exists h ∈ G such that g ≤ ah and
h ≤ bc.

Lemma 1. Let S be a complete IL-semiring. Then S is a generating set for S
itself. Moreover, S is decompositional.

1 The following similar (but slightly awkwarder) property holds.

3’. For any X ⊆ S, g ≤ ab(
∨

X) iff there exists H ⊆ S such that g ≤ a(
∨

H) and

for each h ∈ H , h ≤ b(
∨

X).
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Proof. S is a generating set for S since a ∈ dS(a) for each a ∈ S. Suppose that
a ≤ bc. Putting h = c, we have h ≤ c and a ≤ bh. ��
Definition 4. An element a of a complete IL-semiring S is completely coprime
(CCP) if, for each X ⊆ S, a ≤

∨
X implies that there exists x ∈ X such that

a ≤ x.

The notion of completely coprime is synonymous with the notion of completely
join prime. We write CCP(S) for the set of CCP elements of a complete IL-
semiring S.

Definition 5. A complete IL-semiring S is completely coprime algebraic (CCPA)
if CCP(S) is a generating set for S.

Example 3. CCPA quantales [1] are CCPA complete IL-semirings preserving the
right 0, the right +, and right directed joins.

Example 4. Consider the complete IL-semiring B from Example 1. Then, {1, a}
is CCP(B). As we have seen in Example 2, CCP(B) is a generating set for B.
Thus, B is CCPA.

In [1], it is shown that CCP(Q) of a CCPA quantale Q is a decompositional
generating set for Q. However, CCP(S) of a CCPA complete IL-semiring S need
not be decompositional.

Example 5. As we have seen in Example 4, the complete IL-semiring B from
Example 1 is CCPA. But, as we have seen in Example 2, CCP(B) is not decom-
positional.

3 Relational Representation Theorem

Following the treatment in [1] quite closely, we provide a relational representation
theorem for complete IL-semirings.

Definition 6. Let A be a set. A relational complete IL-semiring on A is a pair
(R, I) of R ⊆ ℘(A×A) and I ∈ R such that

– (R,⊆) is a complete join semilattice,
– (R, ;, I) is a monoid,
– for any χ ⊆ R and R ∈ R, (

∨
χ) ; R =

∨
{P ; R | P ∈ χ},

where ; is relational composition, that is, (x, y) ∈ P ; R iff there exists z such
that (x, z) ∈ P and (z, y) ∈ R.

Note that joins in a relational complete IL-semiring do not have to be given by
unions.

Example 6. Relational quantales [1] are relational complete IL-semirings pre-
serving the right 0, the right +, and right directed joins.
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RCILS0,+,D

��

��

������������� RCILS0,+

��

������������

RCILS0,D

��

�� RCILS0

��

RCILS+,D

�������������
�� RCILS+

������������

RCILSD
�� RCILS

Fig. 2. The cube of relational complete IL-semirings

We write RCILS for the full subcategory of CILS whose objects are relational com-
plete IL-semirings. As the case of CILS, we define RCILSD, RCILS0,+, RCILS0,+,D,
and so on. Then the eight categories and forgetful functors between them form
the cube of Fig. 2.

Let S be a complete IL-semiring and G a generating set for S. For a ∈ S, we
define the relation ρG(a) induced by a and ρG(S) ⊆ ℘(S × S) by

ρG(a) = {(g, b) ∈ G× S | g ≤ ab} and ρG(S) = {ρG(a) | a ∈ S} ,

respectively. Then the mapping a �→ ρG(a) determines the function ρG from S
to ρG(S).

Lemma 2. Let S be a complete IL-semiring and G a generating set for S. Then
the following holds for any a, b ∈ S and X ⊆ S.

1. ρG(a) ⊆ ρG(b) iff a ≤ b.
2. (ρG(S),⊆) is a complete join semilattice in which ρG(

∨
X) is the join of

{ρG(x) | x ∈ X}.
3. ρG(a) ; ρG(b) = ρG(ab) if G is decompositional.

Proof. 1. (⇒) Note that (g, 1) ∈ ρG(a) for any g ∈ dG(a). Since ρG(a) ⊆ ρG(b),
(g, 1) ∈ ρG(b). Thus, g ≤ b for any g ∈ dG(a). Therefore a =

∨
dG(a) ≤ b.

(⇐) If (g, c) ∈ ρG(a), g ≤ ac ≤ bc since a ≤ b and · is monotone. So,
(g, c) ∈ ρG(b).

2. By 1, ρG(x) ⊆ ρG(
∨

X) for each x ∈ X . Thus, ρG(
∨

X) is an upper bound
for {ρG(x) | x ∈ X}. Suppose that ρG(c) is another upper bound. Then, by
1, x ≤ c for each x ∈ X , whence

∨
X ≤ c. So, by 1, ρG(

∨
X) ≤ ρG(c).

Therefore, ρG(
∨

X) is the least upper bound of {ρG(x) | x ∈ X}.
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3. (g, c) ∈ ρG(a) ; ρG(b)
⇐⇒ ∃h ∈ G. (g, h) ∈ ρG(a) and (h, c) ∈ ρG(b)
⇐⇒ ∃h ∈ G. g ≤ ah and h ≤ bc
⇐⇒ g ≤ abc (by 4 of Remark 3)
⇐⇒ (g, c) ∈ ρG(ab) ��

Theorem 1. For a complete IL-semiring S and a decompositional generating
set G for S, the pair (ρG(S), ρG(1)) is a relational complete IL-semiring on S.
Moreover, S is isomorphic to (ρG(S), ρG(1)).

Proof. (ρG(S), ρG(1)) is a relational complete IL-semiring on S and the function
ρG from S to ρG(S) is a bijective and completely join-preserving homomorphism
by Lemma 2. ��
Example 7. Consider the set B from Example 1. B is the decompositional gen-
erating set for B and ρB(⊥), ρB(1), ρB(a), and ρB(	) are relations on B, which
are represented by the following Boolean matrices.

⊥ 1 a 	
⊥
1
a
	

⎡⎢⎢⎣
1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦
ρB(⊥)

⊥ 1 a 	
⊥
1
a
	

⎡⎢⎢⎣
1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

⎤⎥⎥⎦
ρB(1)

⊥ 1 a 	
⊥
1
a
	

⎡⎢⎢⎣
1 1 1 1
0 0 0 1
0 1 1 1
0 0 0 1

⎤⎥⎥⎦
ρB(a)

⊥ 1 a 	
⊥
1
a
	

⎡⎢⎢⎣
1 1 1 1
0 1 0 1
0 1 1 1
0 1 0 1

⎤⎥⎥⎦
ρB(	)

The computation of relational composition on ρB(B) is as follows.

; ρB(⊥) ρB(1) ρB(a) ρB(	)
ρB(⊥) ρB(⊥) ρB(⊥) ρB(⊥) ρB(⊥)
ρB(1) ρB(⊥) ρB(1) ρB(a) ρB(	)
ρB(a) ρB(⊥) ρB(a) ρB(a) ρB(	)
ρB(	) ρB(⊥) ρB(	) ρB(a) ρB(	)

So, (ρB(B), ρB(1)) is a relational complete IL-semiring. Moreover, it is isomor-
phic to B. Observe that joins are not given by unions since

ρB(a) + ρB(1) = ρB(	) �= ρB(a) ∪ ρB(1) .

Also observe that (ρB(B), ρB(1)) is not a relational quantale [1] since

ρB(a) ; (ρB(a) + ρB(1)) = ρB(	) �= ρB(a) = ρB(a) ; ρB(a) + ρB(a) ; ρB(1) .
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Remark 4. The same construction taking a non-decompositional generating set
need not provide a relational complete IL-semiring. For example, again, consider
the complete IL-semiring B from Example 1. Taking CCP(B) from Example 4,
we obtain the following four relations.

⊥ 1 a 	
⊥
1
a
	

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦
⊥ 1 a 	

⊥
1
a
	

⎡⎢⎢⎣
0 0 0 0
0 1 0 1
0 0 1 1
0 0 0 0

⎤⎥⎥⎦
ρCCP(B)(⊥) ρCCP(B)(1)

⊥ 1 a 	
⊥
1
a
	

⎡⎢⎢⎣
0 0 0 0
0 0 0 1
0 1 1 1
0 0 0 0

⎤⎥⎥⎦
⊥ 1 a 	

⊥
1
a
	

⎡⎢⎢⎣
0 0 0 0
0 1 0 1
0 1 1 1
0 0 0 0

⎤⎥⎥⎦
ρCCP(B)(a) ρCCP(B)(	)

It is obvious that the pair (ρCCP(B)(B),⊆) is a complete join semilattice (in which
all joins are given by unions). However, ρCCP(B)(B) does not form a relational
complete IL-semiring since it is not closed under composition. This fact can be
checked by computing ρCCP(B)(a) ; ρCCP(B)(	).

By Lemma 1, every complete IL-semiring has at least one decompositional gen-
erating set for itself. So, the following properties are immediate from the above
theorem.

Corollary 1. 1. Every complete IL-semiring is isomorphic to a relational com-
plete IL-semiring on its underlying set.

2. Every complete IL-semiring preserving right directed joins is isomorphic to
a relational complete IL-semiring preserving right directed joins on its un-
derlying set.

3. Every complete IL-semiring preserving the right 0 is isomorphic to a rela-
tional complete IL-semiring preserving the right 0 on its underlying set.

4. Every complete IL-semiring preserving the right + is isomorphic to a rela-
tional complete IL-semiring preserving the right + on its underlying set.

The representation theorem [1, Corollary 3.13] for quantales by Brown and Gurr
is induced from the above corollary.

Let S and S′ be complete IL-semirings. We write ρ(a) and ρ(S) for ρS(a) and
ρS(S), respectively. For each completely join-preserving homomorphism f from
S to S′, we define ρ(f) : ρ(S) → ρ(S′) by ρ(f)(ρ(a)) = ρ(f(a)) for each a ∈ S.

Lemma 3. ρ is a functor from CILS to RCILS.
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Proof. By Theorem 1, ρ maps every object of CILS to an object of RCILS. By
Lemma 2, ρ(f) is an arrow of RCILS for each arrow f of CILS. ρ(f◦g) = ρ(f)◦ρ(g)
and ρ(idS) = idρ(S) hold by the definition of ρ. ��
Corollary 2. The restriction ρv of ρ to CILSv is a functor from CILSv to RCILSv,
where v is either 0, +, D, 0,+, 0, D, +, D, or 0,+, D.

We write ι for the inclusion functor from RCILS to CILS. The restriction ιv of ι
to RCILSv is the inclusion functor from RCILSv to CILSv, where v is either 0, +,
D, 0,+, 0, D, +, D, or 0,+, D.

These sixteen functors are visualised as follows.

CILS

ρ ��
RCILS

ι
�� CILS0

ρ0 ��
RCILS0

ι0
��

CILS+

ρ+ ��
RCILS+

ι+
�� CILSD

ρD ��
RCILSD

ιD

��

CILS0,+

ρ0,+ ��
RCILS0,+

ι0,+
�� CILS0,D

ρ0,D ��
RCILS0,D

ι0,D

��

CILS+,D

ρ+,D ��
RCILS+,D

ι+,D

�� CILS0,+,D

ρ0,+,D��
RCILS0,+,D

ι0,+,D

��

Proposition 1. The functors ι and ρ form an equivalence of categories between
CILS and RCILS.

Proof. It holds that ρ(ι((R, I))) = ρ(R) and ι(ρ(S)) = ρ(S). By Theorem 1, R
is isomorphic to ρ(R) and so is S to ρ(S). The natural isomorphism is given
by ρ. ��
Corollary 3. The restriction ιv of ι to RCILSv and the restriction ρv of ρ to
CILSv form an equivalence of categories between CILSv and RCILSv, where v is
either 0, +, D, 0,+, 0, D, +, D, or 0,+, D.

The equivalence [1, Proposition 4.2] between the category of quantales and the
category of relational quantales is the case of v = 0,+, D.

4 Multirelational Representation Theorem

Definition 7. Let A be a set. A multirelational complete IL-semiring on A is
a pair (M, I) of M⊆ ℘(A× ℘(A)) and I ∈M such that

– (M,⊆) is a complete join semilattice,
– (M, ;, I) is a monoid,
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– for any χ ⊆M and R ∈M, (
∨

χ) ;R =
∨
{P ;R | P ∈ χ},

where ; is multirelational composition, that is, (x, Y ) ∈ P ; R iff there exists Z
such that (x, Z) ∈ P and for each z ∈ Z (z, Y ) ∈ R.

Note that joins in a multirelational complete IL-semiring do not have to be given
by unions. A multirelational complete IL-semiring preserving right directed joins,
the right 0, and the right + may be called multirelational quantale.

Example 8. Let A be a set and R ⊆ A×℘(A). R is called up-closed if (x,X) ∈ R
and X ⊆ Y implies (x, Y ) ∈ R for any x ∈ A and X,Y ⊆ A. We write UMRel(A)
for the set of up-closed multirelations on A. Also, we define 1 ⊆ A × ℘(A) by
(x,X) ∈ 1 iff x ∈ X . Then, 1 ∈ UMRel(A) and the pair (UMRel(A),1) is a
multirelational complete IL-semiring with

∨
χ =

⋃
χ for each χ ⊆ UMRel(A).

Example 9. Let (R, I) be a relational complete IL-semiring. Defining, for each
R ∈ R, R′ = {(x, {y}) | (x, y) ∈ R} and R′ = {R′ | R ∈ R}, (R′, I ′) is
a multirelational complete IL-semiring. Considering the relational complete IL-
semiring (ρB(B), ρB(1)) from Example 7, (ρB(B)′, ρB(1)′) is a multirelational
complete IL-semiring on B. In this case, joins are not given by unions.

We write MCILS for the full subcategory of CILS whose objects are multirela-
tional complete IL-semirings. As the case of CILS, we define MCILSD, MCILS0,+,
MCILS0,+,D, and so on. Then the eight categories and forgetful functors between
them form the cube Fig. 3.

MCILS0,+,D

��

��

������������� MCILS0,+

��

������������

MCILS0,D

��

�� MCILS0

��

MCILS+,D

��											
�� MCILS+

������������

MCILSD
�� MCILS

Fig. 3. The cube of multirelational complete IL-semirings

Let S be a complete IL-semiring and G a generating set for S. For a ∈ S, we
define the multirelation μG(a) induced by a and μG(S) ⊆ ℘(S × ℘(S)) by

μG(a) = {(g, dG(x)) ∈ G× ℘(S) | g ≤ ax} and μG(S) = {μG(a) | a ∈ S} ,
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respectively.2 Then the mapping a �→ μG(a) determines the function μG from S
to μG(S). Note that

(g,X) ∈ μG(a) ⇐⇒ ∃x ∈ S. (g, x) ∈ ρG(a) and X = dG(x) .

Also note that, for each a ∈ S, μG(a) is isomorphic to ρG(a) by 2 of Remark 3.3

The following lemma is analogous to Lemma 2. However, generating sets in
the following lemma need not be decompositional.

Lemma 4. Let S be a complete IL-semiring and G a generating set for S. Then
the following holds for any a, b ∈ S and X ⊆ S.

1. μG(a) ⊆ μG(b) iff a ≤ b.
2. (μG(S),⊆) is a complete join semilattice in which μG(

∨
X) is the join of

{μG(x) | x ∈ X}.
3. μG(a) ; μG(b) = μG(ab).

Proof. 1. It follows from 1 of Lemma 2.
2. As 2 of Lemma 2, this holds by 1.
3. Applying 3 (instead of 4) of Remark 3 to the third equivalence, we have

(g, dG(y)) ∈ μG(a) ; μG(b)
⇐⇒ ∃z ∈ S. (g, dG(z)) ∈ μG(a) and ∀h ∈ dG(z). (h, dG(y)) ∈ μG(b)
⇐⇒ ∃z ∈ S. g ≤ az and ∀h ∈ dG(z). h ≤ by
⇐⇒ g ≤ aby
⇐⇒ (g, dG(y)) ∈ μG(ab) . ��

The following theorem is analogous to Theorem 1. However, again, generating
sets in the following theorem need not be decompositional.

Theorem 2. For a complete IL-semiring S and a generating set G for S, the
pair (μG(S), μG(1)) is a multirelational complete IL-semiring on S. Moreover,
S is isomorphic to (μG(S), μG(1)).

Proof. Using Lemma 4 instead of Lemma 2, this is proved similarly to
Theorem 1. ��
2 Replacing μ and μ with μ′ and μ′ defined by

μ′
G(a) = {(g, X) ∈ G × ℘(S) | g ≤ a(

∨
X)} and μ′

G(S) = {μ′
G(a) | a ∈ S} ,

we obtain the analogous results to ones in the rest of this paper. Indeed, we had
adopted this construction till one of the reviewers pointed disadvantages of it. We
could not have introduced μ without hints given by the reviewer. In the case, Lemma
4 might have been proved rather independently from Lemma 2 since the relationship
between ρG(S) and μ′

G(S) had not been so clear as the case of ρG(S) and μG(S).
Note that 3” from the footnote1 had been prepared to prove μ′

G(a) ;μ′
G(b) = μ′

G(ab).
Also note that (g, X) ∈ μ′

G(a) iff there exists x ∈ S such that (g, dG(x)) ∈ μG(a)

and x =
∨

X.
3 μ′

G(a) need not be isomorphic to ρG(a). In fact, considering the complete IL-semiring
B from Example 1, ρCCP(B)(a) is not isomorphic to μ′

CCP(B)(a).
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Example 10 (cf. Remark 4). Consider the complete IL-semiring B from Exam-
ple 1. CCP(B) = {1, a} is a generating set for B and μCCP(B)(⊥), μCCP(B)(1),
μCCP(B)(a), and μCCP(B)(	) are as follows.

μCCP(B)(⊥) = ∅
μCCP(B)(1) = {(1, {1}), (1, {1, a}), (a, {a}), (a, {1, a})}
μCCP(B)(a) = {(1, {1, a}), (a, {1}), (a, {a}), (a, {1, a})}
μCCP(B)(	) = {(1, {1}), (1, {1, a}), (a, {1}), (a, {a}), (a, {1, a})}

The computation of multirelational composition on μCCP(B)(B) is as follows.

; μCCP(B)(⊥) μCCP(B)(1) μCCP(B)(a) μCCP(B)(	)
μCCP(B)(⊥) μCCP(B)(⊥) μCCP(B)(⊥) μCCP(B)(⊥) μCCP(B)(⊥)
μCCP(B)(1) μCCP(B)(⊥) μCCP(B)(1) μCCP(B)(a) μCCP(B)(	)
μCCP(B)(a) μCCP(B)(⊥) μCCP(B)(a) μCCP(B)(a) μCCP(B)(	)
μCCP(B)(	) μCCP(B)(⊥) μCCP(B)(	) μCCP(B)(a) μCCP(B)(	)

So, (μCCP(B)(B), μCCP(B)(1)) is a multirelational complete IL-semiring (in which
all joins are given by unions). Moreover, it is isomorphic to B.

By Lemma 1, every complete IL-semiring has at least one generating set for
itself. So, the following properties are immediate from the above theorem.

Corollary 4. 1. Every complete IL-semiring is isomorphic to a multirelational
complete IL-semiring on its underlying set.

2. Every complete IL-semiring preserving right directed joins is isomorphic to
a multirelational complete IL-semiring preserving right directed joins on its
underlying set.

3. Every complete IL-semiring preserving the right 0 is isomorphic to a mul-
tirelational complete IL-semiring preserving the right 0 on its underlying set.

4. Every complete IL-semiring preserving the right + is isomorphic to a mul-
tirelational complete IL-semiring preserving the right + on its underlying
set.

This corollary induces a multirelational representation theorem for quantales.
We write ι′ for the inclusion functor from MCILS to CILS. The restriction ι′v

of ι′ to MCILSv is the inclusion functor from MCILSv to CILSv, where v is either
0, +, D, 0,+, 0, D, +, D, or 0,+, D.

Let S and S′ be complete IL-semirings. We write μ(a) and μ(S) for μS(a) and
μS(S), respectively. For each completely join-preserving homomorphism f from
S to S′, we define μ(f) : μ(S) → μ(S′) by μ(f)(μ(a)) = μ(f(a)) for each a ∈ S.

Proposition 2. μ is a functor from CILS to MCILS. Moreover, the functors ι′

and μ form an equivalence of categories between CILS and MCILS.

Corollary 5. Let v be either 0, +, D, 0,+, 0, D, +, D, or 0,+, D. The re-
striction μv of μ to CILSv is a functor from CILSv to MCILSv. Moreover, ι′v and
μv form an equivalence of categories between CILSv and MCILSv.
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These sixteen functors are visualised as follows.

CILS

μ ��
MCILS

ι′
�� CILS0

μ0 ��
MCILS0

ι′0
��

CILS+

μ+ ��
MCILS+

ι′+
�� CILSD

μD ��
MCILSD

ι′D
��

CILS0,+

μ0,+ ��
MCILS0,+

ι′0,+

�� CILS0,D

μ0,D ��
MCILS0,D

ι′0,D

��

CILS+,D

μ+,D ��
MCILS+,D

ι′+,D

�� CILS0,+,D

μ0,+,D��
MCILS0,+,D

ι′0,+,D

��

5 CCPA Complete IL-semiring and Multirelational
Complete IL-semiring

[1] has shown that, for a CCPA quantale Q, ρCCP(Q)(Q) is a relational quantale
in which all joins are given by unions. The following proposition shows that,
for each CCPA complete IL-semiring S, (ρCCP(S)(S),⊆) and (μCCP(S)(S),⊆) are
complete join semilattice in which all joins are given by unions.

Proposition 3. Let S be a CCPA complete IL-semiring. Then, for X ⊆ S,

1.
∨
{ρCCP(S)(x) | x ∈ X} =

⋃
{ρCCP(S)(x) | x ∈ X},

2.
∨
{μCCP(S)(x) | x ∈ X} =

⋃
{μCCP(S)(x) | x ∈ X}.

Proof. 1 follows from

(g, y) ∈
⋃
{ρCCP(S)(x) | x ∈ X}

⇐⇒ ∃x ∈ X. (g, y) ∈ ρCCP(S)(x)
⇐⇒ ∃x ∈ X. g ≤ xy

⇐⇒ g ≤
∨
{xy | x ∈ X} (since g is CCP)

⇐⇒ g ≤ (
∨

X)y (since · preserves
∨

on the left)

⇐⇒ (g, y) ∈ ρCCP(S)(
∨

X)

⇐⇒ (g, y) ∈
∨
{ρCCP(S)(x) | x ∈ X} (by Lemma 2) .

2 is proved similarly to 1. ��
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However, for a CCPA complete IL-semiring S, (ρCCP(S)(S), ρCCP(S)(1)) need not
be a relational complete IL-semiring as we have seen in Remark 4. It is due
to the fact that CCP(S) need not be decompositional, which demonstrated by
Example 5, instead CCP(Q) is always decompositional for each CCPA quantale
Q [1, Lemma 5.3].

On the other hand, the following proposition is immediate from 2 of Proposi-
tion 3 and Theorem 2.

Proposition 4. For a CCPA complete IL-semiring S, (μCCP(S)(S), μCCP(S)(1))
is a multirelational complete IL-semiring on S, in which all joins are given by
unions. Moreover, S is isomorphic to (μCCP(S)(S), μCCP(S)(1)).

Corollary 6. 1. Every CCPA complete IL-semiring is isomorphic to a mul-
tirelational complete IL-semiring on its underlying set, in which all joins are
given by unions.

2. Every CCPA complete IL-semiring preserving right directed joins is isomor-
phic to a multirelational complete IL-semiring preserving right directed joins
on its underlying set, in which all joins are given by unions.

3. Every CCPA complete IL-semiring preserving the right 0 is isomorphic to a
multirelational complete IL-semiring preserving the right 0 on its underlying
set, in which all joins are given by unions.

4. Every CCPA complete IL-semiring preserving the right + is isomorphic to a
multirelational complete IL-semiring preserving the right + on its underlying
set, in which all joins are given by unions.

By this corollary, it holds that every CCPA quantale is isomorphic to a multire-
lational quantale on its underlying set, in which all joins are given by unions.

6 Conclusion

We have introduced relational and multirelational complete IL-semirings and
shown that

1. every complete IL-semiring is isomorphic to a relational complete IL-semiring,
and

2. every complete IL-semiring is isomorphic to a multirelational complete
IL-semiring.

1 induces the representation theorem [1, Corollary 3.13] and 2 induces a mul-
tirelational representation theorem for quantales. Moreover, we have investigated
CCPA complete IL-semirings and shown that

3. a CCPA complete IL-semiring need not be isomorphic to a relational com-
plete IL-semiring in which all joins are given by unions though every quantale
is isomorphic to a relational quantale in which all joins are given by unions,
and

4. every CCPA complete IL-semiring is isomorphic to a multirelational com-
plete IL-semiring in which all joins are given by unions.
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4 induces that

5. every CCPA quantale is isomorphic to a multirelational quantale in which
all joins are given by unions.

The following tables summarises these, where CILS stands for complete IL-
semiring.

CILS CCPA CILS
is is isomorphic to a multirelational CILS
is is isomorphic to a relational CILS

need not be is isomorphic to a multirelational CILS in which
all joins are given by unions

need not be need not be isomorphic to a relational CILS in which
all joins are given by unions

quantale CCPA quantale
is is isomorphic to a multirelational quantale
is is isomorphic to a relational quantale

need not be is isomorphic to a multirelational quantale in which
all joins are given by unions

need not be is isomorphic to a relational quantale in which
all joins are given by unions
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Abstract. A known generic strategy for handling large transition sys-
tems is the combined use of bisimulations and refinement. The idea is to
reduce a large system by means of a bisimulation quotient into a smaller
one, then to refine the smaller one in such way that it fulfils a desired
property, and then to expand this refined system back into a submodel
of the original one. This generic algorithm is not guaranteed to work
correctly for every desired property; here we show its correctness for a
class of optimality problems which can be described in the framework of
dioids.

1 Introduction

1.1 General Ideas

In practice one is often confronted with systems containing a large, even infi-
nite number of states and/or transitions, e.g. in control theory, model checking,
internet routing and similar cases. If the task is to ensure a certain property
(optimality, safety, liveness) by refining, i.e. removing (in practice preventing)
transitions, this task can appear to be difficult to solve for the large system.
One possible strategy is to reduce the original system into a smaller one using
a suitable bisimulation, then to apply a known algorithm to that system, such
that a refined subsystem of it fulfils the demanded property, and in a last step to
expand that system into a subsystem of the original one. Of course this strategy
will not work in all cases. To make sense, the reduction by bisimulation has to
decrease the number of states/transitions in a significant way, an algorithm for
computing a refined system with the required property has to be known, and
the desired property has to be invariant in a certain sense with respect to the
chosen bisimulation. As new material in this paper we show the existence of a
generic refinement algorithm for a special class of optimisation problems (the
second step in the above strategy sketch), and also that this class of problems is
treatable by the above bisimulation-based approach (i.e. that the steps one and
three are correct in this setting). In contrast to model checking, where bisimu-
lations are commonly used to check properties of a system (cf. e.g. [2]) we will
use them to construct systems with desired properties.

H. de Swart (Ed.): RAMICS 2011, LNCS 6663, pp. 164–179, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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1.2 Recent Work

In [14] it was shown how a control policy ensuring a certain optimality property
in infinite transition systems can be obtained; that approach worked without the
use of bisimulations. However, the iteratively constructed sets (called strata) in
that method actually correspond to the equivalence classes of a suitable bisimu-
lation. The successor paper [5] gives an algebraic formulation of bisimulation in
general and shows the correctness of the approach for a certain liveness property.
The generic algorithm was described in [6].

1.3 Overview

The paper consists of three parts: First, we introduce dioids as a tool for cap-
turing a larger class of model refinement problems. Next we recapitulate the
generic method for model refinement via bisimulation quotients. Last we show
the correctness of this generic algorithm for the introduced problem class and
discuss its efficiency.

2 Dioids and Models

2.1 Dioids and Cumulative Dioids

Our notion of dioid is closely related to the one given in [7]. Like there elements
from a dioid will serve as edge labels in graphs to formalise optimality problems.
This idea was exploited also for example in [3]. We will use the terms from [7],
although there are other namings for the same structures (e.g., a complete dioid
corresponds to a quantale). Since we are interested in the construction of refined
models (see later) we will deviate from the methods presented in [7].

Definition 2.1. A complete dioid is a structure (D,Σ, 0, ·, 1) such that (D,")
is a complete lattice with supremum operator Σ and least element 0, where "
is defined by x " y ⇔ Σ{x, y} = y, (D, ·, 1) is a monoid and · distributes over
Σ from both sides. " is called the order of the complete dioid.

In a complete dioid the binary supremum operation is denoted by + and is
referred to as addition, i.e. x + y = Σ{x, y}. In particular, we have x + 0 =
0 + x = x for all x ∈ D, and + is commutative, associative and idempotent.
The operation · is also called multiplication. Note that 0 is an annihilator of
multiplication (i.e. 0 · x = x · 0 = 0 for all x ∈ D) due to Σ ∅ = 0. Often for
readability the · is omitted, so ab stands for a · b. As commonly known in this
setting, the multiplication is isotone with respect to the order, i.e. a " b implies
ac " bc as well as ca " cb for all a, b, c. We use a � b as an abbreviation for
a " b∧a �= b, and the signs / and � for the converses of the respective relations.
In the sequel we will use D to denote the carrier set of a complete dioid when it
is clear from the context which complete dioid is considered.

A complete dioid is called selective if a+ b ∈ {a, b} holds. Obviously this can
be extended to the suprema of arbitrary nonempty finite sets. In this case, " is
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a linear relation. In the sequel we will consider only selective complete dioids;
we call them s-dioids for short.

Examples for complete dioids are (IR∪{−∞,∞}, sup,−∞, inf,∞)
or (P(IN),∪, ∅,∩, IN). The order is ≤ in the first example and ⊆ in the second
one.

A special class of complete dioids are the cumulative ones, which are char-
acterised by a " 1 for all a, i.e., 1 is the greatest element with respect to
the complete dioid’s order. Cumulative dioids are nothing extraordinary, so the
well-known sup-inf dioid (IR∪{−∞,∞}, sup,−∞, inf,∞) is cumulative. Under
the name 1-bounded they are also used for language analysis in [4]. The property
of being cumulative has equivalent formulations:

Lemma 2.2. The following statements are equivalent:

(1) (D,Σ, 0, ·, 1) is a cumulative dioid.
(2) For all a, b, c ∈ D the implications a " b⇒ ac " b and a " b⇒ ca " b hold.
(3) For all a, b ∈ D the inequalities ab " a and ba " a hold.

Proof. (1) ⇒ (2): Let a, b, c ∈ D be arbitrary with a " b. Because of isotony
of multiplication wrt. " and the assumption c " 1 we have ac " a · 1 = a and
hence ac " b. The other implication is shown analogously.
(2) ⇒ (3): For arbitrary a, b ∈ D we have a " a and due to (2) we have ab " a
(choose a := a, b := a and c := a). The other inequality follows analogously.
(3) ⇒ (1): In (3) we chose an arbitrary b and set a = 1. �

These alternative characterisations will be interpreted and used in the next
section.

2.2 Models and Costs

Before defining models we first fix some notation to avoid misunderstandings. A
graph G = (V,E) is understood as a directed graph, i.e., V is a set of nodes and
E ⊆ V ×V is a set of edges. A walk in a graph G = (V,E) is a sequence v1v2 . . . vn

of nodes vi ∈ V with (vi, vi+1) ∈ E. A path is a walk with distinct nodes only. A
node w2 is reachable from a node w1 iff there is a walk v1v2 . . . vn with v1 = w1

and vn = w2 (note the asymmetry of this definition!). The set of all walks
beginning at node x and ending at node y is denoted by W (x, y). Analogously,
the set of all paths from x to y is denoted by P (x, y). The concatenationw1◦w2 of
two walks w1 = x1x2 . . . xn and w2 = y1y2 . . . ym is defined as x1x2 . . . xny2 . . . ym

if xn = y1, and remains undefined else. A walk w′ is subwalk of a walk w if
there are walks w1 and w2 such that w = w1 ◦ w′ ◦ w2. A cycle is a walk with
identical first and last node. A graph is called acyclic if it does not contain cycles.
Furthermore, for a function f : M → N the image of f is the set {f(x) |x ∈M},
denoted by Im(f).

Definition 2.3. A model is a pair M = (G, g), where G = (V,E) is a directed
graph with node set V and edge set E, and g : E → D is a mapping from the
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edge set E into the carrier set D of an s-dioid (D,Σ, 0, ·, 1). A target model is a
pair MT = (M,T ), where M = ((V,E), g) is a model, and T ⊆ V is the so called
target set, where from every v ∈ V some node t ∈ T is reachable, and no node
t ∈ T has an outgoing edge. A model is called finite iff the associated graph is
finite.

Models correspond to edge labelled graphs. The term model was chosen in anal-
ogy to model checking. Target models describe the case when one is interested
in reaching a certain node set in the underlying graph of a model. Our main
interest here lies on target models. The requirement that the target set has to
be reachable from every node is motivated by the fact that we will concentrate
on walks leading into T .

A (target) model is called acyclic if its underlying graph is acyclic. A model
M ′ = ((V ′, E′), g′) is called a submodel of a model M = ((V,E), g), written
M ′ ≤ M , if V ′ = V , E′ ⊆ E and g′ = g|E′ hold (g|E′ denotes the restriction of
g to the domain E′). A target model M ′

T = (M ′, T ′) is a target submodel of a
target model TM = (M,T ) if M ′ is a submodel of M and T ′ = T . A pair (M,T )
where M = ((V,E), g) is a model and T ⊆ V is not reachable from every node
in V \T is called a defect target model. For a model M = ((V,E), g) and V ′ ⊆ V
the restriction of M by V ′, written M |V ′ , is defined by M |V ′ = ((V ′, E′), g′)
with V ′ = V , E′ = {(v1, v2) ∈ E|(v1, v2) ∈ V ′ × V ′} and g′ = g|E′ .

As already mentioned, the edge labels drawn from s-dioids serve to generalise
costs of walks in graphs. Concretely this is done in the following manner:

Definition 2.4. Let M = (G, g) with G = (V,E) be a model and (D,Σ, 0, ·, 1)
the associated s-dioid. Then for a walk w = x1x2 . . . xn in G the cost c(w) of w

is defined by c(w) =
n−1∏
i=1

g(xi, xi+1). For two nodes x and y the distance d(x, y)

of x and y is defined by d(x, y) =
∑

w∈W (x,y)

c(w). In a target model TM = (M,T )

the target distance d(x) of a node x is defined as d(x) =
∑
t∈T

d(x, t), where d(x, t)

is determined as above in the associated model M . A walk x1x2 . . . xn is called
optimal if c(x1x2 . . . xn) = d(x1, xn).

Note that the distance is defined for every pair of nodes, even for not reachable
nodes: in this case the distance equals the supremum of the empty set, which
is 0.

If one chooses the s-dioid (IR+
0 ∪{∞}, inf,∞,+, 0) as codomain of g the cost

of a walk corresponds to its length in its classic sense as the sum of the weights
of its edges. The distance of two points corresponds to the length of a shortest
path connecting these two points, and the target distance d(x) in a target model
to the minimal length of a shortest path between x and some node in the target
set. Similarly, if the s-dioid (IR∪{−∞,∞}, sup,−∞, inf,∞) is chosen, the cost
corresponds to the capacity, and the distance to the maximum capacity of walks.

We represent target models visually as edge labelled graphs, where supremum
and multiplication operations are clear from the context or are specified whenever
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Fig. 1. A Target Model

they are referenced. The nodes of the target set are surrounded by double lines.
In the following figure a target model with target set {d, g} is shown, but it is
not yet clear what the associated s-dioid is.

2.3 Optimality in Models

Note that until now we did not state anything about the existence of optimal
walks. E.g., in a graph with edge labels from IR there is no shortest walk be-
tween two nodes, if the graph contains a cycle of negative length (note that by
definition the distance can be −∞, but there is no walk with this cost). If we
use a cumulative s-dioid we are in a much better position: here we can show
that in every finite model an optimal walk between two reachable nodes exists,
and moreover there always even exists a path with optimal cost between two
reachable nodes. This is stated in the next lemma.

Lemma 2.5. Let M = ((V,E), g) be a finite model whose associated s-dioid
(D,Σ, 0, ·, 1) is cumulative, and let x and y be two reachable nodes. Then there
is a path p ∈ P (x, y) with c(p) = d(x, y).

Proof. Let M,x, y be as above and let w ∈ W (x, y) be an arbitrary walk. Assume
that w contains a repeated node, i.e. w = x1x2 . . . xi . . . xj . . . xn with xi =
xj . Consider now the walk w′ = x1x2 . . . xi−1xj . . . xn from x1 to xn. Because
(D,Σ, 0, ·, 1) is cumulative we have c(x1x2 . . . xi . . . xj) " c(x1x2 . . . xi−1), and
together with the isotony of multiplication we obtain c(w) " c(w′). By repeated
application of this construction we can obtain from w a path p ∈ P (x, y) with
c(w) " c(p). So in this case d(x, y) =

∑
w∈W (x,y)

c(w) =
∑

p∈P (x,y)

c(p) holds. Since

there are only finitely many paths from x to y there is a p ∈ P (x, y) with
c(p) = d(x, y) (this holds, because the order in an s-dioid is linear, so every finite
set contains a least element). �
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Our goal is to ensure that every walk in a target model leading into the target set
is an optimal one. This will happen by constructing a suitable target submodel,
which motivates the following definition:

Definition 2.6. For a target model TM = (M,T ) a target submodel T ′
M ≤ TM

is called an optimal target submodel, if for all walks w from x to any node t ∈ T
in T ′

M the cost c(w) equals the target distance d(x) in TM (note that a target
submodel is also a target model and therefore in an optimal target submodel the
target set has to be reachable from every node outside of it).

If we interpret the labels of Figure 1 in the s-dioid (IR∪{−∞,∞}, inf,∞,+, 0)
then an optimal submodel is given in Figure 2. Assuming the labels to stem from
the s-dioid (IR∪{−∞,∞}, sup,−∞, inf,∞) an optimal submodel is depicted
in Figure 3.
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Fig. 2. An Optimal Target Submodel
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Fig. 3. Another Optimal Target Submodel
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2.4 Models with Cumulative S-Dioids

Unfortunately, it turns out that not every target model has an optimal target
submodel, as for example shown by the shortest walk problem in the presence
of cycles with negative length. So a target model which has an optimal target
submodel is called refinable. Next we give a necessary and sufficient condition
for an s-dioid such that all target models with a distance function based on that
s-dioid are refinable.

Theorem 2.7. Let D = (D,Σ, 0, ·, 1) be an s-dioid. Then every finite target
model with D as associated s-dioid is refinable iff D is cumulative.

Proof. For ⇒ we consider the following algorithm, which is basically a variant
of Dijkstras algorithm:

Input:
finite target model M = (((V,E), g), T ) with associated cumulative s-dioid
D = (D,Σ, 0, ·, 1)

initialise dist as an array with indices from V and values from D;
initialise succ as an array with indices from V and values from V ;
initialise U as set with elements from V ;

forall t ∈ T
dist(t) = 1;
succ(t) = null;

endfor
forall v ∈ V \T

dist(v) = 0;
succ(v) = null;

endfor
U = ∅;
while U �= V

choose v /∈ U with dist(v) =
∑

v′ /∈U

dist(v′);

U = U ∪ {v};
forall (v′, v) ∈ E with v′ /∈ U

if g(v′, v) · dist(v) � dist(v′)
dist(v′) = g(v′, v)·dist(v);
succ(v′) = v;

endif
endfor

endwhile

Output:
∀v ∈ V : dist(v) = d(v)
succ encodes an optimal submodel
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The correctness proof for this algorithm is very similar to the one of the
common Dijkstra algorithm. The differences are of course the use of a general
cumulative s-dioid instead of IR≥0, and the fact that we are not interested in
optimal paths from a single node to all other nodes but in optimal paths leading
into a given set of nodes from every node outside of that set.

The termination of the while-loop is ensured by the termination function |U |,
since |U | is increased by one after every pass through the while-loop, and it is
bounded by |V |, since M is assumed to be finite. The for-loops terminate since
they run over finite sets only.

To prove the correctness we first introduce the concept of a maximal path
starting from a node wrt. a given successor array. First, a mapping succ as
defined above in the succ-array determines a graph Gsucc = (Vsucc, Esucc) with
Vsucc = V and (v1, v2) ∈ Esucc iff succ(v1) = v2. In an analogous manner it
defines a possibly defect target submodel Msucc of M . Then the maximal path
mp(v,succ) starting in v wrt. succ is the maximal (i.e. not prolongable) path in
Msucc starting in v. Intuitively, this describes the maximal path that starts in v
and is guided by the instructions encoded in succ.

For the correctness we choose as an invariant for the while-loop the combina-
tion of three invariants I ≡ I1 ∧ I2 ∧ I3 with

I1 ≡ ∀u ∈ U : dist(u) = d(u),
I2 ≡ ∀u ∈ U : c(mp(u, succ)) = dist(u), and
I3 ≡ ∀u /∈ U : dist(u) = d(u) in M |U∪{v}.

Here and in the sequel v denotes the node chosen in the while-loop. Informally
this means dist(u) = d(u) where d(u) is defined on the target model Msucc,
depending on the progress of the algorithm, whereas dist(u) = d(u) with a d(u)
defined on M holds only for nodes u /∈ U ∪{v}. succ(u) denotes the successor of
u on a walk w with c(w) = d(u) in Msucc; it could be null if there is no path in
Msucc from u leading into some node in the target set.
I1 and I2 hold trivially before the first entry into the while-loop because U is

empty at this point. I3 holds before the first entry into the while-loop because at
this point Msucc has an empty edge set, so d(u) = 0 for all u /∈ T , and d(u) = 1
for all u ∈ T holds in Msucc, in consistency with the assignment to dist.

Consider now a pass through the while-loop, and let v be the chosen node
(such a node exists, since D is cumulative, cf. also the proof of lemma 2.5). For
nodes u ∈ U no changes for dist(u) and succ(u) are made, so I1 and I2 remain
valid for such nodes. Next we consider the node v. Assume there is a walk w
in M from v into T with c(w) � dist(v). According to I3 this walk must visit
a node u′ with u′ /∈ U ∪ {v}. Let u′ be the first node on w with this property.
Because of v, u′ /∈ U and the choice of v we have dist(u′) " dist(v). On the other
hand, w can be split into two walks as w = w1 ◦ w2 where w2 is a walk from u′

into T , which has, according to I3, the cost dist(u′). Since the associated dioid
is assumed to be cumulativewe have dist(u′) / c(w), which together with the
assumption c(w) � dist(v) contradicts dist(v) / dist(u′). So I1 and I2 hold after
the pass through the while-loop, too.
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I3 remains trivially valid for nodes in U∪{v}, so we consider an arbitrary node
v′ /∈ U ∪ {v}. We distinguish two cases. First, assume that every optimal walk
in M |U∪{v,v′} starting in v′ visits v. Before visiting v such a walk can not visit a
node u′ ∈ U . To see this let w be the walk from v′ to some node t ∈ T , and let
w1 and w2 be its subpaths from v′ to u′ and from u′ to t, resp. According to I1
there is a walk w3 from u′ into t with c(w3) / c(w2). But now both w1 ◦w2 and
w1 ◦w3 are paths from v′ into t with c(w1 ◦w3) / c(w1 ◦w2), which contradicts
the assumption that every optimal walk from v′ into T visits v, because (w1◦w3)
does not. So every optimal walk from v′ into T consists of the edge (v′, v) and an
optimal walk from v into T , so it has the cost g(v′, v) ◦ dist(v). Hence dist and
succ are updated correctly inside the while-loop. The second case is that there
is an optimal walk from v′ into T in M |U∪{v,v′} which visits nodes in U ∪ {v′}
only. Then dist and succ can remain untouched, so I3 holds again for all v′ /∈ U .

This showed one direction of Theorem 2.7; for ⇐ we consider the following
target model with an arbitrary a:

x y v
11

a

Then the refined graph can either contain the edge (y, x) or not. In the first
case we have 1 = c(yv) = c(yxyv) = a because every path leading into v has to
be optimal, and hence a " 1 for arbitrary a. In the latter case in the original
(not refined) target model d(y) = c(yv) holds (because in the refined model only
the path yv from y to v exists), and therefore, according to the definition of d,
c(yxyv) " c(yv) holds, which implies a " 1. So D has to be cumulative according
to lemma 2.2. �

2.5 Models with Non-cumulative S-Dioids

Nevertheless there is a possibility to refine models with non-cumulative associ-
ated s-dioids if the underlying labelled graph does not contain negative cycles.
A negative cycle is a cycle x1x2 . . . xn with x1 = xn and c(x1x2 . . . xn) � 1. In
the case of absence of negative cycles we can see that between two reachable
nodes there is always an optimal walk which also is a path. This can be shown
by the same argument as above (removing cycles), since removing a cycle from
a walk under this assumption can not decrease its cost (with respect to "). In
particular, this means that in a finite model under these circumstances always
an optimal walk between two reachable nodes with at most |V | − 1 edges exists.

To obtain an optimal submodel in this case, we can apply an algorithm anal-
ogous to the Floyd-Warshall algorithm. First we determine by the following
algorithm the distances between every pair of nodes and the successor of every
node on an optimal path to every other node by the following algorithm:

Input:
finite target model M = (((V,E), g), T ) without negative cycles,
nodeset V = {1 . . . n} and associated s-dioid (D,Σ, 0, ·, 1)
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initialise dist as an n× n-matrix with entries from D;
initialise succ as an n× n-matrix with entries from V ;

for (i = 1..n)
for (j = 1..n)

if (i, j) ∈ E
dist(i, j) = g(i, j);

endif
else

dist(i, j) = 0;
endelse
succ(i, j) = null;

endfor
endfor
for (k = 1..n)

for (i = 1..n)
for (j = 1..n)

if dist(i, k) · dist(k, j) � dist(i, j)
dist(i, j) = dist(i, k) · dist(k, j);
succ(i, j) = succ(i, k)

endif
endfor

endfor
endfor
Output:
∀ i, j ∈ V : dist(i, j) = d(i, j)
succ encodes optimal walks

The meaning of succ(i, j) is analogous to the one in the previous algorithm,
with the only difference that not an optimal walk from i into a target set T is
encoded but an optimal walk from i to j.

The termination of this algorithm is obvious, and as an invariant for the
outermost of the three nested loops we choose the claim that dist(i, j) equals
the cost of an optimal walk from i to j which visits, except for i and j, only
nodes v with v ≤ k, and that succ(i, j) encodes such a walk. The invariant holds
before entering the three nested loops due to the intitialisation of dist and succ
and the fact that k is not yet initialised. Consider now a pass through the two
inner while-loops. If there is an optimal walk from i to j without visiting the
node k than dist and succ remain unchanged and the invariant holds also after
the run. Conversely, if there is an optimal walk from some node i to some node
j visiting the node k not using nodes k′ with k′ > k then it has to be composed
of an optimal walk from i to k and an optimal walk from k to j without visiting
a node k′ with k′ > k. So the update operation preserves the invariant.

Finally, to refine the model to achieve an optimal submodel we have to keep
all edges {(v, w) ∈ E | ∃ t ∈ T : succ(v, t) = w ∧ D(v, t) =

∑
t′∈T

D(v, t′)} and
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to remove all other edges. Obviously, from every node v ∈ V a node t ∈ T is
reachable, and every such walk is an optimal one.

3 Bisimulations

The models the previous algorithms are applied to can have large numbers of
nodes. One possibility to reduce the problem is the use of bisimulations, which
will be introduced in this section. Before getting formal we fix some notation.

For a relation R we denote its converse by R◦. For relational composition we
use the semicolon ; . If E ⊆ X ×X is an equivalence relation we write x/E for
the equivalence class of an element x ∈ X .

3.1 Basic Definitions

A bisimulation between two relations R ⊆ X×X and R′ ⊆ X ′×X ′ is a relation
B ⊆ X ×X ′ with the properties B◦;R ⊆ R′;B◦ and B;R′ ⊆ R;B. Intuitively
this means that if a step from x to y is possible under the relation R then a
step from x′ to y′ is possible under R′ where x and x′ respectively y and y′ are
related via B. The analogous property holds for transitions in R′ compared to
those in R; here the elements are related by B◦.

A bisimulation between a relation R ⊆ X × X and itself is called an auto-
bisimulation. Since autobisimulations are closed under union, composition and
conversion and the identity is an autobisimulation there is a coarsest autobisim-
ulation for a relation R ⊆ X ×X , which is an equivalence.

Here we are interested in a special kind of autobisimulations, which also re-
spects the labels of edges of a graph. For a model M = ((V,E), g) we define for
every a ∈ Im(g) the relation Ea =̇ {e ∈ E | g(e) = a}. With this convention we
define the term bisimulation for models as follows:

Definition 3.1. Let M = ((V,E), g) be a model. A bisimulation on M is a
relation B ⊆ V ×V such that B is an autobisimulation for Ea for all a ∈ Im(g).
A bisimulation on a target model M = (((V,E), g), T ) is a bisimulation B on
((V,E), g) such that B ⊆ T × T ∪ (V − T )× (V − T ).

It is easy to see that bisimulations on a model are also closed under union,
composition and conversion, and that the identity is a bisimulation on every
model, see also [2] for analogous results in an almost identical context and [15]
for a relation algebraic treatment. Hence, there is always a coarsest bisimulation
on a model, which is an equivalence. For a model M we denote its coarsest
bisimulation by BM . Generally, a bisimulation which is also an equivalence is
called a bisimulation equivalence.

3.2 Quotient and Expansion

For our purposes bisimulation equivalences can be used to reduce the state num-
bers of (target) models in a reasonable way. This is done via the quotient target
model :
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Definition 3.2. Let M = (((V,E), g), T ) be a target model and B a bisim-
ulation equivalence on M . The quotient MB of M by B is the target model
MB = (((VB , EB), gB), TB) with

– VB = {v/B | v ∈ V },
– EB = {(x/B, y/B) | (x, y) ∈ E)},
– gB(x/B, y/B) = g(x, y) and
– TB = {t/B | t ∈ T }.

gB is well defined due to the requirement that B is a bisimulation on M .
This construction is analogous to the one of a minimal automaton in au-

tomata theory, see for example the classics [11] and [12]. Analogously to there
the following lemma about the existence of paths in the quotient holds:

Lemma 3.3. Let M = (((V,E), g), T ) be a target model and B a bisimula-
tion equivalence on M . If there is a path x1x2 · · ·xn in M then there is a path
X1X2 · · ·Xn in M/B with Xi = x/B and g(xi, xi+1) = gB(Xi, Xi+1).

This shows that in a certain sense dynamics are preserved by quotients.
If we want to reduce the number of states and to preserve the dynamics of a

target model at the same time we use the coarsest bisimulation to build the quo-
tient, because it reduces the number of states maximally among all bisimulation
equivalences. In this case the resulting quotient is called the coarsest quotient.

The coarsest quotient of the target model from Figure 1 is shown in Figure 4.
For readability the sets in the nodes’ captions are written without parentheses
and commas.

a be

cf

dg
4

5

3

4

Fig. 4. A Coarsest Quotient

Generally, the coarsest quotient of a target model will have in its associated
graph a smaller number of nodes than the original one, especially if the target
model is well structured (i.e., it contains identic subgraphs, which cab be merged
by the coarsest quotient). If we deal with an infinite target model we should hope
that its coarsest quotient is finite.

For the expansion step we need to define an expanding operation, which takes
as input a target model and a submodel of one of its quotient models and outputs
a target submodel of the original one. The details of the theoretic background
can be found in [6]; here we only give the definition.

Definition 3.4. Let M = (((V,E), g), T ) be a target model, B a bisimulation
on M and M ′

B = (((V ′
B, E

′
B), g′B), T ′

B) a target submodel of the quotient MB. The
expansion M ′

B\B = (((V ′, E′), g′), T ′) of M ′
B by B is given by
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– V ′ = V ,
– (x, y) ∈ E′ ⇔ (x/B, y/B) ∈ E′

B ∧ (x, y) ∈ E,
– g′ = g|E′ and
– T ′ = T .

Obviously the expansion is a target submodel of the initial target model. Con-
sidering a target model M , a bisimulation equivalence B on M and a target
submodel M ′

B of the quotient MB the expansion M ′
B\B is the greatest submodel

of M whose quotient by B equals M ′
B. The sign \ for the expansion operation

indicates that it is a pseudoinverse of the quotient operation based on the notion
/ for equivalence classes; for details see again [6]. In particular, this means also
MB\B = M .

Similar to Lemma 3.3 there is also a statement about the existence of paths
in the expansion:

Lemma 3.5. Let M = (((V,E), g), T ) be a target model, B a bisimulation equiv-
alence on M and M ′

B = (((V ′
B , E

′
B), g′B), T ′

B) a target submodel of the quotient
MB. If there is a path X1X2 · · ·Xn in M ′

B then for every x1 ∈ X1 there is a path
x1x2 · · ·xn in M ′

B\B with xi ∈ Xi and gB(Xi, Xi+1) = g(xi, xi+1).

Proof. We use induction over n, starting at n = 2. Due to (X1, X2) ∈ E′
B we have

also (X1, X2) ∈ EB. According to the properties of bisimulation equivalences for
every x1 ∈ X1 there is a x2 ∈ X2 with (x1, x2) ∈ E and g(x1, x2) = gB(X1, X2).
Together with the definition of the expansion this shows the claim for n = 2.
Consider now a walk X1X2 · · ·XnXn+1 in M ′

B and an arbitrary x1 ∈ X1. Then
there is a walk x1x2 · · ·xn in M with the required properties. An analogous
argument as above shows the existence of an xn+1 ∈ Xn+1 with gB(xn, xn+1) =
g(Xn, Xn+1), which completes the proof. �

There is also a converse version of this lemma:

Lemma 3.6. Let M = (((V,E), g), T ) be a target model, B a bisimulation
equivalence on M and M ′

B = (((V ′
B, E

′
B), g′B), T ′

B) a target submodel of the quo-
tient MB. If there is a path x1x2 · · ·xn in M ′

B\B then there has to be a path
X1X2 · · ·Xn in M ′

B with xi ∈ Xi and g(xi, xi+1) = gB(Xi, Xi+1).

Proof. It suffices to show that for every edge (x, y) ∈ M ′
B\B there is an edge

(X,Y ) ∈ M ′
B with x ∈ X , y ∈ Y and gB(X,Y ) = g(x, y). But this follows

obviously from the fact that B is a bisimulation equivalence and the definition
of the expansion. �

4 Application to Optimality

4.1 Putting the Pieces Together

To make use of the quotient and expansion operations in refinement problems
we have to ensure that the desired property is compatible in a certain sense with
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the chosen bisimulation equivalence. Informally, this means that if the property
in the quotient model is ensured by a suitable refinement then the same property
does also hold in the expansion of the refined model. Concretely, this is expressed
by the next theorem:

Theorem 4.1. Let M = (((V,E), g), T ) be a target model, BM its coarsest
bisimulation and MBM its coarsest quotient. If M ′

BM
is an optimal target sub-

model of MBM then M ′
BM
\BM is an optimal target submodel of M .

Proof. First we show that for all x ∈ V the values d(x) in M and d(x/BM ) in
MBM coincide. This will be shown by the two inequalities d(x) " d(x/BM ) and
d(x/BM ) " d(x). For the first one we observe according to lemma 3.3 that for
every walk x1x2 . . . xn in M with x1 = x and xn ∈ T there is a walk X1X2 . . . Xn

in MBM with X1 = x/BM , Xn ∈ TBM and g(xi, xi+1) = gBM (Xi, Xi+1). So the
set of all costs of paths leading from x to any node t ∈ T in M is a subset
of the costs of all paths leading from x/BM to any node t/BM ∈ TBM , which
implies the inequality due to the definition of d(·). Conversely, for every walk
X1X2 . . .Xn in MBM with x ∈ X1 and Xn ∈ TBM according to Lemma 3.5 there
exists a walk x1x2 · · ·xn in M (remember that MBM\BM = M holds) with
gBM (Xi, Xi+1) = g(xi, xi+1) and, due to the properties of bisimulation, xn ∈ T .
Then an analogous argument shows the claimed inequality.

Let now w = x1x2 . . . xn be an arbitrary walk in M ′
BM
\BM . According to

Lemma 3.6 there is a walk W = X1X2 . . . Xn in M ′
BM

with xi ∈ Xi and
Xn ∈ TBM , which has the same cost as w. Since M ′

BM
is assumed to be an

optimal submodel we have c(W ) = d(X1) and d(X1) = d(x1) as shown above.
Additionally c(W ) = c(w) holds, so M ′

BM
\BM is an optimal submodel of M . �

This result shows the correctness of the following algorithm, if the coarsest
quotient of the input target model is finite:

Input:
target model M = (((V,E), g), T ) with associated cumulative s-dioid
or without negative cycles

compute the quotient of M ;
run a suitable refinement algorithm on the quotient;
expand the refined submodel of the quotient;

Output:
an optimal submodel of M

To demonstrate the algorithm let us consider the target model from Figure 1.
Its quotient is shown in Figure 4. If we are interested in shortest paths an optimal
submodel of this quotient is the one from Figure 5. Its expansion yields the
optimal submodel in Figure 2.

Note also that the proof does not require that the large model is finite; it is
only necessary to know that it is refinable at all. So this approach can also be
applied to an infinite target model if it is known from other arguments that it
is refinable, and its coarsest quotient is finite.
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Fig. 5. An Optimal Quotient Target Submodel

4.2 Applicability and Efficiency

After ensuring the correctness of our approach we will take a look at its appli-
cability and efficiency. Let us first assume that the model under consideration is
finite. In [13] an algorithm for computing the coarsest bisimulation is presented
with a runtime of O(|E| · log(|V |)). The algorithms from subsection 2.3 have
a runtime of O(|V | · log(|V |) + |E|) for the Dijkstra-like one and of O(|V |3)
for the Floyd-Warshall-like one, and the expansion step can easily be done
in O(|V | + |E|). So for graphs with |E| ∈ O(|V |) the immediate application
for the Dijkstra-like algorithm and the algorithm using bisimulation have the
same asymptotic runtime, whereas for graphs with |E| ∈ Θ(|V |2) the immediate
Dijkstra-like algorithm performs better. If one has to solve problems based on
non-cumulative dioids there is the possibility that to achieve a better runtime
by taking the way over quotient and expansion. The speed-up compared to the
immediate application of a refinement algorithm will be the higher the more the
state number is reduced by building the quotient. So it appears to be reasonable
to apply it especially to well-structured graphs. Examples for this kind of graphs
are hierarchical graphs or graphs with a tree-like structure.

Another application field are infinite models. Here the refinement algorithms
from 2.3 do not work, but after computing a finite quotient (which is of course
not always possible) by for example symbolic algorithms they can be applied
and the solution can be expanded. This is what in general happens in [14].

5 Conclusion and Further Work

We have shown that the quotient-refine-expand approach using bisimulations
is correct and efficient for a certain class of dioid-based optimality problems.
There are two main directions of future work: first, to search and investigate
other bisimulation-compatible refinement problems, and second, to place the
approach presented here into a more algebraic framework, in a way comparable
to [5]. The advantages of the first goal are obvious, as a speed-up for well-
structured models can be expected compared to the immediate application of a
refinement algorithm. Potential members of this class are flow problems (as for
example in [1]), circulation problems (described e.g. in [9] or algebraically in [10])
or problems known from model checking like safety and liveness properties. On
the other hand, an algebraic foundation opens the door for deploying automated
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theorem provers as demonstrated in [8]. A first step into this direction was
already done in [5].
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Pathfinding through Congruences

Alexander J.T. Gurney and Timothy G. Griffin
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Abstract. Congruences of path algebras are useful in the definition and
analysis of pathfinding problems, since properties of an algebra can be
related to properties of its quotient. We show that this relationship can
apply even when the algebraic objects involved satisfy weaker forms of
the semiring or path algebra axioms. This is useful, since it is just these
algebras and their quotients which we need to analyze pathfinding prob-
lems characterized by the need to obtain multiple paths even when path
preferences are inconsistent, and paths can be filtered out arbitrarily, as
in Internet routing.

1 Introduction

For finding optimal paths in graphs and networks, there is a standard theory
grounded in linear algebra [2], [3], [4], [11], [15].

But for certain kinds of pathfinding, including some which are important for
Internet routing, it seems to be difficult to take advantage of this theory. These
situations are problematic because the information sought may not be a single
path, because the criteria for path quality may not result in the existence of
an optimal solution, or because the routing algorithms are implemented in a
distributed and asynchronous fashion. All of these are difficult to incorporate
into the theoretical model.

Nonetheless, in recent years there has been an effort to bring the algebraic
theory up to speed with the strange and diverse nature of Internet routing. The
mathematical language is ultimately not too different, in terms of the signatures
of the algebraic objects involved: we will always need some way to compare
paths, and some way to compose them out of arcs. The difference comes in
the axioms and derived properties that these structures might have. Whereas
conditions such as distributivity have historically been assumed for rings and
semirings, our new structures may lack distributivity but instead be endowed
with other helpful properties [5]. Analogous methods can then be used to treat
their structure theory, and in particular the way that important properties are
derived compositionally. From a theoretician’s perspective, this demonstrates
that the unusual features of Internet pathfinding are not so unusual after all,
since they are amenable to similar correctness analysis as in the familiar case.

This paper is about the use of congruences as a definitional tool for these
new routing algebras. Of course, congruences and quotients are part of the stan-
dard abstract algebraic apparatus for familiar structures; the theory of varieties

H. de Swart (Ed.): RAMICS 2011, LNCS 6663, pp. 180–195, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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yields profound insights into how equational properties relate to algebraic con-
structions. The surprise for our structures is that our most important property
is in fact inequational, but relates well with quotient constructions even so.

In particular, we apply congruences to practical problems including the finding
of multiple paths, in the presence of filtering, all the while in a world where path
preferences do not follow the usual semiring model, but instead satisfy alternative
stability criteria.

Much of this material derives from the first author’s doctoral thesis [8].

2 Internet Pathfinding in the Abstract

We first summarize the algebraic approach to the analysis of Internet routing,
and relate it to the particular features of that problem which differ from more
conventional pathfinding.

From a theory perspective, the main issue with interdomain routing is that
it is not in fact solving a shortest path problem, and so the usual mathematical
apparatus cannot be applied [6]. The use of semirings and related structures for
finding best paths in a labelled graph is well understood. The general pattern is
that a semiring (S,⊕,⊗) can be used to encode path preferences: the elements of
S label the arcs of the graph; these are composed with the binary operator ⊗ to
form path weights, and the best paths emerge when alternatives are summarized
with the ⊕ operator.

Algorithms based on this pattern solve the best-path problem by computing
the closure A∗ of the adjacency matrix A of the graph: a matrix whose entries
come from S and where matrix addition and multiplication are defined in terms
of the operators of S. The facts that the (i, j) entry of

A∗ = I + A + A2 + A3 + · · · (1)

contains the weight of the optimal path from node i to node j, and that this
matrix can be computed in finite time, depend on algebraic properties of S. In
particular, a distributive law is required for the two operators:

∀a, b, c ∈ S : c⊗ (a⊕ b) = (c⊗ a)⊕ (c⊗ b). (2)

Commonly-considered semirings for this purpose include (N,min,+) for com-
puting shortest paths, (N,max,min) for computing widest paths, and (N,+,×)
for counting paths.

The distributive law encodes the idea that the path choice made by a node
(between paths a and b) will be compatible with that made by a neighbour
(between c⊗a and c⊗b). If the first node always behaves as the neighbour would
want, then it is algorithmically acceptable for it to make that choice greedily.
Therefore, the algorithms of Dijkstra or Bellman-Ford really do compute the
best paths, while avoiding the need to enumerate all paths.

Unfortunately, this compatibility of preferences does not hold for Internet
pathfinding, where nodes may be controlled by entities in commercial conflict.
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In such a situation, it may be that when some node chooses path a over b, its
neighbour would have preferred it to take b instead, since c⊗ b could be better
than c ⊗ a. Due to the requirements of hop-by-hop forwarding, a node has no
option but to endure its neighbours’ choices.

Remarkably, optimal paths can still be computed in this setting, in an efficient
manner—as long as we change our definition of optimality. We no longer require a
path assignment that is a global optimum, but only a Nash equilibrium, meaning
a state from which no node has any incentive to change its current choice of path.
A state X in Nash equilibrium can be characterised as a fixed point of

X �→ AX + I. (3)

This operation entails taking each (i, j)-path in X , extending them along the
arcs represented in A, and then choosing the best (according to the criteria
encoded in the algebra S); the addition of the identity matrix I ensures that the
empty path from each node to itself will always be present in the solution. So for
a fixed point, we have X = AX+I, meaning that when the extension and choice
is carried out, each path is the same as it was before. In game-theoretic terms,
no (i, j) has any incentive to deviate from its assigned path in X , assuming a
game where the only choice is among the paths made available by neighbours.
Notably, this equation is the same one which characterises global optimality for
shortest paths, if S is the shortest-path semiring. In the wider context, it still
represents an optimum: but a local optimum rather than a global one.

To compute such an equilibrium, we simply use the same matrix iteration as
in the shortest-path case, with the exception that the underlying algebra is not
a semiring obeying the distributive law. While this iteration is not guaranteed to
terminate in the absence of distributivity, there are other correctness conditions
that are sufficient, and are also consistent with the nature of Internet routing.
One such is the strict inflationary property

∀a, c ∈ S : a = a⊕ (c⊗ a) �= c⊗ a, (4)

combined with a finite support condition. Even if the distributive law does not
hold for a given semiring, this law ensures the existence of a unique fixed point,
to which the iterative algorithm converges after finitely many steps, from any
starting state [8].

The finite support condition mentioned above is essential for the ‘finitely many
steps’ part of the result. Without this, the possibility remains that the iteration
could continue forever, converging towards a state that could never actually be
reached. In path computation, it is enough to restrict our set of paths to a some
finite subset of the set of all paths in the given graph: so whenever a path arises
in the dynamic computation that is outside this set, it should be excluded from
consideration. A reasonable choice would be the set of all simple paths in the
graph. In terms of weights rather than paths, the condition is that there be only
finitely many permitted path weights. Exactly how this kind of condition can be
achieved is one of the major topics of this paper, and is explored in Sections 4.1
and 4.2. In brief, the idea is to go from a possibly-infinite semiring-like structure
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to a finite one, by taking a congruence that identifies all forbidden paths. The
convergence theorem can then be stated with the simple precondition that the
given algebraic structure be finite.

A further wrinkle is that the semiring multiplication needs to be replaced
with function application, if we are to be capable of expressing the diversity of
Internet routing configurations. So rather than dealing with semiring-like struc-
tures, we are in fact going to use either order transforms (S,�, F ) or semigroup
transforms (S,⊕, F ), where S and ⊕ are as before; � is a preorder on S; and F is
a set of functions from S to S. These respectively generalize ordered semigroups
(the semigroup ⊗ being replaced by F ) and algebras of monoid endomorphisms
(except that our functions need not be endomorphisms). In calculations, the
functions F are attached to arcs whereas values in S are originated at nodes:
path weights are calculated by applying the functions in order to the starting
value. The weights can then be compared with � or summarized by ⊕, as ap-
propriate. The analogous strict inflationary properties here are

∀a ∈ S, f ∈ F : a ≺ f(a) (5)
∀a ∈ S, f ∈ F : a = a⊕ f(a) �= f(a) (6)

respectively.
The reason for using these functions is to permit a wide range of possibilities

for how path weights can be derived from arc weights. In routing protocols, a
multiplicity of attributes are associated with each route: these are calculated
in potentially very complex ways, to allow network operators to exercise fine-
grained control over the eventual degree of preference each path will receive.

Some options for how functions in F could operate on route data include:

– Adding a numeric arc weight to the path weight.
– Applying ‘bottleneck’ bandwidth to the bandwidth of a path.
– Adding a node identifier to a list or set.
– Adding a node identifier, but also eliminating the path from consideration if

that identifier was already present.
– Adding ‘community’ tags to remotely influence route choice.
– Importing a route from one routing protocol to another, translating route

attributes as appropriate.
– Marking routes based on the business relationship between the systems at

either end of the arc.

The elements of S may also be sets of paths, or other structured collections. In
this case, the functions in F apply to the entire set: they can do any of the above
operations on a per-path basis, but can also operate on the set as a whole. For
example, the set could be reduced to a single best member path, in some way;
and that method need not be the same everywhere in the graph.

In structuring the algebraic theory, we have to consider this complexity, and
ideally find ways of making it not matter. This involves the development of
constructions, that are justified both theoretically and practically, for building
algebras from simpler components. With a good choice of constructions, the task
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of deciding whether a particular algebra has the required correctness conditions
should not be too difficult at any stage. This, we believe, is the case for our
congruence-based constructions, which are theoretically pleasant, have a good
computational interpretation, and are useful for several problems which arise in
the modelling of Internet routing.

3 Congruences

The notions of congruence and of quotient are critical to the structure theory
of many abstract algebraic objects, including semigroups and semirings. The
general picture is that a congruence is an equivalence relation that is compatible
with the operations of the object; this makes it possible to lift those operations
to deal with equivalence classes rather than elements, thus forming the quotient
algebra [7].

Definition 1. An equivalence relation ∼ on semigroup (S,⊕) is a congruence
if

a ∼ b =⇒ (a⊕ c) ∼ (b ⊕ c) ∧ (c⊕ a) ∼ (c⊕ b)

Definition 2. If (S,⊕) is a semigroup and ∼ is a congruence on S, then the
quotient (S/∼,⊕/∼) is also a semigroup. Here, S/∼ is the set of ∼-classes. If
the class of a is denoted by [a] then the operation of the new semigroup is

[a]⊕/∼ [b] = [a⊕ b]

The fact that ∼ is a congruence makes this operation well-defined and associative.

The point of these congruences is that in many cases, properties of S/∼ can be
related to properties of S. This is important for understanding Internet routing
from an algebraic perspective: it would be convenient if our key correctness
properties were preserved under taking congruences, and if congruences turned
out to be useful for modelling certain details of Internet pathfinding problems.

Unfortunately, the inequality in our strict inflationary condition means that
a quotient algebra is not guaranteed to have that property, even if the starting
algebra did. However, there are some important cases where we are able to use
congruences to define new algebras with this property being preserved.

We see this most clearly when considering multipath routing; that is, the
idea that for each source and destination we want to find as many good paths
as possible, as opposed to a single best path. Algebraically, we just need to
choose S to contain not path weights, but sets of path weights, and lift the
other operations in the obvious way. We prefer to think of this process as a
construction on S, because that allows us to examine the relationship between
the single-path and multipath cases.

There are other ways of dealing with the presence of multiple best paths. One
could also use a conventional single-path algorithm, with some rule for discrimi-
nating between otherwise equivalent paths. For example, either the oldest or the
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newest path seen could be selected; though these methods introduce undesirable
nondeterminism into the path selection process, making the correctness much
less tractable to analyze algebraically. Alternatively, a partial order on paths
could be linearized to a total order: this amounts to the introduction of some
deterministic tiebreaking method. But this does not suffice even for conventional
shortest-path finding, since we can construct order transforms which have one
of the required correctness properties (monotonicity), but where no linearization
has this property ([8], Theorem 3.1).

In the end, the most serious criticism of any of these ideas is that for some
purposes, we want to receive multiple routes. Trying to force the use of a single-
path algorithm would be inappropriate: a case of solving the wrong problem. The
failure of these strategies should make use of our construction more attractive,
provided that it does have the right algebraic properties. So we now need to
understand how to define algebras that make use of this idea, and how these
behave in terms of the properties we need for correctness.

In the case of an order transform (S,�, F ), we want to derive the algebra of
minimal sets of S, written minset(S). The elements will be subsets of S under
the condition that everything in a set is either equivalent or incomparable under
�. We can also define a lifted version of F , and endow this structure with a
semilattice join operation (or an equivalent partial order). This amounts to a
free distributive lattice construction. In other words, to obtain minset(S) we

1. form the power set of S, which is a distributive lattice under inclusion,
2. take a quotient of this lattice by a congruence derived from �; this yields

the required order or binary operator,
3. and define lifted versions of the functions in F .

Later, we will vary the second step to obtain other useful constructions. These
first two steps, taken together, result in the formation of the distributive lattice
corresponding to upper sets in S, as in the representation theorem of Birkhoff [1].

Theorem 1 (Birkhoff’s theorem). A finite distributive lattice is isomorphic
to the lattice of upper sets of the partial order of its meet-prime elements.

We quote the theorem in this form (using meet-prime rather than join-prime
elements, and upper sets rather than lower sets) because it is the most directly
applicable to our purpose, given the conventional interpretation of path prefer-
ence where a ≺ b means that a is more preferred than b.

If (S,�) is a partial order, then we can form a corresponding free distributive
lattice, whose elements are the upper sets of S, and where the order is the subset
order. If the partial order, moreover, has no infinite descending chain, then an
equivalent construction takes all sets of the form

A = min(A) (7)

where
min(A) = {x ∈ A | ∀y ∈ A : ¬(y ≺ x)}. (8)
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The equivalence comes from the fact that this min operation determines the
same congruence as the taking of upper sets [8].

We end up with the same distributive lattice (up to isomorphism). The dif-
ference is that using min is a more natural representation of sets for our path
problems: min(A) will (for us) always be a finite set, and its elements have
an obvious interpretation as the ‘best’ things in A. As an alternative, use of a
well-quasi-order would guarantee that min(A) was always a finite set, nonempty
unless A were empty [9]. This is because well-quasi-orders, in addition to the
lack of infinite descending chains, also lack infinite antichains.

The fact that we have a distributive lattice allows us to deduce immediately
that certain computationally useful facts are true of min. In particular, we have

min(A) = min(min(A)) (9)
min(A ∪B) = min(min(A) ∪B) (10)

for all A and B. These will influence the implementation of algorithms, by al-
lowing applications of min to be elided in some circumstances.

Essentially the same construction can be carried out if (S,�) is only a pre-
order. We again obtain ‘minimal sets’ of elements of S, and a join operator

A⊕B = min(A ∪B). (11)

The functions f in F are lifted to

f(A) = min{f(a) | a ∈ A}; (12)

note the use of min to put the result set into canonical form. This completes the
construction of minset(S) for an order transform S: the resulting structure is
suitable for use in path algorithms. Sets of paths are combined, via ⊕, by finding
the best paths out of either set; the f functions now operate on every path in
the given set, and only the best paths are allowed to remain.

This idea of canonicalization is central to our understanding of congruence-
based constructions. Beginning with min, we can derive an equivalence relation

A ∼ B ⇐⇒ min(A) = min(B) (13)

on subsets of S, and so obtain the appropriate distributive lattice by a quotient
of the free lattice. The point is that the min operator is a natural one from the
perspective of pathfinding algorithms, but it is not the only choice. In general,
whenever we have a way of putting elements of S into a canonical form, we would
like to be able to derive a congruence so that a version of the above construction
can be applied. This is not always possible, but there are sufficient conditions on
the canonicalization function which ensure that the derived equivalence relation
is a congruence. In fact they are the same as the properties of min from above.

Definition 3. If (S,⊕) is a semigroup and r is a function from S to S such
that
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1. r(a) = r(r(a))
2. r(a⊕ b) = r(r(a) ⊕ b) = r(a ⊕ r(b))

for all a and b in S, then r is a reduction [13],[14].

In the case of a monoid, the first of these axioms is not needed, since we already
have r(a ⊕ 1) = r(r(a) ⊕ 1) from the second axiom, where 1 is the identity for
⊕. Similarly, the second axiom can be simplified to a single equality in the case
of a commutative semigroup.

A function on a semiring is called a reduction if it is a reduction with respect to
both of the semiring operations. Similarly, a reduction on a semigroup transform
(S,⊕, F ) is a function r from S to itself, such that r is a reduction on (S,⊕) and

r(f(a)) = r(f(r(a))) (14)

for all a in S and f in F . (This replaces the second axiom from Definition 3, for
the multiplicative part of the structure.)

A reduction might also be an endomorphism on a semigroup (and similarly,
on a semiring), if it additionally satisfies

r(a⊕ b) = r(a) ⊕ r(b) (15)

for all a and b in the carrier set. Furthermore, not every endomorphism of a
semigroup will be a reduction, since not all endomorphisms are idempotent.

The min operation with respect to a preorder (S,�) is a reduction on the semi-
group (2S ,∪). Note, however, that it is not a homomorphism. For any function
f on S, and any A ⊆ S, we also have

min {f(x) | x ∈ A} = min {f(x) | x ∈ min(A)} (16)

which demonstrates that min is always a semigroup transform on (2S ,∪, F ), no
matter which set of functions F is used.

We now show that a canonicalization or reduction operation defines a congru-
ence, and that conversely every congruence can be used to define a reduction.
This also demonstrates that although endomorphisms are not generally reduc-
tions, it is always possible to find a reduction that generates the same congruence
as a given endomorphism.

Lemma 1. For any reduction r on (S,⊕), define a relation ∼r on S by

a ∼r b
def⇐⇒ r(a) = r(b).

This ∼r is a congruence.

Proof. This is obviously an equivalence relation. To prove that it is a congruence,
suppose that a ∼r b, so that r(a) = r(b). Then

r(a ⊕ c) = r(r(a) ⊕ c) = r(r(b) ⊕ c) = r(b ⊕ c)

and likewise for r(c ⊕ a) = r(c⊕ b). Hence ∼r is indeed a congruence. ��
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We can also produce a reduction from a congruence. In fact, there will typically
be many choices of reduction for a different congruence. Between S and S/∼
there is a homomorphism ρ� called the natural map, taking each element of S
to its ∼-equivalence class. If we choose a function going in the other direction,
taking each equivalence class to some representative element within the class,
then the composition of these two functions will be a reduction. The choice of
representatives means that there may be multiple reduction functions, although
they all correspond to the same congruence and define the same equivalence
classes.

Lemma 2. Let (S,⊕) be a semigroup, ∼ a congruence, and ρ� the natural map.
If θ : S/∼ −→ S is such that ρ� ◦ θ = id, then θ ◦ ρ� is a reduction; and ∼ is
equal to ∼θ◦ρ�.

Proof. Note that the condition ρ� ◦ θ = id simply expresses that the represen-
tative for a class should be an element of that class. There is always at least
one such θ, because there can be no empty classes. This condition also provides
that θ must be one-to-one, for if θ(P ) and θ(Q) are equal, then (ρ� ◦ θ)(P ) and
(ρ� ◦ θ)(Q) must also be equal; and then P = Q.

Now, θ ◦ ρ� satisfies the axioms for a reduction. Firstly, it is idempotent:

(θ ◦ ρ�)2 = θ ◦ (ρ� ◦ θ) ◦ ρ� = θ ◦ ρ�.

The second reduction axiom is also fulfilled

(θ ◦ ρ�)(a⊕ b) = θ(ρ�(a)⊕ ρ�(b)) since ρ� is a homomorphism

= θ(ρ�(θ(ρ�(a))) ⊕ ρ�(b)) since ρ� ◦ θ = id

= (θ ◦ ρ�)((θ ◦ ρ�)(a)⊕ b) since ρ� is a homomorphism.

and symmetrically for the second equality.
Furthermore, the congruence derived from this reduction is ∼ again:

a ∼θ◦ρ� b ⇐⇒ θ(ρ�(a)) = θ(ρ�(b))

⇐⇒ ρ�(a) = ρ�(b) since θ is one-to-one
⇐⇒ a ∼ b by definition of the natural map.

Hence for any congruence there is at least one equivalent reduction. ��
We can therefore choose to represent any reduction r as a pair (∼, θ), since this
is enough to determine all of the values of the function. The interpretation of
reductions in terms of congruences is helpful because it clarifies the true role of
a reduction as well as often being more algebraically useful. A reduction is not
an arbitrary transformation that fulfils some unusual axioms, but instead arises
as the combination of a congruence—to say which distinctions between elements
are being ignored—and a choice of representative element from each equivalence
class. In some contexts, the reduction function may be the more natural way of
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thinking about the operations being modelled. This justifies using the reduction
idea in the first place, as opposed to making use of congruences throughout. The
use of a functional viewpoint rather than a relational one may be more natural
from the point of view of implementing a routing protocol, because it provides
a direct answer to the question of how to deal with route data. On the other
hand, the algebraic theory associated with congruences is much more extensive,
which suggests that they should be the preferred representation when trying to
prove facts about these algebraic structures.

In terms of algebraic constructions, the picture is that for a given reduction
on one of our algebraic objects we can define the corresponding congruence and
therefore the quotient.

Specifically, for a given (S,⊕, F ) and reduction r : S −→ S we can define the
quotient S/r as follows.

1. The carrier consists of r-equivalence classes of elements of S; we can choose
the canonical representative of each class to be a fixed point of r.

2. The semigroup operation is given by ρ�(a)⊕/r ρ�(b) = ρ�(a⊕ b).
3. The functions in F are lifted: f(ρ�(a)) = ρ�(f(a)).

This can be verified to be a semigroup transform. The minset construction is
clearly a special case, where r is min, S is a set of sets, and ⊕ is set union.

4 Applications in Routing

Aside from the use of min-like operations, our main application of congruences
is in the handling of pathfinding errors. In practical situations, it is often not
enough to have an algorithm simply throw its hands up and declare that no
suitable solution exists. Instead, we would like to retain detailed information
about what kinds of errors occurred. For example, in interdomain routing there
are several reasons why a path might be considered erroneous:

– The same node is visited more than once.
– The path is intended to be filtered out.
– The path violates known economic relationships between networks.
– The path is too long (exceeding a maximum size for routing announcements).
– The origin is unexpected (given neighbours are only anticipated to advertise

certain addresses).
– Route data is otherwise malformed.

Any or all of these could be true of a given path.
We believe that from a correctness point of view, it is not enough to sweep

all of these under the implementers’ rug. Many of the anomalies we observe in
Internet routing today can be traced back to the handling of erroneous routes.
Error handling is an integral part of the path selection process, and must be
dealt with in the algebraic model, just as we deal with ordinary, non-erroneous
routes. If not, then the correctness result we obtain is merely ‘As long as nothing
bad happens, protocol convergence is guaranteed’, whereas we would prefer to
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be in a position to make stronger statements about the resilience of the routing
system even in the presence of errors.

A reduction operation is a suitable way to begin encoding error-handling.
These functions are all about putting route data into a canonical form: this in-
cludes mapping certain routes to error values. In an algebra which includes such
values, less preferred than ‘ordinary’ routes, we obtain the desired behaviour
automatically. Erroneous routes are removed from consideration, since they can-
not ever be more preferred than a non-erroneous route. Information about the
error can still be propagated through the algorithm, enabling diagnosis, but this
propagation is suppressed if an alternative route exists. All of this is totally
compatible with multipath routing, via minset and related constructions.

The safety of these schemes depends on the interaction between

– the nature of path preferences;
– the operations extending paths; and
– the reduction function.

In the remainder of this section, we examine some simple examples of how the
language of reductions and congruences can be used to prove required safety
properties.

4.1 Forbidden Paths

Presentations of pathfinding algorithms tend to focus on computation of path
weight, as opposed to returning the identity of each path. In the case of Dijkstra’s
algorithm, for example, a simple modification allows the recording of path infor-
mation alongside weight information: this path information is not used while the
algorithm is running, but is an additional output. But in our context, the degree
of preference associated with a path depends upon the identity of that path—
the nodes and arcs that make it up. In particular, we need to exclude, explicitly,
paths that are not simple, whereas for conventional shortest path problems, this
happens automatically. So we will, by default, want to include path information
as part of the algebra.

Other paths may also be forbidden, even if they are simple. Network opera-
tors are able to make essentially arbitrary decisions about which paths will be
unacceptable to them: in protocol implementations, they can be excluded from
consideration as soon as they are received. This is equally the case in a multipath
context.

Both of these cases can be handled by defining appropriate reductions. The
obvious alternative would be to modify each algorithm to have the required
behaviour, rather than seeking to encode this within the algebra. The problem
with this idea is that it breaks the relationship with the theory of pathfinding
based on linear algebra: if this link is not maintained, then we can no longer
take advantage of existing theory in understanding the termination or efficiency
of algorithms. In terms of convergence proof, our experience has been that it is
a great help to make the algorithm as generic as possible, eliminating special
cases by putting them into the algebra instead.
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The general principle is to define a reduction which will eliminate forbidden
paths, by mapping them onto a greatest element. This mirrors the conventional
shortest-path model, where non-existent paths are given ‘infinite’ length. Be-
cause any path that is actually present will have finite length, these infinities
will only persist in the algorithm if there is no path connecting the nodes in
question. Equally, our forbidden paths will be worse than any permitted path,
regardless of any of their other merits.

If (S,⊕, F ) is a semigroup transform, with ⊕ commutative and having identity
0, and E is a subset of S containing 0, then define a function rE on S by

rE(x) =

{
x x �∈ E

0 x ∈ E.
(17)

For this to be a reduction, it is required that E satisfies the property

∀e ∈ E, x ∈ S : (x ∈ E ∧ e⊕ x ∈ E) ∨ (x = e⊕ x). (18)

It is then possible to define a new structure based on rE . This criterion makes
operational sense. It states, in effect, that the forbidden paths have to be worse
than the non-forbidden paths: if x does not emerge from e⊕ x, then all of e, x
and e⊕x are in the error set. So if we forbid a certain path, then we also have to
forbid any path for which it is a prefix: once in the error set, we cannot get out.

Definition 4. Let err(S,E) be the semigroup transform (SE ,⊕E , FE), where

– SE consists of those elements of X for which rE(x) = x,
– x⊕E y is rE(x⊕ y), and
– FE consists of functions fE for each f in F , and fE(x) = rE(f(x)).

This ⊕E can be verified to be associative, since rE is a reduction. The other
properties of err(S,E) will depend on the choice of S and E.

We have reduced the error set E to a single element in the quotient. Anything
in E is mapped to 0, the topmost element of the order; consequently, forbidden
paths will be excluded from consideration, in favour of non-forbidden paths of
any quality. This mapping is associated with each arc; operationally speaking,
this means that on import or export, the forbidden paths are removed from the
candidate set.

The congruence associated with such a reduction is related to the notion of a
Rees congruence on a semigroup. A subset E of (S,⊕) is an ideal if

∀x ∈ S, e ∈ E : (x⊕ e ∈ E) ∧ (e⊕ x ∈ E). (19)

For a given ideal E, the relation

x ∼E y
def⇐⇒ x = y ∨ (x ∈ E ∧ y ∈ E) (20)

is a congruence, called the Rees congruence with respect to E [7]. In the case
of our rE , the congruence may not be a Rees congruence because E may not
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satisfy (19). This is in line with our general principle of not enforcing conditions
which can be inferred: the definition of err(S,E) makes sense even when E is
not an ideal, though it may not have desirable properties.

The relationship between reductions and congruences suggests that other rep-
resentations of err(S,E) are possible. Specifically, we could preserve some in-
formation about the forbidden path, rather than limiting the available data to
merely ‘an error occurred’. As long as the correct rules are followed for F and
⊕, no difficulty arises. That is, we have to ensure that whatever representation
we choose is equivalent under r to the semigroup transform err(S,E) above.
Instead of mapping everything in E to a single 0, we could have many possibil-
ities, drawn from a subset A of S. This will be acceptable if A is an upper set
of S, and if r maps elements of A to elements of A. The correctness argument
is the same, but the resulting solution state is perhaps more informative than
previously, in the case when the only available path from i to j was forbidden.

4.2 Only Simple Paths

In the multipath setting, a slightly different definition is necessary. We will show
an example of how to ensure that only simple paths emerge from the algorithm.
The standard algebra of paths is to order them by length: we have a preference
relation rather than a semilattice. A variation on the minset construction will
convert such an algebra into one which can be used in the context of matrix
operations.

Let P be the algebra of paths (N∗,�, C), where p � q if and only if | p |≤| q |,
and C consists of functions cn for all n in N , which concatenate the node n onto
the given path. Let (S,≤, F ) be an order transform, which will be responsible
for encoding the path weights.

Now, let E be the subset of S ×N∗ consisting of those pairs which contain a
non-simple path:

{(s, p) ∈ S ×N∗ | p is not simple} . (21)

The err construction cannot be used directly, since E does not satisfy the re-
quired property (18). However, there is a reduction which can be used over
subsets of S ×N∗. Let r be the function

r(A) def= min(A \ E); (22)

where min uses the lexicographic order on S × N∗; this satisfies the reduction
axioms. It is also operationally consistent with the view of path filtering wherein
forbidden paths are removed first, with best-path selection applied to the re-
mainder [12].

Consequently, a semigroup transform can be constructed where

– the elements are those subsets of S ×N∗ which are fixed points of r;
– the operation ⊕ is given by A⊕B

def= r(A ∪B); and
– the functions are pairs (f, cn) for f in F , where

(f, cn)(A) def= r({(f(s), cn(p)) | (s, p) ∈ A}).
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It can be seen that this algebra implements the simple paths criterion in the case
of multipath routing: if during the course of computation a non-simple path is
computed, it and its associated S-value will be removed from the candidate set.

It is possible to prove that the restriction to simple paths, together with the
strict inflationary condition on S, suffice to ensure algorithmic convergence to a
unique fixed point [8]. That is, the straightforward algorithm where every node
periodically communicates its best paths to its neighbours, and updates its local
best path data based on path information received from neighbours, is guaran-
teed to terminate; moreover, the final state will be a pure Nash equilibrium in the
sense of Section 2, and is unique. Indeed, this convergence is guaranteed from any
starting state, and so the algorithm can be considered to be self-synchronizing to
the extent permitted by the nature of the underlying inter-node communication.

5 Algebraic Correctness in Finite Structures

The distinction between the finite and the infinite is of considerable practical
importance in network routing. We have already discussed how convergence in
a finite number of steps is greatly to be preferred. Another issue in correctness
analysis where this distinction arises is in consideration of finite data domains.
We almost invariably use the infinite to approximate the finite, working with
an idealized, infinite algebraic structure such as (N,min,+) for shortest paths,
when the actual reality is that routing protocols only allow the expression of a
finite number of distinct path lengths. In the case of the Routing Information
Protocol (RIP), this finite number is fifteen [10].

The problem for algebraic analysis is that it is much easier to prove results
about the infinite structures; indeed, the corresponding ‘theorems’ for finite
structures may even be false. For example, we know that for the lexicographic
product lexprod(S, T ) of two semigroup transforms to be distributive, it suf-
fices for S and T to be individually distributive, and for S to be cancellative,
meaning that if f(a) = f(b) then a = b, for any f in the function set of S. Ad-
dition of integers is a perfectly acceptable cancellative operation. But addition
with a finite maximum value is not. On a given graph, our iterative algorithm
could fail to reach a global optimum, due to lack of distributivity associated with
this upper limit being reached. In particular, the problem would be that some
node could be left with the value (∞S , x) rather than the actual global optimum
(∞S , y), where y ≺T x according to the order �T of T , and ∞S denotes the
maximum element of S. This is only a limited form of failure, especially since
the termination of the iteration still occurs, but it does seem to undermine the
promise of the algebraic method for guaranteeing correctness of pathfinding.

As an aside, the infamous ‘counting to infinity’ problem of RIP, whereby the
protocol could take a long time to adapt to loss of connectivity, is not a product
of the handling of ‘infinity’ within RIP. Rather, it derives from the fact that
routing information includes the weight of a path but not its identity, and that
it is therefore possible for nodes to adopt cyclic paths without realizing. The
cycles grow longer and longer, until the limit of sixteen is reached, this ‘infinity’
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denoting the absence of a usable path. If RIP had a more generous notion of
infinity, this problem would in fact be even worse, since convergence to the
maximum value would take longer.

Returning to proofs of properties, the use of reductions or congruences can
ease the difficulty here as well. We can use our err operation as part of a larger
construction, and trace the correctness properties through. So for an algebra of
the form err(lexprod(S, T ), E), we would use our theorems about the lexico-
graphic product to derive properties of lexprod(S, T ), and then use our theo-
rems about err to derive properties of the whole algebra. The existence of these
standard constructions allows many cases to be treated uniformly.

In the example above, the real issue is that elements like (∞S , x) do not in
fact denote usable paths: even if the value x is acceptable, the ∞S is certainly
not. Therefore, a way forward is to prohibit such elements from occurring in
the computation at all. Take the subset E = {∞S} × T ⊆ S × T and form
the algebra err(lexprod(S, T ), E). All of the problematic elements are now
identified, meaning that they are no longer barriers to the achieving of a global
optimum. We also have a recipe for how to deal with such elements when they
crop up in the path computation: map them to a single overall ‘infinity’ value,
effectively by dropping the T component.

It can be shown that an algebra of this form is distributive, if we have a
distributivity condition for the appropriate subset of lexprod(S, T ) (see [8],
Theorem 5.9 and Appendix A.5). The condition is that

(f, g)(s1, t1)⊕ (f, g)(s2, t2) = (f, g) ((s1, t1)⊕ (s2, tt)) (23)

for all (f, g) in the function set of lexprod(S, T ), and all (s1, t1) and (s2, t2) in
the subset (S \ {∞S})× T of S × T .

In this way, the required correctness property can be regained, by a modifi-
cation to the algebra and the use of reduction- or congruence-based theorems.

6 Conclusion

There is an ongoing effort to provide a sound theoretical foundation for Internet
routing. While in many cases this task can be tackled on an ad-hoc basis, by
writing new definitions and proofs for each proposed routing scheme, a better
approach is to provide a general theory which can address several such models.
The existing pathfinding theory based on semirings is a sound starting point,
but several adaptations need to be made in order to make it applicable to these
practical examples.

This paper has demonstrated that several such alterations are more mathe-
matically rich than might be suspected. The apparently awkward ‘min’ operation
has been revealed as having a deep connection with lattice theory and with con-
gruences. Related ‘reduction’ operations are also susceptible to explanation in
terms of congruences. We have also shown that these operations are useful in
multipath routing, and for more complex scenarios incorporating route filtering.
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The examples in this paper are inspired by interdomain routing. There is con-
siderable scope for applying this theory to the design of future routing systems,
so that they can be not only flexible, but also provably correct with reference to
an underlying optimization problem.
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Abstract. We propose axioms for 1-free omega algebra, typed 1-free
omega algebra and typed omega algebra. They are based on Kozen’s
axioms for 1-free and typed Kleene algebra and Cohen’s axioms for the
omega operation. In contrast to Kleene algebra, several laws of omega
algebra turn into independent axioms in the typed or 1-free variants.

We set up a matrix algebra over typed 1-free omega algebras by lift-
ing the underlying structure. The algebra includes non-square matrices
and care has to be taken to preserve type-correctness. The matrices can
represent programs in total and general correctness. We apply the typed
construction to derive the omega operation on two such representations,
for which the untyped construction does not work.

We embed typed 1-free omega algebra into 1-free omega algebra, and
this into omega algebra. Some of our embeddings, however, do not pre-
serve the greatest element. We obtain that the validity of a universal
formula using only +, ·, +, ω and 0 carries over from omega algebra to
its typed variant. This corresponds to Kozen’s result for typed Kleene
algebra.

1 Introduction

Particular aspects of computations, such as non-termination, are conveniently
treated by forming matrices over semirings [14]. A program is represented by a
matrix as follows: some of the entries carry information about state transitions
and non-terminating executions, while the remaining entries are specific con-
stants. They are chosen and arranged so that matrix multiplication propagates
the information as required to model sequential composition.

It is then possible to obtain the Kleene star and omega operations, which
underlie the semantics of loops, by standard matrix constructions [3,1,10,13].
Both operations can be derived for the matrices used in total correctness [7], and
the Kleene star for the matrices used in general correctness [5]. The approach
fails, however, for the omega operation in the latter case: the matrices used in
general correctness are not closed under the construction given in [13].

In the present paper we solve this problem by typing the elements of the
matrices. As regards the star operation, this means that the underlying structure
is a typed Kleene algebra [11]. To deal with the omega operation, we propose a
typed omega algebra, based on the untyped axiomatisation of [2].

Section 2 defines the necessary structures. Central to the present paper are
(typed) 1-free omega algebras, an extension of the 1-free Kleene algebras of [11],

H. de Swart (Ed.): RAMICS 2011, LNCS 6663, pp. 196–211, 2011.
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which omit 1 and replace ∗ by +. While Kleene algebras are fairly similar to
their 1-free variants, we identify several laws of omega algebra as independent
axioms of 1-free omega algebra.

In Section 3 we show that finite matrices over typed 1-free omega algebras
form (typed) 1-free omega algebras. To this end, we modify the matrix omega
operation of [13] to obtain type-correct matrices. Particular subalgebras of the
matrix algebra are then used to derive omega for the representation of programs.
This works not only for general correctness but also for a recently introduced
model that combines it with total correctness [8,6].

In Section 4 we extend results of [11,12], whereby restricted forms of univer-
sal statements are valid in the untyped setting if and only if they are valid in
the typed setting. In particular, we embed typed 1-free omega algebra into 1-
free omega algebra, and the latter into omega algebra. The embeddings require
different subsets of axioms, and some do not preserve the greatest element.

Besides the application to program semantics, typed omega algebra can serve
the following purposes. The ability to treat non-square matrices is useful for
constructions related to automata [10], which indeed motivate typed Kleene
algebra, and omega may be used to model infinite executions of the automata.
Moreover, typed omega algebra is a subtheory of, and thus may yield insight
into, heterogeneous relation algebra [16]; it fits into the hierarchy of [9].

2 Axioms

In this section we give axioms for (typed) (1-free) Kleene and omega algebras.
Of these combinations, (typed or 1-free) omega algebras are new.

2.1 Omega Algebra

We recall the axioms of semirings, Kleene algebras and omega algebras. An idem-
potent semiring is a structure (S,+, ·, 0, 1) that satisfies the following axioms:

a + (b + c) = (a + b) + c a(b + c) = ab + ac a(bc) = (ab)c
a + b = b + a (a + b)c = ac+ bc 1a = a
a + a = a 0a = 0 a1 = a
a + 0 = a a0 = 0

The operation · has higher precedence than + and is frequently omitted by
writing ab instead of a · b. By a ≤ b ⇔ a + b = b we obtain the partial order ≤
on S with join + and least element 0. The operations + and · are ≤-isotone.

A Kleene algebra [10] is a structure (S,+, ·, ∗, 0, 1) such that (S,+, ·, 0, 1) is
an idempotent semiring and the following axioms hold:

1 + aa∗ = a∗ b + ac ≤ c⇒ a∗b ≤ c
1 + a∗a = a∗ b + ca ≤ c⇒ ba∗ ≤ c
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The operation ∗ is ≤-isotone and has highest precedence. Every Kleene algebra
has the non-empty iteration a+ =def aa

∗ = a∗a. It satisfies a∗ = 1 + a+ and

a + aa+ = a+ b + ac ≤ c⇒ a+b ≤ c
a + a+a = a+ b + ca ≤ c⇒ ba+ ≤ c

The operation + is ≤-isotone and has the same precedence as ∗.
An omega algebra [2] is a structure (S,+, ·, ∗, ω, 0, 1) such that (S,+, ·, ∗, 0, 1)

is a Kleene algebra and the following axioms hold:

aaω = aω c ≤ ac + b⇒ c ≤ aω + a∗b

The operation ω is ≤-isotone and has the same precedence as ∗. Every omega
algebra has a ≤-greatest element 	 =def 1ω. It satisfies

aω	 = aω a ≤ a	 	 = 		
a ≤ 	 a ≤ 	a

We call those axioms of Kleene and omega algebra, which are implications,
induction axioms.

2.2 1-Free Omega Algebra

We recall the axioms of 1-free Kleene algebras and introduce 1-free omega al-
gebras. As discussed in Section 5, the restriction to 1-free algebras enables the
transfer of universal formulas from the untyped to the typed setting.

A 1-free Kleene algebra [11] is a structure (S,+, ·,+, 0) that satisfies the idem-
potent semiring axioms without 1, that is,

a + (b + c) = (a + b) + c a(b + c) = ab + ac a(bc) = (ab)c
a + b = b + a (a + b)c = ac+ bc
a + a = a 0a = 0
a + 0 = a a0 = 0

and, replacing the ∗-axioms, the laws about + mentioned above:

a + aa+ = a+ b + ac ≤ c⇒ a+b ≤ c
a + a+a = a+ b + ca ≤ c⇒ ba+ ≤ c

An equivalent structure is obtained by replacing the implications with

ac ≤ c⇒ a+c ≤ c
ca ≤ c⇒ ca+ ≤ c

It follows that the operation + is ≤-isotone.
A 1-free omega algebra is a structure (S,+, ·,+, ω, 0,	) such that (S,+, ·,+, 0)

is a 1-free Kleene algebra and the following axioms hold:

aaω = aω c ≤ ac + b⇒ c ≤ aω	+ a+b + b
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The operation ω is not ≤-isotone in general, but a ≤ b implies both aω ≤ bω	
and aω	 ≤ bω	.

Observe the term aω	 replacing aω in the induction axiom to prepare it for
the typed setting. We moreover consider the following axioms about ω and 	:

(	1) aω	 = aω (	3) a ≤ a	 (	5) 	 = 		
(	2) a ≤ 	 (	4) a ≤ 	a

We explicitly state whenever they are used in addition to the axioms of 1-free
omega algebra. Except for (	5), which follows from (	2) and either (	3) or
(	4), these axioms are independent from each other and the axioms of 1-free
omega algebra, as counterexamples generated by Mace4 witness.

To improve readability, we use the ∗ notation also in 1-free algebras to abbre-
viate terms of the form

a∗b = a+b + b ab∗c = ab+c + ac
ba∗ = ba+ + b a∗bc∗ = a+bc+ + a+b + bc+ + b

and similar ones, where ∗ occurs in products with at least one 1-free element.
For example, the omega induction axiom becomes c ≤ ac+ b⇒ c ≤ aω	+ a∗b.
Due to the semiring axioms, calculations using this notation work as expected.
In such contexts ∗ is ≤-isotone and the star induction axioms hold.

2.3 Typed 1-Free Omega Algebra

We use the mechanism for typing described in [11]. In particular, we assume a
set T of pretypes s, t, u, v, . . . and obtain the set T 2 of types denoted as s → t.
The type of an expression a of omega algebra is denoted by a : s → t and can
be derived using a type calculus with the rules

a, b : s→ t

a + b : s→ t

a : s→ t b : t→ u

ab : s→ u

a : s→ s

a∗, a+, aω : s→ s

0,	 : s→ t
1 : s→ s

The rules for ω and 	 are newly added. Expressions a and b in an equation a = b
must have the same type. We also write ast to make clear that a has type s→ t.

For example, finite heterogeneous relations are modelled by letting T be the
natural numbers. Then a : s → t denotes that a is a matrix with s rows and t
columns. See [11] for further details about the typing mechanism.

A typed Kleene algebra (with pretypes T ) is a set S of typed elements a : s→ t
(s, t ∈ T ) with polymorphic operators +, ·, ∗, 0 and 1, typed according to the
above inference rules, satisfying all well-typed instances of the Kleene algebra
axioms.

Typed 1-free Kleene algebras and typed 1-free omega algebras are defined
similarly, using all well-typed instances of the respective axioms in Section 2.2.
All well-typed instances of a selection of (	1)–(	5) may be considered besides.

For a typed omega algebra we use all well-typed instances of the omega algebra
axioms, except for omega induction, which we replace by the omega induction
axiom of 1-free omega algebra c ≤ ac + b⇒ c ≤ aω	+ a∗b.
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A finitely typed algebra is one with finite T . We denote the set of elements
with type s→ t in a typed structure S by Sst. An untyped formula is valid in S
if all its well-typed instances hold.

Remark. The axiom (	2) establishes 	 : s → t as the greatest element of type
s → t. As in heterogeneous relation algebra, each type has its own greatest
element. In the untyped setting, being the greatest element is the main property
of 	. In the typed setting, emphasis should be on its property to cause a change
of types: from a : s→ t we obtain the element a	 of type s→ u by multiplying
with 	 : t→ u. Thus (	5) decomposes a type cast effected by 	 : s→ u into a
sequence of two type casts effected by 	 : s→ t and 	 : t→ u.

It is this type changing capacity which is used in the omega induction axiom.
This ensures that aω	 is compatible with a∗b also if b : s → t with s �= t. We
have chosen to give aω the unique type s→ s for a : s→ s, but another approach
might give the more general type

a : s→ s

aω : s→ t

which incorporates the type cast in a (more) polymorphic type of ω. While this
would restore the original form of the omega induction axiom, in the 1-free case
additional axioms are required to introduce 	. Even if 1 and ∗ are available, it
is not possible to derive all well-typed instances of (	5): Sections 3.2, 3.3 and 5
feature models of typed omega algebra with (	1)–(	4) but not (	5).

3 Matrices

In this section we consider finite matrices over typed omega algebras. A matrix
algebra is obtained by lifting the underlying structure. This is known for Kleene
algebra [3,10], typed Kleene algebra [11] and omega algebra [13]. For typed
omega algebra, some modification is required to get the typing right.

The result shows how to obtain the omega operation for typed matrices. We
apply it to matrix representations of programs in total and general correctness.

3.1 Matrices over Typed 1-Free Omega Algebra

Fix a typed 1-free omega algebra S with (not necessarily finite) pretypes T .
We construct a typed 1-free omega algebra of finite matrices whose entries are
elements of S. The pretypes of this matrix algebra are the finite sequences over
T . Let s1, . . . , sm ∈ Tm and t1, . . . , tn ∈ T n be pretypes, then a matrix has type
s1, . . . , sm → t1, . . . , tn if and only if its size is m × n and, for each 1 ≤ i ≤ m
and 1 ≤ j ≤ n, the entry in row i and column j has type si → tj .

The operations +, ·, 0 and 	 are, as usual, the componentwise sum, the
matrix product, the 0- and the 	-matrix, respectively. The non-empty iteration
+ is defined by (a)+ = (a+) for 1× 1 matrices and, inductively,(

a b
c d

)
+

=
(

e+ a∗bf∗

d∗ce∗ f+

)
with

(
e
f

)
=
(
a + bd∗c
d + ca∗b

)
.
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This is derived by A+ = AA∗ from the usual matrix ∗ of [3]. It is implicitly
used in [11, Lemma 4.1], asserting that the resulting structure of square matrices
satisfies the axioms of 1-free Kleene algebra. It is not difficult to check the axioms
also for non-square matrices, hence we obtain a typed 1-free Kleene algebra.

The infinite iteration ω is given by (a)ω = (aω) for size 1× 1 and, inductively,(
a b
c d

)ω
=
(

eω a∗bfω

d∗ceω fω

)(	 	
	 	

)
with

(
e
f

)
=
(
a + bd∗c
d+ ca∗b

)
.

It is instructive to reflect on the type of the involved expressions. By its typing
rule, the ω operation is applied to a square matrix; its pretype is a finite sequence
t1, . . . , tn, t ∈ T n+1. For the inductive step, we take away the last element t of
this sequence, denote by s = t1, . . . , tn the remaining ones, and split the matrix
accordingly into (

a : s→ s b : s→ t
c : t→ s d : t→ t

)
.

Observe that e and f have the same types as a and d, respectively. Hence eω,
a∗bfω, d∗ceω and fω have the types of a, b, c and d, respectively. The four 	
entries of the remaining matrix have these types as well:(

a b
c d

)ω
=
(

eω a∗bfω

d∗ceω fω

)(	ss 	st

	ts 	tt

)
=
(
eω	ss + a∗bfω	ts eω	st + a∗bfω	tt

fω	ts + d∗ceω	ss fω	tt + d∗ceω	st

)
.

Thus the resulting matrix has the correct type. Note that the columns of the ma-
trix are not identical, as in the untyped case [13], but have their types adjusted.
This is not necessary for the ∗ and + operators.

It remains to show that the ω operation thus defined satisfies the axioms. The
proof is by induction on the size of the matrix, where the induction step assumes
that the omega axioms hold for smaller matrices. The omega unfolding axiom is
a consequence of(

a b
c d

)(
eω a∗bfω

d∗ceω fω

)
=
(
aeω + bd∗ceω aa∗bfω + bfω

ceω + dd∗ceω ca∗bfω + dfω

)
=
(

(a + bd∗c)eω (aa∗b + b)fω

(c + dd∗c)eω (ca∗b + d)fω

)
=
(
eeω a∗bfω

d∗ceω ffω

)
=
(

eω a∗bfω

d∗ceω fω

)
,

using the induction hypothesis in the last step. For the omega induction axiom,
let u ∈ T and x, p : s→ u and y, q : t→ u such that(

x
y

)
≤
(
a b
c d

)(
x
y

)
+
(
p
q

)
=
(
ax+ by + p
cx + dy + q

)
,

hence y ≤ dω	tu + d∗(cx + q) by the induction hypothesis. Therefore

x ≤ ax + b(dω	tu + d∗(cx + q)) + p = (a + bd∗c)x + b(dω	tu + d∗q) + p
≤ ex + b(fω	tu + f∗q) + p ,
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using d ≤ f and ≤-isotony. Once more by the induction hypothesis,

x ≤ eω	su + e∗(bfω	tu + bf∗q + p) .

We have to show(
x
y

)
≤
(
a b
c d

)
ω
(	su

	tu

)
+
(
a b
c d

)∗(p
q

)
=
(

eω a∗bfω

d∗ceω fω

)(	ss 	st

	ts 	tt

)(	su

	tu

)
+
(

e+ a∗bf∗

d∗ce∗ f+

)(
p
q

)
+
(
p
q

)
=
(
eω(	ss	su +	st	tu) + a∗bfω(	ts	su +	tt	tu) + e∗p + a∗bf∗q
fω(	ts	su +	tt	tu) + d∗ceω(	ss	su +	st	tu) + f∗q + d∗ce∗p

)
.

Consider x: by the above inequality and eω ≤ eω	ss and fω ≤ fω	tt, it suffices
to show e∗bfω ≤ a∗bfω and e∗bf∗q ≤ a∗bf∗q. By star induction, these reduce
to ea∗bfω ≤ a∗bfω and ea∗bf∗q ≤ a∗bf∗q. Since e = a + bd∗c, these follow
from bd∗ca∗bfω ≤ bfω and bd∗ca∗bf∗q ≤ bf∗q. But these are consequences of
d∗ca∗b ≤ f∗f = f+ since f+fω ≤ fω and f+f∗q ≤ f∗q. The inequality for y
follows by swapping

(
x p a b e s
y q d c f t

)
.

The same argument applies column-wise to matrices having more than one
column (replacing the vectors formed by x, y and p, q, respectively). This shows
that the 1-free omega axioms hold for every well-typed instance. Moreover, the
matrix algebra satisfies each of (	1)–(	5) if the underlying typed 1-free omega
algebra does so. We thus obtain the following result.

Theorem 1. The finite matrices over a typed 1-free omega algebra form a typed
1-free omega algebra. Each of the axioms (	1)–(	5) is preserved.

It can be shown that the square matrices of size 2 × 2 and greater satisfy (	1)
vacuously. Only for the 1 × 1 matrices it is necessary that (	1) holds in the
underlying algebra.

For a given dimension n and sequence (ti) ∈ T n, the set of n × n matrices
with type (ti) → (ti) is closed under the operations of 1-free omega algebra. We
therefore obtain the following consequence of Theorem 1.

Corollary 2. The n × n matrices with fixed type over a typed 1-free omega
algebra form a 1-free omega algebra. Each of the axioms (	1)–(	5) is preserved.

By using diagonal matrices with 1-entries and the usual matrix ∗ of [3], the above
results also hold for typed omega algebras. Because the omega induction axioms
of the typed and the untyped setting differ, the axiom (	1) is needed for the
version of Corollary 2 for typed omega algebras.

3.2 Matrices in General Correctness

We now apply the above theory to calculate the omega operation of so-called
‘(normal) prescriptions’, which model programs in general correctness [4]. They
are represented by matrices in [14,5].
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Let R be an omega algebra. A prescription is a 2× 2 matrix(
a b
c d

)
∈ R2×2

such that a = 	 and b = 0 and c = c	. Elements of the form c	 model
conditions; they are closed under the operations + and d· for any d ∈ R.

The entry d records the terminating executions of a program, and c captures
the set of states from which non-terminating executions exist. Fixing a = 	
and b = 0 ensures that the non-terminating executions of a program x become
non-terminating executions of a sequential composition x ·y, but do not interfere
with the terminating executions of x · y, as fit for general correctness.

Trying to derive the omega operation on prescriptions using the untyped set-
ting of [13], we obtain e = 	+ 0d∗c = 	 and f = d + c	∗0 = d, thus(	 0

c d

)
ω

=
(
eω +	∗0fω eω +	∗0fω

fω + d∗ceω fω + d∗ceω

)
=
( 	ω 	ω

dω + d∗c	ω dω + d∗c	ω

)
=
( 	 	
dω + d∗c dω + d∗c

)
.

But this is not a prescription due to the entry 	 in the first row and the second
column.

To solve this problem, let S′ be the typed omega algebra with pretypes T =
{1, 2} such that S′

st = R for each s, t ∈ T . The values of well-typed operations
are given by calculating in R.

Now consider the substructure S of S′ in which S12 = {012} and Sst = S′
st

otherwise. Hence we restrict the type 1 → 2 to one element, retaining the other
types. Then S is closed under the operations of typed omega algebra, except 	:

– The sum of two elements has type 1 → 2 only if both elements have this
type, whence they are both 012 and so is their sum.

– The product of two elements has type 1 → 2 only if one of them has this
type, whence it is 012 and so is the product.

– The operations ∗, ω, + and 1 do not apply to the type 1 → 2.

The constant 012 is in S12 and we take 	12 = 012. The instance of the omega
induction axiom c ≤ ac+ b⇒ c ≤ aω	12 + a∗b holds since c must have the type
1 → 2, whence it is 012. The other axioms of typed omega algebra are satisfied
since they hold in S′ and S is closed. Therefore S is a typed omega algebra.
Moreover, S satisfies (	1)–(	4), but not (	5) since 	12	21 = 012	21 = 011 �=
	11. Yet we have 	ω

11	11 = 	11	11 = 	11.
By Corollary 2 and (	1), the 2 × 2 matrices over S form an omega algebra.

But all prescriptions are elements of this matrix algebra, whence the omega
operation is derived as shown in Section 3.1. Again, e = 	11 +012d

∗c = 	11 and
f = d + c	∗

11012 = d, thus(	11 012

c d

)ω
=
(
eω	11 +	∗

11012f
ω	21 eω	12 +	∗

11012f
ω	22

fω	21 + d∗ceω	11 fω	22 + d∗ceω	12

)
=
( 	ω

11	11 	ω
11012

dω	21 + d∗c	ω
11	11 dω	22 + d∗c	ω

11012

)
=
( 	11 012

dω	21 + d∗c	11 dω

)
.
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In R2×2 this simplifies to(	 0
c d

)
ω

=
( 	 0
dω	+ d∗c	 dω

)
=
( 	 0
dω + d∗c dω

)
,

since dω	 = dω for d ∈ R and c	 = c. The result is a prescription again.

Corollary 3. Prescriptions are closed under the following operation ω, which
satisfies the omega axioms:(	 0

c d

)
ω

=
( 	 0
dω + d∗c dω

)
.

Note that the set of prescriptions is closed under ∗ but does not form a subalgebra
of the matrix algebra because the 0-matrix is not a prescription. Nevertheless,
choosing different 0- and 1-elements, they form an omega algebra without right
zero (the axiom a0 = 0 is omitted) [5].

3.3 Matrices in Total and General Correctness

We can also calculate the omega operation of so-called ‘extended designs’, which
combine certain aspects of total and general correctness [8]. They too can be
represented by matrices [6].

Let R be an omega algebra. An extended design is a 3× 3 matrix of the form⎛⎝	 	 	
0 	 0
p q r

⎞⎠ ∈ R3×3

such that p	 = p ≤ q = q	 and p ≤ r.
Here, r records the terminating executions, q captures the non-terminating

executions and p the aborting executions of a program. Again, the entries 0 and
	 are arranged to propagate this information according to the semantics of ex-
tended designs. The constraints p ≤ q and p ≤ r are typical for total correctness
approaches: in the presence of an aborting execution, any other executions are
considered irrelevant and hence absorbed.

Similarly to prescriptions, let S′ be the typed omega algebra with pretypes
T = {1, 2, 3} such that S′

st = R for each s, t ∈ T . Consider the substructure S of
S′ in which S21 = S23 = {012} and Sst = S′

st otherwise. Again, S is closed under
the operations of typed omega algebra except	. Closure under · is more involved
now: for example, it would not suffice to collapse only the type 2 → 3, because
an element c23 of this type may be obtained as the product c23 = a21 ·b13. Taking
	21 = 021 and 	23 = 023, we again establish S as a typed omega algebra with
(	1)–(	4).

For the prescription submatrix of an extended design we obtain(	22 023

q r

)∗
=
(	22 023

r∗q r∗

)
and

(	22 023

q r

)
ω

=
( 	22 023

rω	32 + r∗q rω

)
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as for Corollary 3. For the entire matrix we therefore obtain e = 	11 and

f =
(	22 023

q r

)
+
(

021

p

)
	∗

11

(	12 	13

)
=
(	22 023

q r

)
d∗ceω =

(	22 023

r∗q r∗

)(
021

p

)
	ω

11 =
(	22 023

r∗q r∗

)(
021

p	11

)
=
(

021

r∗p

)
fω

(	21

	31

)
=
( 	22 023

rω	32 + r∗q rω

)(
021

	31

)
=
(

021

rω	31

)
fω

(	22 	23

	32 	33

)
=
( 	22 023

rω	32 + r∗q rω

)(	22 023

	32 	33

)
=
( 	22 023

rω	32 + r∗q rω

)
and therefore

⎛⎝	 	 	
0 	 0
p q r

⎞⎠ω

=

⎛⎜⎜⎝e
ω	11 + a∗bfω

(	21

	31

)
eω
(	12 	13

)
+ a∗bfω

(	22 	23

	32 	33

)
fω

(	21

	31

)
+ d∗ceω	11 fω

(	22 	23

	32 	33

)
+ d∗ceω

(	12 	13

)
⎞⎟⎟⎠

=

⎛⎝ 	11

(	12 	13

)(
021

rω	31

)
+
(

021

r∗p

)
	11

( 	22 023

rω	32 + r∗q rω

)
+
(

021

r∗p

)(	12 	13

)⎞⎠
=

⎛⎝ 	11 	12 	13

021 	22 023

rω	31 + r∗p rω	32 + r∗q + r∗p	12 rω + r∗p	13

⎞⎠ .

In R3×3 this further simplifies by rω	 = rω and r∗p	 = r∗p ≤ r∗q to the
following result. The argument is similar to that for prescriptions, using that
extended designs are closed under ∗ [6].

Corollary 4. Extended designs are closed under the following operation ω, that
satisfies the omega axioms:⎛⎝	 	 	

0 	 0
p q r

⎞⎠ω

=

⎛⎝ 	 	 	
0 	 0

rω + r∗p rω + r∗q rω + r∗p

⎞⎠ .

4 Typing

In this section we establish a class of theorems that can be transferred from
the untyped to the typed setting. The typed setting thus profits from existing
theorems, simpler (untyped) proofs of new theorems, and automated theorem
provers (such as Prover9) which have no notion of types.

We proceed along the lines of [11] as far as possible. See [15] for a different
approach (in Kleene algebra).



206 W. Guttmann

4.1 Embedding 1-Free Omega Algebra into Omega Algebra

It is proved in [11, Section 2.2] that every 1-free Kleene algebra can be embedded
into a Kleene algebra. We extend that result to omega algebras.

Theorem 5. Every 1-free omega algebra satisfying (	1) and (	2) can be em-
bedded into an omega algebra, except that the embedding need not preserve 	.

Proof. We extend the construction of [11]. Let S be a 1-free omega algebra, and
construct the omega algebra S′ =def {0, 1}×S as follows. Intuitively, the element
(0, a) represents a, while (1, a) represents 1 + a. The operations +, ·, ∗, 0 and 1
on S′ are defined as in [11]:

(i, a) + (j, b) = (i + j, a + b) (i, a)∗ = (1, a+) 0 = (0, 0)
(i, a) · (j, b) = (ij, ab + ib+ ja) 1 = (1, 0)

This uses ix = x if i = 1, and ix = 0 if i = 0. We add the operation ω by

(0, a)ω =def (0, aω) and (1, a)ω =def (1,	) .

The omega unfold axiom on S′ follows since

(0, a) · (0, a)ω = (0, a) · (0, aω) = (0, aaω) = (0, aω) = (0, a)ω

(1, a) · (1, a)ω = (1, a) · (1,	) = (1, a	+	+ a) = (1,	) = (1, a)ω

by (	2). For the omega induction axiom c′ ≤ a′c′ + b′ ⇒ c′ ≤ a′ω + a′∗b′ of S′

we consider two cases. If a′ = (1, a), then c′ ≤ (1,	) = a′ω since (1,	) is the
greatest element of S′. Otherwise, let a′ = (0, a) and b′ = (i, b) and c′ = (j, c).
Then

(j, c) = c′ ≤ a′c′ +b′ = (0, a) ·(j, c)+(i, b) = (0, ac+ja)+(i, b) = (i, ac+ja+b) .

Since the order on S′ is componentwise, we have j ≤ i and c ≤ ac+ ja+b. Using
the omega induction axiom of S, we obtain

c ≤ aω	+ a∗(ja + b) = aω + ja+ + a∗b ≤ aω + ia+ + a∗b

by (	1) and since j ∈ {0, 1}. Therefore

c′ = (j, c) ≤ (i, aω + ia+ + a∗b) = (0, aω) + (i, a+b + b + ia+)
= (0, a)ω + (1, a+)(i, b) = a′ω + (0, a)∗b′ = a′ω + a′∗b′ .

The embedding a �→ (0, a) is injective and a homomorphism, except that 	 is
mapped to (0,	) which is not the greatest element (1,	) of S′. ��
By using the embedding of Theorem 5 we obtain the following consequence about
statements with universally quantified variables.

Corollary 6. A universal formula using only the operators +, ·, +, ω, 0 is valid
in omega algebra if and only if it is valid in 1-free omega algebra with (	1) and
(	2).
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If we admit further axioms, we can preserve 	 as well. The construction used in
the following proof is not required for Kleene algebras.

Theorem 7. Every 1-free omega algebra satisfying (	1)–(	4) can be embedded
into an omega algebra.

Proof. We continue the proof of Theorem 5. Consider the smallest equivalence
relation ∼= on S′ which identifies (0,	) ∼= (1,	). It is a congruence:

– (0,	) + (i, a) = (i,	+ a) = (i,	) ∼= (1,	) = (1,	+ a) = (1,	) + (i, a) by
(	2). With commutativity we get congruence with respect to +.

– (0,	) · (0, a) = (0,	a) = (0,	a + a) = (1,	) · (0, a) by (	4). Moreover,
(0,	)·(1, a) = (0,	a+	) = (0,	) ∼= (1,	) = (1,	a+a+	) = (1,	)·(1, a)
by (	2). Congruence in the second argument of · is analogous using (	3).

– (0,	)∗ = (1,	+) = (1,	)∗.
– (0,	)ω = (0,	ω) = (0,	) ∼= (1,	) = (1,	)ω, since 	ω = 	 holds in S:

by (	3) or (	4) we have 	 ≤ 		, whence 	 ≤ 	ω	 = 	ω ≤ 	 by omega
induction, (	1) and (	2).

We thus obtain the embedding a �→ [(0, a)]∼= by composing the embedding of
Theorem 5 with the canonical map h of ∼=. Observe that h is injective on S′ \
{(1,	)}, thus the new embedding is injective as (1,	) is not in the image of the
previous one. It remains to show that S′/∼= is an omega algebra. The equational
axioms follow since S′/∼= is a homomorphic image of the omega algebra S′. We
show the conditional equations:

– ac ≤ c ⇒ a∗c ≤ c: clear if c = [(1,	)]∼= is the greatest element of S′/∼=.
Otherwise, let a′, c′ ∈ S′ with h(a′) = a and h(c′) = c as h is surjective.
Since h is a homomorphism, we have

h(a′c′ + c′) = h(a′)h(c′) + h(c′) = ac+ c = c = h(c′) .

Because c is not the greatest element, we have c′ �= (1,	) �= a′c′ + c′, hence
a′c′ + c′ = c′ since h is injective on S′ \ {(1,	)}. By star induction of S′ we
obtain a′∗c′ ≤ c′. Hence a∗c = h(a′)∗h(c′) = h(a′∗c′) ≤ h(c′) = c again since
h is a homomorphism.

– ca ≤ c⇒ ca∗ ≤ c: symmetrically.
– c ≤ ac + b ⇒ c ≤ aω + a∗b: if ac + b �= [(1,	)]∼=, apply the previous

argument. Otherwise, let a′, b′, c′ ∈ S′ with h(a′) = a and h(b′) = b and
h(c′) = c. If c′ ≤ a′c′ + b′, finish by applying omega induction of S′ and the
homomorphism h. Otherwise, a′c′ + b′ = (0,	) and c′ = (1, c′′) for some
c′′ ∈ S. Hence a′ = (0, a′′) for some a′′ ∈ S. By (	3),

a′c′ ≤ (0, a′′)(1,	) = (0, a′′	+ a′′) = (0, a′′	) = a′(0,	) .

Therefore (0,	) = a′c′ + b′ ≤ a′(0,	) + b′, whence (0,	) ≤ a′ω + a′∗b′ by
omega induction of S′. Thus c ≤ [(1,	)]∼= = h((0,	)) ≤ h(a′ω + a′∗b′) =
aω + a∗b since h is a homomorphism. ��
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Corollary 8. A universal formula of 1-free omega algebra is valid in omega
algebra if and only if it is valid in 1-free omega algebra with (	1)–(	4).

Because (	1)–(	4) are independent, these axioms are necessary for Theorem 7
and Corollary 8.

4.2 Embedding Typed 1-Free Omega Algebra into 1-Free Omega
Algebra

It is proved in [11, Lemma 4.1] that every typed 1-free Kleene algebra can be
embedded into a 1-free Kleene algebra. We extend that result to omega algebras.

As clarified in [12], a typed embedding is required to be injective for each
type, but may map elements of distinct types to the same element.

The following result treats the case of finitely typed 1-free omega algebras. It
can be generalised to infinitely typed 1-free omega algebras with (	1) and (	5),
though that proof is more involved.

Theorem 9. Every finitely typed 1-free omega algebra satisfying (	1) can be
embedded into a 1-free omega algebra, except that the embedding need not preserve
	. Each of the axioms (	1)–(	5) is preserved.

Proof. Let (S,+, ·,+, ω, 0,	) be a typed 1-free omega algebra with (	1), based
on a set of n pretypes T . Arrange the pretypes in a fixed sequence (ti) ∈ T n.
By Corollary 2, the n × n matrices with type (ti) → (ti) form a 1-free omega
algebra, which satisfies any of (	1)–(	5) if S does so.

We embed S into this matrix algebra by the mapping h defined as follows:

h(ast)uv =def

⎧⎨⎩
ast if u = s and v = t
ast	tv if u = s and v �= t
0uv if u �= s

Thus the element a : s→ t is mapped to a matrix with a in row s and column t,
with a	 in any other column of row s, and 0 in any other row. The embedding
for 1-free Kleene algebra [11, Lemma 4.1] maps to 0 also in the second case.

Clearly h is injective on each type. We show that h preserves the operations
of 1-free omega algebra except 	:

– Preservation of + follows since h(ast + bst) = h(ast) + h(bst) by

h(ast + bst)uv =

⎧⎨⎩
ast + bst if u = s and v = t
(ast + bst)	tv = ast	tv + bst	tv if u = s and v �= t
0uv = 0uv + 0uv if u �= s

= h(ast)uv + h(bst)uv = (h(ast) + h(bst))uv .

– Preservation of · follows if we can show h(astbtu)vw = (h(ast)h(btu))vw . If
v �= s, then h(astbtu)vw = 0vw, but so is

(h(ast)h(btu))vw =
∑
x∈T

h(ast)vxh(btu)xw =
∑
x∈T

0vxh(btu)xw = 0vw .
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If v = s, then all the summands with x �= t vanish by h(ast)vxh(btu)xw =
h(ast)vx0xw = 0vw, hence

(h(ast)h(btu))vw =
∑
x∈T

h(ast)sxh(btu)xw = h(ast)sth(btu)tw = asth(btu)tw .

If w = u, this equals asth(btu)tu = astbtu = h(astbtu)vw, and if w �= u, it
equals astbtu	uw = h(astbtu)vw as well.

– For a pretype s ∈ T , let 	ss denote the transposed vector of all 	st ele-
ments such that s �= t ∈ T , and similarly for the vector 0ss and matrix 0s s.
Preservation of + follows by

h(ass)+ =
(
ass ass	ss

0ss 0s s

)+
=
(

a+
ss a∗ssass	ss0∗s s

0∗s s0ssa
∗
ss 0+

s s

)
=
(
a+

ss a+
ss	ss

0ss 0s s

)
= h(a+

ss) .

– Preservation of ω follows using (	1) in

h(ass)ω =
(
ass ass	ss

0ss 0s s

)ω
=
(

aω
ss a∗ssass	ss0ω

s s

0∗s s0ssa
ω
ss 0ω

s s

)(	ss 	ss

	ss 	s s

)
=
(
aω

ss 0ss

0ss 0s s

)(	ss 	ss

	ss 	s s

)
=
(
aω

ss	ss aω
ss	ss

0ss 0s s

)
=
(
aω

ss aω
ss	ss

0ss 0s s

)
= h(aω

ss) .

– Clearly h(0st) is the 0-matrix, but h(	st) is not the 	-matrix in general. ��
Already from this we obtain by modifying the argument of [11, Theorem 1.2]
the following consequence. Formulas are implicitly assumed to be finitary.

Corollary 10. A universal formula using only the operators +, ·, +, ω, 0 is
valid in 1-free omega algebra with (	1) if and only if it is valid in typed 1-free
omega algebra with (	1).

Proof. The backward implication follows since every 1-free omega algebra is a
typed 1-free omega algebra (with one type). We prove the forward implication.

The given formula is equivalent to a conjunction of universal implications
of the form

∧
i∈I ai = bi ⇒

∨
j∈J cj = dj with finite index sets I and J and

expressions ai, bi, cj, dj using only the operators +, ·, +, ω, 0. We show the claim
for such an implication F .

Assume F holds in 1-free omega algebra with (	1). Let S be a typed 1-free
omega algebra with (	1) and pretypes T . Consider a well-typed instance F ′ of
F . The instance F ′ only refers to finitely many pretypes T ′ ⊆ T . Let S′ be
the substructure of S restricted (in types, operations and axioms) to T ′. The
types which remain in S′ keep all of their elements, whence all remaining axioms
(equations and implications) still hold. In other words, S′ is a finitely typed 1-
free omega algebra with (	1). Let h be the embedding of S′ into a 1-free omega
algebra R with (	1) according to Theorem 9. In particular, F holds in R.
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We show that F ′ holds in S′. To this end, let v be a valuation of its variables,
and assume that the typed instance of each ai(v) = bi(v) holds in S′. Then
clearly h(ai(v)) = h(bi(v)) in R. Since h is homomorphic, ai(h(v)) = bi(h(v)) in
R. By F we obtain cj(h(v)) = dj(h(v)) for some j ∈ J . Since h is homomorphic,
h(cj(v)) = h(dj(v)) in R. Since h is injective on the type of cj , we obtain
cj(v) = dj(v) in S′.

Every valuation of the variables of F ′ in S is a valuation in S′, because it
must respect the (fixed) types of the variables. Thus F ′ holds in S, too. ��
Because the embedding of Theorem 9 preserves (	2), the same argument works
for 1-free omega algebra with (	1) and (	2). We combine this with Corollary 6.

Corollary 11. A universal formula using only the operators +, ·, +, ω, 0 is
valid in omega algebra if and only if it is valid in typed 1-free omega algebra with
(	1) and (	2).

Whether the above results can be extended to formulas with 	 is open.

5 Conclusion

We conclude with remarks on the condition ‘1-free’. It is motivated by the coun-
terexample 0 = 1 ⇒ a = b of [11], which holds in Kleene algebra, but not in
typed Kleene algebra under its most general typing 0ss = 1ss ⇒ atu = btu.
It fails in those and only those typed Kleene algebras, where a type s → s is
collapsed (has only one element) but another type t → u is not collapsed. An
example is given by T = {1, 2} and S11 = S12 = S21 = {0} and S22 = {0, 1}
with operations defined as usual. In fact, the collapse of a type s→ s triggers the
collapse of all types s → t and t → s: for example, ats = ats1ss = ats0ss = 0ts.
Further types, such as t → t, are not affected. Sections 3.2 and 3.3 give appli-
cations with typed omega algebras where some but not all types are collapsed
(though not a square type s→ s).

To avoid the above counterexample, further axioms have to be included: we
propose (	2) and (	5). Assume a typed Kleene algebra with (	2) and (	5).
Then 0ss = 1ss implies 	ss = 	ss1ss = 	ss0ss = 0ss. Moreover, 	st = 0st

for any s, t ∈ T implies 	uv = 	us	sv = 	us	st	tv = 	us0st	tv = 0uv by
(	5), and hence auv = buv for any a, b ∈ Suv by (	2). Including (	2) and (	5)
propagates the collapse of one type to all types. For this reason, it is essential
that the typed omega algebras in Sections 3.2 and 3.3 do not satisfy (	5).

There are also models of typed omega algebra with (	1)–(	4) but not (	5),
where none of the types is collapsed. An example is given by T = {1, 2} where
each type contains two Boolean 2×2 matrices under the usual matrix operations:
S11 = S22 = {∅, {(0, 0), (1, 1)}} and S12 = {∅, {(0, 0)}} and S21 = {∅, {(1, 1)}}.

On the other hand, we get another counterexample: 1ss = 	ss ⇒ 1tt = 	tt.
While the untyped implication clearly holds, the typed formula is not valid even
in heterogeneous relation algebra [16], which is much more restricted than the
typed omega algebras discussed in the present paper. Namely, 1 = 	 holds for
relations between one-element sets, but not for relations between larger sets.
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Abstract. We use well-known algebraic concepts like semirings and ma-
trices to model and argue about Wireless Mesh Networks. These networks
are used in a wide range of application areas, including public safety and
transportation. Formal reasoning therefore seems to be necessary to guar-
antee safety and security. In this paper, we model a simplified algebraic
version of the AODV protocol and provide some basic properties. For
example we show that each node knows a route to the originator of a
message (if there is one).

1 Introduction

Wireless Mesh Networks (WMNs) are currently used in a wide range of applica-
tion areas, including public safety, transportation, mining, etc. Typically, these
networks do not have a central component (router), but each node in the network
acts as an independent router, regardless of whether it is connected to another
network or not. They allow reconfiguration around broken or blocked paths by
hopping from node to node until the destination is reached.

The Ad-hoc On-Demand Distance Vector Routing (AODV) protocol [20] is
a routing protocol that finds a route on demand (if needed and if unknown)
in WMNs. To guarantee safety and security aspects for WMNs in general and
AODV in particular, mathematical analysis should be used. It is our belief that
one does not have to develop new theories. We believe that the concepts and tools
developed over the last decades are powerful enough to capture new concepts
like AODV. For example, Singh et al [21] use process algebra to model a simpler
version of AODV. Within this approach processes reflect the behaviour of nodes,
i.e., a process describes how nodes react when messages are received. In this
paper we will use routing tables as basic elements rather than processes. This
allows us to use algebraic concepts like semirings, Kleene algebra and matrices to
model some parts of the AODV protocol. The algebraic operations will then be
transformers of routing tables. We show how the basic concepts of AODV can be
modelled. In particular, we characterise AODV control messages, which are used
to distribute knowledge through the network. To achieve this goal, the algebraic
operations have to model things like broadcasting (sending to all neighbours)
and unicasting (sending to one neighbour) messages.

H. de Swart (Ed.): RAMICS 2011, LNCS 6663, pp. 212–229, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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2 AODV and Its Design Challenges

The AODV protocol [20] supports routing between nodes in a WMN in a de-
mand driven manner. Nodes are able to communicate directly between connected
neighbours, but routes between nodes in general comprise a number of “hops”.
In a dynamic environment, where the network topology can change—typically a
consequence of mobile nodes which can cause new connections to be established,
or existing ones to disappear—a routing protocol must be able to identify routes
which have become obsolete and replace them with valid alternatives.

In order to establish valid routes, information is disseminated throughout
the network by the exchange of control messages (requests, replies and error
messages) and over time a node essentially “learns” to which distant nodes it
is connected, albeit indirectly by multiple hops. One of the challenges presented
by a dynamic topology is the management of routes if they become obsolete.
Without a careful accounting policy to handle “broken” routes—even if the
specific link failure is someway downstream—there is a risk that the routing
algorithm establishes so-called “loops”: routes which, if followed, will never reach
their destination. Reporting broken links to other nodes on a route is one of the
functions of AODV and the source of much of its complexity.

In this paper our aim is to describe an algebraic approach to model the be-
haviour of the network control messages, with a view to modelling some of the
principal features of AODV. We begin in the next section by an overview of the
underlying network mechanisms and how they fit together.

2.1 Overview of AODV

The basic algorithm underlying AODV disseminates knowledge of local con-
nections or “links” throughout the network; nodes “know” their immediate
neighbours (to whom they are connected directly), or “1-hop neighbours” via a
network “polling” mechanism known as the Hello protocol. Its task is to broad-
cast a “hello” regularly to any node in its vicinity; any node receiving the broad-
cast establishes a 1-hop connection to the sender. Any node D which is not
directly connected to a source node S requires messages destined for D to be
routed via a series of intermediate nodes. We say a route from S to D is a
sequence of nodes

S,N1, N2, ...., Nk, D , (1)

where each successive node in the sequence is a 1-hop neighbour to its prede-
cessor. The route of Expression (1) has k+1 hops. Such a route is said to be
loop-free when no node occurs more than once.

The objective of AODV is to ensure that, when required, a node is able to
identify its next immediate hop on a complete valid route to a given desti-
nation D. Nodes maintain a routing table entry for each possible destination,
which includes the next hop together with the total number of hops required to
reach the destination. For example the routing table at node S would have its
next hop for destination D registered as N1 with a hop count k+1, whereas each
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intermediate node Ni (1 ≤ i < k) would have its next hop to D registered as
Ni+1 with a hop count k−i+1. As we shall see the hop count is necessary for
the node to choose between two or more possible valid routes.

Establishing the routing table entries is implemented by flooding information
about the 1-hop neighbours throughout the network; it has been shown that
the next hop and the total hop count is not sufficient information to avoid the
accidental construction of loops. We sketch how that might occur.

Information about the topology, i.e., the 1-hop neighbours, is flooded through-
out the network by exchange of control messages, allowing knowledge of routes
to be established and next hops to be recorded in the respective routing tables.
Consider the scenario in Figure 1. Here there are two valid routes from S to
D (via A and B, resp.). Following the specification of the protocol each node
is able to store exactly one path to a certain destination. Assume that S has
established a path S,A,D. If the link between A and D subsequently breaks,
and A initiates a new search for a path to D, its request for a new path would
be answered by a response from S that a route can be found to D via A. If
fresh requests are not distinguished from previous requests, this would establish
a path which is not loop free. To avoid this scenario AODV uses a scheme to
distinguish between fresh requests and old routes; in this paper we will concen-
trate on setting up the algebra to deal with the simpler case, where freshness is
not considered. However, we will discuss extensions which will allow us to deal
with the full generality.

S

A

D

B

Fig. 1. Illustrating changing topology

2.2 Basic Protocol

As for most routing protocols, the basic idea of AODV is inspired by traditional
path search such as Dijkstra’s shortest path algorithm [7]—AODV aims to min-
imise hop count. Recall that Dijkstra’s shortest path algorithm keeps a record
of the paths from a source S, extending those paths in each iteration of the
algorithm. Loops are avoided by marking nodes that have been visited before.
AODV is based on a distributed version of this idea, where the set of visited
nodes is extended in several steps by utilising the network control messages. We
observe that messages are either broadcast or unicast, with the difference being
that broadcast messages are intended for any node that is connected, whereas
unicast messages are addressed to a single specific node. Thus unicast messages
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are only received by the addressee, and any other node which picks up the
message simply ignores it.

The main AODV control messages are as follows:

Route Request (RREQ). When a node requires a route to a (new) destina-
tion D, the node broadcasts a RREQ for that destination. A node A that
receives the RREQ either broadcasts the RREQ again (thereby informing a
possibly new set of neighbours) or it responds with the “route reply” (see
below). The choice to broadcast is made in the case that A itself does not
know a route to D; it sends a route reply if it already knows a route to D.
Finally if A has already received and broadcasted or responded to a RREQ
to D it simply ignores it.1

Route Reply (RREP). If R is the destination D or knows a route to D then
A unicasts a RREP back to the originator of the corresponding RREQ, with
the information about the number of hops to D.

Hello messages are used to establish 1-hop neighbours. A node executing a
Hello simply broadcasts a message; any node that picks it up establishes a
1-hop connection.

Route Error (RERR). As mentioned above, WMNs are based on wireless
networks with changing topology. Therefore links can be lost. When a link
break in an active route is detected, a RERR message is used to notify other
nodes that the loss of that link has occurred.2

3 Algebraic Approaches for Routing Protocols

We are not the first who want to use algebraic techniques to describe routing
procedures. Most of the purely algebraic approaches are done by Sobrinho and
Griffin [22,23,10,9]. It seems that Sobrinho was the first who brought algebraic
reasoning into the realm of hop-by-hop routing [22]. He uses algebraic properties
to argue about the relationship between routing algorithms and Dijkstra’s short-
est path algorithm. The author states that he follows an algorithmic approach
while others use a matrix approach [4]. On the other hand, Griffin uses algebraic
structures like semigroups and semirings for the analysis of path vector protocols
like the Border Gate Protocol BGP.

In fact, the above mentioned matrix approach is older still and was already
used by Backhouse and others [3]. The next evolutionary step of the matrix ap-
proach was taken by Kozen [14] who showed that n × n-matrices over Kleene
algebras again form a Kleene algebra. He was able to show the correctness of
a simple algorithm for reflexive transitive closure purely algebraically, in addi-
tion to establishing the relationship between matrix algebra and algorithms for
all-pair shortest path algorithms. Later, Möller used test elements—now well-
established in semirings and Kleene algebra—to model nodes within the matrix

1 The RREQ handling is more complicated in the case of dealing with broken links.
2 We include this for completeness.
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algebra and to present algebraic versions of the algorithms of Dijkstra and Floyd-
Warshall [18]. Another area where matrix algebras can be applied is in static
program analysis. This was shown by Fernandes and Desharnais [8].

In this paper, we will extend the matrix approach aiming at a model for the
distance vector protocol AODV. In particular, matrices are used as represen-
tatives of (local) routing tables, and we formulate AODV control messages as
operations on routing tables. To the best of our knowledge, both Sobrinho and
Griffin consider static routing protocols, i.e. where routers are required. In this
setting link breaks are possible but changes in topology are not, unlike the con-
text for AODV where it is common for links to break and the underlying network
topology to change. Moreover, we are interested in modelling concrete actions
performed by AODV in an algebraic setting. Again to the best of our knowledge
this has not been done before. Interestingly, though path and distance vector pro-
tocols are different in practice, the underlying algebraic structures bear strong
similarities.

4 Semirings, Kleene Algebras and Extensions

In this section we briefly recapitulate the algebraic structures needed to model
AODV control messages.

It is well known that semirings and Kleene algebras model sequential composi-
tion, (non-deterministic) choice and finite iteration. They provide the appropri-
ate level of abstraction for modelling actions, programs or state transitions under
non-deterministic choice and sequential composition in a first-order equational
calculus. A first-order calculus allows the use of first-order automated theorem
provers to validate and verify properties. It has been shown that the algebraic
structures used are particularly amenable to automated reasoning [13].

An idempotent semiring (i-semiring) is a quintuple (S,+, ·, 0, 1) such that
(S,+, 0) is an idempotent commutative monoid, (S, ·, 1) is a monoid, multiplica-
tion distributes over addition from the left and right and 0 is a left and right zero
of multiplication. The natural order ≤ on S is given by a ≤ b ⇔df a + b = b.
It induces an upper semilattice in which a + b is the supremum of a and b, and
0 is the least element.

A Kleene algebra is an idempotent semiring S extended by an operation
∗ : S → S for iterating an element an arbitrary but finite number of times.
Such an operation has to satisfy the star unfold and the star induction axioms

1 + a · a∗ = a∗ , b + a · c ≤ c⇒ a∗ · b ≤ c ,

1 + a∗ · a = a∗ , b + c · a ≤ c⇒ b · a∗ ≤ c .

If elements of semirings/Kleene algebras characterise single transitions, whole
transition systems are usually encoded in matrices. To calculate with matrices
we recapitulate a well known result:

Theorem 4.1. Standard operations of matrix addition and multiplication turns
the family M(n,K) of n × n matrices over a Kleene algebra K into a Kleene
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algebra again; the zero matrix is neutral w.r.t. +, and the identity matrix I w.r.t.
multiplication.

A proof can e.g. be found in [15], the techniques used are based on preliminary
work by Conway [5] and Backhouse [2].

Tests of a program or sets of states of a transition system can also be modelled
in this setting. A test in an i-semiring S is an element of a Boolean subalgebra
test(S) ⊆ S such that test(S) is bounded by 0 and 1 and multiplication · coincides
with lattice meet. We will write a, b, . . . for arbitrary semiring elements and
p, q, . . . for tests. Moreover, ¬p denotes the complement of p in the Boolean
subalgebra. An important property (e.g. [6]) of tests is

p · a · q ≤ 0 ⇔ a · q ≤ ¬p · a . (2)

In the matrix model, the maximal test set contains all diagonal matrices with
tests of the underlying algebra on its diagonal. Hence Theorem 4.1 also holds
for Kleene algebras with tests.

Idempotent semirings admit at least the test algebra {0, 1} and can have
different test algebras. On test semirings one can define a generalised notion of
the weakest liberal precondition wlp (see [19]). This is achieved by defining a
box-operator | ] : S �→ (test(S) �→ test(S)) by

p ≤ |a]q ⇔ p · a · ¬q ≤ 0 , and |a · b]p = |a](|b]p) .

The diamond | 〉 is the de Morgan dual of this operation, i.e., |a〉p = ¬|a]¬p.
This operator will be used to determine whether there is a route from p to q in
a (checking p ≤ |a〉q). An important property of |a〉p is that it is the least left
preserver of a · p. In particular, we have

|a〉p · a · p = a · p . (3)

Note that the diamond- and the box-operator bind stronger than addition and
multiplication. Test semirings equipped with | ] and | 〉 are called modal. Modal
semirings can easily be extended to modal Kleene algebras without any further
assumptions.

5 Routes and Routing Tables

A routing table is a data structure (often in the form of a table or vector)
that lists the routes to network destinations and, most often, also additional
information like metrics, sequence numbers or knowledge about the topology.

In classical networks/protocols a routing table is stored in a central component
like a router. Reactive network protocols like AODV use a different approach:
Each component has its own routing table. This avoids the existence of a central
component and is therefore less prone to computer failures like crashes: If a
single component crashes the remaining components can still communicate.
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In AODV, each component of an arbitrary routing table stores for a known
destination, the next node (where to send the packet), the length (hop count) of
the route, information about the freshness of a route and some more information.
For the moment we only focus on the former two components and omit the
remaining (cf. Sections 2 and 7):

– The next hop identifies a neighbour where the packet has to be sent to reach
a particular destination D.

– The hop count specifies the length of the path to D (i.e., number of nodes
that have to be visited)

The set of node names is denoted by N ; the set H gives a value to compare the
quality of two entries (for example the length).

Formally, a routing table entry (entry for short) is a pair (m,x) over two
totally ordered sets (N,�) and (H,"). On the set N ×H of all entries, we will
use the lexicographical ordering (again a total order) to measure the quality of
entries.

Next to these “proper” elements, we define two special entries (ε, 0) and
(ε,∞)3, both not elements of N ×H . The set IM =df N ×H ∪ {(ε,∞), (ε, 0)}
denotes the set of all possible route entries.

In AODV, the names are given as IP addresses; its ordering is straight forward.
A proper entry (m,x) ∈ N × H states that there is a path (its source and
destination will be encoded somewhere else) with next node m and length x;
(ε, 0) states that there is a trivial path of length 0; hence no next hop must be
given. In contrast to that, (ε,∞) denotes an entry that corresponds to a route
of infinite length, where also no next hop is given. This construct can be seen as
the statement of “no (known) route”.

Example 5.1. For the upcoming examples we use N =df {A,B,C, . . . } to-
gether with the lexicographical order. Moreover, we set H = IN−{0}. Assume
A ∈ N to be a name, then the pair (A, 5) means that there is a route (its source
S and its destination D will be encoded somewhere else) where the next node
on the path is A and the length is 5 (cf. Figure 2). ��

S

A

D

Fig. 2. A route from S to D of length 5

3 We only use pairs to be consistent with proper elements (m, x). The symbols (ε, 0)
and (ε,∞) just denote new elements and could be denoted differently.
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Next we want to define operations on entries. If there is a choice between two
routes going from the same source S to the same destination D, it is obvious that
one should prefer the shorter route; if the lengths of two entries are the same,
we take the one with the “better name” (using the ordering of names). Again,
this is expressed by defining choice (addition) via the lexicographical order4:

(m,x) + (n, y) =df

{
(m,x) if (x � y) ∨ (x = y ∧ m � n)
(n, y) otherwise ,

for (m,x), (n, y) ∈ N ×H being proper entries, where x � y ⇔df x �= y∧x " y.
For the previously defined special elements (ε, 0) and (ε,∞) choice is defined by

(ε,∞) + r =df r + (ε,∞) =df r ,
(ε, 0) + r =df r + (ε, 0) =df (ε, 0) ,

for all r ∈ IM. Intuitively, this means that (ε, 0) is the best entry; an entry of
length 0 is favoured over all other entries (and routes). In contrast to that (ε,∞)
is the worst.

Using pairs together with lexicographical ordering in the setting of inter-
net routing is not new; Sobrinho used similar pairs which yield “most-reliable-
shortest paths” [22]. However, he does not use the concept of next hops. This
concept is mentioned in [10].

Next to choice we also have to combine routes.

Example 5.2. Assume an entry (A, 5) from S to S′ and another entry (B, 7)
from S′ to D, then there is a “route” (A, 12) from S to D with next hop A. A
sketch is given in Figure 3. ��

S

A S′

B D

Fig. 3. Route composition

Formally, we assume N,H not only to be ordered sets, but also to offer binary
operations ◦ : N × N → N and • : H × H → H . Entry composition is then
defined by pointwise lifting. For (m,x), (n, y) ∈ N ×H that means

(m,x) · (n, y) =df (m ◦ n, x • y) .

The special elements are handled, for all r ∈ IM, by

(ε,∞) · r =df r · (ε,∞) =df (ε,∞) , (ε, 0) · r =df r · (ε, 0) =df r .

4 Note that we define the lexicographical order in a right-to-left way. That means that
we first compare the second component, whenever the second component is equal,
we have a closer look at the first one.
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In the examples, the operation ◦ coincides with “taking the left element”, i.e.,
m ◦ n = m for all m,n ∈ N and • with ordinary addition on natural numbers.

So far, we have defined a number of useful operations on routing table en-
tries. Under certain circumstances the above operations behave well and form a
semiring and a Kleene algebra; in general we get:

Theorem 5.3. Assume two totally ordered sets (N,�) and (H,") with an iso-
tone binary operation ◦ on N and a binary operation • : H × H → H that is
strictly isotone, i.e., a � b ⇒ (c • a � c • b) ∧ (a • c � b • c).

On the set IM = N×H∪{(ε,∞), (ε, 0)} we define addition and multiplication
as above.

(a) The structure S =df (IM,+, (ε,∞), ·, (ε, 0)) forms an idempotent semiring,
if x � x • y for all x, y ∈ H; its natural order coincides on N × H with
the lexicographical order (n, y) ≤ (m,x) ⇔df (x � y) ∨ (x = y ∧ m � n);
(ε,∞) is the least and (ε, 0) the greatest element.

(b) Under the conditions of Part (a) and setting r∗ =df (ε, 0) for all r ∈ IM
turns S into a Kleene algebra.

Proof (sketch). The proof is by straightforward calculations. Parts of Part (a)
were already stated and proved in [23].

(a) First, the lexicographical order of two total orders also forms a total order.
Define (ε,∞) as least and (ε, 0) as greatest element, gives yet another to-
tal order, where addition calculates the maximum. Hence it is obvious that
(IM,+, (ε,∞)) forms a commutative monoid. Properties of · immediately
follow by product construction (e.g. by Birkhoff’s HSP theorem of univer-
sal algebra). Hence only distributivity has to checked by hand. Here the
condition x � x • y is needed.

(b) Since in every Kleene algebra 1 ≤ a∗, defining Kleene star as (ε, 0) is neces-
sary. From this, the axioms can easily be checked. ��

Note that addition chooses the better route. Therefore the natural order reads
as “worse than”. In particular, (n, y) ≤ (m,x) means that the entry (n, y) is
worse than (m,x). Most often this implies that (m,x) has a smaller hop count
than (n, y).

For the concrete model used in the examples, the condition x � x+y obviously
holds since x, y ∈ IN−{0}. Therefore the structure forms a Kleene algebra and
axioms for finite iteration are available. The test algebra is discrete, i.e., it only
consists of the two constants. The additional condition is not arbitrary, it even
seems to be crucial for routing protocols since in [22] a similar property is used.

So far we only had a look at routing table entries. However, in general we
are interested in sets of entries, where each route/entry also has a source and a
destination. To model whole sets we use n×n matrices over entries. An entry at
position i, j then corresponds to a route from i to j. To use matrices, we have to
assume that the set of names is finite. In reality, this is not a restriction at all,
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since there can only be a finite number of nodes in a given network.5 Each row
of a routing table corresponds to a local routing table of a node. A routing table
can therefore be seen as a “snapshot” of the whole network, where all node’s
routing tables are joined.

Example 5.4. Assume the connectivity graph depicted on the left hand side of
Figure 4 and the arbitrary chosen routing table on the right.

A

B C

D

E

0
BBBB@

A B C D E

A (ε, 0) (B, 1) (B, 2) (ε,∞) (ε,∞)
B (A, 1) (ε, 0) (C, 1) (ε,∞) (ε,∞)
C (ε,∞) (B, 1) (ε, 0) (ε,∞) (E, 1)
D (ε,∞) (ε,∞) (ε,∞) (ε, 0) (E, 1)
E (ε,∞) (ε,∞) (C, 1) (D, 1) (ε, 0)

1
CCCCA

Fig. 4. A simple network consisting of 5 nodes

Intuitively, the first entry (ε, 0) states that if A wants to send something to
A, there is nothing to do and the known path is “optimal”, i.e., it has length 0;
the entry (B, 2) in the middle of the first row states that A knows a route to C
with length 2. The next hop where A has to send the packet to is B. The entry
(ε,∞) indicates that no route is known. ��

In general a routing table is an element of the set M(n,K) of all n× n matrices
with elements in the Kleene algebra of routing tables presented before. Here,
n = |N | is given by the number of possible nodes.

Note that we restrict a routing table in no way. Therefore a node might not
even know all its neighbours. Moreover, there is no need of symmetry, i.e., A
knows a route to B does not imply necessarily that B knows a route to A. This
reflects the reality. However, it seems reasonable to assume that a routing table
has (ε, 0)-entries on its diagonal. This means that each node at the network
knows at least itself. Algebraically this is easily expressed by 1 ≤ a.

As stated before tests are subidentities. In our matrix model a test is a matrix
that has the entries (ε,∞) or (ε, 0) on its diagonal; all other entries of the matrix
are (ε,∞). Typically, a test is used to describe a set of nodes. Premultiplying
an arbitrary matrix (routing table) by a test selects certain rows; hence the
routing table information about particular nodes is selected. Postmultiplying
selects columns, i.e., the snapshopt is “restricted” to information of a particular
node or a set of nodes.

Looking at AODV, messages are sent throughout the network. Hence we have
to define neighbours in a network, where messages can be sent to. Obviously,
this is again done by a routing table.

5 For AODV for example this number is bounded by 232, the number of possible unique
IP addresses (http://en.wikipedia.org/wiki/IP address).
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A topology b is a special routing table which contains the identity as submatrix
(1 ≤ b) and also all available links between two nodes.

In our examples a topology contains all available one-hop connections.
Since we have shown that routing tables or, to be more precise sets of routing

tables form well-known algebraic structures we are now ready to abstract to
algebra and to model parts of AODV.

6 AODV Control Messages Algebraically

AODV is based on control messages sent through the network. As we will see
it is less important whether messages are broadcast or unicast. At the algebraic
level used, message sending can be expressed by

a + p · b · q · (1 + c) , (4)

where a, b, c are elements of an i-semiring S and p, q ∈ test(S). By distributivity,
Expr. (4) consists of three parts: a, p ·b ·q and p ·b ·q ·c. Informally, a describes the
system before the message is sent (hence it is not part of the message itself); it
can be seen as a snapshot which then, after the message has been delivered, is (if
possible) updated by the two other summands. Remember that addition chooses
the better route, hence it can be indeed interpreted as update. When a node p
receives an AODV control packet from a neighbour q it creates or updates its
routing table. If b represents the current topology, the equation p ·b ·q establishes
a 1-hop connection from p to q (if p and q are single nodes), i.e., p knows a path
to q. If p, q are sets of nodes, only those paths between p and q are established
that really exist in the topology. The third term (p · b · q · c) transmits knowledge
(encoded in an element or a routing table c) from q via the topology to p. In the
meaning of routing table updates this again reads the other way round. Since p
receives a message from q it can update its routing table with information of c.

Before modelling control messages we prove some useful properties about
messages in general. For that we define a function

msg(a, b, c) =df a + b · (1 + c)

for sending message c via b updating a; here b is either a given topology or it
can be restricted by senders and receivers as before. That means that b might
have the form p · b′ · q.
Proposition 6.1

(a) If the knowledge c and c′ is fixed (does not change when sending a message),
the order of sending does not matter, i.e.,

msg(msg(a, b, c), b′, c′) = msg(msg(a, b′, c′), b, c) .

(b) If different messages are sent via a shared topology b, the messages can be
sent in parallel, i.e.,

msg(msg(a, b, c), b, c′) = msg(a, b, c+ c′) .
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(c) If the same message is sent via different connections, connections can be
joined, i.e.,

msg(msg(a, b, c), b′, c) = msg(a, b + b′, c) .

(d) Sending c via b using different sets of senders p and p′ to receivers q and q′

is not interchangeable. We only have

msg(msg(a, p · b · q, c), p′ · b · q′, c) ≤ msg(a, (p + p′) · b · (q + q′), c) .

(e) It is interchangeable if p is not connected to q′ via b (q′ ≤ |b]¬p) and p′ not
to q, i.e.,

q′ ≤ |b]¬p ∧ q ≤ |b]¬p′
⇒ msg(msg(a, p · b · q, c), p′ · b · q′, c) = msg(msg(a, p′ · b · q′, c), p · b · q, c) .

Morover, if q′ ≤ |b]¬p and q ≤ |b]¬p′ then

msg(msg(a, p · b · q, c), p′ · b · q′, c) = msg(msg(a, p′ · b · q′, c), p · b · q, c) ,
meaning that sending can be done in parallel.

In general, Part (d) cannot be strengthened to an equation since p might be able
to to send information to q′ and p′ to q. This behaviour is excluded when p is
not connected to q′ and p′ not to q (cf. Part (e)).

The proofs are straightforward algebraic calculations. Moreover, they can be
automated using first-order theorem provers—another advantage of an algebraic
approach. We used Prover9 [16] to verify these properties. The input files can
be found at [12].

A node following the rules of the AODV protocol often forwards messages.
When a content c is forwarded, it is also changed. For example, if p receives
knowledge c via b, it will not forward c but b · c. Sending a message c via
the topology b and forwarding it via another topology b′ can be encoded by
msg(msg(a, b, c), b′, b · c). Assuming 1 ≤ b′, we get

msg(msg(a, b, c), b′, b · c)
= a + b + b · c + b′ + b′ · b · c
≤ a + b′ + b′ · b + b′ · b · c
= a + b′(1 + b + b · c)
= msg(a, b′, b + b · c) .

Intuitively, this means that the knowledge after forwarding a message once
can be approximated by sending a single message via b′ with knowledge of the
first topology b and the learnt component b · c. Forwarding and broadcasting a
message through an entire network, is now forwarding the message again and
again. In algebra this yields long, but simple expressions (cf. the calculation
above). In the situation where the network topology does not change things
become much easier. Forwarding once yields now the equation

msg(msg(a, b, c), b, b · c) = msg(a, b, b · c) .
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Hence, by simple fixpoints arguments, broadcasting a message can be modelled
by (a single message)

msg(a, b, b∗ · c) = a + b · (1 + b∗c) = a + b + b · c + b · b · c + b · b · b · c + . . . .

The snapshot a is first updated with information from the topology b, then
by information c sent via the topology by a 1-hop connection, then by the infor-
mation c sent via a 2-hop connection and so on.

Before turning to the core messages of AODV, we look at a special case of
forwarding messages. We assume that there is a sender p which broadcasts the
empty message (c = 1) and that only those nodes that have actually received
information forward the messages . The first message is given by msg(a, b ·p, 1) =
a+b ·p. The receivers of this message are characterised by |b〉p. After forwarding
the received message once, the system looks like

msg(msg(a, b · p, 1), b · |b〉p, b · p)
= a + b · p + b · p + b · |b〉p + b · |b〉p · b · p
= a + b · (|b0〉p + |b1〉p) + b · p + b · b · p
= a + b · (|b0 + b1〉p) + b · (p + b · p) .

The first step is by definition and distributivity. The second step holds since
p = |1〉p = |b0〉p, by commutativity, distributivity, and Equation (3). The third
is again by distributivity and additivity of | 〉. Propagating the message through
the whole network can therefore again be expressed by using Kleene star.

a + b · |b∗〉p + b∗ · p . (5)

Using the assumption 1 ≤ a, this is equivalent to msg(a, b · |b∗〉p, b∗ · p).
Let us now formalise the core messages of AODV.

Hello Messages do not send any information (c = 1) except the one of the
connection. Moreover, if p sends such a message, every neighbour will receive it.
Hence it has the form a + b · p. In the matrix model terms like b · p restrict ma-
trices column-wise. In particular this means that only information about routes
towards p can be learned.

Example 6.1. Assume that the topology T is given by the graph of Figure 5;
we further assume that D is the test element representing the single node D
and that no node has any information about routes (except the trivial one to
themselves), i.e., we start with the identity matrix as snapshot. Then I + T ·D
models that D sends a hello message. The result is given on the right hand side
of Figure 5.

The resulting matrix shows that now the nodes B,C and E have established
routes to D. ��
Route Requests are a bit more complicated. On the one hand a node that
receives a message establishes a 1-hop connection as in the case of saying “Hello”.
This is the first iteration of the broadcast. However, if the neighbours do not have
information about the destination, they forward the message by broadcasting it
to their neighbours.
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A

B

D

C

E

F

0
BBBBBB@

A B C D E F

A (ε, 0) (ε,∞) (ε,∞) (ε,∞) (ε,∞) (ε,∞)
B (ε,∞) (ε, 0) (ε,∞) (D,1) (ε,∞) (ε,∞)
C (ε,∞) (ε,∞) (ε, 0) (D,1) (ε,∞) (ε,∞)
D (ε,∞) (ε,∞) (ε,∞) (ε, 0) (ε,∞) (ε,∞)
E (ε,∞) (ε,∞) (ε,∞) (D,1) (ε, 0) (ε,∞)
F (ε,∞) (ε,∞) (ε,∞) (ε,∞) (ε,∞) (ε, 0)

1
CCCCCCA

Fig. 5. Sending Hello Messages

Example 6.2. Assume the topology T and the snapshot of Figure 5—denoted
by X . Now we want to assume that A sends a RREQ looking for a path to D. As
first step the snapshot is updated by X +T ·A, where A is the test representing
the single node A; the result is

⎛⎜⎜⎜⎜⎜⎜⎝

A B C D E F

A (ε, 0) (ε,∞) (ε,∞) (ε,∞) (ε,∞) (ε,∞)
B (A,1) (ε, 0) (ε,∞) (D, 1) (ε,∞) (ε,∞)
C (A,1) (ε,∞) (ε, 0) (D, 1) (ε,∞) (ε,∞)
D (ε,∞) (ε,∞) (ε,∞) (ε, 0) (ε,∞) (ε,∞)
E (ε,∞) (ε,∞) (ε,∞) (D, 1) (ε, 0) (ε,∞)
F (ε,∞) (ε,∞) (ε,∞) (ε,∞) (ε,∞) (ε, 0)

⎞⎟⎟⎟⎟⎟⎟⎠
We see that the nodes B and C have learned about the connection to A. Now

these nodes should forward the request if they do not know D. However, both
already know a connection to D, hence nothing happens.

Using I as snapshot instead of the one of Fiure. 5 yields another outcome.

⎛⎜⎜⎜⎜⎜⎜⎝

A B C D E F

A (ε, 0) (B, 1) (C, 1) (ε,∞) (ε,∞) (ε,∞)
B (A, 1) (ε, 0) (ε,∞) (ε,∞) (ε,∞) (ε,∞)
C (A, 1) (ε,∞) (ε, 0) (ε,∞) (ε,∞) (ε,∞)
D (B,2) (B, 1) (C, 1) (ε, 0) (ε,∞) (ε,∞)
E (ε,∞) (ε,∞) (ε,∞) (ε,∞) (ε, 0) (ε,∞)
F (ε,∞) (ε,∞) (ε,∞) (ε,∞) (ε,∞) (ε, 0)

⎞⎟⎟⎟⎟⎟⎟⎠
The original message is forwarded and broadcasted until it reaches D. ��

Following the specification of AODV, the request is only forwarded if no route
to the destination is known. In other words only those nodes have to forward the
request who (at the beginning) do not have information about the destination q.
To achieve this, we modify the topology b and use b · |a]¬q instead.

Due to this, forwarding and broadcasting a whole request can be modelled by

a + b′ · |b′∗〉p + b′∗ · p ,

where b′ = b · |a]¬q.
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Of course this compact algebraic expression is again only possible if the topol-
ogy does not change. However, from a practical perspective it is reasonable to
assume that the topology ceases to change after some time.

Route Reply. For unicasting a route reply back, we restrict the topology or
more precisely the snapshot in such a way that it contains only the single path
back to the originator. At the moment we think that we need domain specific
knowledge for this task.

Example 6.3. For the previously presented matrix, the path from D back to A
can easily be constructed from the matrix: the information of D (the 4-th row)
shows that the next hop towards A is B. A similar argument shows that the
next hop from B towards A is A. Hence we would use a new topology that only
contains these single 1-hop connections:

⎛⎜⎜⎜⎜⎜⎜⎝

A B C D E F

A (ε, 0) (ε,∞) (ε,∞) (ε,∞) (ε,∞) (ε,∞)
B (A,1) (ε, 0) (ε,∞) (ε,∞) (ε,∞) (ε,∞)
C (ε,∞) (ε,∞) (ε, 0) (ε,∞) (ε,∞) (ε,∞)
D (ε,∞) (B,1) (ε,∞) (ε, 0) (ε,∞) (ε,∞)
E (ε,∞) (ε,∞) (ε,∞) (ε,∞) (ε, 0) (ε,∞)
F (ε,∞) (ε,∞) (ε,∞) (ε,∞) (ε,∞) (ε, 0)

⎞⎟⎟⎟⎟⎟⎟⎠
��

From an algebraic perspective, a route reply then becomes the same as a route
request; just using the modified topology. In other words we restrict the topology
to links that actually forward the request. In AODV each node that receives
a route request from p and has information about a route to the destination
q sends a reply. At least this set can be characterised purely algebraically by
|a〉q; |(b · |a]¬q)∗〉p. The first part selects all nodes that have information about
the destination q; the second one selects all nodes receiving information from p.
Nodes only receive a route request if there is a path from p where no intermediate
node has information about the destination.

Route Error messages are also spread throughout the network. Hence we can
use the same mechanism of message sending discussed before. However, as a
reaction of an incoming error message the routing table of a node has to be
modified. More precisely, an entry has to be invalidated or removed. On the
level of entries this can easily achieved by annihilation ((m,x) · (ε,∞) = (ε,∞)).
However, matrices select the best known route and any existing route would be
preferred over (ε,∞). There are two possible solutions, which we can only sketch
(due to lack of space). One is to define a meet operation � which selects the worst
route. This would require a Boolean algebra as underlying structure. Another
solution is to use some indication of freshness. In AODV this is achieved by
sequence numbers (see Section 2). As soon as sequence numbers are embedded,
invalidating route entries will come for free without changing the underlying
algebraic structure.
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To conclude this section, we show the feasibility of the algebraic approach and
show an important property of the AODV protocol.

Theorem 6.4. If a message (e.g. a route request) is broadcasted via a topology
b with 1 ≤ b and is not stopped (it is forwarded by all intermediate nodes), every
node (connected to the originator) knows all its neighbours and each node knows
a route to the originator of the message (if there is one). Mathematically this
means for a topology b,

q ≤ |b∗〉p ⇒ b · q + q ≤ a + b · |b∗〉p · (1 + b∗p) .

The proof can again be automated; it takes less than a second.
In particular this means that the backward routes are loop free. The same

argument then holds for the route request; hence whenever messages are for-
warded through a topology (which might be changed for sending RREPs) the
outcome is loop free.

However, as discussed in Section 2, loop freeness in general does not hold in
our simplified setting. It holds in Theorem 6.4 since we assume that the message
is broadcasted and forwarded throughout the entire network. To overcome this
deficit, the protocol AODV provides sequence numbers to indicate the freshness
of a route and information about validity of routes. Therefore a next step towards
a real characterisation of AODV is to integrate sequence numbers in our algebra;
however one crucial point is how to compose different routes (cf. Figure 3) with
different sequence numbers.

7 Conclusion and Outlook

The aim of the present paper is to present first steps towards an algebraic char-
acterisation for AODV. At the moment we are able to model the core parts
of AODV like sending route requests. However the model excludes substantial
details like sequence numbers.

The presented approach has several advantages: First, in its purely alge-
braic form simple algebraic calculations and reasoning with off-the-shelf theorem
provers is feasible; secondly, on the model (matrix) level, standard and well es-
tablished algorithms (like algorithms for matrix multiplication) can be used for
model checking or for determining case studies6; thirdly, since in the model el-
ements are routing tables, the connection between abstraction, “reality” and
implementation (e.g., [1]) can be seen quite easily.

The ultimate aim for future work is of course to completely specify AODV,
to verify properties like loop freeness and maybe even improve the protocol. To
achieve this goal, one has to add sequence numbers and route validity. However,
when extending the underlying algebra the axioms of Kleene algebra should
still be satisfied. In particular, the condition of Theorem 5.3 should hold. For

6 In fact, we used a simple Haskell implementation to produce the example of the
present paper.
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reasoning about concurrency in AODV (e.g., when sending a message) one might
extend the given algebra to a concurrent Kleene algebra [11].

So far we have modelled changing topology by separate matrices. Another
approach would equip connections by probability. This would not only allow
modelling changing topology, but also message losses during transmission. A
first thought is to use probabilistic Kleene algebra [17,24] instead of standard
Kleene algebra. However as pointed out by Takai and Furusawa in the erratum
to [24] probabilistic Kleene algebra is not closed under forming matrices.

A different approach to AODV might even be to look at the protocol from
another point of view. In the present paper we used a classical approach; how-
ever if one interprets nodes as individuals or agents, their routing tables as the
local knowledge, reactive protocols become multiagent systems where knowl-
edge about routes is distributed. Hence one should be able to adapt yet another
well-known theory to protocols.

Acknowledgement. We thank Peter Jipsen, Bernhard Möller and the
anonymous referees for useful comments and suggesting improvements to the
presentation.
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Abstract. We present a formalisation in the dependently-typed pro-
gramming language Agda2 of basic category and allegory theory, and of
generalised algebras where function symbols are interpreted in a param-
eter category. We use this nestable algebra construction as the basis for
nestable category and allegory constructions, ultimately aiming at a for-
malised foundation of the algebraic approach to graph transformation,
which uses constructions in categories of graph structures considered as
unary algebras.

The features of Agda permit strongly-typed programming with these
nested algebras and with relational homomorphisms between them in a
natural mathematical style and with remarkable ease, far beyond what
can be achieved even in Haskell.

Keywords: Dependently typed programming, algebras as data,
allegories of relational algebra morphisms, nested algebras.

1 Introduction

In the context of computation, algebras are frequently seen as models of data
types, with computations implementing their primitive and derived operations.
However, algebras also have uses as data values, with computations producing
new algebras from old. Examples for this are not only the Abstract State Ma-
chines (originally “Evolving Algebras”) of Gurevich [13,14], but also any graph
data structures, which can be considered as (typically unary) algebras. The “al-
gebraic approach” to graph transformation [6] in particular takes that point of
view, and applies abstractions from category theory to define and reason about
graph transformation systems.

In this paper, we explore a flexible formalisation of aspects of relational cat-
egories and universal algebra in the dependently-typed programming language
(and proof checker) Agda2 [26], leading up to allegories of “relational homomor-
phisms” between algebras, technically also known as bisimulations.

We start with an introduction to essential features of Agda2 (in the following
just referred to as Agda) and its current standard library, and then (Sect. 3) sum-
marise our formalisation of relation algebraic operations for the standard concept
of relations in Agda. In Sect. 4 we turn to fine-grained, universe-polymorphic
formalisations of categories and allegories, and elaborate more on the topics of
domain (Sect. 5) and restricted residuals (Sect. 6). Our generalised formalisation
of algebras is summarised in Sect. 7. We discuss some related work in Sect. 8.
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The Agda theories discussed in this paper are available on-line at the URL
http://RelMiCS.McMaster.ca/˜kahl/RATH/Agda/.

2 Introduction to Agda: Types, Sets, Equality

The Agda home page1 states:
Agda is a dependently typed functional programming language.

It has inductive families, i.e., data types which depend on values, such as the
type of vectors of a given length. It also has parametrised modules, mixfix
operators, Unicode characters, and an interactive Emacs interface which can
assist the programmer in writing the program.

Agda is a proof assistant. It is an interactive system for writing and
checking proofs. Agda is based on intuitionistic type theory, a foundational
system for constructive mathematics developed by the Swedish logician Per
Martin-Löf. It has many similarities with other proof assistants based on
dependent types, such as Coq, Epigram, Matita and NuPRL.

Syntactically and “culturally”, Agda is quite close to Haskell. However, since Agda
is strongly normalising and has no � values, the underlying semantics is quite dif-
ferent. Also, since Agda is dependently typed, it does not have Haskell’s distinc-
tion between terms, types, and kinds (the “types of the types”). The Agda constant
Set corresponds to the Haskell kind *; it is the type of all “normal” datatypes. For
example, the Agda standard library defines the type Bool as follows:

data Bool ∶ Set where true ∶ Bool
false ∶ Bool

Since Set needs again a type, there is Set1, with Set ∶ Set1, etc., resulting in a
hierarchy of “universes”. Since Version 2.2.8, Agda supports universe polymor-
phism, with universes Set i where i is an element of the following special-purpose
variant of the natural numbers:

data Level ∶ Set where zero ∶ Level
suc ∶ (i ∶ Level) → Level

With this, the conventional usage turns into syntactic sugar, so that Set is now
Set zero, and Set1 = Set (suc zero). The standard library uses “⊔” for maximum
on Level; in our development, we systematically rename this to “⊍”, so that we
use “⊔” as join in the inclusion order of morphisms, as customary in abstract
relation algebra [28,27].

With universe polymorphism enabled, we may quantify over Level-typed vari-
ables that occur as Level arguments of Set. Universe polymorphism is essential
for being able to talk about both “small” and “large” categories or relation alge-
bras, or, for another example, also for being able to treat diagrams of graphs and
graph homomorphisms as graphs again. We therefore use universe polymorphism
throughout this paper.
1 http://wiki.portal.chalmers.se/agda/

http://wiki.portal.chalmers.se/agda/
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For example, the standard library includes the following definition for the
universe-polymorphic parameterised Maybe type:

data Maybe {a ∶ Level} (A ∶ Set a) ∶ Set a where just ∶ (x ∶ A) →Maybe A
nothing ∶ Maybe A

Maybe has two parameters, a and A, where dependent typing is used since the
type of the second parameter depends on the first parameter. The use of {...}
flags a as an implicit parameter that can be elided where its type is implied by
the call site of Maybe. This happens in the occurrences of Maybe A in the types
of the data constructors just and nothing: In Maybe A, the value of the first,
implicit parameter of Maybe can only be a, the level of the set A.

The same applies to implicit function arguments, and in most cases, implicit
arguments or parameters are determined by later arguments respectively param-
eters. Frequently, implicit arguments correspond quite precisely to the implicit
context of mathematical statements, so that the reader may be advised to skip
implicit arguments at first reading of a type, and return to them for clarification
where necessary for understanding the types of the explicit parameters.

While the Hindley-Milner typing of Haskell and ML allows function definitions
without declaration of the function type, and type signatures without declaration
of the universally quantified type variables, in Agda, all types and variables need
to be declared, but implicit parameters and the type checking machinery used
to resolve them alleviate that burden significantly. For example, the original
definition writes only Maybe {a} (A ∶ Set a) ∶ Set a, since the type of a will be
inferred from a’s use as argument to Set. In this paper, we will rarely use this
possibility to elide types of named arguments, since we estimate that the clarity
of explicit typing is worth the additional “optical noise” especially for readers
who are less familiar with Agda or dependently-typed theories.

The “programming types” like Maybe can be freely mixed with “formula types”,
inspired by the Curry-Howard-correspondence of “formulae as types, proofs as
programs”. The formula types of true formulae contain their proofs, while the
formula types of false formulae are empty.

The standard library type of propositional equality has (besides two implicit
parameters) one explicit parameter and one explicit argument; the definition
therefore gives rise to types like the type “2 ≡ 1 + 1”, which can be shown to be
inhabited using the definition of natural numbers and natural number addition
+, and the type “2 ≡ 3”, which is an empty type, since it has no proof2.

data _≡_ {a ∶ Level} {A ∶ Set a} (x ∶ A) ∶ A → Set a where refl ∶ x ≡ x

The definition introduces types x ≡ y for any x and y of type A, but only the
types x ≡ x are inhabited, and they contain the single element refl {a} {A} {x}.

In Agda, as in other type theories without quotient types, sets with equal-
ity are typically modelled as setoids, that is, carrier types equipped with an
2 In Agda, almost all lexemes are separated by spaces, since almost all symbol combi-

nations form legal names. Underscores as part of names indicate positions of explicit
arguments for mixfix operators.
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equivalence. This closely corresponds to the non-primitive nature of the “equal-
ity” test (≡) ∶ Eq a ⇒ a → a → Bool in Haskell.

The standard library defines the following type of homogeneous relations:

Rel ∶ {a ∶ Level} → Set a→ (l ∶ Level) → Set (a ⊍ suc l)
Rel A l = A→ A→ Set l

A proof that _≈_ is an equivalence relation is a record containing the proofs of
reflexivity, symmetry, and transitivity:

record IsEquivalence {a l ∶ Level} {A ∶ Set a} (_≈_ ∶ Rel A l) ∶ Set (a ⊍ l) where
field refl ∶ {x ∶ A} → x ≈ x

sym ∶ {x y ∶ A} → x ≈ y → y ≈ x
trans ∶ {x y z ∶ A} → x ≈ y→ y ≈ z→ x ≈ z

A setoid is a dependent record consisting of a Carrier set, a relation _≈_ on that
carrier, and a proof that that relation is an equivalence relation:

record Setoid c l ∶ Set (suc (c ⊍ l)) where
field Carrier ∶ Set c

_≈_ ∶ Rel Carrier l
isEquivalence ∶ IsEquivalence _≈_

open IsEquivalence isEquivalence public

An Agda record is also a module that may contain other material besides its
fields; the “open” clause makes the fields of the equivalence proof available as if
they were fields of Setoid. This language feature enables incremental extension
of smaller theories to larger theories at very low notational cost.

The Preorder type of the Agda standard library adds a second preorder relation
to a Setoid, with reflexivity with respect to the setoid equality; for a Poset, that
preorder also needs to be antisymmetric with respect to the setoid equality.

3 Generalised Heterogeneous Concrete Relations

Concrete relations from a set A to another set B are normally defined to be
the subsets of the Cartesian product A × B. Equivalently, they can be seen as
characteristic functions of type (A × B) → Bool, or, in the curried variant, of
type A→ B→ Bool (function type construction associates to the right). In Agda,
it is more natural to replace Bool with a Set universe, with the understanding
that R a b is the type of proofs that the pair (a,b) is in R, that is, R a b is empty
if (a,b) is not in R, and inhabited if (a,b) is in R.

Therefore, we will use R ∶ A → B → Set for “small concrete” relations. This
relation type, A → B → Set, can also serve to represent other structures, for
example, G ∶ N → N → Set could represent a graph G with node type N, and
G n1 n2 would be the set of all edges from n1 to n2. Utilities defined for relations
with types like A→ B→ Set therefore can be applied in many different contexts.

Since categories can be seen as graphs with additional structure, we obviously
need full universe polymorphism, and define:
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Rel ∶ {i j ∶ Level} → (k ∶ Level) → Set i→ Set j→ Set (i ⊍ j ⊍ suc k)
Rel k A B = A → B → Set k

The order of parameters is a matter of taste; the standard library, which until re-
cently defined only types of homogeneous relations, now defines the same types,
but with a different argument order in the parameters of their constant REL. How-
ever, we have, by the definitions, type equality Rel k A B = REL A B k, so that
our Rel-based library is fully interoperable with the standard library, which does
not provide typical relation-algebraic operations and laws. (The AoPA library of
Mu et al. [25] does provide relation-algebraic operations and laws, but supports
heterogeneous binary relations only at the levels 0 and, to a lesser degree, 1).

From this definition of relation types, we completely follow the standard pro-
cedure to formalisation of concrete relations in dependent type theory; inclusion,
and equality of relations as derived from inclusion are defined as follows:

_⊆_ ∶ {i j k1 k2 ∶ Level} {A ∶ Set i} {B ∶ Set j}
→ Rel k1 A B →Rel k2 A B→ Set (i ⊍ j ⊍ k1 ⊍ k2)

P ⊆ Q = ∀ {x y} → P x y→ Q x y

_≑_ ∶ {i j k1 k2 ∶ Level} → {A ∶ Set i} → {B ∶ Set j}
→ Rel k1 A B →Rel k2 A B→ Set (i ⊍ j ⊍ k1 ⊍ k2)

R ≑ S = (R ⊆ S) × (S ⊆ R) -- × encodes logical conjunction ∧

Due to universe polymorphism, we could also have declared (equivalently):
_⊆_ ∶ {i j k1 k2 ∶ Level} {A ∶ Set i} {B ∶ Set j}

→ Rel (i ⊍ j ⊍ k1 ⊍ k2) (Rel k1 A B) (Rel k2 A B)

These relations on Rel-relations are then used to define Setoids and Posets of
Rel-relations. However, since Rel deals directly with Sets, not with setoids, the
identity relation has to be based on propositional equality, but that provided by
the standard library, _≡_ presented in Sect. 2, forces the Level of its arguments
onto its result, so we provide our own fully universe-polymorphic variant:

data _≡≡_ {k a} {A ∶ Set a} (x ∶ A) ∶ A→ Set k where ≡≡-refl ∶ x ≡≡ x

With this, we can define universe-polymorphic identity relations:

idR ∶ {k i ∶ Level} {A ∶ Set i} → Rel k A A
idR = _≡≡_

In the module hierarchy Relation.Binary.Heterogeneous, we define standard
relation-algebraic operations and properties, and prove the relevant laws in par-
ticular to be able to implement the abstract theories presented in Sect. 4.

4 Semigroupoids, Categories, Allegories, Collagories

We present a relatively fine-grained modularisation of sub-theories of distribu-
tive allegories, following our work on using semigroupoids to provide the the-
ory of finite relations between infinite types, as they frequently occur as data
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structures in programming [19], and on collagories as foundation for relation-
algebraic graph transformation [20].

Semigroupoids are to categories as semigroups are to monoids — no identities
are assumed. The following definition is taken from [19], and will probably appear
to be quite conventional to readers familiar with the basics of category theory
(except perhaps for the argument order of composition):

Definition 4.1 A semigroupoid (Obj,Mor, src, trg, .,) is a graph with a set Obj
of objects as vertices, a set Mor of morphisms as edges, with src, trg ∶Mor→ Obj
assigning source and target object to each morphism (we write “f ∶ A → B”
instead of “f ∈ Mor and src f = A and trg f = B”), and an additional partial
operation “_ ., _” of composition such that the following hold:

– For f ∶ A → B and g ∶ B′ → C, the composition f ., g is defined iff B = B′, and
if it is defined, then (f ., g) ∶ A → C.

– Composition is associative, i.e., if one of (f ., g) ., h and f ., (g ., h) is defined,
then so is the other and they are equal.

For two objects A and B, the collections of morphisms f ∶ A → B is also called
the homset from A to B, and written Hom(A,B).

A morphism is called an endomorphism iff its source and target objects
coincide; an endomorphism R is called idempotent if R .,R = R.

From semigroupoids, we obtain more specialised theories by adding in par-
ticular identities (to obtain categories), converse, domain, and local ordering of
homsets, and their combinations. This continues with semi-lattice and lattice
properties for the homsets, and various coherence properties; the following is the
inclusion graph of most of our current theories, the most important of which will
be discussed in more detail in the remainder of this and the next two sections.

Semigroupoid

ConvSemigroupoidOrderedSemigroupoidCategory

ConvCategoryOrderedCategory

OSGC
OCC LSLSemigroupoid

SemiAllegory

Allegory

USLSemigroupoid

USLSGCUSLCategory

USLCCKleeneSemigroupoid

KleeneCategory

KCC

LatticeSemigroupoid

DistrLatSemigroupoid

SemiCollagory
Collagory

DomainSemigroupoid

OSGD

OCD

DistrAllegory

Residuals

RestrictedResiduals

DivAllegory
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Such a fine-grained modularisation automatically comes with some overhead in
comparison with larger, monolithic theories as used for example by Gonzalía [12].
It is interesting to see how the namespace management by Agda’s module system,
which includes nested modules and records considered as modules, minimises
that cost, and enables different approaches to achieving essentially the effect of
subtyping with extensible records, which are not available.

Using universe-polymorphism throughout our development gives us the flex-
ibility to use both “small” explicitly constructed examples, like the two-object
two-morphism category ● ⇉ ●, standard next-level “large” categories like Set and
Rel, and even larger categories. We use variable names i, j, k, k1, etc. for universe
levels.

As our way to deal with homsets (i.e., sets of morphisms from one object to an-
other) we choose to use the standard-library Setoid theory for individual homsets,
starting from a function Hom ∶ Obj → Obj → Setoid j k, and derive from this the
underlying function Mor ∶ Obj→ Obj→ Set j exposing the types of the morphisms,
and lifting the equality (i.e., the Setoid equivalence) into the global view:

module HomSetoid {i j k ∶ Level} {Obj ∶ Set i} (Hom ∶ Obj→ Obj→ Setoid j k) where
Mor ∶ Rel Obj j
Mor = Setoid.Carrier ○2 Hom -- using: f ○2 g = λ x y→ f (g x y)

infix 4 _≈_
_≈_ ∶ {A B ∶ Obj} → Rel (Mor A B) k
_≈_ {A} {B} = Setoid._≈_ (Hom A B)

This HomSetoid module also includes the lifted properties of the equality, since
for using the underlying Setoid properties, one would always need to identify the
relevant hom-setoid:

≈-refl ∶ {A B ∶ Obj} → {R ∶ Mor A B} → R ≈ R
≈-refl {A} {B} = Setoid.refl (Hom A B)

≈-sym ∶ {A B ∶ Obj} → {R S ∶ Mor A B} → R ≈ S→ S ≈ R
≈-sym {A} {B} = Setoid.sym (Hom A B)

≈-trans ∶ {A B ∶ Obj} → {Q R S ∶ Mor A B} → Q ≈ R→ R ≈ S→ Q ≈ S
≈-trans {A} {B} = Setoid.trans (Hom A B)

Equivalently, one could have derived the individual setoids from the global mor-
phism equality, which is essentially the path chosen by Gonzalía [12], and closer in
spirit to Def. 4.1. However, we believe the approach chosen here, with Hom primi-
tive instead of src and trg, is more natural in the dependently-typed context, where
src and trg are hardly ever needed since their results are typically already available
once their argument is, since they are part of the argument’s type:

src ∶ {A B ∶ Obj} →Mor A B→ Obj
src {A} { } = A
trg ∶ {A B ∶ Obj} →Mor A B→ Obj
trg { } {B} = B

Morphism composition is defined in the context of such a HomSetoid. Thanks
to universe-polymorphism together with the formulae-as-types view of relations,
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the standard-library type Transitive also provides the typing for composition: the
composition operator is a proof for higher-level transitivity of Mor. This typing
also turns composition into a total function, so that the definedness discussion
in Def. 4.1 does not need to be reflected here.

Due to the setoid setup, we need, besides associativity, also demand a con-
gruence property (defined using the standard-library type _Preserves2_→_→_).

We also show here one of the definitions of derived concepts that we include in
this module (many others are suppressed in this short summary): A morphism
I is a left identity if for all compatible morphisms R we have I � R ≈ R:

record CompOp {i j k ∶ Level} {Obj ∶ Set i} (Hom ∶ Obj→ Obj→ Setoid j k)
∶ Set (i ⊍ j ⊍ k) where

open HomSetoid Hom

infixr 9 _�_
field _�_ ∶ Transitive Mor

�-cong ∶ {A B C ∶ Obj}
→ ((_�_ {A} {B} {C}) Preserves2 _≈_→ _≈_→ _≈_)

�-assoc ∶ {A B C D} {f ∶ Mor A B} {g ∶ Mor B C} {h ∶ Mor C D}
→ ((f � g) � h) ≈ (f � (g � h))

isLeftIdentity ∶ {A ∶ Obj} →Mor A A→ Set (i ⊍ j ⊍ k)
isLeftIdentity {A} I = {B ∶ Obj} {R ∶ Mor A B} → I � R ≈ R

A semigroupoid is fully defined by the parameters and fields of a CompOp, and
we represent it as a dependent (record) product — the type of the second field
depends on the first field Hom.
record Semigroupoid {i ∶ Level} (j k ∶ Level) (Obj ∶ Set i) ∶ Set (i ⊍ suc (j ⊍ k)) where

field Hom ∶ Obj→ Obj→ Setoid j k
compOp ∶ CompOp Hom

open HomSetoid i j k Hom public
open CompOp compOp public

The last two open . . . public lines serve to re-export everything defined in the
(record) modules HomSetoid and CompOp. Since these re-exports do not con-
tribute to the essence of the formalisation, we suppress their rendering from now
on. However, these re-exports are essential in that they effectively hide the fact
that we modularised the definition of Semigroupoid — a future “open Semigroupoid”
brings also all the items defined in HomSetoid and CompOp into scope.

Following relation-algebraic terminology, we call the involution of self-dual
semigroupoids “converse”, and define it again in an independent building block
ConvOp, including the converse operator and its axioms as fields. Combining a
Semigroupoid with a ConvOp then produces a ConvSemigroupoid (not shown).

For illustrating the flavour of these developments, we also show here one im-
mediate consequence of the axioms (un˘-cong), the derived concept of symmetry,
and a proof that left identities are symmetric. Both proofs are presented in the
calculational style, using the mixfix operators ≈-begin_, _≈⟨_⟩_ and _◻ which
are variants of the calculational reasoning operators provided by the standard li-
brary, equipped with two additional implicit object parameters (similar to ≈-sym
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etc.) to enable calculational reasoning in homsets without having to specify the
homset explicitly.

record ConvOp {i j k ∶ Level} {Obj ∶ Set i}
(SG ∶ Semigroupoid {i} {j} {k} Obj) ∶ Set (i ⊍ j ⊍ k) where

open Semigroupoid SG

field _˘ ∶ {A B ∶ Obj} →Mor A B→Mor B A
˘-cong ∶ {A B ∶ Obj} {R S ∶ Mor A B} → R ≈ S → R ˘ ≈ S ˘
˘˘ ∶ {A B ∶ Obj} {R ∶ Mor A B} → (R ˘) ˘ ≈ R
˘-involution ∶ {A B C ∶ Obj} {R ∶ Mor A B} {S ∶ Mor B C}

→ (R � S) ˘ ≈ (S ˘ � R ˘)

un˘-cong ∶ {A B ∶ Obj} {R S ∶ Mor A B} → R ˘ ≈ S ˘ → R ≈ S
un˘-cong {A} {B} {R} {S} R˘≈S˘ = ≈-begin

R ≈⟨ ≈-sym ˘˘ ⟩ (R ˘) ˘
≈⟨ ˘-cong R˘≈S˘ ⟩ (S ˘) ˘
≈⟨ ˘˘ ⟩ S ◻

isSymmetric ∶ {A ∶ Obj} →Mor A A→ Set k
isSymmetric R = R ˘ ≈ R

isLeftIdentity-isSymmetric ∶ {A ∶ Obj} {R ∶ Mor A A}
→ isLeftIdentity R→ isSymmetric R

isLeftIdentity-isSymmetric {A} {R} left = ≈-begin
R ˘ ≈⟨ ≈-sym left ⟩ R � R ˘
≈⟨ �-cong1 (≈-sym ˘˘) ⟩ (R ˘) ˘ � R ˘
≈⟨ ≈-sym ˘-involution ⟩ (R � R ˘) ˘
≈⟨ ˘-cong left ⟩ (R ˘) ˘
≈⟨ ˘˘ ⟩ R ◻

For locally ordered semigroupoids, we replace the Setoid in the result type of Hom
with the stronger Poset, and therefore need to adapt this in the instantiations
of HomSetoid and CompOp. The local poset ordering relations are again collected
into a global parameterised relation, ⊑. The following is a flattened presentation
of the OrderedSemigroupoid definition — the original is composed from several
modules and records:

record OrderedSemigroupoid {i ∶ Level} (j k1 k2 ∶ Level) (Obj ∶ Set i)
∶ Set (i ⊍ suc (j ⊍ k1 ⊍ k2)) where

field Hom ∶ Obj→ Obj→ Poset j k1 k2

compOp ∶ CompOp i j k1 (posetSetoid ○2 Hom)

semigroupoid ∶ Semigroupoid Obj
semigroupoid = record {Hom = posetSetoid ○2 Hom; compOp = compOp}
open Semigroupoid semigroupoid hiding (Hom; compOp)

infix 4 _⊑_
_⊑_ ∶ {A B ∶ Obj} → Rel (Mor A B) k2 -- The morphism ordering.
_⊑_ {A} {B} = Poset._≤_ (Hom A B)

field �-monotone ∶ {A B C ∶ Obj} {f f’ ∶ Mor A B} {g g’ ∶ Mor B C}
→ f ⊑ f’ → g ⊑ g’ → (f � g) ⊑ (f’ � g’)

The definition and opening of semigroupoid here produces the illusion that an
OrderedSemigroupoid is a “Semigroupoid with a local order on each homset”, even
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though the definition has been structured in a different way. From now on we
will suppress the definitions of such subtheories, like semigroupoid here, if they
are not used inside the shown part of the enclosing definition.

Also included in OrderedSemigroupoid (but not shown) are proofs of the or-
dering properties expressed in terms of ⊑, one-sided monotonicity properties of
composition, and numerous derived concepts and laws, including properties and
types of idempotent subidentities.

An ordered semigroupoid with converse (OSGC) adds to its constituents the
monotonicity law for converse (and contains a large number of derived concepts
and lemmas, not shown here):

record OSGC {i ∶ Level} (j k1 k2 ∶ Level) (Obj ∶ Set i) ∶ Set (i ⊍ suc (j ⊍ k1 ⊍ k2)) where
field orderedSemigroupoid ∶ OrderedSemigroupoid j k1 k2 Obj
open OrderedSemigroupoid orderedSemigroupoid

field convOp ∶ ConvOp semigroupoid
open ConvOp convOp

field ˘-monotone ∶ {A B ∶ Obj} {R S ∶ Mor A B} → R ⊑ S → (R ˘) ⊑ (S ˘)

When defining upper and lower semilattice semigroupoids, we do not add the
join respectively meet operators directly to the range of Hom, since the standard
library currently only provides lattices, but not semilattices. Otherwise, these
definitions are straightforward and not shown.

Semi-allegories are, by analogy with semigroupoids, “allegories without iden-
tity morphisms”, i.e., lower semilattice semigroupoids with converse and domain
(see Sect. 5) satisfying the Dedekind rule:

record SemiAllegory {i ∶ Level} (j k1 k2 ∶ Level) (Obj ∶ Set i)
∶ Set (i ⊍ suc (j ⊍ k1 ⊍ k2)) where

field osgc ∶ OSGC j k1 k2 Obj
open OSGC osgc
field meetOp ∶ MeetOp orderedSemigroupoid

domainOp ∶ OSGDomainOp orderedSemigroupoid
open MeetOp meetOp
open OSGDomainOp domainOp

field Dedekind ∶ {A B C ∶ Obj} {Q ∶ Mor A B} {R ∶ Mor B C} {S ∶ Mor A C}
→ (Q � R ⊓ S) ⊑ (Q ⊓ S � R ˘) � (R ⊓ Q ˘ � S)

We now turn to categories, where the new ingredient is the operation assigning
an identity morphism to each object:

record IdOp (i j k ∶ Level) {Obj ∶ Set i} (Hom ∶ Obj→ Obj→ Setoid j k)
(_�_ ∶ Transitive (Setoid.Carrier ○2 Hom)) ∶ Set (i ⊍ j ⊍ k) where

open HomSetoid i j k Hom

field Id ∶ (A ∶ Obj) →Mor A A
leftId ∶ {A B ∶ Obj} → {f ∶ Mor A B} → (Id A � f) ≈ f
rightId ∶ {A B ∶ Obj} → {f ∶ Mor A B} → (f � Id B) ≈ f

This identity module can now be added easily to (ordered) semigroupoids to
produce the corresponding categories:
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– A Category consists of a Semigroupoid and an IdOp
– An OrderedCategory consists of an OrderedSemigroupoid and an IdOp.
– A ConvCategory consists of a ConvSemigroupoid and an IdOp; preservation of

identities by converse follows from the lemma shown in ConvSemigroupoid:

Id˘ ∶ {A ∶ Obj} → (Id {A}) ˘ ≈ Id {A}
Id˘ {A} = isLeftIdentity-isSymmetric leftId

– An OCC (ordered category with converse) consists of an OSGC and an IdOp.
– An Allegory is an OCC with a MeetOp satisfying Dedekind, and can be shown to

contain a SemiAllegory by defining a DomainOp based on:

dom ∶ {A B ∶ Obj} →Mor A B→Mor A A
dom R = Id ⊓ R � R ˘

Since the OCC theory exports so much material, it appears more natural to
use OCCs as starting point for defining allegories analogously to semiallegories
— the alternative would have been to start from semiallegories and work
analogously to the OCC definition, which in this case would have required
careful re-export of the OCC material since Agda currently does not permit
re-export of the same item via more than one interface.

– Similarly, a (Semi-)Collagory is a (Semi-)Allegory with a JoinOp and lattice dis-
tributivity.

– A DistrAllegory is a Collagory with least morphisms and zero laws.
In OCCs, we also have the standard relation-algebraic way of defining properties
like univalence ((R ˘ � R) ⊑ Id B), totality (Id A ⊑ (R � R ˘)), injectivity, etc., and
deriving laws for them. However, since most reasoning with these properties
immediately uses the identity laws of composition, the corresponding definitions
in OSGC typically make for shorter proofs, and we use those to define a proof-
carrying type of Mappings (all in OSGC):

isUnivalent ∶ {A B ∶ Obj} →Mor A B → Set (i ⊍ j ⊍ k2)

isUnivalent R = isSubidentity (R ˘ � R)

isTotal ∶ {A B ∶ Obj} →Mor A B→ Set (i ⊍ j ⊍ k2)

isTotal R = isSuperidentity (R � R ˘)

isMapping ∶ {A B ∶ Obj} →Mor A B→ Set (i ⊍ j ⊍ k2)

isMapping R = isUnivalent R × isTotal R

record Mapping (A B ∶ Obj) ∶ Set (i ⊍ j ⊍ k2) where field mor ∶ Mor A B
prf ∶ isMapping mor

The semigroupoid of mappings in an OSGC and the category of mappings in an
OCC are easily constructed (in module Categoric.MapSG):

MapSG ∶ {i j k1 k2 ∶ Level} {Obj ∶ Set i}
→ OSGC j k1 k2 Obj→ Semigroupoid (i ⊍ j ⊍ k2) k1 Obj

MapCat ∶ {i j k1 k2 ∶ Level} {Obj ∶ Set i}
→ OCC j k1 k2 Obj→ Category (i ⊍ j ⊍ k2) k1 Obj
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5 Domain

Domain can be defined in allegories as shown above; for weaker theories, Deshar-
nais et al. [9] axiomatised domain operators essentially in an ordering context (in
semirings and Kleene algebras), where the domain operator produces subidenti-
ties. A more recent alternative is the purely equational approach of Desharnais et
al. [7], which starts just from semigroups. We have formalised both approaches,
concentrating on the aspects that do not require complements.

Most of [7, Section 3] has been generalised to left closure semigroupoids :

field
dom ∶ {A B ∶ Obj} →Mor A B→Mor A A
dom-cong ∶ {A B ∶ Obj} {R S ∶ Mor A B} → R ≈ S→ dom R ≈ dom S
D1 ∶ {A B ∶ Obj} {R ∶ Mor A B} → (dom R) � R ≈ R
L2 ∶ {A B ∶ Obj} {R ∶ Mor A B} → dom (dom R) ≈ dom R
L3 ∶ {A B C} {R ∶ Mor A B} {S ∶ Mor B C} → (dom R) � dom (R � S) ≈ dom (R � S)
D4 ∶ {A B C} {R ∶ Mor A B} {S ∶ Mor A C}
→ (dom R) � (dom S) ≈ (dom S) � (dom R)

_≼_ ∶ {A B ∶ Obj} (R S ∶ Mor A B) → Set k -- The “fundamental order”
R ≼ S = R ≈ (dom R) � S

For the fundamental order ≼, we have been able to show some additional prop-
erties, namely that it is preserved by multiplication with domain elements from
the left, and that the domain semigroup axiom D3 implies monotonicity of dom
with respect to ≼ (proofs not shown):

dom�-≼monotone ∶ {A B C ∶ Obj} {Q ∶ Mor A B} {R S ∶ Mor A C}
→ R ≼ S→ ((dom Q) � R) ≼ ((dom Q) � S)

dom-D3-≼monotone ∶ {A B ∶ Obj} {R S ∶ Mor A B}
→ (dom ((dom R) � S) ≈ (dom R) � (dom S)) → R ≼ S→ dom R ≼ dom S

However, ≼-monotonicity of dom does not imply D3; the model searcher Mace4
[24] finds a four-element counter-example.

For the subidentity-based approach, we adapt the definitions of [9] to the
ordered semigroupoid setting:

record OSGDomainOp {i j k1 k2 ∶ Level} {Obj ∶ Set i}
(base ∶ OrderedSemigroupoid j k1 k2 Obj) ∶ Set (i ⊍ j ⊍ k1 ⊍ k2) where

open OrderedSemigroupoid base
field dom ∶ {A B ∶ Obj} →Mor A B →Mor A A

domSubIdentity ∶ {A B ∶ Obj} {R ∶ Mor A B} → isSubidentity (dom R)
dom-�-idempotent ∶ {A B ∶ Obj} {R ∶ Mor A B} → (dom R) � (dom R) ≈ dom R
domPreserves⊑ ∶ {A B ∶ Obj} {Q R ∶ Mor A B} → Q ⊑ R→ Q ⊑ (dom R) � Q
domLeastPreserver ∶ {A B ∶ Obj} {R ∶ Mor A B} {d ∶ Mor A A}

→ isSubidentity d→ (d � d ≈ d) → (R ⊑ d � R) → dom R ⊑ d
domLocality ∶ {A B C ∶ Obj} {R ∶ Mor A B} {S ∶ Mor B C}

→ dom (R � dom S) ⊑ dom (R � S)

Here, we show that this satisfies all the conditions of a domain semigroupoid, and
define domain minimality, which has been proposed by Desharnais and Möller
[8] for characterising determinacy in Kleene algebras.
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6 Restricted Residuals

Motivated by application to relations between infinite sets, where residuals (with
respect to composition) of finite relations typically have an infinite “uninteresting
part”, [19] introduced restricted residuals that characterise the finite “interesting
part”; they have also found applications to substitutions [22]. For ordered semi-
groupoids with domain dom and range ran, restricted residuals are distinguished
from standard residuals by the additional restr axiom:

field _/●_ ∶ {A B C} →Mor A C→Mor B C→Mor A B
/●-cancel-outer ∶ {A B C} {S ∶ Mor A C} {R ∶ Mor B C} → (S /● R) � R ⊑ S
/●-restr ∶ {A B C} {S ∶ Mor A C} {R ∶ Mor B C} → ran (S /● R) ⊑ dom R
/●-universal ∶ {A B C} {S ∶ Mor A C} {R ∶ Mor B C} {Q ∶ Mor A B}

→ Q � R ⊑ S → ran Q ⊑ dom R→ Q ⊑ S /● R

From the many properties of standard residuals (see for example [11]), a remark-
able number carries over to restricted residuals; we list these derived properties
without their proofs and without their implicit arguments:

/●-cancel-inner ∶ ran T ⊑ dom S → T ⊑ (T � S) /● S
/●-monotone ∶ S1 ⊑ S2 → S1 /● R ⊑ S2 /● R
/●-antitone ∶ R2 ⊑ R1 → dom R1 ⊑ dom R2 → S /● R1 ⊑ S /● R2

/●-cancel-middle ∶ (S /● R) � (R /● T) ⊑ S /● T
/●-cancel-� ∶ ran (S /● R) ⊑ dom (R � T) → S /● R ⊑ (S � T) /● (R � T)
/●-outer-� ∶ F � (S /● R) ⊑ (F � S) /● R
dom-/● ∶ dom (S /● R) ⊑ dom S
domS/●S≈domS ∶ dom (S /● S) ≈ dom S
ranS/●S≈domS ∶ ran (S /● S) ≈ dom S
S/●S-�-S ∶ (S /● S) � S ≈ S
S/●S-isTransitive ∶ isTransitive (S /● S)

(The property /●-cancel-middle has first been shown in [15].) Restricted right
residuals are defined dually, and the following laws hold for combining the two:

/●-twist ∶ dom (S /● R) ⊑ ran (T /● S) → S /● R ⊑ (T /● S) /● (T /● R)
/●-twist-down ∶ dom (S /● R) ⊑ ran (R /● S) → S /● R ⊑ (R /● S) /● (R /● R)
/●-twist-up ∶ S /● R ⊑ (S /● S) /● (S /● R)

7 Generalised Algebras

In the context of many-sorted algebras, a signature consists of a set of sorts and
a set of function symbols, each equipped with information about its argument
and result sorts. An algebra consists of interpretations of the syntactic elements
of its signature. Typically, sorts are interpreted as sets, and function symbols as
functions from the Cartesian products of the argument sort interpretations to
the target sort interpretation.

For a signature Σ, the type of Σ-algebras is then not a “small” Set, but a “large”
Set1. i.e., a member of the next universe encompassing Set. essentially since there
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are at least as many Σ-algebras as there are “small” Sets. This implies that we
cannot, at the same universe level, directly define an algebra which has a carrier
that is some set of algebras of some possibly different signature. A practical
example where this is desirable is algebras of graphs with graph operations,
where the graphs themselves are considered as unary algebras. Therefore, we
need a universe-polymorphic concept of Σ-algebras.

In addition to universe polymorphism, we also require shape polymorphism,
where a shape specifies the allowed arities of function symbols. The resulting
allegories of algebras satisfy different properties depending on these shapes (as
indicated):

data SHAPE ∶ Set where LIST ∶ SHAPE -- arbitrary arities: Allegory
MAYBE ∶ SHAPE -- only 0-ary and unary: Collagory
NELIST ∶ SHAPE -- not 0-ary: Allegory with zero laws
ONE ∶ SHAPE -- only unary: Distributive allegory

We introduce auxiliary definitions ShapedList, ShapeProduct and ShapeFunctor
etc. to deal with shape polymorphism, and define FunSig as type for the signa-
tures of single function symbols, where src is the argument sort list and has its
possible lengths determined by Shape:

record FunSig (Shape ∶ SHAPE) (Sort ∶ Set) ∶ Set where
field src ∶ ShapedList Shape Sort

trg ∶ Sort

A signature of a given Shape and with Sort as set of sorts and FSymb as set
of function symbols provides for each function symbol an individual signature
(FunSig):

Sig ∶ (Shape ∶ SHAPE) → (Sort ∶ Set) → (FSymb ∶ Set) → Set
Sig Shape Sort FSymb = FSymb→ FunSig Shape Sort

Furthermore, we also need category polymorphism, since we want to be able
to interpret our signatures over categories different from Set — in the graph
operation example mentioned above, we might want to move to some category
of graph homomorphisms.

For defining just an algebra, we need neither semigroupoid composition nor
ShapeProduct parallel composition of morphisms, and therefore declare only the
necessary parameters, which include the mapping objProd that takes a Shaped list
of semigroupoid objects and maps them to the corresponding product object:

record Algebra {Shape ∶ SHAPE} {Sort FSymb} (sig ∶ Sig Shape Sort FSymb)
{i j ∶ Level} (Obj ∶ Set i) (Mor ∶ Rel Obj j) (objProd ∶ ShapedList Shape Obj→ Obj)
∶ Set (i ⊍ j) where
field carrier ∶ Sort→ Obj -- interpretation of sorts

op ∶ (f ∶ FSymb) -- interpretation of function symbols
→Mor (objProd (mapShapedList Shape carrier (FunSig.src (sig f))))
( carrier (FunSig.trg (sig f)))
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Declaring open Algebra makes the field selectors carrier and op available unquali-
fied. This allows a quite concise definition of bisimulations, or relational algebra
homomorphisms, where the morphisms used as function symbol interpretations
are restricted to be mappings in an OSGC. Such a bisimulation is a sort-indexed
family of morphisms between the respective interpretations of each sort, together
with a proof of the bisimulation property:

record AlgBiSim
{Shape ∶ SHAPE} {Sort ∶ Set} {FSymb ∶ Set}
(sig ∶ Sig Shape Sort FSymb)
{i j k1 k2 ∶ Level} {Obj ∶ Set i}
(base ∶ OSGC j k1 k2 Obj)
(P ∶ ShapeProductSGFunctor Shape (OSGC.semigroupoid base))
(A ∶ Algebra sig Obj (OSGC.Mapping base) (ShapeProductSGFunctor.objProd P))
(B ∶ Algebra sig Obj (OSGC.Mapping base) (ShapeProductSGFunctor.objProd P))
∶ Set (i ⊍ j ⊍ k1 ⊍ k2)

where
open OSGC base
open ShapeProductSGFunctor P
field

hom ∶ (s ∶ Sort) →Mor (carrier A s) (carrier B s)
commutes ∶ (f ∶ FSymb)

→ morProd hom (FunSig.src (sig f)) � Mapping.mor (op B f)
⊑Mapping.mor (op A f) � hom (FunSig.trg (sig f))

As a conventional mathematical definition, this might be expressed as follows:

Definition 7.1 Let a signature Σ = (S,F, src, trg), an OSGC C with sufficient
direct products, and two abstract Σ-algebras A and B over C be given.

A Σ-bisimulation Φ from A to B is an S-indexed family of C-morphisms
Φs ∶ s

A
→ sB such that for every function symbol f ∈ F with f ∶ s1 ×⋯× sn → t

the following inclusion holds:

(Φs1 ×⋯×Φsn)
., fB ⊑ fA ., Φt .

As usual in such conventional mathematics, many parameters are left implicit,
and even where they are technically turned into implicit parameters in Agda,
they need to be explicitly listed in the definition. For example, in Def. 7.1 the
Shape of the signature is not mentioned explicitly at all, but, together with the
ShapeProductSGFunctor, subsumed in the phrase “with sufficient direct products”.

Composition of bisimulations is component-wise composition of the morphism
families; the necessary correctness proof is, due to explicit associativity steps
etc., a bit longer than in usual mathematical presentations, but quite readable
— prodComp is distributivity of the morphism part morProd of the Shaped list
product functor P over composition:

let homComp = λ s→ hom R s � hom S s in record
{hom = homComp
; commutes = λ f → let open FunSig (sig f) using (src; trg) in ⊑-begin

morProd homComp src � Mapping.mor (op C f)
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≈⟨ �-cong1 prodComp ⟩
(morProd (hom R) src � morProd (hom S) src) � Mapping.mor (op C f)

≈⟨ �-assoc ⟩
morProd (hom R) src � morProd (hom S) src � Mapping.mor (op C f)

⊑⟨ �-monotone2 (commutes S f) ⟩
morProd (hom R) src � Mapping.mor (op B f) � hom S trg

≈⟨ �-assocL ⟩
(morProd (hom R) src � Mapping.mor (op B f)) � hom S trg

⊑⟨ �-monotone1 (commutes R f) ⟩
(Mapping.mor (op A f) � hom R trg) � hom S trg

≈⟨ �-assoc ⟩
Mapping.mor (op A f) � hom R trg � hom S trg

≈⟨ ≈-refl ⟩
Mapping.mor (op A f) � homComp trg ◻}

From there, it is relatively straightforward to define the instances of the semi-
groupoid and category types introduced in Sect. 4.

8 Related Work

Our approach to categories with setoids of morphisms, but not of objects, derives
essentially from Kanda’s “effective categories” [23]; it is also used by Huet and
Saïbi [16] for their formalisation of category theory in Coq, and by Gonzalía [12],
who produced formalisations of concrete heterogeneous binary relations and of
Freyd and Scedrov’s allegory hierarchy [10] in Alf, a predecessor of Agda.

Mu et al. [25] have contributed Agda2 theories inspired by Bird and de Moor’s
Algebra of Programming [4]; they note the advantages that Agda2 brought to
their formalisations of concrete relations over the Alf formalisations of Gonzalía.

Jackson [17] formalised abstract algebra as used in computer algebra systems
in Nuprl, which uses a variant of type theory that provides sets, and therefore
does not need setoids. This work also does not include a general approach using
signatures.

Capretta [5] formalised universal algebra in Coq, with fixed encoding of the
sets of sorts and function symbols as finite natural number sets. Barthe et al. [2]
provide an in-depth discussion of different treatments of setoids.

9 Conclusion

Our extension of a treatment of binary heterogeneous relations similar to that of
Mu et al. [25] to full universe polymorphism as mentioned in Sect. 3 is a minor,
technical contribution which nonetheless constitutes a significant generalisation.

The semigroupoids and categories of Sect. 4 not only bring formalisations sim-
ilar to Gonzalía’s [12] into a current system, and into fully universe-polymorphic
shape; they also reflect recent developments towards finer granularity of these
theories. They are also a significant advance over the Isabelle theories of [18]
both in scope and in style of exposition: Besides of the more natural formal-
isation of categories in a dependently-typed system, Agda also enables more
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flexibility with structuring a theory hierarchy through arbitrary (sub-)module
opening, whereas the records underlying locales in Isabelle allow only extension
at predefined extension points. As a result, the Agda formalisation appears to
be much more maintainable.

Finally, our way of constructing allegories (etc.) of algebras from underlying
allegories seems to not have been formalised in a mechanised theorem prover
before. Doing this in Agda has proven quite satisfactory, since the language
combines natural mathematical expressiveness with a programming attitude.
Future work will continue to formalise material required for powerful relation-
algebraic graph transformation concepts [21], and will explore to use Agda’s
foreign-function interface to Haskell to combine verified graph transformation
algorithms in Agda with graphical user interfaces [29], or to use it in code gen-
eration back-ends [1].
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Abstract. We study a weak variant of omega algebra, where one of
the usual star induction axioms is absent, in the context of recursive
regular equations. We present abstract conditions for explicitly defining
the omega operation and use them for proving an algebraic variant of
Arden’s rule for solving such equations. We instantiate these results in
concrete models—languages, traces and relations—showing, for instance,
that the omega captures precisely the empty word property in regular
languages. Finally, we derive Salomaa’s axioms for the algebra of regular
events. This yields a sound and complete axiomatisation in which the
“regular” axioms are weaker than Kleene algebra.

1 Introduction

More than thirty years ago, Arden, Brzozowski, Salomaa and others developed
a beautiful and intriguingly simple algebraic approach to automata, regular lan-
guages and regular expressions. Arden associated automata with systems of re-
cursive language equations and provided a rule—Arden’s rule—for solving these
equations [1]. Brzozowski introduced residuals and language derivatives as a
simple algebraic tool for obtaining (minimal deterministic) automata from reg-
ular expressions [3]. Salomaa combined these techniques in an algebra of regular
events in which all valid identities of regular expressions can be derived. In
the derivation process, characteristic recursive equations for regular expressions
are constructed by equivalence preserving transformations within the algebra.
Arden’s rule is then used for solving these equations [14]. This approach had
considerable influence, for instance, on Milner’s development of CCS and the
π-calculus (cf. [12]). Today, however, it seems to be unknown except to a small
circle of specialists.

Continuing our work on termination and nontermination analysis in variants
of Kleene algebras [5,9], we revisit Arden and Salomaa’s approach to solving
regular equations from the point of view of omega algebras. These were intro-
duced as algebras of omega-regular events [4] to capture the equational theories of
omega-regular expressions and languages. They expand the regular operations of
union, concatenation and finite iteration, as axiomatised by Kleene algebras [11],
by an operation for infinite iteration. More specifically, we investigate a weak
variant of omega algebras in the context of regular languages; of linear recursive
equations over regular or Kleene algebra terms. We call these left omega algebras
since the usual right star induction axiom of Kleene algebra is absent.

H. de Swart (Ed.): RAMICS 2011, LNCS 6663, pp. 248–263, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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It is well known that Kleene algebra is sound and complete for the equational
theory of regular expressions [11], but the greater expressivity of omega algebra
yields new insights. It allows us to round up previous research on (non)termi-
nation and put it into a broader perspective. It motivates some interesting re-
search questions, as outlined at the end of this paper. Our main results are
as follows:

• We provide sufficient conditions for explicitly defining the omega operation
in left Kleene algebras and building left omega algebras as conservative ex-
tensions (more precisely, extensions by definition) of left Kleene algebras.

• We show that Arden’s rule from formal language theory, which cannot be ex-
pressed algebraically in Kleene algebra, is derivable both as a quasi-identity
and as an inference rule in left omega algebra. This abstract version of Ar-
den’s rule states that certain recursive regular equations, that is, linear re-
cursive equations in the language of Kleene algebras, have unique solutions.
We also show that the applicability condition for Arden’s rule (that a certain
omega term vanishes) has meaningful interpretations in various models.

• We specialise our abstract results to regular language models. Here, the
omega operation is boolean-valued, hence a predicate. It characterises pre-
cisely the empty word property, which holds if a language contains the empty
word. Arden’s rule for regular languages can be obtained from its abstract
relative via a simple length-increase argument. Analogous results are ob-
tained for trace and path algebras.

• We show that Salomaa’s axioms are derivable in left omega algebras. Conse-
quently, left omega algebras are sound and complete for the algebra of regular
events. The omega-free fragment of left omega algebras thus coincides with
the equational fragment of regular languages, which is decidable.

• Finally, we show that in relation semirings, the omega of an element vanishes
if and only if that element is wellfounded. Arden’s rule now specialises to a
unique extension property (cf. [7]), which we can derive, for the first time,
in a first-order setting.

Our results show that (left) omega algebras play an interesting role in formal
language theory and computational modelling, whenever a system is specified in
terms of recursive equations. They allow us to obtain explicit definitions of the
omega operator and to derive generic conditions for unique solutions of regular
equations by equational first-order reasoning. As so often with Kleene algebras
and related approaches, results that were previously fragmented across concrete
models can be obtained in an abstract, uniform and very simple way. The proof
of Arden’s rule, in particular, is almost trivial in this setting.

All calculational results in this paper have been formally verified by auto-
mated reasoning within the Isabelle/HOL theorem prover [13]. In this paper,
therefore, we only show proofs that we find interesting. The remaining ones can
be found online in the omega algebra file of our Isabelle repository for algebraic
methods [16].
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2 Left Omega Algebras

The algebras studied in this paper are based on idempotent semirings or dioids.
Dioids expanded by an operation of finite iteration are known as Kleene algebras.
Omega algebras are obtained by further expanding these by an operation of
infinite iteration.

Formally, a semiring is a structure (S,+, ·, 0, 1) over a set S such that (S,+, 0)
is a commutative monoid, (S, ·, 0) is a monoid, multiplication distributes over
addition from the left and right,

x · (y + z) = x · y + x · z, (x + y) · z = x · z + y · z,
and zero is a left and right annihilator with respect to multiplication,

0 · x = 0, x · 0 = x.

An idempotent semiring or dioid is a semiring in which the following additive
idempotency law holds:

x + x = x.

Every dioid is ordered by the usual order ≤ on the semilattice reduct (S,+).
The operations of addition and multiplication are isotone with respect to that
order and 0 is the least element.

Semirings and dioids satisfy a duality principle. The opposite of a semiring or
dioid can be formed by swapping the order of multiplication. Since all axioms of
semirings and dioids are transformed into axioms under opposition, the opposite
of a semiring or dioid is again a semiring or dioid and theorems are preserved
under opposition as well.

A left Kleene algebra is a dioid K expanded by a star operation ∗ : K → K
which satisfies the unfold axiom and induction axiom

1 + xx∗ = x∗ and z + xy ≤ y ⇒ x∗z ≤ y.

A Kleene algebra is a left Kleene algebra where the dual axioms 1+x∗x = x∗ and
z + yx ≤ y ⇒ zx∗ ≤ y hold, too. While the opposite of a Kleene algebra is also
a Kleene algebra, left Kleene algebras need not be closed under opposition [10].

A left omega algebra is a left Kleene algebra K expanded by an omega oper-
ation ω : K → K which satisfies the unfold axiom and the coinduction axiom

xω = xxω and y ≤ xy + z ⇒ y ≤ xω + x∗z.

An omega algebra is a left omega algebra that is also a Kleene algebra.
The operations of star and omega are intended to model finite and strictly

infinite iteration. Formally, the star is defined as a least fixpoint and the star in-
duction law provides the corresponding induction principle. Similarly, the omega
is defined as a greatest fixpoint with a corresponding law for coinduction. Ev-
ery omega algebra has a maximal element with respect to the natural order,
namely 1ω, whereas Kleene algebras need not possess maximal elements. We
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write 	 = 1ω. Omega algebras need not be closed under opposition. An im-
portant property is that all operations of (left) omega algebras are isotone with
respect to the natural order.

A hierarchical axiomatisation of all these structures and a large number of
facts, including a formalisation of the most important models, can be found in our
Isabelle repository [16]. More information about this repository and automated
theorem proving in algebras with Isabelle can be found in a tutorial paper [8].

3 Languages, Relations and Traces

In this paper, we mainly focus on the regular language model, the regular trace
model and the regular relational model of left Kleene algebras and left omega
algebras, which of course are also models of Kleene algebras and omega algebras.
By “regular” we mean that only the regular operations, which are given by the
signature of Kleene algebras, are used and only finite words and traces are con-
sidered. These models have been studied extensively in the literature. We follow
the definitions in [9] and refer to that publication for additional information. An
important distinction, however, is that the language, relation and trace models
considered in this text are not necessarily complete, that is, their boolean reducts
need not be closed under arbitrary infima and suprema.

To obtain strong statements, while proving theorems for left Kleene algebras
and left omega algebras, we construct counterexamples usually for Kleene alge-
bras and omega algebras.

Example 1. Regular languages form Kleene algebras. Let Σ be a finite set or
alphabet and let Σ∗ be the free monoid (set of all finite words) over Σ. A
language is a subset X of Σ∗. The structure (2Σ∗

,∪, ◦, ∗, ∅, {ε}) forms a Kleene
algebra under the standard regular operations of formal language theory:

– X ∪ Y is the set-theoretic union of the languages X and Y ,
– XY = {xy ∈ Σ∗ : x ∈ X and y ∈ Y },
– X∗ =

⋃
i≥0 X

i, where the powers of X are inductively defined.

This Kleene algebra is called the full language Kleene algebra over Σ. Each
subalgebra—not necessarily complete—of a full language Kleene algebra is a
Kleene algebra. We call these subalgebras language Kleene algebras over Σ. A
language is regular if it can be inductively generated from the empty language,
the empty string language {ε} and the singleton languages {a} for each a ∈ Σ
by applying the regular operations.

It is well known that regular languages can be represented by regular expres-
sions, and we usually do not distinguish between the two. Regular expressions
and Kleene algebras have the same signature. A classical result in Kleene algebra
shows that the above axioms for Kleene algebras are not only sound, but also
complete for the equational theory of regular languages or regular expressions,
which is also called the algebra of regular events [11]. Hence identities between
Kleene algebra terms are equivalent to equivalences between regular expressions,
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and they can be decided by finite automata. The proof of this theorem is based
on the fact that Kleene algebras are closed under matrix formation and these
matrices can represent finite automata. The standard constructions of automata
theory, automata from regular expressions, ε-elimination, determinisation and
minimisation, can then be carried out within Kleene algebra and Kleene’s theo-
rem becomes a theorem of Kleene algebra. These constructions, however, require
the presence of both the left and the right star induction axioms. Whether left
Kleene algebras are complete for the algebra of regular events is, as far as we
know, open.

Example 2. Binary relations form Kleene algebras. Let A be a set. The structure
(2A×A,∪, ◦, ∗, ∅, 1A) forms a Kleene algebra, where 2A×A denotes the set of all
binary relations on A, ∪ is set union, ◦ is relative product, ∗ is the reflexive-
transitive closure operation, ∅ is the empty relation and 1A the identity relation
on A. This Kleene algebra is called the full relation Kleene algebra over A. Each
subalgebra of a full relation Kleene algebra is a Kleene algebra; a relation Kleene
algebra over A.

Example 3. Sets of traces form Kleene algebras. A trace over a (finite) set P
and a (finite) set A is a finite sequence over (P ∪A)∗, in which the first and last
letter are in P and in which letters from P and A alternate. (P,A)∗ denotes the
set of all traces over P and A. The product of traces is a partial operation:

p0a0 . . . am−1pm · q0b0 . . . bn−1qn = p0a0 . . . am−1pnb0 . . . bn−1qn

if pm = q0, and it is undefined otherwise. The product T1 · T2 on sets of traces,
which is total, and the remaining regular operations can be defined as in the
language case (c.f. [9]). This turns 2(P,A)∗ into a Kleene algebra, the full trace
Kleene algebra over P and A. In particular, P is the multiplicative unit of this al-
gebra. Again, every subalgebra of a full trace Kleene algebra is a Kleene algebra;
a trace Kleene algebra.

Path algebras can be obtained from trace algebras by “forgetting” the elements
of A. They are very similar to trace algebras [9] and we therefore do not discuss
them any further in this paper.

Complete language, relation, trace and path Kleene algebras all have complete
boolean algebras as reducts, and since the regular operations are isotone, the map
λy.xy has a greatest fixed point by the Knaster-Tarski theorem.

Theorem 4. Every complete language, relation, trace or path Kleene algebra
can be expanded uniquely to an omega algebra.

4 Conditions for Defining Omega

This section provides conditions for explicitly defining the omega operation in
left omega algebras. These conditions extend, simplify and generalise previous
work on trace semirings [9].
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We call an element x of a dioid dense if x ≤ xx holds. In particular, every
multiplicatively idempotent element is dense, and every element above 1 is dense,
since 1 ≤ x if and only if x = x + 1. Therefore xx = (x + 1)x = xx + x ≥ x.
Subidentities in dioids, however, need not be dense—Nitpick, a counterexample
generator which is part of the Isabelle system, found a counterexample with
three elements—but they are dense in many models of interest.

We call an element x of a (left) omega algebra ω-trivial if xω = 0. The
following facts have been verified with Isabelle.

Lemma 5. Let x be a dense element of a left omega algebra. Then

(a) xω = x	,
(b) (x + y)ω = yω + y∗x	.

The following facts are immediate from Lemma 5(a) and because x	 = 	 for
all x ≥ 1.

Lemma 6. In every left omega algebra,

(a) 0ω = 0,
(b) 1 ≤ x⇒ xω = 	.

Lemma 5(a) and Lemma 6 show that the omega of many elements of left omega
algebras can be explicitly defined, in particular, that of all dense elements and of
all elements greater than 1. Lemma 5(b) can be turned into an abstract sufficient
condition for explicitly defining omega.

Proposition 7. Let x be an element of a left omega algebra that can be split as
x = x0 + x1, where x0 is dense and x1 ω-trivial. Then

xω = x∗1x0	.
Hence in every left omega algebra in which every element can be split into a
dense and an ω-trivial part, omega can be explicitly defined.

Of course, 0 is both dense and ω-trivial, hence in the above definition both x0

and x1 can be zero.
The following sections show that this splitting works in many important

models, in particular language, trace and path models. However, it fails in the
relational model. In the cases we consider, splitting is associated with a length-
increase argument. A more general investigation of this association and other
mechanisms for splitting elements is left for future research.

The property of ω-triviality can be related with an equivalent condition that
holds in arbitrary dioids. We call an element x of a dioid deflationary if

∀y.y ≤ xy ⇒ y = 0.

This is motivated by the fact that, in Bourbaki-Witt fixpoint theory, functions
on posets that satisfy y ≤ f(y) for all y are often called inflationary1.
1 Backhouse and Carré [2] write definite instead of deflationary.
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Lemma 8. An element of a left omega algebra is deflationary if and only if it
is ω-trivial.

This fact is already known for omega algebras [9]. The following fact rules out
that elements greater than one are deflationary.

Lemma 9. For every element x ≥ 1 in a dioid, the map λy.xy is inflationary.

It is well known that extensions of theories by definition are conservative ex-
tensions, that is, every statement of the restricted theory holds in its extension,
and every statement in the language of the restricted theory which holds in the
extended theory holds already in the restriction. In other word, extensions by
definition do not add expressive power.

Section 6 and Section 8 show that language and trace omega algebras are
conservative extensions of the respective Kleene algebras.

5 Arden’s Rule Abstractly

Arden’s rule is a fundamental tool of formal language theory [1]. To determine,
for instance, the language accepted by the automaton

���������	0

a, b

		
a ���������	1

a ���������	
������2

it can be translated into a system of recursive language equations

x0 = (a + b)x0 + ax1

x1 = ax2

x2 = 1

Arden’s rule yields a way of solving this system. The solution to the first
equation—which is recursive—is x0 = (a + b)∗ax1. Solutions for x1 and then
x2—which are not recursive—are obtained by substitution. In particular, we
obtain the solution x0 = (a + b)∗aa1 = (a + b)∗aa, which is, of course, the
regular expression corresponding to the automaton.

More generally, Arden’s rule states that, whenever a language denoted by a
regular expression x does not contain the empty word, if y = xy + z is valid,
then y = x∗z is valid. In other words, if a language x does not have the empty
word property, then the recursive equation y = xy + z has the unique solution
y = x∗z.

It should be evident that Arden’s rule is of general interest for modelling and
reasoning about computing systems in terms of systems of recursive equations.
The work of Salomaa [14] shows that Arden’s rule yields a simple algebraic
proof of one direction of Kleene’s theorem (the other one can be obtained nicely
and algebraically by using Brzozowski’s language derivatives [3]). Apart from
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Milner’s work mentioned in the introduction, also Backhouse and Carré’s study
of matrix algebras over regular algebras [2] rely heavily on Arden’s rule.

To provide a more general context for Arden’s rule we prove it abstractly in
left omega algebras and discuss some of its consequences and variants at the
algebraic level.

Theorem 10 (Arden’s rule). Let x be an ω-trivial element of a left omega
algebra. Then

y = xy + z ⇒ y = x∗z.

Proof. xy+ z ≤ y ⇒ x∗z ≤ y is the induction axiom of left Kleene algebra. So it
remains to show that y ≤ xy + z ⇒ y ≤ x∗z. By omega coinduction, y ≤ xy + z
implies y ≤ xω + x∗z, so y ≤ x∗z holds whenever xω ≤ x∗z, hence in particular
when xω = 0. ��
We display this proof only as an example for the simplicity and genericity of
algebraic calculations. A formal proof can be found in our repository. We are
indebted to one referee for pointing out that instead of x being ω-trivial we could
have used the weaker condition xω ≤ x∗z in the statement of Arden’s rule. We
have adapted our proof accordingly. While this weakening might be interesting
in its own right, ω-triviality corresponds more closely to the statement of Arden’s
rule in language theory.

Arden’s rule is often used as an inference rule which is also derivable in left
omega algebras due to standard properties of universal quantification.

Corollary 11. In left omega algebras, the following inference rule is derivable.

xω = 0 y = xy + z

y = x∗z

The next proposition shows that left omega algebras are very useful for deriving
consequences and variations of Arden’s lemma.

Proposition 12

(a) In left Kleene algebra, y = x∗z ⇒ y = xy + z.
(b) In left omega algebra, y = xy + z ⇔ y = x∗z if x is deflationary (ω-trivial).
(c) In left Kleene algebra (left omega algebra), ∀y, z.(y ≤ xy + z ⇒ y ≤ x∗z)

implies that x is deflationary (ω-trivial).
(d) In left omega algebra, ∀y, z.(y = xy + z ⇔ y = x∗z) if and only if x is

deflationary (ω-trivial).
(e) In left omega algebra, the equation y = xy+z has the unique solution y = x∗z

if and only if x is deflationary (ω-trivial).

Again, all proofs can be found in our repository. They are fully automated, which
further underpins the simplicity of the algebraic approach.

It is interesting to contrast Arden’s rule with the star induction rule which,
in left Kleene algebras, is equivalent to

xy + z = y ⇒ x∗z ≤ y.
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Accordingly, x∗z is the least solution of the equation y = xy + z in every left
Kleene algebra. But, as the next lemma shows, it need not be the only solution.

Lemma 13

(a) Every left Kleene algebra contains elements x, y and z such that y = xy+ z,
but y �= x∗z.

(b) In every left Kleene algebra, if 1 ≤ x, then y = xy+ z has solutions y = x∗w
for all elements w ≥ z.

(c) In some left Kleene algebras, for some elements x and z, the equation y =
xy + z has more than one solution.

Proof .

(a) Let x = y = 1 and z = 0. Then 1 = 1 · 1 + 0, but 1 �= 0 = 1∗ · 0.
(b) If 1 ≤ x, then λy.xy is inflationary, hence z ≤ xz ≤ x∗w and x∗ = xx∗.

Therefore xx∗w + z = x∗w + z = x∗w.
(c) Every bounded distributive lattice is a Kleene algebra bounded by 0 and 1.

Join is addition, meet is multiplication and x∗ = 1 for each element of x.
In this model, for every element w, xw + z solves the equation y = xy + z
since y = xy + z = x(xw + z) + z = xxw + xz + z = xw + z. It remains to
find w1 and w2 for which xw1 + z �= xw2 + z. These constraints are met, for
instance, by any chain where w1 > x > z > w2. ��

These last statements consider arbitrary fixpoints between the least and the
greatest one.

An interesting open question is whether deflationarity, instead of ω-triviality,
implies Arden’s rule already in (left) Kleene algebras, that is, for a signature
that contains only those operations that occur in the rule itself.

6 Omega and Regular Languages

The results of the previous sections immediately specialise to regular language
omega algebras over an alphabet Σ.

In this setting, the elements above 1 are those languages that contain the
empty word, that is, which have the empty word property.

Lemma 14. If a language L has the empty word property, then

(a) L is dense,
(b) Lω = Σ∗.

This is an immediate instance of Lemma 5 and the fact that all x ≥ 1 in a dioid
are dense.

Lemma 15. Languages that do not satisfy the empty word property are defla-
tionary.
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Proof. Assume that L does not have empty word property and let L′ �= ∅. Then
any word of minimal length in LL′ must be strictly greater than any word of
minimal length in L and therefore L′ �≤ LL′, that is, L is deflationary. ��
This algebraic characterisation of the empty word property has already been used
by Backhouse and Carré [2]. Their Theorem 5.2 proves the following corollary
(with respect to deflationary elements) for the special case of matrices over
regular languages, from which the statement for regular languages follows as a
subcase.

Corollary 16. Languages do not have the empty word property if and only if
they are deflationary (ω-trivial).

Proof. The only-if-direction is immediate from Lemma 15 and Lemma 8. The
if-direction is immediate from Lemma 9. ��
Now, obviously, every language L does or does not have the empty word prop-
erty. Hence the splitting condition of Proposition 7 is trivially applicable. The
following fact is then obvious from our abstract results.

Proposition 17. Every language (left) Kleene algebra can be uniquely expanded
into a language (left) omega algebra. For every language L,

Lω =

{
Σ∗ if L has the empty word property,
∅ otherwise.

Hence language omega algebras are extensions by definition of language Kleene
algebras.

It is important that “extension” means that the omega operation is defined on
regular languages, not that regular languages are expanded to omega-regular
languages. Unfortunately, the uses of “extension” in model theory and universal
algebra, where it means adding elements to models, and proof theory, where
conservative extensions expand signatures, may be confusing. As a consequence
of Proposition 17, the absence of the empty word property can be defined as an
identity in left omega algebra, whereas this is not possible in Kleene algebra,
where deflationarity, which is a quasi-identity, hence a universally quantified
equational Horn formula, could be used. A second consequence is important for
the following section.

Corollary 18. Language (left) omega algebras are conservative extensions of
language (left) Kleene algebras.

Therefore, if a theorem in the language of Kleene algebras holds in all language
omega algebras, it already holds in all language Kleene algebras.

Finally, Arden’s rule of formal language theory arises as an immediate conse-
quence of Corollary 16 and Theorem 10.

Lemma 19. If the language L does not have the empty word property, then the
equation Y = LY + L′ has the unique solution Y = L∗L′.
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Formally, of course, it can be written as a quasi-identity, which is not possible
in Kleene algebra. All the other abstract results from Section 4 and Section 5
hold in the language model, too.

7 Soundness and Completeness for Regular Languages

An abstract variant of Arden’s rule plays a prominent role as an axiom in Salo-
maa’s sound and complete axiomatisation for the algebra of regular events [14].
In this setting, soundness means that regular languages are models of Salomaa’s
axioms, hence all equations derived from these axioms hold when interpreted
in regular languages. Completeness means that all identities between regular
expressions—that is, identities denoting the same regular language—can be de-
rived from the axioms.

Salomaa essentially expands dioids by a star operation that satisfies the
axioms

1 + x∗x = x∗, (1 + x)∗ = x∗

and by the following inference rule for solving equations:

y = yx + z

y = zx∗
.

It can be applied whenever x does not have the empty word property. This last
rule is the opposite of Arden’s rule.

Proposition 20. Salomaa’s (dual) axioms are theorems of left omega algebra.

But because theorems of Kleene algebras and valid regular identities are pre-
served by opposition, the duals of Salomaa’s axioms yield a complete axioma-
tisation for the algebras of regular events, too. Technically this means that
Salomaa’s representation of regular expressions (or automata) in terms of re-
cursive equation must be dualised in order to use the axioms of weak omega
algebras. Algebras satisfying the duals of Salomaa’s axioms have been called
regular algebras by Backhouse and Carré [2].

Saloma’s axioms were criticised by Kozen for not being algebraic: Due to the
meta-level side condition “x does not have the empty word property”, Salomaa’s
variant of Arden’s rule is not preserved under substitution [11]:“Another way to
say this is that [Salomaa’s variant of Arden’s rule] must not be interpreted as
a universal Horn formula”. While this is certainly true in the context of Kleene
algebras, left omega algebras yield an algebraic axiomatisation.

Theorem 21. Left omega algebra is complete for the algebra of regular events:
Let s and t be two regular expressions over an alphabet Σ that denote the same
regular language. Then s = t is a theorem of left omega algebra.

Proof. Salomaa’s axioms are complete for the algebra of regular events [14], and
these axioms (more precisely their duals) are derivable in left omega algebra.
Hence left omega algebra is also complete. ��
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Theorem 22. Left omega algebra is sound for the algebra of regular events.

Proof. This holds because language omega algebras are conservative extensions
of language Kleene algebras. ��
Corollary 23. The equational theory of regular (omega-free) terms in left ome-
ga algebra is decidable.

By soundness and completeness, the free algebras of omega-free terms in the
class of omega algebras are isomorphic to regular languages. Equality between
these can be decided, for instance, by using automata, or by Salomaa’s procedure
for solving equations.

The completeness result in this section might seem bizarre, because it holds for
terms in a restricted signature and an algebra considered over a rather unnatural
model. But it is situated between Salomaa’s result (since it is algebraic) and
Kozen’s result (since it uses weaker Kleene algebra axioms); and it raises the
question whether a completeness result for the algebra of regular events and left
Kleene algebras is possible.

8 Omega and Traces

Trace omega algebras have, to some extent, been studied in [9]. The arguments
are similar to, but slightly different from language omega algebras.

In trace models, the elements between 0 and 1 are the subsets of P , that is,
sets of traces of length one. They form a boolean subalgebra and are therefore
multiplicatively idempotent, hence dense. A set of traces has been called test-free
if it does not contain a subset of P [9]. Each set of traces can be split in a subset
of P and a test-free subset (both possibly empty).

Lemma 24 ([9]). If a set of traces is test-free, then it is deflationary (ω-trivial).

A length-increase argument is again the key to proving this fact. It follows that
the omega operation can once more be explicitly defined.

Proposition 25. Every trace (left) Kleene algebra can be uniquely expanded to
a trace (left) omega algebra. For every set T of traces,

Tω =

{
T ◦ 	 if T ⊆ P ,
∅ otherwise,

where 	 denotes the set of all traces.

So trace omega algebras are extensions by definition of trace Kleene algebras
and therefore conservative extensions.

It is also obvious that a variant of Arden’s rule can be obtained for the trace
model which can be used for solving recursive trace equations, for instance in
the context of reactive system verification, where trace models are important.
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As already mentioned, a special case of trace omega algebras are path omega
algebras (cf. [2,9]). In path algebras, the elements between 0 and 1 are the sets
of paths of length one. Sets of paths can again be split into subsets of P and
test-free paths. The test-free paths are deflationary, and the omega of a set of
paths is that set composed with the set of all paths, if the set is a subset of
P and it is empty otherwise. All further results that hold of trace left omega
algebras also hold of path left omega algebras. Additional results about paths
dioids and their relationship to trace dioids can be found in [9].

9 Omega and Relations

Relation omega algebras differ from trace and language omega algebras in that
a length-increase argument for showing that an element is deflationary does not
work anymore.

In relational models, all elements above 1 are reflexive relations. Their omega
is, of course, 	 (the full cartesian product). Also, as in the case of trace models,
all elements below 1 are multiplicatively idempotent, hence dense.

Lemma 26. Each subidentity R of a relation left omega algebra satisfies

Rω = R ◦ 	.
Hence deflationary or ω-trivial elements must be irreflexive. It is also clear that
each relation can again be split into a subidentity and an irreflexive part. But
will Rω vanish for all irreflexive relations?

Lemma 27. There exists a relation dioid in which some irreflexive relation is
not deflationary.

Proof. Consider the full relation dioid over the booleans B = {0, 1}. The relation
R is depicted in the left-hand diagram below whereas the right-hand diagram
shows 	 = B2. It is easy to see that R ◦ 	 = 	 and, obviously, 	 �= ∅.

�������	0



�������	1�� �������	0

�� 


�������	1 ��

��
Hence the situation is more complex than in trace semirings.

However it turns out that in relation dioids, being deflationary means being
wellfounded, and we can prove this abstractly. The concept of wellfoundedness
has already been investigated in the context of domain semirings and Kleene
algebras with domain [6,5]. Formally, a domain semiring [6] is a semiring S
expanded by a domain operation d : S → S that satisfies

x ≤ d(x)x, d(xy) = d(xd(y)), d(x) ≤ 1,
d(0) = 0, d(x + y) = d(x) + d(y).

For relation semirings over a set a A, the domain operation models

d(R) = {(p, p) ∈ A×A : (p, q) ∈ R for some q ∈ A},
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which corresponds to the set of all states p at which the relation R is enabled.
It can be shown that the set d(S) of all domain elements forms a bounded dis-
tributive lattice with minimal element 0 and maximal element 1. In the relation
semiring, these elements can be identified with sets of states (formally, they are
subidentities). State spaces that form Boolean algebras can be obtained from an
alternative axiomatisation which entails the present one [6].

A Kleene star and omega operator can be added to the signature without any
need of modifying the domain axioms.

An element x of a domain semiring S is wellfounded if

p ≤ d(xp) ⇒ p = 0

holds for all p ∈ d(S). The expression d(xp) models the preimage of the set p
under the (abstract) action x, that is, the set of all elements in S which are
related by x with some element in p. If p ≤ d(xp), then the set p is closed under
x-actions, hence no element in p can have x-maximal elements. By the above
formula, therefore, only the empty set can (vacuously) have x-maximal elements.
But this means that, in the case of relations, x is wellfounded in the set-theoretic
sense (cf. [5] for further discussion and [16] for a formalisation).

The formula that expresses wellfoundedness is very similar to that expressing
deflation, and we will now show that under some abstract conditions, which
can easily be verified for relation semirings (and falsified for trace and language
semirings) [9], the two conditions are equivalent.

We assume a domain semiring S with a maximal element 	, that is, x ≤ 	
holds for all x ∈ S. In fact, such elements can be adjoined to any dioid. In
relation semirings over a set A, 	 = A×A. We further assume that the domain
semiring satisfies

d(x)	 = x	,
which in relation dioids immediately follows from the definition of the relative
product. This condition has been called the taming condition in [9].

Lemma 28. In every domain semiring with 	,

x	 = 0 ⇔ x = 0.

Proof. x	 = 0 ⇔ xd(	) = 0 ⇔ x1 = 0 ⇔ x = 0. ��
We can now show the main statement of this section.

Proposition 29. Let d(x)	 = x	 hold in a domain semiring with 	. An ele-
ment is wellfounded if and only if it is deflationary.

Proof. Assume that x is deflationary, that is, y ≤ xy ⇒ y = 0 holds for all y
and suppose that p ≤ d(xp). Then p	 ≤ d(xp)	 = xp	, hence p	 = 0 follows
from the assumption. But, by Lemma 28, this is the case if and only if p = 0.

Conversely, assume that x is wellfounded, that is, p ≤ d(xp) ⇒ p = 0 holds
for all p ∈ d(S), and suppose that y ≤ xy. Then d(y) ≤ d(xy) = d(xd(y))
holds because domain is isotone [6], and therefore d(y) = 0 by the assumption
of wellfoundedness. This is the case if and only if y = 0 [6]. ��
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Corollary 30. An element of a relation left omega algebra is wellfounded if and
only if it is ω-trivial.

Formally verified proofs of all the results in this sections can again be found in
our repository. More generally, it can be shown [5,9] that, in domain semirings,

Rω = ∇(R)	,
where ∇(R) is an element of d(A×A) that characterises all those elements of A
from which infinite R-chains emanate. Hence Rω can again be defined explicitly
in this setting.

Arden’s lemma, of course, holds in the relational setting.

Corollary 31. In relation left omega algebras, if R is wellfounded, then the
equation Y = R ◦ Y + S has the unique solution Y = R∗ ◦ S.

This fact has already been proved in [7], but in a higher-order setting and using
fixed point fusion. To our knowledge, ours is the first proof that is entirely within
first-order logic and which could be obtained by automated reasoning.

10 Conclusion and Future Work

We have studied left omega algebras both abstractly and on regular models
given by languages, traces, paths and relations. We derived abstract criteria
generalising Arden’s rule for solving systems of recursive regular equations, and
for defining the omega operation explicitly on interesting classes of models. We
linked left omega algebras with Salomaa’s axioms for the algebra of regular events
and showed that left omega algebras are sound and complete for this class. As
so often with Kleene algebra, a main achievement is certainly generality and
simplicity.

An important model that could not be discussed in this paper is formed by
the matrices over omega algebras, which themselves form omega algebras. Our
abstract results are, of course, valid in this setting, but particular criteria for
unique solvability certainly deserve further investigation.

In addition, the results obtained motivate further interesting research ques-
tions: Can an abstract version of Arden’s lemma be proved already in (left)
Kleene algebra, for instance by using deflationarity? Can the length-increase
argument for language, trace and path arguments be generalised? Can more
general conditions for splitting elements into dense and deflationary parts be
obtained? Is left Kleene algebra complete for the algebra of regular events? Is
omega algebra complete for the algebra of omega-regular events?

At least the last question has a positive answer: In a forthcoming paper we
show that Wagner’s complete axiomatisation of omega-regular languages [17]
is derivable in variants of left omega algebras [15]—see our repository for a
derivation of Wagner’s axioms—and that these algebras are sound for omega-
regular languages as well. The results in this paper are instrumental for dealing
with the regular parts of languages in the absence of the right induction axiom,
as in Wagner’s approach.
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Abstract. We show that a class of automata modulo simulation equiv-
alence forms a model of probabilistic Kleene algebra. We prove com-
pleteness of this model with respect to continuous probabilistic Kleene
algebras. Hence an identity is valid in continuous probabilistic Kleene al-
gebras if and only if the associated automata are simulation equivalent.

1 Introduction

Kleene algebras are a family of mathematical structures that are fundamental to
many computing applications. Variants for specific models and tasks including
processes (cf. [1]), probabilistic protocol analysis [16], program refinement [21]
or grainless concurrency [10] have been developed. The best understood variant,
which initiated this line of research, has been introduced by Kozen [12]. A clas-
sical result relates Kozen’s Kleene algebras to regular languages and the regular
expressions that represent them. Kozen has shown that the free algebras in this
class are isomorphic to regular languages [11]. In other words, regular languages
are models of this algebra—a soundness result—and every valid identity between
regular expressions can be derived from its axioms—a completeness result. Con-
sequently, the equational theory of Kozen’s Kleene algebras is decidable using
the standard procedures for regular expressions, for instance, finite automata.
Since this variant is also sound and complete with respect to the equational the-
ory of binary relations under the regular operations provided by Kleene algebra,
the decision procedure is also relevant for relation-based program analysis. It has
already been implemented in theorem provers such as Coq [2] and Isabelle [13].

Much less is known, however, about other variants of Kleene algebras, where
completeness results and decision procedures would be of comparable interest.
At least for variants without the star, which correspond to variants of near-
semirings, the situation is quite clear (cf.[9]). The free dioids, which are reducts
of Kozen’s Kleene algebras, are isomorphic to sets of strings. From the point of
view of process algebra, equality in this variant corresponds to trace equivalence.
It is easy to obtain the elements of the free algebras syntactically by normal form
computation, using the left distributivity axiom x(y + z) = xy + xz to rewrite
arbitrary term-trees into “polynomials”, that is, sums of products. It is also easy
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to see that terms can be interpreted as automata, and that determinising and
minimising them preserves equality with respect to the axioms. For reducts of
other variants, where the left distributivity law is absent, term normal forms
correspond to proper trees and equivalence is induced by simulation or bisimu-
lation. This yields a more fine-grained resolution of the nondeterministic choices
in computations.

In the presence of the Kleene star, the situation changes drastically and sim-
ple term normal forms no longer characterise the free algebras. In the case of
Kozen’s variant, minimal deterministic automata are used as “normal forms” for
Kleene algebra terms. Kozen’s completeness proof uses the fact that Kleene alge-
bras are closed under matrix formation and that finite automata can be encoded
as matrices. The operations of epsilon-elimination, determisation and minimisa-
tion of automata are shown to preserve equivalence within Kleene algebra. For
variants without the left distributivity law, Fokkink and Zantema prove a com-
pleteness results for a variant of near-semirings with iteration with respect to
bisimulation equivalence [6]. Furusawa and Takai adapt the matrix construction
to prove completeness of probabilistic Kleene algebras (without one of the zero
law) with respect to a class of regular tree languages [20]. Their result, however,
contains a gap1. Cohen uses a modification of Brzozowski’s technique of lan-
guage derivatives to construct a term model of probabilistic Kleene algebra [5].
Coalgebraically, these terms represent automata and the associated notion of
equivalence is induced by simulation. He also presents a tentative completeness
proof depending on Furusawa and Takai’s result. Finally, in these proceedings,
Furusawa and Nishizawa present a soundness and completeness result for the
complete semiring reduct of probabilistic Kleene algebras with respect to a cer-
tain class of multirelations [7]. It is well known that the Kleene star can be
defined explicitly in this setting, but the relationship with the star axioms of
probabilistic Kleene algebras is not further explored.

This paper adds another piece to the puzzle. In contrast to Cohen, we use
an explicit construction à la Kleene’s theorem to obtain an automata-theoretic
model of probabilistic Kleene algebra. We then use this model to prove com-
pleteness with respect to continuous or complete probabilistic Kleene algebras
and simulation equivalence. In contrast to Furusawa and Nishizawa’s approach,
particular emphasis is on representing the star. Also, automata yield a some-
what more fine-grained model than multirelations; the correspondence between
the two remains an interesting open question. Finally, through the automata-
correspondence, decision procedures for process algebras based on partition re-
finement [4] become available for continuous probabilistic Kleene algebras.

We believe that the techniques developed in this paper may be useful for
proving completeness in the non-continuous case. However, continuity is not
an unnatural restriction, since two of the most important models of probabilis-
tic Kleene algebras, namely expectation transformers [15] and up-closed multi-
reations [8] have this property.

1 http://www.sci.kagoshima-u.ac.jp/~furusawa/person/Papers/

correct_monodic_kleene_algebra.pdf

http://www.sci.kagoshima-u.ac.jp/~furusawa/person/Papers/correct_monodic_kleene_algebra.pdf
http://www.sci.kagoshima-u.ac.jp/~furusawa/person/Papers/correct_monodic_kleene_algebra.pdf
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2 Probabilistic Kleene Algebras

Probabilistic Kleene algebras [16,14] have been introduced for resolving nonde-
terministic choices as they occur, for instance, in probabilistic protocols that
involve adversarial scheduling. They are very similar to process algebras like
CCS or ACP, but do not consider parallelism and communication. Simulation
equivalence instead of bisimilarity is the underlying notion of equivalence. In
addition, a variant of the Kleene star axioms is used for modelling iteration.

Formally, a probabilistic Kleene algebra is a structure (K,+, ·, ∗, 0, 1), where

- (K,+, 0) is a commutative idempotent monoid,
- (K, ·, 1) is a monoid, where x · y will be simply denoted xy,
- 0 is a left and right annihilator (0x = 0 = x0),
- multiplication is right distributive and left subdistributive,

(x + y)z = xz + yz, xy + xz ≤ x(y + z),

- the star satisfies the left unfold and left induction axiom

1 + xx∗ ≤ x∗, xy ≤ y ⇒ x∗y ≤ y,

where the order is defined as usual in Kleene algebras, x ≤ y iff x + y = y.
The right induction axiom y(x + 1) ≤ y ⇒ yx∗ ≤ y is usually added, but our
completeness result does not depend on it. The main purpose of the right in-
duction axiom is to express x∗ as the supremum of the sequence ((x + 1)α)α,
where α ranges over ordinals. Left subdistributivity is equivalent to left isotonic-
ity x ≤ y ⇒ zx ≤ zy (right isotonicity follows from right distributivity). Basic
process algebras are obtained from probabilistic Kleene algebras essentially by
dropping left subdistributivity, whereas (left) Kleene algebras are obtained by
replacing it by a left distributivity axiom. As already explained these variations
account for the difference between bisimilarity, simulation equivalence and trace
equivalence and for tree-based versus trace-based models.

A probabilistic Kleene algebra K is continuous if multiplication is continuous
from the left and the right, that is, if it distributes over left and right directed
joins:

x(supD) = sup{xy | y ∈ D} and (supD)x = sup{yx | y ∈ D}
hold for all x ∈ K and directed sets D ⊆ K. In fact, we only need conditional
continuity, that is, only existing suprema of directed sets need to be preserved.

The star unfold and left induction law ensure that the least fixpoint of f(x) =
1 + ux exists. By continuity, it can be reached by iteration at the first infi-
nite ordinal, u∗ = supn∈N

fn(0). Moreover, vu∗v′ = supn vf
n(0)v′ because the

sequence fn(0) is directed.

Lemma 1. In every continuous probabilistic Kleene algebra

x∗ = sup
n∈N

(1 + x)n.
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Proof. First, x∗ = supn f
n(0). Second, the sequence (fn(0)|n) is increasing since

f is isotone. Hence fn(0) = (1 + x)n−1 holds by induction. ��
Lemma 2. The operation + is completely additive.

Proof. We prove a slightly more general fact for existing suprema. Consider
a family yi such that supi yi = y. Then supi(x + yi) ≤ x + y by isotonicity.
Conversely, if z ≥ x+ yi for all i, then z + x+ y ≥ x+ yi + x+ y = x+ y, hence
supi(x + yi) ≥ x + y. ��

3 An Automata-Based Model

This section presents a Kleene-style construction of an automata-theoretic model
for probabilistic Kleene algebras, hence a soundness result. It makes Cohen’s
coalgebraic construction, which is perhaps more elegant, more explicit. The link
between the two approaches is that the terms constructed in Cohen’s approach
can directly be interpreted as automata. Brzozowski’s original paper [3] and Rut-
ten’s review from a coalgebraic point of view [19] provide excellent introductions
for the case of bisimilarity. A minor difference to Cohen’s approach is that we
also need to check continuity.

As usual, a nondeterministic finite automaton (NFA) is a tuple (G,Σ, δ, i, F )
where G is a (finite) set of states, Σ a finite alphabet and δ ⊆ G×(Σ∪{ε})×G a
transition relation. ε denotes the empty word, i ∈ G the initial state and F ⊆ G
the set of final states. An automaton is accessible if every state is reachable from
the initial state and every state except the initial one reaches some final state.
We will only consider accessible automata.

We follow the standard construction in Kleene’s theorem and inductively in-
terpret terms of probabilistic Kleene algebras by NFAs. We do not explicitly
define terms, but we assume that the set of constants from which they are con-
structed yields the alphabet Σ of the associated automaton. Hence we use Σ
also to denote the set of all constants from which terms are built. We denote
the initial state by • and final states by ◦. We write  for a state which is both
initial and final.

Formally, we write G(s) for the automaton associated with term s. We induc-
tively define

- G(0) = •,
- G(1) =  ,
- for a ∈ Σ, G(a) = • a �� ◦ ,
- Given G(s) and G(t), G(s + t) is

•
ε

��













ε

���
��

��
��

�

G(s) G(t)



268 A. McIver, T.M. Rabehaja, and G. Struth

Here, the only initial state is • and the targets of the ε-transitions are the
former initial states of G(s) and G(t).

- Given G(s) and G(t), G(st) = G(s) ε �� G(t), where each final state of
G(s) is linked to the initial state of G(t) by an epsilon transition.

- Given G(s), G(s∗) is

 
ε ��

G(s)
ε

��

that is, each final state of G(s) is linked to  via some ε-transition.  is, in
turn, linked by an ε-transition to the initial state of G(s).

G is a homomorphism from probabilistic Kleene algebra terms to automata
under the operations corresponding to the constructions given. For instance,
G(s + t) induces the operation G(s) + G(t) on the automata G(s) and G(t).
But the operations constructed do not depend on the fact that the operation
was inductive. They are well-defined for arbitrary (accessible) automata. We
henceforth write G + H , GH and G∗ for arbitrary (accessible) automata G, H .

The automata corresponding to non-zero terms s+ t, st and s∗ are accessible
by construction, as the diagrams show. If one term is 0, then a node, from
which no final state is reachable, could be added. We always remove this node
and the edge leading to it. This preserves accessibility and we will show that it
does not influence soundness and completeness. Again, this applies to arbitrary
accessible automata as well; hence we may assume without loss of generality that
the operations G + H , GH and G∗ preserve accessibility.

In the construction, ε-transitions have been introduced. It is well known from
automata theory that such transitions can be removed without affecting ac-
ceptance. Here, the situation is different since the absence of left distributivity
induces a different notion of equivalence.

So we first define notions of simulation and simulation equivalence on the
accessible automata with ε constructed. We then verify that these automata un-
der the regular operations satisfy the axioms of continuous probabilistic Kleene
algebra with respect to simulation equivalence. Finally, we demonstrate that
standard ε-elimination from automata theory preserves simulation equivalence.

First we define ε(x), the ε-closure of state x, as the set of states which are
reachable by ε-transitions only from x. In particular, x ∈ ε(x). We also define

δax = {x′ | ∃y · y ∈ ε(x) ∧ x′ ∈ δay} and F = {x | ε(x) ∩ F �= ∅}

where δax = {x′ | (x, a, x′) ∈ δ}. This extended transition δ is the ε-closure of δ
and F . It contains those states leading to some final states by ε-transitions only.

Let G and H be automata. A relation R ⊆ G×H is a simulation if

- (iG, iH) ∈ R,
- for all a ∈ Σ, if (x, y) ∈ R and x′ ∈ δax then (x′, y′) ∈ R for some y′ ∈ δay,
- if (x, y) ∈ R and x ∈ FG, then y ∈ FH .
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We write G � H and say that H simulates G whenever there is a simulation
R ⊆ G × H . Simulations need not be total. There can be x ∈ G on which a
simulation is undefined. The reason is that in the second condition above, ε
transitions have not been considered. But every simulation R can be totalised
by setting R′ = R ∪ {(x, y) | R.x = ∅ ∧ ∃x′ · (x ∈ ε(x′) ∧ (x′, y) ∈ R)}.

It is well known that simulations on G×H are closed under union and compo-
sition. It follows that all simulations can be extended to maximal ones. It is also
well known that simulations induce preorders and equivalences. Two automata
G and H are simulation equivalent, G ∼= H , if G � H and H � G.

Theorem 1 (Soundness). The accessible automata under the regular opera-
tions form a probabilistic Kleene algebra (without the right induction law) with
respect to simulation equivalence.

Proof. Let G,H,K be accessible automata.

- (G+H)+K ∼= G+(H+K). The relation R ⊆ ((G+H)+K)×(G+(H+K))
defined by the following diagram is a simulation.

•
ε

����
��

��
�� ε

��





 �� •
ε

����
��

��
�� ε

���
��

��
��

�

ε

����
��

��
��

ε

���
��

��
��

�

��

K

��

G
ε

����
��

��
��

ε

���
��

��
��

�

G

��

H �� H K

We can use a similar construction for the converse direction.
- The simulations for G+ H ∼= H + G and G + G ∼= G are trivial.
- 0 +G ∼= G. We can use the identity simulation because 0 +G is transformed

into G by making the automaton accessible.
- (GH)K ∼= G(HK). The automata corresponding to the left-hand and the

right-hand side are identical by construction.
- 1G ∼= G. We use the simulation

•
ε

�� ��
G �� G

and its converse. The simulation for G1 ∼= G is similar.

- G0 ∼= 0. Both automata have no final state. By making the left-hand side
accessible, it becomes identical to the right-hand side.
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- 0G ∼= 0. In the left-hand side, G is not reachable and the automaton becomes
0 by making it accessible.

- GH +GK � G(H +K). The simulation is essentially shown in the following
diagram.

•
ε

����
��

��
�� ε

���
��

��
��

�
�� G

ε

��
G

ε

��

��

G

ε

��

��

ε

����
��

��
��

�
ε

���
��

��
��

��

H ��K ��H K

The initial state • is mapped to the initial state of G and the dotted arrows
from G to G (resp. H to H and K to K) are essentially the identity relation.

- GK +HK ∼= (G+H)K. The following figure gives a simulation that works
both ways.

•
ε

����
��

��
�

ε

���
��

��
��

�� •
ε

����
��

��
�� ε

��







G

ε

��

��H

ε

��

��G

ε
���

��
��

��
H

ε
����

��
��

�

K ��K �� K

- 1+GG∗ � G∗. The following construction yields a simulation for one unfold
of G∗.

 ε �� ��G

ε

�� ��

 
ε

  ◦
ε

!!

��

G
ε

 �� G

ε

""

- GH � H ⇒ G∗H � H . Let R ⊆ GH ×H be the maximal simulation. We
write Gn = Gn · · ·G1, where Gn is the n-th copy of the automaton G. We
write xn for the copy of state x in Gn. The notation in the following diagram
has been changed to show the construction more clearly.
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· · · •
G

��

�� •
G

��

�� •
G

��

R0
1 �� •

H

��

ε

��

��

ε

��

��

ε

��

R0
1 �� ×

G

��

��

G

��

��

H

��

R0
2

##

ε

��

��

ε

��

�� ×

G

��

��

H

��

##

ε

��

�� ×

H

��

$$

· · · �� ��
R0

2

��

We define R = R0 = R0
1 ∪R0

2 where R0
1 ⊆ G · ε×H and R0

2 ⊆ H ×H as in
the diagram, so that R0 is a simulation. We inductively define Rn = Rn

1 ∪Rn
2

where Rn
1 = R0

1 and Rn
2 = Rn−1 ◦ · · · ◦R0 ◦R0

2. It follows by induction that
each Rn is a simulation for GnH � H .
We now define R∗ ⊆ G∗H×H and show that it is a simulation for G∗H � H .
For x, y ∈ G ∪H we define

(x, y) ∈ R∗ iff
{

(xi, y) ∈ Rn for some i, n with i ≤ n, if x ∈ G,
(x, y) ∈ R, if x ∈ H.

The initial state ι of G∗ is mapped to every state of H in the image of a copy
of iG under Rn. The final states of G∗H are related to those of H . We now
prove that R∗ is a simulation by inspecting transitions in the automata.
First, (ι, iH) ∈ R∗ since (iG, iH) ∈ R0.
Next, suppose x ∈ FG∗H and (x, y) ∈ R∗. There are two cases: (i) If x ∈ H ,
then (x, y) is already in R. (ii) If x ∈ G ∪ {ι} then 1 � H , so x ∈ FG ∪ {ι}.
By definition (xi, y) ∈ Rn for some i and n. Therefore xi ∈ FGnH and
consequently y ∈ FH because Rn is a simulation (consider the diagram).
Next, suppose (x, y) ∈ R∗ and x′ ∈ δax is the result of a transition in the
automaton G∗H , that is, it is either a transition in H or a transition in G∗

passing through iG∗ or a transition from some final state of G∗ to some state
in H . We distinguish three cases. (i) If x ∈ H then, then we are done since
the simulation used for the step is R by definition. Otherwise, there exists
i, n such that (xi, y) ∈ Rn. (ii) x′ ∈ δax is obtained by a transition in G.
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Then Rn is a simulation and there exists y′ ∈ δay such that (x′i, y
′) ∈ Rn.

Hence (x′, y′) ∈ R∗. (iii) x′ ∈ δax is obtained by a transition of the form
x

ε→ ι
εa→ x′. In the diagram, by ε-closure, there will therefore be additional

edges that can either loop back into G or lead into H . That is, x′i−1 ∈ δaxi

or x′ ∈ H and i = 1. In the first case, when we loop back into G, there exists
a state y′ such that (x′i−1, y

′) ∈ Rn. Therefore, by definition, (x′, y′) ∈ R∗.
In the second case, when the transition leads into H , there exists a state y′

such that (x′, y′) ∈ R, by definition. Again, (x′, y′) ∈ R∗. ��

Proposition 1. The accessible automata under the regular operations form a
continuous probabilistic Kleene algebra with respect to simulation equivalence.

Proof. It remains to show that multiplication of automata from the left and
right is continuous. We first define a notion of residuation on automata. We
then establish a Galois connection between residuation and multiplication, from
which continuity follows.

For automata G and H �= 0 we define the automaton G/H with initial state
iG/H = iG, final states FG/H = {x ∈ G | H � Gx}, where Gx is constructed
from G by making its initial state into x. We make the resulting automaton
accessible by discarding all states and edges that do not lead to a final state.

We now show that KH � G iff K � G/H . Assume R is a simulation from
KH to G. That means R is in particular a simulation from H to Gx for some
x. By definition of G/H , therefore, R is a simulation from K to G/H , since the
state x becomes final in G/H and an image of a final state of K under R.

For the converse direction, suppose that R is a simulation from K to G/H .
By Theorem 1, multiplication is isotone, hence KH � (G/H)H , and it remains
to show that (G/H)H � G.

First, if FG/H is empty then G/H = 0 and the result follows.
Otherwise, assume that R′ is the simulation from KH to (G/H)H . By con-

struction of G/H , we also know that there exists a simulation Sx from H to Gx

for all final states x of G/H and that there is a simulation (except for the final
state property) between G/H and G, namely the identity relation id. Hence
S′ = (∪xSx) ∪ id is indeed a simulation from (G/H)H to G and R′ ◦ S′ is a
simulation from KH to G.

It then follows from general properties of Galois connections that (·H) is
(conditionally) completely additive, hence right continuous.

It remains to show left continuity. Let (Gi)i be a directed set of automata
such that supi Gi = G and let H be any automaton. Then supi(HGi) � HG
because multiplication is isotone and it remains to show HG � supi(HGi). Let
us assume that supi(HGi) � K. We will show that HG � K.

By definition of supremum, HGi � K for all i, hence there is a set of states
Xi = {x ∈ K | Gi � Kx}, that is, the set of all those states in K from which
Gi is simulated. Obviously, Xi ⊆ Xj if Gj � Gi in the directed set. But since
K has only finitely many states, there must be a minimal set X in that directed
set such that all Gi are simulated by Kx for x ∈ X . By definition, therefore
G = supi Gi � Kx for all x ∈ X . There exists a simulation SX ⊆ HGi ×K for
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some i such that the residual automaton K/Gi has precisely X as its set of final
states. We take the union of SX restricted to H with all simulations yielding
G � Kx for all x ∈ X and verify that this is a simulation from HG to K. ��

The following examples show that the axioms for automata under simulation
equivalence can neither be weakened nor strengthened.

Example 1

(a) It is clear by considering the diagram for subdistributivity in the proof of
Theorem 1 that a simulation from the right-hand automaton to the left-hand
automaton is impossible. This refutes left distributivity for our model.

(b) The left star unfold axiom can be strengthened to 1 + xx∗ = x∗, but the
inequality x∗ ≤ 1 + x∗x is not valid.

 
ε

�� 
a

�� a%%

a

��◦

It is easy to see that there cannot be a simulation between these automata.
But the following diagram shows that the inequality x∗ ≤ 1+x∗(x+1) holds.

 
ε

�� 
a

�� ��

&&

◦ a''

a

��◦

(c) A right star induction law yx ≤ y ⇒ yx∗ ≤ y does not hold.

•
a

((

a

��

�� •
a

))

a

��

a

��

��

◦

◦

��

•
a

((

a

��

•
a

))

a

��◦
a

** �� ◦

The left diagram shows a simulation from a∗aa to a∗a though there is no
simulation in the right figure since the displayed arrow could not be satisfied.
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(d) Kozen’s counterexample [12] on Kleene algebras possessing a least fixpoint
for 1 + ax but not for 1 + xa still holds in our setting (i.e. for 1 + x(a +
1)). Therefore the right induction axiom of probabilistic Kleene algebras is
independent.

We close this section by showing that ε-elimination is possible in our automata
model, using the standard technique. The general idea is shown in the following
diagram.

a

��
a

��

��

a

��

ε

��

��

b

		
b

��

��

b

����

Proposition 2. Each accessible automaton is simulation equivalent to an ac-
cessible ε-free one.

Proof. Let G be an automaton and let Gε be an automaton with transition
relation δ = (δG ∪

⋃
a∈Σ{(x, a, z)| ∃y ∈ ε(x) · z ∈ δay}) \ ε, with initial state i

and set of final states F = {f ∈ FG | f accessible in Gε}. We also assume that
there are no non-accessible states in Gε.

First, we show that G � Gε. Consider the relation R ⊆ G × Gε such that
(x, y) ∈ R iff x ∈ ε(y) in G. We must show that R is a simulation. We have
(iG, iGε) ∈ R because iG ∈ ε(iG). Assume (x, y) ∈ R and x ∈ FG, by definition
ε(x) ∩ FG �= ∅ but ε(x) ⊆ ε(y) so y ∈ FGε .

Let a ∈ Σ. Since x ∈ ε(y) we know that δax ⊆ δay (transition in G). Let
x′ ∈ δax. Then y

a→ z ∈ δ and then z ∈ Gε since Gε is accessible.
We now show that Gε � G. The simulation relation in G is defined with

respect to the ε-closure of δG. Hence G has at least as many states and non-ε-
transitions as Gε. Hence it can simulate Gε. ��

4 Automata Labelled by Terms

We now extend the construction of automata from terms in Section 2 to include
labels for states. This is needed in the next section. It is again by induction.

- Base cases: G(a) = a
a→ 1, G(0) = 0 and G(1) = 1.

- Addition: G(s + t) is

s + t

ε

++��������
ε

,,�
�������

G(s) G(t)
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- Multiplication: G(st) is G(s).t ε �� G(t)
- Kleene star: G(s∗) is

s∗
ε ��
G(s).s∗

ε

��

In these diagrams final states labelled with a term greater than or equal to 1.
G(s).t is the automaton where the label of each state is multiplied by t.

Final states of G(t) can be defined by the following endofunction [3].
- o(1) = 1, o(0) = 0, and o(a) = 0 for each a ∈ Σ.
- o(s + t) = o(s) + o(t), o(st) = o(s)o(t) and o(s∗) = 1.

The following proposition adapts a similar statement and proof by Milner [18].
A similar technique has been used by Cohen [5].

Proposition 3. Every term t of probabilistic Kleene algebra is equivalent to a
sum

∑
a∈Σ

∑
s∈δat as + o(t), where δ is the transition relation of G(t).

Proof. By structural induction. We only consider the induction steps.
- If the term is of the form s + t, then

s =
∑
a∈Σ

∑
s′∈δas

as′ + o(s) and t =
∑
a∈Σ

∑
t′∈δat

at′ + o(t).

Since δa(s + t) = δa(s) ∪ δa(t), it follows that

∑
a

∑
u∈δas∪δat

au+ o(s + t) =
∑

a

∑
s′∈δas

as′ + o(s) +
∑

a

∑
t′∈δat

at′ + o(t).

- In the product case st, we assume the same sums for s and t as before. We
have δa(st) = δ

′
a(s) ∪ o(s)δa(t) where δ

′
a(s) = δa(s).t.

st =

⎛⎝∑
a

∑
s′∈δas

as′ + o(x)

⎞⎠ t =
∑

a

∑
s′∈δ

′
as

as′ + o(s)

⎛⎝∑
a

∑
t′∈δat

at′ + o(t)

⎞⎠
=
∑

a

∑
u∈δ

′
as∪o(s)δat

au+ o(st)

The first step uses the induction hypothesis. The second step uses the induc-
tion hypothesis again, right distributivity and the identity δ

′
a(x) = δa(x).y.

The third step uses o(st) = o(s)o(t) and the fact that o(s) ∈ {0, 1}.
- Finally, for the case of ∗, we can assume without loss of generality that
o(s) = 0 because (x + 1)∗ = x∗ in probabilistic Kleene algebras. Therefore

s∗ = ss∗ + 1 =

⎛⎝∑
a

∑
s′∈δas

as′

⎞⎠ s∗ + 1 =
∑

a

∑
s′∈δas∗

as′ + o(s∗).

The second step uses the induction hypothesis. The third step uses the iden-
tities δa(s∗) = δa(s).s∗ and o(s∗) = 1. ��
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5 A Completeness Result

In this section we simply call tree an automaton whose graph is a tree. In the
case of accessible automata, all leaves are final states, but there may also be
some internal final states. In contrast to Furusawa and Takai’s approach, we
are dealing with standard automata rather than tree-automata. Our approach
is therefore more similar to Cohen’s.

It is obvious from our construction of automata that each tree is the interpre-
tation of some ∗-free term in probabilistic Kleene algebra. If T is a tree then tT
denotes a ∗-free term such that T ∼= G(tT ).

Proposition 4. Let T and T ′ be trees and s a term.

(a) If T � G(s), then tT ≤ s is valid in probabilistic Kleene algebras.
(b) If T � T ′, then tT ≤ tT ′ is valid in probabilistic Kleene algebras.

Proof. Let T � G(s), without loss of generality we assume the automata are
ε-free. Assume that T ∼= G(t) for some ∗-free term t and consider a leaf in
G(t). It is labelled by the term 1 and related by the simulation to G(s) to final
states of G(s). Hence the label of these must be greater than or equal to 1. By
induction, we assume that x ≤ y for all subterm x of t of size n and y such that
G(t)x � G(s)y. We must show this property for all subterms of size n + 1. By
Proposition 3, x =

∑
a

∑
x′∈δx

ax′ + o(x). That is, x is a sum of monomials ax′

where all x′ come from the level below x in the tree. Similarly, every y ∈ G(s) can
be written that way. It follows that x ≤ y because multiplication and addition
are isotone. The case where both automata are trees is an instance. ��
As a consequence of this proposition, we will denote a ∗-free term and a tree by
the same notation, usually t. For each automaton G, consider the set of trees

τ(G) = {t | t � G ∧ t is a tree}.
This set is stable under addition and down-closed. We define the operations

τ + τ ′ = {t + t′ | t ∈ τ ∧ t′ ∈ τ ′},
ττ ′ =↓ {tt′ | t ∈ τ ∧ t′ ∈ τ ′},
τ∗ =↓ {(t + 1)n | t ∈ τ},

where ↓ τ denotes the down-closure of τ . All these sets are again stable under
addition and down-closed.

The previous proposition implies that τ(G(u)) = {G(t) | t ≤ u∧ t is ∗ -free}.
We denote τ(u) = {t | t ≤ u ∧ t is ∗ -free}.
Proposition 5. τ is a homomorphism to sets of ∗-free terms.

Proof. Obviously, τ(u) + τ(v) ⊆ τ(u + v). For the converse inclusion suppose
t ∈ τ(u + v), that is, t ≤ u + v so G(t) � G(u + v) ∼= G(u) + G(v). Since the
automata are disjoint, we can decompose t into tu + tv such that tu ≤ u and
tv ≤ v (this is possible because t is a tree). Therefore t ∈ τ(u) + τ(v).
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We have τ(u)τ(v) ⊆ τ(uv) by isotonicity. If t ∈ τ(uv) then G(t) � G(uv) ∼=
G(u)G(v). Then t = tu(tv1, . . . , tvn) for some tu ∈ τ(u) and tvi ∈ τ(v). So
t ≤ tu(

∑
i tvi) ∈ τ(u)τ(v).

By isotonicity of ∗, τ(u)∗ ⊆ τ(u∗). Let t ∈ L(u∗), then G(t) � G(u)∗ so
t ≤ (t′ + 1)n for some t′ ∈ τ(u) and n ∈ N. In fact, since t has finite depth,
we may unfold u∗ finitely many times and reason as in the case of sequential
composition to construct t′. Ones need to be added because each intermediate
state after each iteration of G(u) is a final state. ��
Next we show that � corresponds to tree language inclusion.

Theorem 2. G � H iff τ(G) ⊆ τ(H).

Proof. The forward implication is obvious by transitivity of �. For the converse
implication, suppose τ(G) ⊆ τ(H) and consider the relation R ⊆ G × H such
that (x, y) ∈ R iff L(Gx) ⊆ L(Hy). We show that R is a simulation (the maximal
simulation, in fact). We must check the three defining conditions. (i) (iG, iH) ∈ R
is immediate. (ii) If (x, y) ∈ R and x ∈ FG, then 1 ∈ τ(Gx) ⊆ τ(Hy), so y ∈ FH .
(iii) Assume, by contradiction, that (x, y) ∈ R, x a→ x′ and for every y′i ∈ δay
there exists ti ∈ τ(x′) such that ti /∈ τ(y′i). Since δay is a finite set, we define
t =

∑
i ti ∈ τ(x′) and therefore, at ∈ τ(x) ⊆ τ(y). Therefore, there exists

y′i ∈ δay such that t � Gy′
i

which is impossible since τ(Gy′
i
) is down-closed. ��

We now characterise terms in continuous probabilistic Kleene algebras by the
set of (∗-free) terms or trees that approximate them from below.

Proposition 6. Every term u of a continuous probabilistic Kleene algebra sat-
isfies u = sup τ(u).

Proof. By structural induction. We already know that sup τ(u) ≤ u and that
τ(u) is directed.

- For the base case, if u is a tree then u ∈ τ(u) so we are done.
- If u = u1 + u2 then by Proposition 5, τ(u) = τ(u1) + τ(u2) so sup τ(u) =

sup{t1+t2 | t1 ∈ τ(u1)∧t2 ∈ τ(u2)}. Let t1 ≤ u1, by continuity and induction
hypothesis t1 +u2 = sup{t1+t | t ≤ u2} ≤ sup τ(u). Therefore, by continuity
again u ≤ sup{t1 + u2 | t1 ≤ u1} ≤ sup τ(u). Hence u = sup τ(u).

- Let u = u1u2, we have τ(u) = τ(u1)L(u2) and we use the same reasoning as
before. Let t1 ∈ τ(u1), then by continuity and induction hypothesis, t1u2 =
sup{t1t | t ≤ u2} ≤ sup τ(u). By continuity again, u1u2 = sup{t1u2 | t1 ≤
u1} ≤ sup τ(u). we conclude u ≤ sup τ(u). Hence u = sup τ(u).

- Let u = v∗. Then by Proposition 5, τ(u) = τ(v)∗ and we have to show u ≤
sup{(t+ 1)n | t ≤ v∧n ∈ N} by definition of τ∗. But sup{(t+ 1)n | t ≤ v} =
(v + 1)n ≤ sup τ(u) (induction on n and using the case of multiplication).
So, sup{(v + 1)n | n ∈ N} ≤ τ(u) and therefore, by continuity (existence of
supn(v + 1)n), v∗ ≤ τ(u). ��

Finally, we can prove our completeness result; the main result of this paper.
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Theorem 3 (Completeness). If G(u) � G(v), then u ≤ v is derivable in
continuous probabilistic Kleene algebra.

Proof. If G(u) � G(v), then τ(u) ⊆ τ(v) by Theorem 2. It follows from Propo-
sition 6 that u = sup τ(u) ≤ sup τ(v) = v. ��
Note that G is a continuous mapping due to Proposition 6 and Theorem 2.

6 Conclusion

The main contribution of this paper is a completeness result for continuous prob-
abilistic Kleene algebras with respect to a class of automata. We also provided
a variant of Cohen’s soundness result for these classes where the automata con-
structions have been made explicit. The techniques developed in this paper may
be usefull for proving a completeness result in the non-continuous case.

The results in this paper motivate some further investigations. First, to asso-
ciate the automata obtained with canonical ones, for instance, by minimisation.
It seems that the automata obtained by Cohen’s adaptation of Brzozowski’s
translation procedure are minimal. Determinisation of automata is not possible
in this context since it does not preserve simulation equivalence.

Second, the completeness result should be turned into an effective decision
procedure based on checking simulations between automata [17]. Such a proce-
dure would be very useful when applying probabilistic Kleene algebras in the
context of automated protocol verfication.

Third, our completeness result should be related to the representability re-
sult of Furusawa and Nishizawa. In the context of Kozen’s Kleene algebras, the
equational theories of Kleene algebras, continuous Kleene algebras and relation
Kleene algebras coincide. It would be interesting to investigate whether a simi-
lar result holds for probabilistic Kleene algebras, continous probabilistic Kleene
algebras and (weak) Kleene algebras of multirelations.

Acknowledgement. We would like to thank Ernie Cohen and Hitoshi Furusawa for
helpful discussions, and to Jeff Sanders for valuable comments. We are especially
grateful to the reviewers for helping us to improve the presentation of this paper.
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Abstract. Relation algebra can be used to specify information systems
and business processes. It was used in practice in two large IT projects
in the Dutch government. But which are the features that make rela-
tion algebra practical? This paper discusses these features and motivates
them from an information system designer’s point of view. The result-
ing language, Ampersand 1, is a syntactically sugared version of relation
algebra. It is a typed language, which is supported by a compiler. The
design approach, also called Ampersand, uses software tools that compile
Ampersand scripts into functional specifications. This makes Ampersand
interesting as an application of relation algebra in the industrial prac-
tice. The purpose of this paper is to define Ampersand and motivate its
features from a practical perspective.

This work is part of the research programme of the Information Sys-
tems & Business Processes (IS&BP) department of the Open University.
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1 Introduction

Ampersand is a simple requirements specification language with relational se-
mantics. It is a syntactically sugared version of relation algebra. It has been
designed for students and practitioners with minimal mathematical background,
who use it for designing business processes. In the sequel, we shall call these
users ‘requirements engineers’, because Ampersand enables them to design by
eliciting requirements. The purpose of this paper is to describe the features of
1 It is named after the ampersand symbol (&), which means “and”. The name hints

at the desire to have it all: getting the best from both business and IT, achieving
results from theory and practice alike, and realising the desired results effectively
and more efficiently than ever before.
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Ampersand that make it practical. Ampersand is currently used in teaching at
the Open University of the Netherlands (OUNL) and it has already been used
to design several large scale IT-systems in the Dutch government2.

A challenge in designing Ampersand was to obtain a useful requirements spec-
ification language that is faithful to Tarski’s axioms. This sets Ampersand apart
from Codd’s relational model [3], which has been criticized for being unfaithful
to its mathematical origins [4]. In this paper Ampersand is defined with seman-
tics in a homogeneous relation algebra which is faithful to Tarski’s axioms. But
only relations with a type are considered useful. Ampersand with semantics in
a heterogeneous relation algebra is discussed in [15]. Generalization (subtyping)
is exploited in that paper to embed the relations appropriately such that the
composition and union operations are total and the Tarski axioms are valid to
a large extent.

Ampersand features rules, relations and concepts. It has a type system that
blocks compilation as long as a script contains type incorrect expressions. In
essence, a specification in Ampersand is a set of rules and a set of relation
symbol declarations with a concept-based type. Each rule is an expression (a
relation term) in a relation algebra that must be kept true throughout time.
Thus, each relation that is a rule represents an invariant requirement of the
business. A requirements engineer takes responsibility for a correspondence be-
tween requirements (in natural language) and rules (i.e., constraints in relation
algebra).

Ampersand features a compiler that produces requirements specifications in
natural language in the form of a PDF-document. A type system ensures the
absence of relation terms that are predictably nonsensical to the end user. Rela-
tion terms that are type incorrect (i.e., make no sense) are reported back to the
requirements engineer as a type error. This feedback explains why an erroneous
relation term makes no sense within the chosen context. The feedback generator
is implemented as an attribute grammar of untyped relation terms with a type
function as one of its attributes. This is described in section 4. This implemen-
tation allows for future extensions with new attributes to analyze and report in
even more detail.

The relevance of relation algebra in practice has surprised the authors. For-
malizing requirements results in compact scripts that allow substantial pieces of
the design process to be automated. Students at the OUNL now use an online
tool in which they can study the impact of their Ampersand scripts, analyse
them and generate requirements specifications from them. For the future we
plan to implement editing of rule models within the tool. This will give students
a working prototype of their design, which is expected to improve their learning
curve.

The work presented here advances the state-of-the-art of designing business
processes and the IT-systems that support them. The innovation Ampersand

2 In 2007 a new information system to support the Dutch Immigration Service in
managing all immigration requests was designed. In 2010 a platform independent
design for all courts of administrative law in the Netherlands was generated.
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brings is to generate design artifacts, such as class diagrams, directly from re-
quirements. The idea to use algebra for knowledge representation [1] lies at the
heart of our research. Ideas from heterogeneous relation algebra [13,7] were bor-
rowed to construct a type system. Furthermore, the existence of a well studied
body of knowledge called relation algebra [10] eliminated the need to invent a
new (possibly poorer) language. Ampersand has the distinct advantage of tap-
ping into an existing, well studied body of knowledge. Besides, relation algebras
are being used (e.g. [2]) and taught (e.g. [5]).

This research is relevant for requirements engineers and students alike, who
specify business processes by means of constraints. They can rely on the feedback
from their design tool. This audience consists mostly of students and practition-
ers in business information systems. The attention given to feedback is justified
by the difficulty of learning how to formalize business rules in Ampersand.

The paper starts in section 2 with an informal introduction on requirements
and the way an information system satisfies them. Then the syntax and se-
mantics of Ampersand are defined. Next the type function is introduced. The
Ampersand compiler does type checking and type deduction simultaneously. It
has been implemented as an Haskell attribute grammar. The feedback system
implementation is described and demonstrated.

2 Language for Requirements

Requirements engineers need a language that is shared by all stakeholders. For
example, let us assume we are working for an auction house in Dendermonde.
The sentence “Peter presides over auction room 3” makes sense in this context, if
there is a person called Peter, there is an auction room 3, and the auction house is
familiar with the idea that a person presides over an auction room. In this context
the sentence “Vehicle 06-GNL-3 presides over auction room 3” does not make
sense, because vehicles never preside over auction rooms. That is non-sense. The
type system is an instrument by which the requirements engineer can exclude a
significant class of nonsense. The declaration presides : Person ∼ AuctionRoom
introduces a (heterogeneous) relation with the name presides , in which only pairs
of persons and auction rooms reside. By specifying relations, a requirements
engineer introduces the basic sentences of a language. More complex sentences
are made by means of the operators of relation algebra. If stakeholders agree to
use that language to express requirements, we call this language shared.

Ampersand sees an information system as a collection of data that rep-
resents facts in a given context. If, for example, Peter presides over auction
room 3, one expects a tuple 〈’Peter’, ’auction room 3’〉 in a relation presides
to represent this fact. Some time later that relation might contain the tu-
ple 〈’Sue-Ellen’, ’auction room 3’〉. In an information system, data content
changes as facts in the given context change. Rules constrain that data content.
For example, the auction house might require that a bid on a lot at an auction
may be placed only by persons who are registered as a bidder for that particu-
lar auction. Using relations to represent parts of that sentence, a requirements
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engineer assembles relation terms and declares them as logical expressions with
the keyword RULE.

bid : Person ∼ Lot (1)
at : Lot ∼ Auction (2)

registeredfor : Person ∼ Auction (3)
RULE bid o

9 at ⇒ registeredfor (4)

This fragment assembles relations into a rule by means of operators from re-
lation algebra, in this example o

9 (compose), and ⇒ (implication). The full set
of operators is introduced in definition 3. In this manner, a requirements engi-
neer formalizes all requirements that need to be maintained by an information
system. He can do this one rule at a time, adding requirements and nuance to
the specification incrementally. In the fragment above the requirements engineer
may add nuance by adding a rule covering that at is at least a partial function,
which is likely to be assumed by the reader of the original requirement.

An information system contains all relations and their data. The task of the
information system is to keep all rules satisfied. If a bid is placed by an unregis-
tered bidder, the computer might simply block the transaction, explaining that
you must be registered in order to place a bid. However, it might also signal this
event to a registrar, to register the new bidder. Or, it might automatically look
up this person, conclude that he is a subscribed member and register him auto-
matically. For the purpose of this paper, we restrict the large number of options
to two: One option is to block with an error message while the data remain in the
old state (rollback). The other option is to proceed with one or more violations.
In that case signals are raised, which persist as long as the violation persists.
This mechanism allows an information system to control business processes, i.e.,
collaborations between people and computers. Blocking rules enforce consistent
data throughout the business process. Signal rules trigger people to take some
action in order to restore the situation that all rules are satisfied. Such rules may
be satisfied with some delay, because people need some time to act.

Summarizing, Ampersand is a language built on binary relations, providing a
natural model for data and business rules. This differs from the idea to use rela-
tions as a model for nondeterministic programs, which became common in the
eighties [12]. There are other relational languages for constraint-based modelling,
like Alloy [9] or Z [14]. Semantically, Ampersand, Z, and Alloy bear great resem-
blance [8]. All three are declarative specification languages with a type system.
Underlying Alloy, one will find relations and atoms in a similar way Ampersand
has. Both Alloy and Ampersand do automatic analysis, albeit in different ways.
Ampersand uses notations of relation algebra, where Alloy and Z are more into
set-notations. More significant differences are found in what Ampersand does
with a specification. Unlike Alloy and Z, Ampersand generates data structures
and code for a database that can hold every model of an Ampersand script. Alloy
is a model checker, whereas Ampersand derives an implementation. Alloy tries
to find a model, whereas Ampersand verifies any particular model at runtime
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and reports violations. Alloy supports consistency checks at design time, as the
user can look for counterexamples on specific assertions. Ampersand checks for
consistency at runtime, and does so automatically.

3 Ampersand

This section defines the core of Ampersand. Its abstract syntax is defined in
section 3.1. The semantics of relation terms are given in section 3.2. Amper-
sand chooses an interpretation that allows the representation of requirements
and their satisfaction by means of data. A type function is introduced which
is partially defined. All expressions with an undefined type are deemed incor-
rect and therefore rejected by the type checker. The type system is discussed in
section 3.3.

3.1 Syntax

The Ampersand syntax consists of constant symbols for (business) concepts,
(business) elements, relations and relation operators. Relation terms can be con-
structed with relations and relation operators.

Let C be a set of concept symbols. A concept is represented syntactically by
an alphanumeric character string starting with an upper case character. In this
paper, we use A, B, and C as concept variables.

Let U be a set of atom symbols. An atom is represented syntactically by an
ASCII string within single quotes. All atoms are an element of a concept, e.g.
’Peter’ is an element of Person. We use a, b, and c as atom variables.

Let D be a set of relation symbols. A relation symbol is represented syntacti-
cally by an alphanumeric character string starting with a lower case character.
For every A,B ∈ C, there are special relation symbols, IA and VA×B . We use r,
s, and t as relation variables.

Let ¬, �, �, and o
9 be relation operators of arity 1, 1, 2, and 2 respectively.

The binary relation operators �,⇒ and ≡ are cosmetic and only defined on the
interpretation function (see definition 3).

Let R be the set of relation terms. We use R, S, and T as variables that denote
relation terms.

Definition 1 (relation terms)
R is recursively defined by

IA, VA×B , r,¬R,R�, R � S,R o
9 S ∈ R

provided that R,S ∈ R, r ∈ D, and A,B ∈ C

Definition 2 (statements)
An Ampersand design of context C is a user-defined collection of statements
where
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– RUL ⊆ R is a collection of relation terms called rule statements.
– REL is a collection of r : A ∼ B for all r ∈ D such that A,B ∈ C. The

instances of REL are called relation declarations.
– POP is a collection of a r b such that a ∈ A, b ∈ B and (r : A ∼ B) ∈ REL.

The instances of POP are called relation elements.

The relation declarations define the conceptual structure and scope of C. Re-
lation elements define facts in C. POP is called the population of C. Rules are
constraints on that population.

An Ampersand script is a user-defined collection of relation declarations, re-
lation elements and rule statements. It describes a (business) context C, in com-
pliance with the OMG standard Semantics of Business Vocabulary and Business
Rules (SBVR). The Ampersand compiler contains a parser, which extracts RUL,
REL, and POP from an Ampersand script that describes C.

3.2 Semantics

The previous section defines the syntactic structure of Ampersand. This sec-
tion introduces an interpretation I(R) that defines the semantics of a relation
term R. This function interprets relation terms based on POP and a relation
algebra [10] 〈R,∪, , ; , �, I〉 where R ⊆ P(U). All relation symbols used in a
relation term are either declared by the user in REL or IA or VA×B. So, the
relation algebra on R is configured by the user through REL. The interpreta-
tion of all relation symbols in D is completely user-defined through POP . Thus,
given some REL and some POP , I(R) determines whether some relation holds
between two elements.

Definition 3 (interpretation function)
Given some C, the interpretation function of relation terms is defined by

relation I(r) = {〈a, b〉 | a r b ∈ POP} (5)
identity I(IA) = {〈a, a〉 | a ∈ A} (6)

universal I(VA×B) = {〈a, b〉 | a ∈ A, b ∈ B} (7)

complement I(¬R) = I(R) (8)

converse I(R�) = I(R)� (9)
union I(R � S) = I(R) ∪ I(S) (10)

composition I(R o
9 S) = I(R); I(S) (11)

(the interpretation of the mentioned cosmetic relation operators)

intersection I(R � S) = I(¬(¬R � ¬S)) (12)
implication I(R⇒ S) = I(¬R � S) (13)
equivalence I(R ≡ S) = I((R ⇒ S) � (S ⇒ R)) (14)
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Section 2 informally described that relations need to have a type. A relation
term R ∈ R with a type T(R) has an interpretation. If it has no type, it is said
to have a type error or to be (semantically) incorrect. An end user might call
a relation term without a type nonsense. Relation terms with a type error are
rejected with a proper feedback message.

By a relation declaration r : A ∼ B the user declares the existence of a relation
symbol r with a type denoted T(r) = A ∼ B. We use X,Y as type variables. By
Definition 2, given some r : A ∼ B, the user can only define a relation element
a r b ∈ POP if a ∈ A and b ∈ B. T(R) is inspired on Hattensperger’s typing
function for heterogeneous relation algebra [7].

Definition 4 (typing function)
Given some C, the partial typing function of relation terms is defined by

T(r) = A ∼ B , if r : A ∼ B ∈ REL (15)
T(IA) = A ∼ A , if A ∈ C (16)

T(VA×B) = A ∼ B , if A,B ∈ C (17)
T(¬R) = T(R) , if T(R) is defined (18)
T(R�) = B ∼ A , if T(R) = A ∼ B (19)

T(R � S) = T(R) , if T(R) = T(S) (20)
T(R o

9 S) = A ∼ C , if T(R) = A ∼ B,T(S) = B ∼ C (21)

3.3 Type System

Only type correct expressions are allowed in Ampersand scripts. Ampersand
allows overloading of relation symbols. This means that relation term names need
not be unique. Overloading is necessary for practical reasons only, in order to
give users more freedom to choose names. In particular, requirements engineers
may choose short uniform names, such as aggr , has , in , to represent different
relations for different types. The type system deduces all possible types for any
given relation term name. If there are multiple possibilities, a type error is given.
The script writer can disambiguate any relation term name by adding type
information explicitly.

Ampersand also allows that two different concepts overload an atom symbol,
i.e., an a ∈ A has an interpretation different from a ∈ B. Atoms are only inter-
preted in the context of typed relation terms, preventing an ambiguous identity
of atoms. In practice, business concepts may be overlapping, e.g., ’Peter’ the
Person has the same practical identity as ’Peter’ the Auctioneer. In the com-
panion paper, Van der Woude and Joosten [15] embed generalization of concepts
in Ampersand. They introduce supertype relations (ε), called embeddings, to de-
fine total extensions of the partial (heterogeneous) relational operators except for
the complement. These extensions give requirements engineers a type-controlled
freedom to express themselves in relations on sub- or superconcepts. The use
of negation in business rules with generalization requires further investigation.
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The requirements engineer declares the supertype relation between subconcept
A and superconcept B as ε : A ∼ B ∈ REL.

Altogether, the problem that the type system must solve is twofold. The type
system must deduce one relation term from a relation term name, and check the
type of relation terms simultaneously. We use R′, S′, T ′ as variables to denote
relation term names.

The type function T′(R′) is based on the partial typing function T(R). The
type system examines T′(R′) to mark the name R′ as bound to a relation,
ambiguous, undeclared or undefined.

– If some r is not declared with a type in REL, then r is said to be undeclared.
– If some R′ can only refer to one type correct relation term R, then R′ is said

to bind to R.
– If some R′ does not refer to any type correct relation term, then R′ is said

to be undefined.
– If some R′ can refer to more than one type correct relation term, i.e., an

alternative, then R′ is said to be ambiguous.

Definition 5 (type function)
Given some C, the type function of relation term names is defined by

T′(r) = {A ∼ B | (r : A ∼ B) ∈ REL } (22)
T′(IA) = {A ∼ A} (23)

T′(VA×B) = {A ∼ B} (24)
T′(R′

X) = T′(R′) ∩ {X} (25)
T′(¬R′) = T′(R′) (26)

T′(R′�) = {B ∼ A|A ∼ B ∈ T′(R′)} (27)
T′(R′ � S′) = T′(R′) ∩ T′(S′) (28)
T′(R′ o

9 S
′) = {A ∼ C | �{B | A ∼ B ∈ T′(R′), B ∼ C ∈ T′(S′)} = 1} (29)

Rule 25 enables the requirements engineer to disambiguate an ambiguous rela-
tion term name with type information. Rule 29 ensures that if R′ o

9 S
′ yields

more than one alternative with type A ∼ C, then A ∼ C /∈ T′(R′ o
9 S

′).
This type system is not monotone, i.e., a well typed program can become

ill-typed by adding rules for different, independent relations. When this happens
to a requirements engineer, he will notice that the introduction of a new relation
forces him to add more type information to other parts in his script.

4 Feedback System

The type system is embedded in the feedback system of the Ampersand compiler.
The feedback system must give an error message if and only if a relation term
name cannot be bound to a relation term. The error messages must be concise,
i.e., correct and kept short, precise and relevant. The quality of the feedback
deserves attention, because it lets students focus on learning rule-based design.
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The feedback system is implemented in Haskell [11] based on an attribute
grammar [6] Haskell library developed at Utrecht University. The feedback sys-
tem checks all relation term names R′ used in any statement in RUL or POP ,
given the conceptual structure of C represented by REL. REL is an inherited
attribute called context structure. Within the scope of a statement, given the
context structure, R′ is bound, ambiguous, undeclared or undefined.

A bound R′ implies the existence of one suitable alternative for any subname
S′ of R′. The reader may verify this surjective function from subname S′ to
bound R′ in rule 22-29. However, T′(S′) may yield more than one alternative.
The feedback system uses two attributes to determine the type of any S′ within
the scope of R′. T′(S′) is a synthesized attribute called pre-type. Some X ∈ T′(S′)
is an inherited attribute called automatic type directive. The automatic type
directive is based on Definition 5.

For example, consider two statements a rule and a relation element, both
yielding relation rel1 :

rel1 � rel2 ∈ RUL

’atom1’ rel1 ’atom2’ ∈ POP

where

REL = {rel1 : Cpt1 ∼ Cpt2, rel1 : Cpt1 ∼ Cpt3, rel2 : Cpt1 ∼ Cpt2}
The rule binds to a typed relation term, although T′(rel1) yields more than one
alternative:

T′(rel1 ) = {Cpt1 ∼ Cpt2, Cpt1 ∼ Cpt3} (rule 22, ambiguous)
T′(rel2 ) = {Cpt1 ∼ Cpt2} (rule 22, bound)

T′(rel1 � rel2 ) = T′(rel1 ) ∩ T′(rel2 ) (rule 28)
= {Cpt1 ∼ Cpt2, Cpt1 ∼ Cpt3} ∩ {Cpt1 ∼ Cpt2}
= {Cpt1 ∼ Cpt2} (bound)
= T′((rel1 � rel2 )Cpt1∼Cpt2) (auto)

= T′((rel1 Cpt1∼Cpt2 � rel2 Cpt1∼Cpt2)Cpt1∼Cpt2
) (auto)

T′(rel1 Cpt1∼Cpt2) = {Cpt1 ∼ Cpt2} (rule 22, bound)
T′(rel2 Cpt1∼Cpt2) = {Cpt1 ∼ Cpt2} (rule 22, bound)

(done)

The relation element is ambiguous, because T′(rel1) yields more than one alter-
native:

T′(rel1 ) = {Cpt1 ∼ Cpt2, Cpt1 ∼ Cpt3} (rule 22, ambiguous)
(done)

The requirements engineer should have specified a type directive

’atom1’ rel1 Cpt1∼Cpt2 ’atom2’ ∈ POP
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or
’atom1’ rel1 Cpt1∼Cpt3 ’atom2’ ∈ POP

Detailed information can be obtained through synthesized attributes of the
attribute grammar. Three synthesized attributes are defined in our implementa-
tion. One attribute holds either T(R) if R′ is bound to R and T(R) is defined, or
an error message as described in Section 4.1 otherwise. Another attribute holds
a fully typed relation term name RT(R) if the previous attribute holds T(R), and
is undefined otherwise. The third attribute holds an extensive LATEX report for
complete detail on type errors or binding relation term names. Such a report
contains equational traces like presented for the examples in this section. This
report is generated by the Ampersand compiler.

4.1 Error Messages

If a relation term has an error, then an error message must be composed. We
have designed templates for error messages which relate to the type system rule
at which an error first occurs. The error messages are defined short but complete
and specific. The templates are presented in the same order of precedence as the
operators they relate to. If subterms of a relation term have error messages, then
the error message of the relation term is the union of all the error messages of
subterms.

relation undeclared If T′(r) yields no types, then there is no relation declaration
for r.

relation undeclared: r

relation undefined Requirements engineers may use the unique name of some R
e.g. R′

X . This may cause different kinds of errors which are checked in the same
chronological order as described here.

If X = A ∼ B and A or B does not occur in the type signature of any relation
declaration, then there is probably a typo in the concept name.

unknown concept: A, or

unknown concept: B, or

unknown concepts: A and B

If X /∈ T′(R′), then there is no R such that T(R) = X . If R′ = r then rX is
undeclared.

relation undeclared: rX

In all other cases:

relation undefined: rX

possible types are: T′(R′)
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incompatible/ambiguous composition Let T′(R′) and T′(S′) yield alternatives.
If T′(R′ o

9 S
′) yields no types, then there is no alternative for R′ o

9 S
′. In case

�{B | A ∼ B ∈ T′(R′), B ∼ C ∈ T′(S′)} = 0, then R′ and S′ are incompatible
for composition.

incompatible composition: R′ o
9 S

′

possible types of R′: T′(R′)

possible types of S′: T′(S′)

In case �{B | A ∼ B ∈ T′(R′), B ∼ C ∈ T′(S′)} > 1, then the composition of R′

and S′ is ambiguous.

ambiguous composition: R′ o
9 S

′

possible types of R′: {A ∼ B | A ∼ B ∈ T′(R′), B ∼ C ∈ T′(S′)}

possible types of S′: {B ∼ C | A ∼ B ∈ T′(R′), B ∼ C ∈ T′(S′)}

incompatible comparison Let T′(R′) and T′(S′) yield alternatives. If T′(R′ �S′)
yields no types, then R′ and S′ are incompatible for comparison.

incompatible comparison: R′ � S′

possible types of R′: T′(R′)

possible types of S′: T′(S′)

ambiguous type If R′ is ambiguous within the scope of a statement, then the
ambiguity is reported as an error.

ambiguous relation: R′

possible types: T′(R′)

4.2 Demonstration

Let us demonstrate a typical constraint that some relation is contained within
another relation.

(rel1 � rel2 ⇒ rel0 ) ∈ RUL

where

REL = {rel1 : Cpt1 ∼ Cpt2, rel2 : Cpt3 ∼ Cpt4}
R � S = ¬(¬R � ¬S)
R⇒ S = ¬R � S
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Fig. 1. compiler screen snippet with type error (Dutch)

The rule contains two errors. Both will be mentioned in the error message as
depicted in Figure 1.

These messages provide the requirements engineer with relevant and suffi-
cient information which they understand. For complete detail, the requirements
engineer requests a LATEXreport containing a trace like:

T′(rel1 ) = {Cpt1 ∼ Cpt2} (rule 22, bound)
T′(¬rel1 ) = T′(rel1 ) (rule 26)

= {Cpt1 ∼ Cpt2} (bound)
T′(rel2 ) = {Cpt3 ∼ Cpt4} (rule 22, bound)

T′(¬rel2 ) = T′(rel2 ) (rule 26)
= {Cpt3 ∼ Cpt4} (bound)

T′(¬rel1 � ¬rel2 ) = T′(¬rel1 ) ∩ T′(¬rel2 ) (rule 28)
= {} (undefined)

T′(rel0 ) = {} (rule 22, undeclared)
(done)
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5 Conclusions and Further Research

In this paper we have introduced Ampersand by means of an abstract syntax,
semantics, and a type system, and motivated this from a practical use of specify-
ing information systems. Ampersand allows requirements engineers to represent
a situation specific language by relation declarations and express truths in it.
True facts are represented by relation elements and requirements are represented
by rules. Rules are terms in a syntactic calculus of relations based on Tarski’s
axioms. The relation terms are enriched with typing arguments to enable the
filtering of rules without a type, and relation elements of undeclared relations.
Ampersand allows overloading of relation and atom symbols and generalization
of concepts, in order to give requirements engineers a more natural syntax. The
type system filters relation terms with an undefined or ambiguous type.

Ampersand generates precise feedback on type errors. This feature keeps
requirements engineers from implementing rules which will never hold. The feed-
back is generated by an attribute grammar on relation term names. The con-
creteness and relevance of the generated feedback is meant to focus students
on learning rule-based design. So far, the practical experience with students is
encouraging. Systematic experimentation and evaluation of the learning process
is scheduled in the nearby future.

For the purpose of systematic research and learning, Ampersand development
is moving from an ASCII text editor towards an Integrated Development Envi-
ronment (IDE) for education. We consider this IDE as an information system
for the business process of system development with Ampersand. As such it is
described within Ampersand, and a prototype web-based information system is
generated with the compiler.

The current information system for system development with Ampersand,
called Atlas, is read-only. The Atlas is the prototype generated from an Am-
persand script describing the Ampersand language. The compiler loads type
correct Ampersand scripts, and derived data like rule violations and pictures
into the database of this system. Through the generated web-interface students
can explore the design of their context C by clicking on related elements. Student
behaviour is stored in the database and may serve as input to prove intended
didactical improvements on the system.

The Atlas will become editable in controlled phases. First students will be able
to edit the POP of their context. Certain rules, e.g., syntax rules, may be violated
by changes in POP . These rules need to be implemented as business rules such
that the generated IDE gives feedback on violations of these rules. After POP
has successfully become editable, REL followed by RUL will become editable
resulting in a rule-based educational environment to develop with Ampersand.

The use of Ampersand in practice is also encouraging. Large information sys-
tem projects in the Dutch government have already been designed in Ampersand,
and one has been realized.

Further research in the Ampersand project focuses on:
– Publishing the software and disclosing further results in the open source

domain (ampersand.sourceforge.net).
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– Refining the didactics of teaching Ampersand as a rule based design method.
– Design for large IT projects in industry.
– Generate software prototypes from Ampersand scripts.
– Automate the design of web services.

References

1. Brink, C., Schmidt, R.A.: Subsumption computed algebraically. Computers and
Mathematics with Applications 23(2-5), 329–342 (1992)

2. Brink, C., Kahl, W., Schmidt, G. (eds.): Relational methods in computer science.
Advances in Computing. Springer, New York (1997)

3. Codd, E.F.: A relational model of data for large shared data banks. Communica-
tions of the ACM 13(6), 377–387 (1970)

4. Date, C.J.: What not how: the business rules approach to application development.
Addison-Wesley Longman Publishing Co., Inc., Boston (2000)

5. Desharnais, J.: Basics of relation algebra, http://www2.ift.ulaval.ca/

~Desharnais/Recherche/Tutoriels/TutorielRelMiCS10.pdf

6. Dijkstra, A., Swierstra, S.D.: Typing haskell with an attribute grammar. In: Vene,
V., Uustalu, T. (eds.) AFP 2004. LNCS, vol. 3622, pp. 1–72. Springer, Heidelberg
(2005)

7. Hattensperger, C., Kempf, P.: Towards a formal framework for heterogeneous
relation algebra. Inf. Sci. 119(3-4), 193–203 (1999)

8. Jackson, D.: A comparison of object modelling notations: Alloy, UML and Z. Tech.
rep. (1999), http://sdg.lcs.mit.edu/publications.html

9. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT
Press, Cambridge (2006)

10. Maddux, R.D.: Relation Algebras. Studies in logic, vol. 150. Elsevier, Iowa (2006)
11. Peyton Jones, S. (ed.): Haskell 98 Language and Libraries – The Revised Report.

Cambridge University Press, Cambridge (2003)
12. Sanderson, J.G.: A Relational Theory of Computing. LNCS, vol. 82. Springer, New

York (1980)
13. Schmidt, G., Hattensperger, C., Winter, M.: Heterogeneous Relation Algebra. In:

Relational Methods in Computer Science. Advances in Computing, ch. 3, pp.
39–53. Springer, New York (1997)

14. Spivey, J.M.: The Z Notation: A reference manual, 2nd edn. International Series
in Computer Science. Prentice Hall, New York (1992)

15. van der Woude, J., Joosten, S.: Relational heterogeneity relaxed by subtyping,
(submitted 2011)

http://www2.ift.ulaval.ca/~Desharnais/Recherche/Tutoriels/TutorielRelMiCS10.pdf
http://www2.ift.ulaval.ca/~Desharnais/Recherche/Tutoriels/TutorielRelMiCS10.pdf
http://sdg.lcs.mit.edu/publications.html


Programming from Galois Connections

Shin-Cheng Mu1 and José Nuno Oliveira2
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Abstract. Problem statements often resort to superlatives such as in
eg. “. . . the smallest such number”, “. . . the best approximation”, “. . . the
longest such list” which lead to specifications made of two parts: one
defining a broad class of solutions (the easy part) and the other request-
ing the optimal such solution (the hard part).

This paper introduces a binary relational combinator which mirrors
this linguistic structure and exploits its potential for calculating pro-
grams by optimization. This applies in particular to specifications writ-
ten in the form of Galois connections, in which one of the adjoints delivers
the optimal solution being sought.

The framework encompasses re-factoring of results previously devel-
oped by Bird and de Moor for greedy and dynamic programming, in a
way which makes them less technically involved and therefore easier to
understand and play with.

1 Introduction

Computer programming is admittedly a challenging intellectual activity, calling
for experience and training under a read-understand-repeat learning cycle. By
acquiring good practices, relying on experienced teachers, the learning curve
eventually bends, but reliability cannot be fully ensured. If one asks a student
in programming about why she/he programs in that way (whatever this is) the
answer is likely to be: I don’t know — my teachers used to do it this way.

Why is this so? Isn’t programming a scientific discipline? Surely it is, as
several landmark textbooks show1. But, perhaps the question

Why and in what measure is programming difficult?

is yet to be given a satisfactory answer. By satisfactory we mean one which should
unravel the ingredients of problem solving in a structured way, thus identifying
which skills one should acquire to become a good programmer.

Abstraction is one such skill [12]. Abstracting from the programming language
and underlying technology is generally accepted as mandatory in the early stages
of thinking about a software problem. This has lead to abstract modeling, which
has become a discipline in itself [10,9]. However, handling abstractions is not

1 See eg. the following (by no means exhaustive) list of widely acclaimed references:
[11,5,21,20,4,3].

H. de Swart (Ed.): RAMICS 2011, LNCS 6663, pp. 294–313, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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easy either (many will say it is harder) and the question persists: why and in
what measure is abstract modeling difficult?

Induction is another such skill, to which programmers unconsciously appeal
whenever solving a complex problem by (temporarily) imagining some (smaller)
parts of it already solved (the divide-and-conquer strategy). However, where
and how does induction crop up in the design of a program? For instance, where
exactly in the design of quicksort from its specification: yield an ordered permu-
tation of the input sequence, does the doubly recursive strategy of the algorithm
show up? The starting specification does not look inductive at all.

This paper tries to answer the questions above by splitting algorithmic spec-
ifications generically in two parts, to be addressed in different stages. Let us see
where these come from.

In program construction one often encounters specifications asking for the
“best” solution among a collection of solution candidates. Such specifications
may have the form “the smallest such number . . . ”, “the best approximation such
that . . . ”, “the longest prefix of a list satisfying . . . ”, etc. A typical example is the
definition of whole number division x÷ y, for natural numbers x and (positive)
y. A specification in words would say that x ÷ y is the largest natural number
that, when multiplied by y, is at most x. The standard function takeWhile p,
as another example, returns the longest prefix of the input list such that all
elements satisfy predicate p.

Many other, less classroom-like problem statements share the same linguistic
pattern in their use of superlatives. For instance, the computation of the “best”
schedule for a collection of tasks, given their time spans and an acyclic Gantt
graph (describing which tasks depend upon completion of which other tasks)
is another problem of the same kind. Such a schedule is “best” (among other
schedules paying respect to the given graph of dependencies) in the sense that
its tasks start as early as possible.

It is often relatively easy to construct a program that meets half of such
specifications: returning or enumerating the feasible solution candidates, such as
a natural number, or prefixes of the input list. This is the easy part. The hard
part of the specification, however, demands that we return a candidate that
is “best” in some sense (eg. some ordering): the largest integer, or the longest
prefix, that satisfies the first, easy part of the specification.

In this paper we propose a new relational operator mirroring this “easy/hard”
dichotomy of problem statements into mathematics. The operator is of the form

E �H ,

where E specifies the easy part — the collection of solution candidates — while
H specifies the hard part — criteria under which a best solution is chosen.

One might wonder how to come up with the easy/hard split in the first place.
In this paper we aim at characterizing problem specifications in terms of Galois
connections [6], in which one of the adjoints specifies the easy part (usually a
known function) and the other specifies the one at target (the hard one). For
instance, the (easy) adjoint of whole division is multiplication. This setting,
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which suggests that “mathematics comes in easy/hard pairs”, provides a natural
way to split a problem in its components, as seen below.

Paper structure. In Section 2 we argue why Galois connections are suitable as
calculational specifications, before motivating and introducing the (�) operator in
Section 3. If some components in the Galois connection are inductively defined,
as reviewed in Section 4, the two theorems presented in Section 5, demonstrated
by two examples, allow us to calculate the wanted adjoint. A larger example,
scheduling a collection of tasks given a Gantt graph, is presented in Section 6,
before we conclude in Section 7. A minimal review of relational program calcu-
lation is given in Appendix A and B.

2 Galois Connections as Program Specifications

Let us take the problem of writing the algorithm of whole division as starting
example2. Its specification has already been stated above, informally:

x÷ y is the largest natural number that, if multiplied by y, is at most x.

Which mathematics should we write to capture the text above? One possibility
is to write a “literal” one,

x÷ y = 〈
∨

z :: z × y ≤ x〉, (1)

encoding superlative largest explicitly as a supremum. Handling suprema, how-
ever, is not easy in general. A second version will circumvent this difficulty,

z = x÷ y ≡ 〈∃r : 0 ≤ r < y : x = z × y + r〉, x y
r z

(2)

at the cost of existentially quantifying over remainders.
A third alternative is surprisingly simpler [18]: an equivalence

z × y ≤ x ≡ z ≤ x÷ y (y > 0) (3)

universally quantified in all its variables. Pragmatically, it expresses a “shunting”
rule which enables one to exchange between a whole division in the upper side
of a (≤) inequality and a multiplication in the lower side, very much like in
handling equations in school algebra.

Equivalences such as (3) are known as Galois connections [1,6,18]. In general,
a Galois connection (GC) is a pair of functions f and g satisfying the equivalence
f z ≤ x ≡ z " g x, for all z and x, given preorders (≤) and (") (which can be
the same). Functions f and g are said to be adjoints of each other — f is the
lower adjoint and g the upper adjoint. In the case of (3) the adjoints are

z (×y)︸ ︷︷ ︸
f

≤ x ≡ z ≤ x (÷y)︸ ︷︷ ︸
g

.

2 This example is taken from [18].
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Why can one be so confident of the adequacy of (3) in the face of the given
requirements? Do substitution z := x÷ y in (3) and obtain (x÷ y)× y ≤ x: this
tells that x÷ y is a candidate solution. Now read (3) from left to right, that is,
focus on the implication z × y ≤ x ⇒ z ≤ x÷ y: conclude that x÷ y is largest
among all other candidate solutions z.

So (3) means the same as (1). What are the advantages of the former over
the latter? It turns up that (3) is far more generous with respect to inference of
properties of x÷ y, some of which are mere instantiations:

0 ≤ x÷ y, (z := 0)
y ≤ x ≡ 1 ≤ x÷ y. (z := 1)

Other facts, for instance x÷ 1 = x, call for properties of the lower adjoint:

z ≤ x÷ 1

≡ { Galois connection (3), for y := 1 }
z × 1 ≤ x

≡ { 1 is the unit of × }
z ≤ x.

That is, every natural number z which is at most x ÷ 1 is also at most x. We
conclude that x ÷ 1 and x are the same. The rationale behind this style of
reasoning is known as the principle of indirect equality3:

a = b ≡ 〈∀x :: x ≤ a≡ x ≤ b〉. (4)

More elaborate properties can be inferred from (3) using indirect equality and
basic properties of the “easy” adjoint, for instance (n÷m)÷ d = n÷ (d×m),
for m, d > 0. Again GC (3) blends well with indirect equality in an easy proof:

z ≤ (n÷m)÷ d

≡ { Galois connection (3), twice }
(z × d)×m ≤ n

≡ { × is associative }
z × (d×m) ≤ n

≡ { Galois connection (3) again, in the opposite direction }
z ≤ n÷ (d×m)

:: { indirect equality (4) }
(n÷m)÷ d = n÷ (d×m).

3 See [1]. Readers unaware of this way of indirectly establishing algebraic equalities
will recognize that the same pattern of indirection is used when establishing set
equality via the membership relation, cf. A = B ≡ 〈∀x :: x ∈ A ≡ x ∈ B〉 as
opposed to, e.g. circular inclusion: A = B ≡ A ⊆ B ∧ B ⊆ A.
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Readers are challenged to compare this with alternative proofs of the same
result using (1) or (2) instead of (3), not to mention the inductive proof required
if relying on the obvious recursive implementation of x÷ y [18].

This strategy is applicable to arbitrarily complex problem domains, provided
candidate solutions are ranked by a partial order such as ≤ above. This is shown
in our next example, in which the underlying partial order is the prefix relation
" on finite sequences and what is being specified is take, the function which
yields the longest prefix of its input sequence up to some given length n4:

length z ≤ n ∧ z " x ≡ z " take(n, x). (5)

The property being sought,

take(n, take(m,x)) = take(min(n,m), x), (6)

will rely on another GC — that of defining the minimum of two numbers,

x ≤ n ∧ x ≤ m ≡ x ≤ min(n,m), (7)

in a way which shows how effectively GCs compose with each other5:

z " take(n, take(m,x))

≡ { Galois connection (5), twice }
length z ≤ n ∧ length z ≤ m ∧ z " x

≡ { Galois connection of min of two numbers (7) }
length z ≤ min(n,m) ∧ z " x

≡ { (5) again, now folding }
z " take(min(n,m), x)

:: { indirect equality over prefix partial ordering � }
take(n, take(m,x)) = take(min(n,m), x).

Once again, the inductive proof of the same property performed over the recur-
sive definition of take can but be regarded as an over-kill in face of such a simple
calculation relying on the Galois connection concept.

One may wonder about the extent to which such a calculational style car-
ries over to supporting the actual synthesis of the implementation of take given
its specification (5) in the form of a Galois connection. This brings us to the
core subject of the current paper: how calculational is programming from Galois
4 See [16]. The authors would like to thank Roland Backhouse for spotting this Galois

connection, whose upper adjoint g = take is specified in terms of a lower adjoint
involving id and length : f z = (length z, z). Thus the lower ordering is the product
partial order (≤) × (�), defined pointwise in the obvious way.

5 For a detailed account of the algebra of Galois connections see eg. [1,18,16].
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connections? Reference [18] shows how the defining Galois connection of (÷)
provides most of what is required for calculating its implementation. Reference
[16] does the same for take, but Galois connection (5) is productive only after
an inductive definition of prefix (") is given explicitly, at point level. This some-
how suggests that similar, but more economic and generic reasoning could be
performed at the pointfree level of the algebra of programming [4], capitalizing
on the pointfree definition of partial orderings such as prefix as relational folds.

Presenting such a generic, pointfree style of programming from Galois con-
nections is the main aim of the current paper and leads us into the core of the
research being reported.

3 Calculating Galois Adjoints

Recall the definition of a GC: given two preorders (≤) on A and (") on B, we
say that two functions f : A← B and g : B← A form a GC if they satisfy the
following equivalence:

f x ≤ y ≡ x " g y cf. diagram: A
g

��

≤
--

B
f

..

�
//

(8)

It is quite common in GCs to have adjoints of disparate complexity. In GC (3)
relating multiplication (×y) and whole division (÷y), for example, the former is
easier to define than the latter. A common scenario is that of one being given
the two preorders and an easy adjoint, thereupon targeting at calculating the
other adjoint.

Recall the easy/hard split discussed in Section 1. We will propose in this
section a relational operator that manifests the split: by E � H we denote a
problem specification where the easy part E is “shrunk” by the requirements of
the hard part H . It will then be shown that given (≤), ("), and lower adjoint f
in a Galois connection, the upper adjoint can be expressed by:

g = (f◦ · (≤)) � (/). (9)

We will then discuss, in this section and the next, some properties of (�) that
help us to calculate g. The operator (�) is similar to, and shares many properties
of, the min operator of Bird and de Moor [4], with the significant advantage of
not requiring a power allegory.

3.1 The “Shrink” Operator

From now on we will be using a number of definitions and rules of the pointfree
calculus of relations. For the reader’s convenience, minimal review is given in
Appendix A. For a thorough introduction, the reader is referred to Aarts et al.
[1], and to Bird and de Moor [4] for a categorical perspective.

The first step toward manifesting the easy/hard split is to rewrite (8) to
pointfree style by turning both sides into relations between x and y. Since partial
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orders such as (≤) and (") are relations that map “larger” elements to “smaller”
ones, the right hand side trivially translates to (") ·g. The left hand side, noting
that (x, f x) ∈ f◦ and that f x ≤ y is another way of writing (f x, y) ∈ (≤),
translates to f◦ · (≤). The equivalence means that the two relations are equal:

f◦ · (≤) = (") · g. (10)

Such equality splits into two inclusions to be dealt with separately:

(") · g ⊆ f◦ · (≤) ∧ f◦ · (≤) ⊆ (") · g. (11)

We show that the first inclusion in (11) is equivalent to g ⊆ f◦ · (≤) provided
that f is monotonic, that is, x " y ⇒ f x ≤ f y, which can be written pointfree
as (") · f◦ ⊆ f◦ · (≤). That it implies g ⊆ f◦ · (≤) is easy to see — since (") is
a preorder, g ⊆ id · g ⊆ (") · g. For the other direction, we reason:

g ⊆ f◦ · (≤)
⇒ { monotonicity of (·) }

(") · g ⊆ (") · f◦ · (≤)
⇒ { assumption: f monotonic }

(") · g ⊆ f◦ · (≤) · (≤)
⇒ { ≤ transitive: (≤) · (≤) ⊆ (≤) }

(") · g ⊆ f◦ · (≤).

Concerning the second condition in (11), by taking converses of both sides and
using the function shunting (23) rule, we transforming it to g ·(f◦ ·(≤))◦ ⊆ (/).
All in all, we have just factored Galois connection (11) into two parts,

f◦ · (≤) = (") · g ≡ g ⊆ f◦ · (≤)︸ ︷︷ ︸
“easy”

∧ g · (f◦ · (≤))◦ ⊆ (/)︸ ︷︷ ︸
“hard”

. (12)

uncovering the easy/hard blend which is implicit in the original formulation.
To see this, let us first abbreviate f◦ · (≤) to R. The left hand operand of the
conjunction, g ⊆ R, states that g must return a result permitted by R — the
“easy” part. The right hand operand g · R◦ ⊆ (/), on the other hand, states
that if R maps x to y (therefore (x, y) ∈ R◦), it must be the case that g x / y.
That is, g returns a maximum result, under (/), among those results allowed by
R. This is the “hard” part of the connection.

This is in fact nothing surprising: we have merely reconstructed an equivalent
definition of a Galois connection [1, Theorem 5.29, page 66]: (1) f is monotonic,
(2) (f · g) x ≤ x, (3) (f x) ≤ y⇒ x " (g y). The calculation above, however,
inspires us to capture this pattern by a new relational operator. Given R :: A←B
and S :: A←A, define R � S :: A← B, pronounced “R shrunk by S”, by

X ⊆ R � S ≡ X ⊆ R ∧ X ·R◦ ⊆ S, (13)
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The definition states that X must be at most R, and that if X yields an output
for an input x, it must be a maximum, with respect to S, among all possible
outputs of x. In terms of the easy/hard split, R is the easy part and S defines
the (optimization) criterion to be taken into account in the hard part. Using the
properties of relational intersection and division, one may come up with a closed
form for R � S:

R � S = R ∩ S/R◦. (14)

With the new notation we can go back to (12) and rephrase the right hand
side of the equivalence in terms of (�):

g ⊆ (f◦ · (≤)) � (/). (15)

3.2 Properties of Shrinking

From the definition (13), it is clear that R � S ⊆ R. It is easy to find out under
what condition the other direction of inclusion holds: R ⊆ R � S iff R · R◦ ⊆ S,
and so

R = R � S ≡ img R ⊆ S. (16)

since img R = R · R◦. Since 	 is above anything, we have R � 	 = R, that is,
R stays the same if we put no constraints in the “hard” part. When S = ⊥, no
maximum exists, and thus R �⊥ yields nothing for any input: R �⊥ = ⊥.

The following rule shows how (�Q) distributes into relational union:

(R ∪ S) �Q = ((R �Q) ∩Q/S◦) ∪ ((S �Q) ∩Q/R◦). (17)

This arises from (14) and distribution of intersection over union. A most impor-
tant consequence of (17) is that (�Q) distributes into joins,

[R, T ] � S = [R � S, T � S], (18)

— recalling that [R,S] = (R · inl◦) ∪ (S · inr◦) — and therefore conditionals,

(p→ R, T ) � S = (p→ (R � S), (T � S)). (19)

The following two rules allow us to distribute a function in and out of (�):

(R · f) � S = (R � S) · f , (f ·R) � S = f · (R � (f◦ · S · f)).

The first equality can be proved using shunting and indirect equality, while the
second generalizes a similar result in [4].

A number of results of the (�) combinator relate to simplicity. Recall that the
image of a simple relation R is coreflexive, that is, img R ⊆ id. Then, from (16)
we draw R = R �S if R is simple and S is reflexive, since img R ⊆ id and id ⊆ S
entail img R ⊆ S.

Very often, S in (13) is anti-symmetric: S ∩ S◦ ⊆ id. In this case it can be
shown that R�S is always simple [7]. An application of this result concerns (15),
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ensuring (f◦ · (≤)) � (/) simple for (/) a partial order. Thus equality (9) holds
in such a situation.

The special case S = id in (13) deserves some attention. In this situation,
each output in the shrunk relation can relate only to itself. Thus (y, x) ∈ R � id
only when y is the sole value that x is mapped to by R. When more than one
such y exists, x cannot be in the domain of R � id . Therefore, R � id is the largest
deterministic fragment of R. Formally,

X ⊆ R � id ≡ X " R ∧ X ·X◦ ⊆ id . (20)

where X " R means R · dom X = X , that is, X is less defined than R but as
non-deterministic as R where defined6.

4 Inductive Relations

A question was raised in Section 1: where and how does induction crop up in
the design of a program? An answer is provided in the remainder of this paper,
in two steps. First, we recall that the “natural” way of ordering inductively
defined data (such as eg. lists and trees) is through inductive relations defined
using well-known combinators of the algebra of programming known as folds and
unfolds [4]. Second, we show how specifications written as GCs on such inductive
orderings “naturally” lead to inductive implementations, by calculation.

Functional programmers are familiar with inductive definitions of datatypes
such as the natural number N and finite lists List A, and the fold function
defined on them. The notion can be generalised to relations. For a review, the
reader is referred to Appendix B. While functional folds are often used to define
operations on inductively defined datatypes, it is often overlooked that many
relations between inductively defined data can also be inductively defined as
relational folds. The (≥) ordering on N, for example, is nothing but the least
relation satisfying

x ≥ 0 ∧ x ≥ y⇒ (x + 1) ≥ (y + 1).

The two conditions respectively translate to 	 · zero◦ ⊆ (≥) and (≥) ⊆ suc◦ ·
(≥) · suc in pointfree style. It turns out that (≥) is a fold:

	 · zero◦ ⊆ (≥) ∧ (≥) ⊆ suc◦ · (≥) · suc
≡ { shunting, since R ⊆ T ∧ S ⊆ T ≡ R ∪ S ⊆ T }

(	 · zero◦) ∪ (suc · (≥) · suc◦) ⊆ (≥)
≡ { by (25): [R,S] · [T, U ]◦ = (R · T ◦) ∪ (S · U◦) }

6 This is the �pre ordering of [17], where it is shown to be a factor of the standard
refinement ordering. The proof of (20), omitted for space economy, essentially shows
that the right hand sides of (13) and (20) coincide, for S = id.
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[	, suc · (≥)] · [zero, suc]◦ ⊆ (≥)
≡ { absorption (24) }

[	, suc] · (id + (≥)) · [zero, suc]◦ ⊆ (≥)
≡ { (26) }

(≥) = ([	, suc ]).

Note that (+) in the penultimate line denotes the sum functor (see Appendix A)
rather than numerical sum.

This not the only way the ordering on natural numbers can be defined, how-
ever. If we instead perform case analysis on the lesser side of the ordering, we
come up with:

0 ≤ y ∧ x ≤ y⇒ (x + 1) ≤ (y + 1).

The first line translates to zero · 	 ⊆ (≤), where 	, having type A← N, is
equivalent to [zero, suc]◦. By a similar calculation, we come up with a definition
of (≤) as a fold (see Appendix A for the definition of ([ , ])):

(≤) = ([ zero, zero ∪ suc ]).

Given two finite lists xs and ys , let xs " ys mean that xs is a prefix of ys .
Natural numbers and finite lists are similar in structure and, through a similar
calculation, one comes up with the following definition of (") as a fold:

(") = ([ nil ,nil ∪ cons ]). (21)

Since lists are special cases of binary trees, one can generalise (≤) and (≥) to
regular datatypes such that trees “grow larger” by substituting of empty nodes
to other (sub)trees, and prove generically that (≤)◦ = (≥) (see [14]). The two
orderings above are enough for our purposes of showing their role in calculating
implementations of adjoints of Galois connections, as is shown in the sequel.

5 Program Calculation by Optimization — “Shrinking
Specs into Programs”

Given a Galois connection f x ≤ y ≡ x " g y, recall the conclusion of Section
3.1 that g can be expressed as g = (f◦ · (≤)) � (/). The next step is triggered by
a question: what can we do wherever (≤) and/or (") are inductive relations?

In this section we will see two examples that follow a standard scheme we
propose: (1) fusion, in the easy part, of the inner ordering (≤) with f◦, to form
either a fold or a restricted form of a hylomorphism (a fold followed by the
converse of a fold); (2) shrinking the easy part using the hard part (�(/)), hence
the motto: “shrinking specs into programs”.

We present two theorems to perform the shrinking: the Greedy Theorem,
which applies when the easy part is a fold, and the Dynamic Programming (DP)
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Theorem, when it is a hylomorphism where the folding phase is a function.
The Greedy Theorem is a simplification of that of Bird and de Moor [4]: it does
not need a power allegory, and thus is applicable in more categories and, we
believe, easier to comprehend. The DP-Theorem is similar to that of Bird and
de Moor, with a different precondition, arising from its more general setting.

Both theorems are datatype-generic, and applicable not only for Galois con-
nections, but also for optimisation problems in general. Due to space constraints
we are unable to cover this aspect and will defer the discussion to a later work.

5.1 Example of Greedy Programming

Given a predicate p, takeWhile p xs yields the longest prefix of xs whose elements
all satisfy p:

all p xs ∧ xs " ys ≡ xs " takeWhile p ys . (22)

This expresses a Galois connection between the set of all finite sequences ys
and that of the ones (xs) whose elements all satisfy p. The upper adjoint is
takeWhile p and the lower adjoint is the embedding of all such sequences into
the larger set. To see this we rewrite (22) into the pointfree equality

map p? · (") = (") · takeWhile p

by expressing all p by coreflexive relation map p?. Recall that (a, a) ∈ p? ≡ p a.
Therefore, (xs , xs) ∈ map p? ≡ all p xs .

Note how map p? captures the lower-adjoint of the connection, as it is simple
and entire over the set of all sequences satisfying p. Since (map p?)◦ is the same
as map p? (coreflexives are symmetric) we have that takeWhile p can be defined
in terms of (�):

takeWhile p = (map p? · (")) � (/).

What to do now? If we manage to transform the easy part map p? · (") into
a fold, the following Greedy Theorem gives us conditions under which we may
promote (�(/)) into a fold:

Theorem 1. ([R � S ]) ⊆ ([R ]) � S if S is transitive and R is monotonic with
respect to S◦, that is, R · FS◦ ⊆ S◦ · R.

Proof: see appendix C. �
The “monotonic condition” R · FS◦ ⊆ S◦ · R states that if x1 is no worse than
x2 under S, at least one output of R on x1 is no worse than any output on x2.
Thus we lose nothing if we compute only the locally optimal answers, that is,
doing (�S) in the fold.

Transforming map p? · (") into a fold turns out to be easy because, as shown
in (21), (") is already a fold. By a standard fold-fusion we get:

map p? · (") = ([ nil ,nil ∪ (cons · (p?× id)) ]),

that is, in every step we may choose between taking an empty prefix (nil) and,
if the current element satisfies p, attach it to the previously computed prefix
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(cons · (p?× id)). The monotonicity condition basically says that a longer prefix
remains longer after such an operation. Its formal proof makes use of (21), the
fact that (") is a fold.

By Theorem 1 we may choose ([ [nil ,nil∪(cons ·(p?×id))]�(/) ]) as a candidate
for takeWhile p. By (18), we may distribute (�(/)) into the join. The relation
(nil ∪ (cons · (p? × id))) � (/) returns a longer list whenever possible, that is,
whenever the current element satisfies p. Thus the fold refines to ([ nil , ((p· fst) →
nil , cons) ]), which translates to the usual definition of takeWhile :

takeWhile p [ ] = [ ]
takeWhile p (x : xs) | p x = x : takeWhile p xs

| otherwise = [ ].

5.2 Example of DP-Programming

Given GC (3) between (×y) and (÷y), this can be expressed in terms of (�):

(÷y) = ((×y)◦ · (≤)) � (≥).

To calculate (÷y), one may proceed the same way as in the previous section and
fuse (×y)◦ into (≤) to form a fold, and attempt to apply Theorem 1. This time,
however, we can not prove the monotonicity condition. Fortunately, for this and
many other examples, the following Dynamic Programming Theorem applies:

Theorem 2. μ(λX → (in · FX · T ◦) � S) ⊆ ([ T ])◦ � S if in is monotonic with
respect to S, that is, in · FS ⊆ S · in, and dom T ⊆ dom F(([ T ])◦ � S).

Proof: see [14]. �

The notation μf denotes the least fixed point of f . The constructor in can in
fact be an arbitrary function, a generalisation we do not need here.

To apply Theorem 2, we aim at turning (×y)◦ · (≤) to converse of a fold or,
equivalently, turning (≥)·(×y) into a fold. It is known that (×y) = ([ zero, (+y) ]):
starting with 0, and add y in each step. By fold fusion, we get (≥) · (×y) =
([	, (+y) ]): the base case can be any number.

The monotonicity condition in Theorem 2 instantiates to: [zero, suc] · (id +(≥
)) ⊆ (≥) · [zero, suc], which can be proved formally using the definition of (≥)
as a fold. Theorem 2 is thus applicable and we get:

μ(λX → ([zero, suc] · (id + X) · [	, (+y)]◦) � (≥)) ⊆ ([ zero, (+y) ])◦ � (≥).

Denote (+y)◦, a partial function that applies only to input no less than y,
by (−y), and note that zero · 	 = zero. By (25), the left hand side simplifies
to μ(λX → (zero ∪ (suc ·X · (−y))) � (≥)). It is a recursive definition where, in
every step, we may choose to simply return 0 or, if possible, subtract y from the
input and add 1 to the recursively computed result.

We have yet to simplify (zero ∪ (suc · X · (−y))) � (≥). Not having space for
the formal detail, we simply note here that since the result of suc ·R is strictly
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larger than 0, to maximise the output, we shall just choose the right branch
whenever possible, that is, when the input is no less than y. This results in the
usual program for division:

x ÷ y | x ≥ y = 1 + ((x − y)÷ y)
| otherwise = 0.

6 Case Study: Scheduling as a Galois Connection

As our closing case study, we will be looking at a more complex problem related
to task scheduling. The full detail cannot be covered in this paper, and we will be
proceeding in a less formal manner, sketching only an outline of the development.

Let A be a set of tasks, and let g :: Gantt = PA←A such that for each x ∈ A,
g x is the set of tasks that have to wait for x to complete before commencing,
while the spans, time need by each task, is given by a function Spans = N←A
where N models discrete time intervals (eg. days, months). Gantt and Spans
form an acyclic graph, known as a Gantt graph, coined after Henry Gantt (1861-
1919) who introduced them. A time schedule associating starting times to tasks
(optimal or not), is also modelled by a function of type Schedule = N←A. The
types Spans and Schedule will be refined later. We use variables sp for Spans ,
sh for Schedule, x, y, etc. for tasks, and s, t for time.

Given g :: Gantt , the goal is to calculate a function bschg :: Schedule←Spans
that computes the “best” schedule for the tasks — “best” in the sense that tasks
start as early as possible. Take, for instance, A = {a, b, c, d}, for task spans sp =
{(1, a), (5, b), (10, c), (20, d)} and graph g = {({b}, a), ({c}, b), ({}, c), ({c}, d)},
the best schedule will be bschg sp = {(0, a), (1, b), (20, c), (0, d)}.

How do we specify bschg? Note that “best” means smallest and that bschg sp
should be monotonic in both arguments: more dependencies in g and/or longer
tasks in sp can only defer tasks start-up times into the future. This suggests
specifying bschg as adjoint of a Galois connection between schedules and spans.
Let lazyg :: Spans←Schedule be a function that, given a schedule, computes for
each task the maximum time it is allowed to take (hence the name), we have

lazyg sh ≥̇ sp ≡ sh ≥̇ bschg sp,

where (≥̇) denotes (≥) lifted to functions: f ≥̇ h ≡ 〈∀x : x ∈ A : f x ≥ h x〉.
The function lazyg appears to be easier to define than bschg. In the definition

below, (t ←� x) 4 sh denotes a function sh, whose domain does not include x,
extended with a mapping from x to t.

lazyg {} = {}
lazyg ((t←� x) 4 sh) | g x ⊆ dom sh = (s←� x) 4 sp

where sp = lazyg sh
s = �{sh y | y ∈ g x} − t.

The � operator in the non-empty case takes the minimum of a set, thus the
span allowed for each task x is the difference between the earliest scheduled time
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among tasks that follow x and t, the time scheduled for x. The non-deterministic
pattern (t←� x)4sh does not explicitly specify an order in which tasks are picked.
However, the guard g x ⊆ dom sh, needed because we want to look up all the
y’s in sh, implicitly enforces the topological order — x is processed before all
tasks that depend on it. Equivalently, we could have treated the schedule as a
list of pairs sorted in topological order: Schedule = Spans = [(N, A)]. One may
thus drop the domain check and come up with the following definition for lazyg:

lazyg [ ] = [ ]
lazyg ((t, x) : sh) = (s, x) : lazyg sh

where s = �{sh y | y ∈ g x} − t.

For brevity we still use the syntax sh y for looking up.
To calculate bschg = ((lazy g)◦ · (≥̇)) � (≤̇), we have to construct the converse

of lazyg. Consider, in s = �{sh y | y ∈ g x} − t, what t could be given s and x.
If g x is empty, s = ∞, and t could be any finite value. With g x non-empty, we
have t = �{sh y | y ∈ g x} − s. However, t :: N must be non-negative. So we are
putting an constraint on sh: �{sh y | y ∈ G x} must be no smaller than s. That
gives us a very non-deterministic program for (lazyg)◦: we go through the graph
in topological order until we reach a task say y, for which g y is empty, guess
a possible time to schedule it, and go back to some task x that must be done
before y. If y is scheduled late enough that x can finish, that’s fine. Otherwise
this trial fails and we backtrack.

We can refine (lazyg)◦ to a more deterministic program that explicitly pass
the constraint �{sh y | y ∈ g x} ≥ s down through the recursive calls, so that
the choice of t for when g x = {} is guaranteed to be late enough. We use an
extra argument, a mapping from tasks to time, that records the earliest time
each task must be scheduled. Initially it is all zero, meaning that there is no
constraint yet: (lazyg)◦ sp = scheg (sp, {(z, 0) | z ∈ dom sp}). In pointfree style,
let init sp = (sh, {(z, 0) | z ∈ dom sp}), we have (lazy g)◦ = scheg · init .

The main computation happens in sche, the name suggesting that it returns
a scheduling, but not always the best one. It can be defined as:

scheg ([ ], ) = [ ]
scheg ((s, x) : sp, c) = (t, x) : scheg (sp, c′)

where t = if null (g x) then (something no less than c x) else c x
c′ y = if y �∈ g x then c y else (t + s) � (c y).

This is an unfold, that is, converse of a fold, on lists. In each step, the next task
in topological order is scheduled, and the constraint set c is updated to c′ to
schedule the rest of the tasks.

Now that we have bschg = (scheg · init · (≥̇)) � (≤̇), the next steps are to
fuse (≥̇) into scheg · init to form an unfold, and to promote (�(≤̇)) into the un-
fold. Fusing (≥̇) with scheg merely makes the value of t more non-deterministic:
we are left with only t ≥ c x. To promote (�(≤̇)) we need a theorem related to
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Theorem 2 that needs a stronger antecedent. It confines the value of t to the
smallest possible: c x. The development concludes with the following program:

bschg ([ ], ) = [ ]
bschg ((s, x) : sp, c) = (t, x) : bschg (sp, c′)

where c′ y = if y �∈ g x then c y else (c x + s) � (c y).

7 Conclusions and Future Work

Poor scalability is often pointed out as a problem of the mathematics of pro-
gram construction. By contrast, Galois connections are a well-known example of
mathematical device which scales up from trivial to complex problem domains.
The research programme which embodies this paper starts from the conjecture
that the latter could help the former to scale up.

In this context, “programming from Galois connections” is proposed as a way
of calculating programs from specifications which take the form of Galois connec-
tions. This (emerging) discipline is beneficial in several respects. In particular,
the specification of a “hard” operation as adjoint of a GC provides early in-
sight on its properties, well before the actual implementation is derived. This
is granted by the rich algebra of GCs, which compose which each other in sev-
eral ways (thus growing larger and larger) and offer a powerful framework for
reasoning about suprema without making these explicit in the calculations.

It should be noted that Galois connections are ubiquitous in mathematics
and computer science [13]. In the latter case, they have been shown to offer a
powerful way to structure the allegory calculus of Freyd and Ščedrov [8,4], of
which Tarski’s relation algebra may in retrospect be seen as an instance [19].
Several examples of such GCs are given in the current paper (see eg. [1,6,15]
for a detailed account). At the other side of the spectrum, GCs have even been
proposed (together with the principle of indirect equality) as the building block
of a new brand of theorem provers [18].

In this context, the main contribution of the current paper is to be found
in the proposed process of deriving, using the algebra of programming [4], the
algorithmic implementation of Galois adjoints, expressed in closed formulæ which
record what is “easy” and “hard” to implement. However, instead of resorting to
explicit, point-level suprema, as is usual in textbooks, a new pointfree relational
combinator (named shrinking) is proposed. Thanks to the rich algebra of this
combinator, already sketched in [7], one is able to express and generalize previous
results on dynamic and greedy programming [4], in a way which dispenses with
the heavy artillery of power-allegories [8]. Such results thus become accessible
to a wider audience and easier to apply.

The whole division example provides a measure of progress: the verification
of a given algorithm against the given GC (3), carried out in [18], gives place in
the current paper to its construction from the connection itself.

So much for pros. Future work is concerned with a number of cons, namely
the fact that not every problem casts into a GC. The typical counter-example



Programming from Galois Connections 309

arises from the (false) lower adjoint being an embedding (or even the identity)
and lacking monotonicity.

Still on the negative side, we feel that the conceptual economy of the overall
approach is still unmatched by the effort needed to carry out particular exam-
ples. A body of knowledge around these results needs to be developed, structured
in corollaries, special cases, etc. The general result concerning checking mono-
tonicity in the side conditions of Theorems 1 and 2 given in [14] is an example
of what is required.

Last but not least, we find that the shrinking combinator has a lot more to
offer to algorithmic refinement, in particular with respect to its two-dimensional
factorization: either increasing definition or reducing non-determinism [17]. As
discussed in Section 3.1, R � id is the largest deterministic fragment of a specifi-
cation R, that is, that part of R which cannot be further refined. So, in a sense,
all effort should go into refining the complement of R � id with respect to R.
Embodying this intuition in the greedy and dynamic programming theorems is
clearly a subject for future research.

Acknowledgements. Special thanks go to Roland Backhouse for spotting the Ga-
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A Relational Calculus

Relations. A relation R from set B to set A, written R :: A← B, is a subset
of the set 	 = {(a, b) | a ∈ A ∧ b ∈ B}. When (a, b) ∈ R, we say R maps b
to a. Set operations such as union, intersection, etc., apply to relations as well.
The largest relation (with respect to set inclusion (⊆)) of its type is 	, while
the empty relation is denoted by ⊥. Given R :: A← B and S :: B ← C, their
composition R · S :: A← C is defined by:

(a, c) ∈ (R · S) ≡ 〈∃b :: (a, b) ∈ R ∧ (b, c) ∈ S〉.
Composition is monotonic with respect to (⊆). The identity relation idA :: A←A
defined by 〈∀a : a ∈ A : (a, a) ∈ idA〉 is the unit of composition. We often omit
the subscript when it is clear from the context. Given a relation R :: A←B, its
converse R◦ :: B←A is defined by (b, a) ∈ R◦ ≡ (a, b) ∈ R.

A relation that is a subset of id is said to be coreflexive, often used to filter
results satisfying certain conditions. Given a predicate p, the coreflexive relation
p? is defined by: (a, a) ∈ p? ≡ p a. The domain and range of a relation R are
given respectively by dom R = id ∩ (R◦ · R) and ran R = id ∩ (R · R◦). A
relation R is said to be (1) simple, if (a, b) ∈ R and (a′, b) ∈ R implies a = a′,
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or R · R◦ ⊆ id ; (2) entire, if every b ∈ B is mapped to some a, or id ⊆ R◦ · R.
A (total) function is a relation that is both simple and entire. As a convention,
single small-case letters refer to functions. One nice property of functions is that
inclusion equivalues equality: f ⊆ g ≡ f = g. The following shunting rules allows
us to move functions to the other side of inclusion:

f ·R ⊆ S ≡ R ⊆ f◦ · S, R · f◦ ⊆ S ≡ R ⊆ S · f . (23)

The relation R · R◦ is called the image of R, denoted by img R.
Given R :: A← B, S :: B← C, and T :: A← C, the relation T/S :: A←B is

defined by the Galois connection:

R · S ⊆ T ≡ R ⊆ T/S.

If (·S) is like multiplication, (/S) is like division: T/S is the largest relation such
that T/S · S ⊆ T .

Relators, Sum, and Product. A relator is an extension of a functor in category
theory. For the purpose of this paper it suffices to know that a relator F consists of
an operation on types that takes a type A to another type FA, and an operation
on relations, denoted by the same symbol F, that takes R :: A←B to FR :: FA←
FB. A relator is supposed to preserve identity (FidA = idFA) and composition
(FR ·FS = F(R ·S)), and is monotonic with respect to (⊆) (R ⊆ S⇒FR ⊆ FS).
The unit relator 1 takes any type to the unit type (with one element denoted
by ()), and any relation to id .

A bi-relator is a relator generalised to having two arguments. We will need
two bi-relators: sum (+) and product (×). For (×), the operation on types is the
Cartesian product A × B, defined by {(a, b) | a ∈ A ∧ b ∈ B}. The projections
are fst (a, b) = a and snd (a, b) = b. Given R :: A← C and S :: B ← C, the
“split” 〈R,S〉 :: (A×B)← C is defined by:

((a, b), c) ∈ 〈R,S〉 ≡ (a, c) ∈ R ∧ (b, c) ∈ S.

Equivalently, 〈R,S〉 = (fst◦ ·R)∩(snd◦ ·S). The operation on relations is defined
using split:

(R× S) = 〈R · fst , S · snd〉.
Functional programmers may be more familiar with the special case for functions:
〈f, g〉 a = (f a, g a), and (f × g) (a, b) = (f a, g b).

The disjoint sum of two sets A and B is defined by A + B = {inl a | a ∈
A} ∪ {inr b | b ∈ B}, with inl and inr being two injections. Given two relations
R :: A←B and S :: A← C, their “join” [R,S] :: A← (B + C) is defined by:

(a, inl b) ∈ [R,S] ≡ (a, b) ∈ R (a, inr c) ∈ [R,S] ≡ (a, c) ∈ S.

Equivalently, [R,S] = (R·inl◦)∪(S ·inr◦). This gives rise to the relator operation
on relations:

R + S = [inl · R, inr · S].



312 S.-C. Mu and J.N. Oliveira

Note the symmetry between the definitions for sum and product. We will often
need this absorption law:

[R,S] · (T + U) = [R · T, S · U ]. (24)

One of the applications of the join is to define the branching operator (P →
R,S), corresponding to the if P then R else S construct in many programming
languages:

(p→ R,S) = [R,S] · ((inl · p?) ∪ (inr · (¬p)?))
= (R · p?) ∪ (S · (¬p)?).

More generally, a common programming pattern is to use the converse of a join
[T, U ]◦ = (inl ·T ◦)∪(inr ·U◦) to simulate possibly non-deterministic case analysis,
and process the two cases by another join. In such situations the following rule
comes in handy:

[R,S] · [T, U ]◦ = (R · T ◦) ∪ (S · U◦). (25)

B Inductively Defined Datatypes and Catamorphisms

Inductively defined datatypes. Natural numbers are often inductively defined to
be the smallest set N such that (a) 0 ∈ N; (b) if n ∈ N, so does 1 + n. Let FN be
a function from sets to sets defined by FNX = {0} ∪ {1 + n | n ∈ X}. The two
conditions together are equivalent to saying that FNN ⊆ N, and the requirement
that N being the smallest means that N is the least prefix-point, and also the
least fixed-point of FN

7.
If we abstract over 0 and (1+), representing them respectively by inl () and

inr , F can be expressed as the type operation of relator FNX = 1 + X , where 1
is the unit type. Letting inN :: N← FNN be the isomorphism between FNN and
N, the successor function (1+) can be encoded by suc = inN · inr . The number
0 is encoded by inN (inl ()). In calculations, however, we often find the constant
function zero = inN · inl · 	 (that always yields 0 for any input) more useful.

Many inductively defined datatypes can be encoded this way. A finite list
of elements of type A, for example, can be defined as the least fixed-point of
FListX = 1 + A × X , with constructors nil :: List A← B defined by inList ·
inl · 	 and cons :: List A ← (A × List A) by inList · inr . The type of leaf-
valued binary trees, as defined in Haskell notation by data Tree A = Tip A |
Bin (Tree A) (Tree A), is the least fixed-point of FTreeX = A+ X ×X .

Catamorphisms. To design programs on these inductively defined datatypes, one
is often encouraged to define them over the input inductive structure. The so-
called catamorphism, also known as fold, is one such useful pattern of induction.

Folds exist for all datatypes defined as least fixed-points of so-called regular
relators: those defined in terms of 1, (+), (×), constants, and type relators. Let
7 For f monotonic on (≤), x is a prefix-point of f if f x ≤ x, and a fixed-point if

f x = x. The least prefix-point is also the least fixed-point [2].
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T denote the least fixed-point of the type operation of relator F. Given a relation
R :: B ← FB, the catamorphism ([R ])F :: B ← T is the least prefix point, and
also the least fixed-point, of λX → R · FX · in◦

T. Thus it is the least relation
satisfying:

([R ])F ⊇ R · F([R ])F · in◦
T, (26)

([R ])F = R · F([R ])F · in◦
T.

Take FX = 1+A×X as an example, and note that every relation R :: B← (1+
A×B) can be factored to [R1, R2] with R1 :: B← 1 and R2 :: B← (A×B). By
taking inT = [nil , cons] and instantiating R1 and R2 respectively to a constant
and a function we recover foldr above.

The fold fusion rule is one of the most important properties of folds:

([T ]) ⊆ S · ([R ])F ⇐ T · FS ⊆ S · R.

It states conditions under which we may promote relations into the body of the
fold.

C Proof of Theorem 1

Proof :

([S �R ]) ⊆ ([S ]) �R
≡ { universal property of (�) }

([S �R ]) ⊆ ([S ]) ∧ ([S �R ]) · ([S ])◦ ⊆ R

≡ { monotonicity of ([ ]) and X �R ⊆ R }
([S �R ]) · ([S ])◦ ⊆ R

≡ { hylomorphism: ([R ]) · ([S ])◦ = 〈μX :: R · FX · S◦〉 }
〈μX :: (S � R) · FX · S◦〉 ⊆ R

⇐ { least prefix point }
(S �R) · FR · S◦ ⊆ R

⇐ { monotonic condition: S · FR◦ ⊆ R◦ · S }
(S �R) · S◦ ·R ⊆ R

⇐ { since S �R ⊆ R/S◦ }
(R/S◦) · S◦ ·R ⊆ R

⇐ { division: R/S · S ⊆ R }
R ·R ⊆ R

≡ { R transitive }
true. �
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Abstract. That matrices of relations also obey the rules of relation alge-
bra is well known. When a suitable ordering relation is given, partialities
may be conceived as their lattice-continuous mappings — corresponding
to existential images which are often studied independently. Matrices
of partialities would considerably improve the possibility to study non-
strictness, streams, partial evaluation, and net properties in a compact
relation-algebraic form. They seem, however, to lead inevitably to some
borderline cases as the Boolean lattice IB0 and row-less matrices, that
shall here be dealt with.
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1 Introduction

It was a much-remembered achievement of mankind when in Indian mathematics
the concept of “0” was introduced. Since this point in time, one was able to
use number representations by position that greatly enhanced computational
abilities. However, one had also to tolerate several not immediately intuitive
agreements such as 0 ! = 1 for the factorial function, or 20 = 1. Far from trying
to measure up with this ancient achievement, we will here experiment with
something similar.

When we study row- as well as column-less relations as similar borderline
cases, we have certain aims in mind. Observing very big systems in full detail
is principally impossible. We should not pretend to be able to snapshot the
global telephone net, e.g. What we may be able to achieve is getting snapshots
of rather small parts of a big system while ignoring the rest or temporarily
ignoring connections with the rest. These observable parts are usually not fixed
in advance, may vary over time, and observation of one and the same part may
not proceed continuously and may be taken up again later.

The aim of this paper is to investigate the interplay between relations and
partialities, the latter based on [8]. This article is a report on intermediate results
of ongoing research. For reasons of space we cannot present all the details of the
intended applications and restrict to the following hint on synoptic regions.

2 Synoptic Regions

We assume that a part of a system is identified, its connections to the rest are
cut off in order to be able to observe it or to work on it. When we manage to

H. de Swart (Ed.): RAMICS 2011, LNCS 6663, pp. 314–330, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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single out such a region and to handle it in full detail, we will call it a synoptic
region. After working or observing has taken place, it is re-connected again. So we
have a situation that has often been described operationally with semaphores,
Petri nets, or commit/rollback structures in data bases. One may also think
of a leaking hot-water pipe in a heating system to be repaired: The plumber
will look for positions around the leak and will deep-freeze these points during
repair. Such synoptic regions will in retrospect often overlap. Observed locally,
however, every item will be set out to a linear stream of (local) time of belonging
to varying synoptic regions.

A B

C

Fig. 1. Synoptic regions

The important point to observe is that the transactions taking place in these
regions leave their marks when terminated so that potential later transactions
in the same or in overlapping regions find these and start from such results. It is
thus important that we learn to work with only temporarily cooperating regions.
In particular, we have to invent some measure to cope with being non-connected.

We start giving a rather informal and näıve idea of overlapping synoptic re-
gions. Regions A,C of Fig. 1 may work completely independently. Should also B
be observed, there are many conceivable local executing sequences in the overlap
parts. The loops indicate where (relational) operations may then take place and
where results of such actions are left as marks in the intersections. For A, trans-
actions in C will be hidden transactions in the sense of π-calculus, e.g. While
in π-calculus, they are just hidden, we here aim at propagating their effects as
with the — also local — atlases in algebraic topology.

With synoptic regions we aim at a deeper concept behind which allows a
detailed analysis of strictness and non-strictness. Fully observable snapshots or
transactions may only take place in synoptic regions.

But how do we manage to combine this elegantly in relation-algebraic form
not using total observation? Can we maintain relation algebra even in this case
of being non-connected?

It is a different topic to discuss how synoptic regions are singled out temporar-
ily. When semaphores have been used in earlier programming concepts, it was
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understood that they would be handled appropriately on the compiler level. In
other cases, one will use differently advanced technologies working in micro sec-
onds as opposed to milli seconds. Scaling down observational devices is a sliding
process. Concerning orders of magnitude, we started at milli, have passed micro,
are currently at nano for electronic devices. Cutting out is assumed to occur in
the significantly faster mode guaranteeing non-interference.

3 Relation-Algebraic Preliminaries

Since we cannot present all the prerequisites on relation algebra, we give [10],
[11], [9] as a general reference. We write R : V −→ W if R is a relation with
source V and target W , often conceived as a subset of V ×W . If the sets V and
W are finite and of size m and n, respectively, we may consider R as a Boolean
matrix with m rows and n columns.

We assume the reader to be familiar with the basic operations on relations,
namely RT (converse), R (negation), R ∪ S (union), R ∩ S (intersection),
and R ; S (composition), the predicate R ⊆ S (containment), and the special
relations1 (empty relation), (universal relation), and (identity relation).

We assume that a heterogeneous relation algebra is a structure that

— is a category with respect to composition “ ; ” and identities ,
— has complete atomic Boolean lattices with ∪, ∩, , , ,⊆ as morphism sets,
— obeys rules for transposition in connection with the latter two that may be

stated in either one of the following two ways:

Dedekind R;S ∩ Q ⊆ (R ∩ Q;ST); (S ∩ RT ;Q) or
Schröder R;S ⊆ Q ⇐⇒ RT ;Q ⊆ S ⇐⇒ Q;ST ⊆ R.

Residuals are often introduced via A;B ⊆ C ⇐⇒ A ⊆ C ;BT =: C/B. Inter-

secting such residuals with syq(R,S) := RT ;S ∩ R
T
;S, the symmetric quotient

syq(R,S) : W −→ Z of two relations R : V −→ W and S : V −→ Z is
introduced. Given an ordering relation E and some set or vector U , one may
determine the least upper bound lubE(U); see, e.g., [10,11,9]. Given a relation
X , it is also possible to form lubRE(X) :=

[
lub(XT)

]T
, i.e., obtain the least

upper bound row-wise.
We will use membership-relations ε : V −→ P(V ) between a set V and its

powerset P(V ) that can be characterized algebraically via the symmetric quo-
tient. With a membership relation the powerset ordering is easily described as
Ω = εT;ε. Explicit examples will be provided below.

4 Two Elementary Constructions

We approach the study of synoptic regions with several construction techniques.
The first construction will allow us to conceive a step that happens in a region
as just one homogeneous relation. This is visualized by the schema in Fig. 2.
1 Suppressing indices here.
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M = {X,Y, Z, U, V } O = {A,B,C}
ϕ(X) := C, ϕ(Y ) := A, ϕ(Z) := C, ϕ(U) := B, ϕ(V ) := A

X Y Z U V

X
Y
Z
U
V

⎛
⎜⎜⎜⎜⎝

MORC,C MORC,A MORC,C MORC,B MORC,A

MORA,C MORA,A MORA,C MORA,B MORA,A

MORC,C MORC,A MORC,C MORC,B MORC,A

MORB,C MORB,A MORB,C MORB,B MORB,A

MORA,C MORA,A MORA,C MORA,B MORA,A

⎞
⎟⎟⎟⎟⎠

Fig. 2. Homogeneous relation constructed from heterogeneous ones, using arbitrary
elements of the respective morphism sets

In order to exclude any conceivable problems in such regards, everything is
here assumed to be finite and non-empty. We handle the borderline cases only
later.

4.1 Proposition. Let be given any heterogeneous relation algebra with object
set O and morphism sets MORo,o′ in the case o, o′ ∈ O. Assume further a
mapping ϕ : M−→ O defined on some set M. Then the matrices of relations

R =
[
ψm,m′(R) ∈MORϕ(m),ϕ(m′)

]
m,m′∈M

or else, the matrices over M×M with coefficients ψm,m′(R) ∈MORϕ(m),ϕ(m′)
if m,m′ ∈ M, form a homogeneous relation algebra when operations are defined
as [

R ∪MS
]
m,m′ := ψm,m′(R) ∪O ψm,m′(S)[

R
M]

m,m′ := ψm,m′(R)
O

R ⊆M S :⇐⇒ ψm,m′(R) ⊆O ψm,m′(S) for all m,m′ ∈M[
R ;M S

]
m,m′′ := supO

m′∈M
{
ψm,m′(R) ;O ψm′,m′′(S)

}[
RTM

]
m,m′ := (ψm′,m(R))TO .

Proof : Based on the Boolean lattices MORo,o′ , the Boolean operations are
executed point-wise and, thus, form a Boolean lattice again. The monoid part is
trivial as can be seen in
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(R;M S);M T

]
m,m′′ = supO

m′∈M
{
ψm,m′(R;O S);O ψm′,m′′(T )

}
= supO

m′∈M{supO
m◦∈M{ψm,m◦(R);ψm◦,m′(S)};Tϕ(m′),ϕ(m′′)}

= . . . =
[
R;M (S ;M T )

]
m,m′′

applying ∪O- and, thus, supO-distributivity of composition.
The task remains to prove the Schröder equivalences. For this, assume
R ;M S ⊆M T , i.e.,[
R ;M S

]
m,m′′ ⊆O

[
T
]
m,m′′

to hold for every pair m,m′′ ∈ M, which means by definition of composition
supO

m′∈M{ψm,m′(R) ;O ψm′,m′′(S)} ⊆O
[
T
]
m,m′′ .

Applying the definition of supO and the matrix-like definition, however, this
brings
ψm,m′(R) ;O ψm′,m′′(S) ⊆O ψm,m′′(T )

for every triple m,m′,m′′ ∈ M, so that owing to the Schröder rule in O
(ψm′,m(R))TO ;O ψm,m′′(T )

O ⊆O ψm′,m′′(S)
O

.
Applying the definition of the matrix operations and of the supremum, we get[

RTM ;M T
M]

m′,m′′ ⊆M
[
S
M]

m′,m′′ .

One may wonder why the category O has been used and not just one category
object with morphism set IB1 so as to obtain normal matrix coefficients 1 , 0 .
We will later indeed have to resort to different coefficient types.

An ‘inverse operation’ of this construction is also possible:

4.2 Proposition. Let be given the algebra of homogeneous relations 2X×X

on X and consider an equivalence Ξ. It is possible to introduce therefrom a
heterogeneous relation algebra with operations directly based on the original
ones as follows:
O := classes of X modulo Ξ

As indicated in Fig. 3, each class Di is injected (ιi : Di −→ X)1≤i≤n as subset
into X , with n := |XΞ |.
MORi,k := {A | A = ιi;R; ιTk for some R : X −→ X}.

Proof : The injections constitute an n-fold direct sum, cf. [10,11,9], and corre-
spondingly satisfy

ιi;ι
T
i = , ιi;ι

T

k = in the case i=/ k, sup i ι
T
i
;ιi = , and Ξ = sup i ι

T
i
; ;ιi

Employing these formulae, the other requirements are rather trivial in view of
Fig. 3.

Historically, researchers have preferred considering homogeneous relation alge-
bras and introducing cylindric elements in these, e.g. The present author has
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1

2

3

1

2

3

Fig. 3. Equivalence and injections of its classes

always used the other approach, i.e., starting from a heterogeneous relation al-
gebra and considering the above homogeneous construct as a natural outcome.
For working with relations on a computer, this seems adequate. It allows domain
constructions without burdening these with non-finite models.

5 Row- Resp. Column-Less Relations

We now approach our goal from a completely different side and open another
thread. To guide our intuition, we study in Fig. 4 membership relations ε and
their corresponding powerset orderings Ω = εT;ε for sets with 2, 1, and 0
elements.

For an empty set the set of all subsets is non-empty, which is resembled by the
above relations. The “—” and “|” shall indicate that there is no row resp. column.
There exists, however, a row as well as a column for Ω0.

We trace the operations from Ωn = εT
n

;εn down to Ω0 := εT
0

;ε0. Source and
target are easily determined, but one will find it difficult to obtain this as a

ε2 =

{} {m
a
le
}

{fe
m
a
le
}

{m
,f
}

m
f

(
0 1 0 1
0 0 1 1

)
εT
2 =

m
a
le

fe
m
a
le

{}
{male}

{female}
{m,f}

⎛
⎜⎝

0 0
1 0
0 1
1 1

⎞
⎟⎠ Ω2 =

{} {m
a
le
}

{fe
m
a
le
}

{m
,f
}

⎛
⎜⎝

1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

⎞
⎟⎠

ε1 =

{} {1
}

1 (0 1) εT
1 =

1

{}
{1}

(
0
1

)
Ω1 =

{} {1
}(

1 1
0 1

)

ε0 = —

{}

�.� εT
0 =

|
{} (.) Ω0 =

{}

(1)

Fig. 4. Membership relation and powerset ordering for 2-, 1-, and 0-element set
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matrix product when n = 0. It is, however, not without sense: Ω0 is the left
residual of ε0 with itself, meaning that it indicates where a column of ε0 is
contained in a column of ε0.

If we consider representing a Boolean matrix by an array, and an array by
a list of lists, then one will observe that it is possible to represent εT

0 as [[]],
namely as a matrix with one line containing no element, i.e. with no column. It
is, however, impossible to represent ε0 in this way. Even more difficult is it to
include the row- and column-less relation discussed only later.

On the other hand, there exist situations in which one may wish to extend the
constructions of Sect. 4 smoothly to these borderline cases. To give a first idea,
we study a rather simple-minded example, investigating the interrelationship
between ε and Ω simultaneously for two disjoint and unrelated sets X and Y . If
we try to model such non–connectedness of X,Y with as coefficient in ε, we
get the situation of Fig. 5.

ε =

2
X

2
Y

X

Y

(
εX X2Y

Y 2X εY

) 2
X

2
Y

2X

2Y

(
εT

X
;εX εT

X
; X2Y

εT

Y
; Y 2X εT

Y
;εY

)
= Ω

Fig. 5. Attempting to model non-connectedness of X, Y with

This would be fine with ΩX , ΩY in the diagonal, however with disturbing
terms =/ off diagonal. These in turn would corrupt every higher construct
built on top of it, such as forming least upper bounds lub to get crispness or
checking for continuity, or else the existential images of Sect. 6; but look ahead
to the end of Sect. 9.

6 Existential Images

The result in Prop. 4.1 is immediate for relations R ∈ MORo,o′ with o, o′ ∈ O
interpreted with nonempty sets; i.e., when all the borderline cases considered
earlier are excluded. The question we try to answer next is to which extent
considering existential images will allow us to extend our imagination. It will in
particular be observed that some of the dubious row- or column-less relations
have a reasonable counterpart as an existential image. We recall the definition
and refer to [4,2,9].

6.1 Definition. Given any relation R : X −→ Y together with membership
relations ε : X −→ 2X and ε′ : Y −→ 2Y , we define its existential image as

ϑ
R

:= syq(RT ;ε, ε′) = εT;R;ε′ ∩ εT ;R;ε′.
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The existential image is known to be a (lattice-)continuous mapping with respect
to the powerset orderings Ω = εT ;ε. It behaves nicely with respect to relational
composition, being multiplicative and respecting identities:

ϑ
Q;R

= ϑ
Q

;ϑ
R

ϑ
X

= 2X .

The relation R may be re-obtained from ϑR as R = ε;ϑR ;ε′
T
, (see [9]), but

normally there exist many relations W satisfying R = ε;W ;ε′
T

, most notably
W := εT;R;ε′. Furthermore, it is known that the existential image and the orig-
inal relation may simulate each other via ε, ε′:

εT ;R = ϑ
R

;ε′T ε′T ;RT = ϑ
RT

;εT.

As long as there are no empty rows or columns, this is well known. However, we
are approaching the borderline cases in the constructions that follow. Does this
smoothly extend to these? To study this, we first recall a very small but not yet
borderline example in Fig. 6.

R =

1

male
female

(
0
1

)
ϑ
R
=

{} {1
}

{}
{male}

{female}
{male,female}

⎛
⎜⎝

1 0
1 0
0 1
0 1

⎞
⎟⎠ ϑ

RT =
{} {m

a
le
}

{fe
m
a
le
}

{m
,f
}

{}
{1}

(
1 0 0 0
0 0 1 0

)

εT ;R = ϑ
R

;ε′T =

1

{}
{male}

{female}
{male,female}

⎛
⎜⎝

0
0
1
1

⎞
⎟⎠ ε′T ;RT = ϑ

RT
;εT =

m
a
le

fe
m
a
le

{}
{1}

(
0 0
0 1

)

Fig. 6. R and ϑR simulate each other with the memberships ε, ε′

R = —

m
a
le

fe
m
a
le

( . .) ϑ
R
=

{} {m
a
le
}

{fe
m
a
le
}

{m
,f
}

{} (1 0 0 0) ϑ
RT =

{}

{}
{male}

{female}
{male,female}

⎛
⎜⎝

1
1
1
1

⎞
⎟⎠

εT ;R = ϑ
R

;ε′T =

m
a
le

fe
m
a
le

{} (0 0) ε′T ;RT = ϑ
RT

;εT =

|
{}

{male}
{female}

{male,female}

⎛
⎜⎝

.

.

.

.

⎞
⎟⎠

Fig. 7. Simulation with existential image of a row-less relation
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It is obviously interesting to ask to which extent this behaviour scales down to
the row- and/or column-less relations mentioned earlier. With Fig. 7, we study
a row-less relation in a similar fashion.

We have a more detailed look at εT ;R = ϑ
R

;ε′T of Fig. 7 in Fig. 8. While the
left product looks funny, the right one is fairly normal.

|
{} (.) ; —

m
a
le

fe
m
a
le

( . .) =
m
a
le

fe
m
a
le

{} (0 0) =

{} {m
a
le
}

{fe
m
a
le
}

{m
,f
}

{} (1 0 0 0) ;

m
a
le

fe
m
a
le

{}
{male}

{female}
{male,female}

⎛
⎜⎝

0 0
1 0
0 1
1 1

⎞
⎟⎠

εT ;R = ϑ
R

;ε′T

Fig. 8. Visible ϑR simulating row-less relation

We observe finally the small but totally normal looking ϑ
R

and ϑ
RT of a row-

as well as column-less relation in Fig. 9.

R = —
|
. ϑ

R
=

{}

{} (1) ϑ
RT =

{}

{} (1)

εT ;R = ϑ
R

;ε′T =
|

∅ (.) ε′T ;RT = ϑ
RT

;εT =
|

∅ (.)

Fig. 9. A row- and column-less relation with normal-looking existential image

In all these cases, the existential image has been suited to serve as a substitute
for the original relation R in as far as simulation was concerned.

7 The 1-Element Boolean Lattice and Non-connectedness

To cope with all this requires specific measures. Boolean lattices don’t bring
any problems when IBn is considered with n > 0. We are familiar with IB1 =
{True, False} or, denoted differently, IB1 = { 1 , 0 } and with IB2 = {( 1 , 1 ),
( 1 , 0 ), ( 0 , 1 ), ( 0 , 0 )}. But what about the case n = 0 where IB0 has car-
dinality 1? In the classic text by Birkhoff [3] it is not explicitly demanded that
least and greatest elements be different: “A Boolean lattice . . . by definition . . .
must contain universal bounds O and I”. With coincidence O = I, this would
normally become completely uninteresting, so that it is not mentioned more
explicitly by Birkhoff that O=/ I is required.

In order to use it for the borderline cases, we expressly admit the Boolean
lattice IB0 and make clear that one has to be extremely careful introducing
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a specific denotation for its only element IB0 = {◦1}. All Boolean operations,
union, intersection, implication, negation will always result in ◦1. The question
to answer is whether this makes any sense. It is definitely uninteresting for its
own. But when matrices with such coefficients — among others — are built, it
may be expected that they serve as appropriate ‘adapters’, most notably when
integrated in more advanced constructions. First, we take a look at a most
primitive construction.

7.1 Proposition. The following is a heterogeneous relation algebra:

– Two category objects called X0, X1 with morphism sets as follows
— MOR00 := {◦100}, MOR01 := {◦101},
MOR10 := {◦110}, MOR11 := {◦111},

— forming Boolean lattices that are all isomorphic to IB0,
— with identities ◦100 on X0 and ◦111 on X1 and composition defined as

; ◦100 ◦101 ◦110 ◦111

◦100 ◦100 ◦101 — —
◦101 — — ◦100 ◦101

◦110 ◦110 ◦111 — —
◦111 — — ◦110 ◦111

0 10 0

10

1 0

11

– Transposition shall result in ◦1 throughout — however with suitably exchang-
ing source and target, which means exchanging indices.

This means two category objects, both with sets of relations on it containing
just ◦1. It is also possible to combine the traditional with the new and unusual
relations. In the following proposition, one may wish to represent the elements
of MOR00 as Boolean matrices (IB0)X0×X0 as well as the only one ◦1X0X1 of
MOR01 as matrix (IB0)X0×X1 . The difference is that now MOR11 has two
elements , .

7.2 Proposition. The following is a heterogeneous relation algebra:

– Two category objects called X0, X1 with morphism sets as follows
— MOR00 := {◦100}, MOR01 := {◦101},
MOR10 := {◦110}, MOR11 := { 11, 11},

— forming Boolean lattices isomorphic to IB0, IB0, IB0, IB1, respectively,
— with identities ◦100 on X0 and 11 on X1 and composition defined as

; ◦100 ◦101 ◦110 11 11

◦100 ◦100 ◦101 — — —
◦101 — — ◦100 01 01

◦110 ◦110 11 — — —
11 — — ◦110 11 11

11 — — ◦110 11 11

0 1
0 0

10

1 0

11

11
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– Textually, transposition shall preserve the letter throughout and exchange
source and target indices.

Proof : Associativity is simple: Whenever an element ◦1ik is involved in compo-
sition, the result will be either 11 or the only element available, i.e., ◦100, ◦101 or
◦110, respectively. To prove the Schröder or the Dedekind rule is trivial.

The author is aware that the homogeneous counterparts of the tiny relation
algebras mentioned are far from being new. They are at least contained in early
work of Peter Jipsen with Roger Maddux, in [5], and then in [6,7]. They are here
considered concerning their rôle in further constructions.

This relation algebra is certainly non-uniform — meaning that the product
◦110;◦101 of two universal relations is 11 which is unequal to the universal relation
11 on X1.

Now we combine two homogeneous relation algebras into a heterogeneous one
so as to have “no connection” between its parts, but in a way that facilitates
the higher constructs already mentioned. This has — without success — already
been attempted in Fig. 5.

7.3 Proposition. Let be given any two sets X,Y together with all the relations
R : X −→ X and S : Y −→ Y considered as morphism sets MORXX and
MORY Y , respectively. Define further two one-element morphism sets
MORXY := {◦1XY } and MORY X := {◦1Y X}.

Then the following is a heterogeneous relation algebra:

– Two category objects called X,Y with morphism sets as defined above
— forming Boolean lattices isomorphic to IBX×X , IBY ×Y , respectively IB0,
— with identities X , Y on X,Y and composition based on the agreements

◦1XY ;◦1Y X = XX and ◦1Y X ;◦1XY = Y Y

A;◦1XY = ◦1XY for all relations A : X −→ X
B ;◦1Y X = ◦1Y X for all relations B : Y −→ Y
◦1XY ;C = ◦1XY for all relations C : Y −→ Y
◦1Y X ;D = ◦1Y X for all relations D : X −→ X

– Transposition shall be transposition restricted to IBX×X and IBY ×Y , to-
gether with ◦1T

XY = ◦1Y X and ◦1T

Y X = ◦1XY .

Proof : Associativity restricted to the inside of IBX×X , or IBY ×Y , will obviously
hold. Whenever ◦1XY , e.g., is involved, the result will necessarily be either ◦1 or .
To prove the Schröder or the Dedekind rule is also trivial; either one is restricted
to IBX×X or IBY ×Y , where it holds, or one has to calculate the Dedekind as

R;◦1XY ∩ ◦1XY = ◦1XY



Constructions around Partialities 325

but also

(R ∩ ◦1XY ;◦1T

XY ); (◦1XY ∩ RT;◦1XY ) = (R ∩ ◦1XY ;◦1Y X);◦1XY = ◦1XY .

Recalling Prop. 4.1 with ϕ(X) = X and ϕ(Y ) = Y , this may also be visualized
in a homogeneous relation algebra:

X Y
X

Y

(
R ◦1XY

◦1Y X S

)
;

X Y(
R′ ◦1XY

◦1Y X S′

)
=

X Y(
R;R′ ◦1XY

◦1Y X S ;S′

)
This says nothing more than that IBX×X and IBY ×Y , considered independently,
form a homogeneous relation algebra. But this independent handling integrates
algebraically in the concept of a heterogeneous relation algebra with the help of
the ◦1.

8 Direct Sum Construction

There is another way of formulating ideas like Prop. 7.3 remembering the direct
sum construct. We recall the laws of a direct sum from[10,11,9]:
ι; ιT = , κ;κT = , ιT ; ι ∪ κT;κ = , ι;κT = ,

that prevail also in combination with ◦1. Then a homogeneous relation algebra
can be constructed as follows.

Fig. 10. Direct sum of non-connected items

8.1 Proposition. Let again be given the two sets X,Y together with all the
relations R : X −→ X and S : Y −→ Y . In addition consider the direct sum
X + Y of these sets. The following homogeneous relation algebra is constructed
with morphisms indicated as

X Y X+Y

X

Y

X + Y

⎛⎜⎝ A ◦1XY B ; ι

◦1Y X C D;κ

ιT ;E κT ;F ιT ;G; ι ∪ κT ;H ;κ

⎞⎟⎠
— For morphisms indexed 1,2, Boolean operations (here by example only for

union and negation) are declared element-wise.
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X Y X+Y

X

Y

X + Y

⎛⎜⎝ A1 ∪ A2 ◦1XY (B1 ∪ B2); ι

◦1Y X C1 ∪ C2 (D1 ∪ D2);κ

ιT ; (E1 ∪ E2) κT; (F1 ∪ F2) ιT ; (G1 ∪ G2);ι ∪ κT ; (H1 ∪ H2);κ

⎞⎟⎠
X Y X+Y

X

Y

X + Y

⎛⎜⎝ A ◦1XY B ; ι

◦1Y X C D;κ

ιT ;E κT ;F ιT ;G; ι ∪ κT ;H ;κ

⎞⎟⎠
— composition of morphisms indexed 1,2 is based solely on the laws of a direct

sum, amended by ◦1X,Y ;κ = X,X+Y , ◦1Y,X ; ι = Y,X+Y and shall result in

X Y X+Y

X

Y

X+Y

⎛⎜⎜⎝
A1 ;A2 ∪ B1 ;E2 ◦1XY (A1 ;B2 ∪ B1;G2); ι

◦1Y X C1 ;C2 ∪ D1;F2 (C1 ;D2 ∪ D1 ;H2);κ

ιT ; (E1 ;A2 ∪ G1 ;E2) κT ; (F1 ;C2 ∪ H1 ;F2) ιT ; (E1 ;B2 ∪ G1 ;G2); ι
∪ κT ; (F1 ;D2 ∪ H1 ;H2);κ

⎞⎟⎟⎠

— identity

X Y X+Y

X

Y

X + Y

⎛⎜⎝ X ◦1XY X,X ; ι

◦1Y X Y Y,Y ;κ

ιT ; X,X κT; Y,Y X+Y

⎞⎟⎠

— converse

X Y X+Y

X

Y

X + Y

⎛⎜⎝ AT ◦1XY ET ; ι

◦1Y X CT F T ;κ

ιT ;BT κT;DT ιT ;GT ; ι ∪ κT;HT ;κ

⎞⎟⎠
This definition results in a homogeneous relation algebra.

Proof : The Boolean lattice properties rest mainly on ∪-distributivity of rela-
tional composition. The properties of ◦1 have already been studied earlier.

The semigroup property is relatively easy to demonstrate by executing matrix
composition. It remains, thus, to convince ourselves concerning the Schröder- or
Dedekind rule. There are only seven of the nine matrix positions to investigate.

A1 ;A2 ∪ B1 ;E2 ⊆ A3 (1,1)
(A1 ;B2 ∪ B1 ;G2); ι ⊆ B3 ; ι (1,3)
C1 ;C2 ∪ D1 ;F2 ⊆ C3 (2,2)
(C1 ;D2 ∪ D1;H2);κ ⊆ D3;κ (2,4)
ιT ; (E1 ;A2 ∪ G1 ;E2) ⊆ ιT ;E3 (3,1)
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κT ; (F1 ;C2 ∪ H1 ;F2) ⊆ κT ;F3 (3,2)
ιT ; (E1 ;B2 ∪ G1 ;G2); ι ∪ κT ; (F1 ;D2 ∪ H1 ;H2);κ ⊆ ιT ;G3 ; ι ∪ κT ;H3 ;κ (3,3)

We sketch the proof of positions (1,1) and (1,3):
(1,1) =⇒ A1 ;A2 ⊆ A3 ⇐⇒ AT

1
;A3 ⊆ A2

ι ; (3,1) =⇒ E1 ;A2 ⊆ E3 ⇐⇒ ET
1

;E3 ⊆ A2

(1,3) ; ιT =⇒ A1 ;B2 ⊆ B3 ⇐⇒ AT
1

;B3 ⊆ B2

ι ; (3,3) ; ιT =⇒ E1 ;B2 ⊆ G3 ⇐⇒ ET
1

;G3 ⊆ B2

A short look at cardinalities shows that indeed something different has been
built. Assume |X | = 2 and |Y | = 3. Then |X |+ |Y |+ |X + Y | = 10 giving 2100

relations for the normally connected direct sum. Here, we have only 252; these
stem from the arbitrary choice of the four 2×2-matrices A,B,E,G and the four
3× 3-matrices C,D, F,H in Prop. 8.1:

(
24
)4 · (29

)4 = 252.
We add that the corresponding result for the direct product, in the axiomatic

formulation

πT ;π = , ρT ;ρ = , π;πT ∩ ρ;ρT = , πT ;ρ = ,

fails to hold in the present axiomatization. It is burdened with the unsharpness
situation, namely the fact that only containment can be proved in

(π;R;π′T ∩ ρ;S ;ρ′T); (π′ ;P ;π′′T ∩ ρ′ ;Q;ρ′′T) ⊆ (π;R;P ;π′′T ∩ ρ;S ;Q;ρ′′T)

and not equality. There exist small finite counter examples for being unequal
published in [5]. An additional problem results from

(π;R;π′T ∩ ρ;S ;ρ′T);π′ = π;R ∩ ρ;S ; ⊆ π;R
(π;R;π′T ∩ ρ;S ;ρ′T);ρ′ = ρ;S ∩ π;R; ⊆ ρ;S,

meaning some sort of strictness with regard to the respective other component.

9 Lifting Relations to Partialities

Looking back at Fig. 5, we give a sketch of the Boolean lattice orderings and
the lattice-continuous mappings we wish to have as diagonal blocks, avoiding
the off-diagonal problems mentioned. To qualify a relation E to be a Boolean
lattice, several points have to be considered; see [8]:
D := E ∩ E ; F := E ∩ ;E N := DT ;D ∩ F ;F T

a := (E ;E ∩ E ; ∩ ;E);N := a;E.
Obviously, D it that part of the ordering E which is restricted to rows repre-
senting elements strictly above the least element. Analogously, F restricts the
ordering to columns representing elements strictly below the greatest. With N ,
we postulate that no common upper bounds are allowed except for the greatest
element and no common lower bounds except for the least. N, a, will then
describe negation, atoms as part of the diagonal, and membership; see Fig. 11.
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Fig. 11. Lattice ordering E, atoms a, and := a;E

9.1 Definition. E : X −→ X is a Boolean lattice ordering if the constructs
mentioned satisfy

– E is an ordering
– N is a bijective mapping satisfying N ;E = ET ;N
– lubE( ) is surjective.

Based on such a Boolean lattice E, we now recall from [8] the definition of an
algebra of partialities.

9.2 Proposition. Let the Boolean lattice ordering E be given and consider the
following set of lattice-continuous mappings
F :=

{
f | f a mapping that satisfies f T;lubE(R) = lubE(f T;R)

}
together with operations defined as follows

f � g := lubRE(f ∪ g) f � g := glbRE(f ∪ g)
f– := syq(a;E ;f T ;ET ;a;E, a;E)
f " g : ⇐⇒ g ⊆ f ;E
f ; g := f ;g III :=
f∼ := syq(a;E ;f ;E

T
;a;E, a;E)

Then the set F , thus equipped with relational operations, constitutes a homo-
geneous relation algebra.

Following the initial idea, we can now state this result for the Boolean lattice IB0:
We have E = (1) = N , D = F = a = (0), i.e., no atoms and negation N =
equals identity as a relation. The only continuous mapping is also f := (1) which
satisfies f– = f .
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In general, E does not belong to the algebra and will later serve as part of an
‘external arbiter’ in deciding crispness, for instance. Of course, one will wish to
also define heterogeneous relation algebras in this way, with orderings E in the
diagonal. Fig. 5 has already demonstrated that this is more elaborate — not just
in the purely technical sense. The idea thus developed is to consider a relation
according to Prop. 7.3, i.e., with some ◦1 contained. We start with

E =

X Y

X

Y

(
EX ◦1XY

◦1Y X EY

)
where it is assumed that EX , EY both satisfy the requirements of Def. 9.1. Then
we obtain immediately

X Y

X

Y

(
DX ◦1XY

◦1Y X DY

) X Y
X

Y

(
FX ◦1XY

◦1Y X FY

) X Y

X

Y

(
NX ◦1XY

◦1Y X NY

)
D F N

as opposed to what resulted in Fig. 5. Now, there is a chance to form least upper
bounds in the parts of the relation simultaneously.

10 Concluding Remark

There is still work to be done. We are now in a position to work with non-
connected and separately manipulable items in synoptic regions. We have not
yet presented in which way crispness may be defined by the ‘external arbiter’
defined via the Boolean lattice ordering. In his work on Goguen categories [12],
Michael Winter has elaborated that deciding crispness cannot be achieved inside
the algebra. For this we have, thus, offered a possible means. Strict operations
will no longer be continuous as the existential images are.
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Abstract. Splitting atoms in a relation algebra is a common tool to
generate new algebras from old ones. This includes constructing non-
representable algebras from representable structures. The known method
of splitting atoms does not allow that bijections different from the iden-
tity are contained in the starting algebra. This is a major drawback of
that method because interesting candidates in mereotopology do contain
such bijections. An ad-hoc splitting was done in those examples, and the
results have been published in several papers. With this paper we want
to start a thorough investigation of possible splitting methods.

1 Introduction

Region-based theories of space have been a prominent area of research in the re-
cent years. In contrast to traditional approaches such as Euclidean geometry or
general topology, region-based theories are point-free. They can be used to rep-
resent space in the context of (qualitative) spatial reasoning. This approach pro-
vides a mathematical model for how humans conceptualize our physical world.

Since the earliest work of de Laguna [4] and Whitehead [32], mereotopology
has been considered for building point-free theories of space. Mereotopology
combines topology, a mathematical model for connectedness and contact, and
mereology, a description of the parthood relationship.

The Region Connection Calculus RCC was introduced as a formal structure
for mereotopology [25]. Later, it was shown [28] that models of the RCC are iso-
morphic to so-called Boolean connection algebras (or Boolean contact algebras),
i.e., Boolean algebras together with a binary contact relation C satisfying certain
axioms. Since lattices and Boolean algebras in particular are well-known math-
ematical structures, this approach led to an intensive study of the properties of
the RCC including several topological representation theorems [5,10,11,31].

Gotts explored in [13] how much topology can be defined by using the full
first order RCC formalism. Since it is known for quite some time that the expres-
siveness of reasoning with basic operations on binary relations is equal to the
expressive power of the three variable fragment of first order logic with at most
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binary relations [30], it seems worthwhile to use methods of relation algebras,
initiated by Tarski [29], to study contact relations and to explore their expressive
power with respect to topological domains. This idea led to the RCC8 compo-
sition table, i.e., a relation algebra based on eight atomic relationships between
two regions [26]. Several refinements of the eight atomic relations produced new
algebras up to 25 atoms [7,8,9]. Each time new relations were obtained by split-
ting certain atoms from the previous algebra into two new relations. It is easy
to verify that there are more atoms within the current set of 25 atoms that can
be split. However, computing the resulting algebra by hand becomes more and
more infeasible. The aim of this paper is to develop a mechanism that can be
implemented as a computer program in order to support this task.

In [2], a method for splitting atoms in a relation algebra was introduced. The
authors adapted a method well known in cylindric algebra theory, originating
with L. Henkin [15], which was used to obtain nonrepresentable cylindric algebras
from representable ones. Their approach uses a condition of splittability on the
atoms in question in order to ensure associativity of the composition operation
after splitting. Unfortunately, this property is violated by all RCC tables in
consideration starting with RCC11 or also known as the complemented closed
disc algebra [6,7]. In this paper we are going to define a method for splitting
atoms that is more general than the approach in [2]. Our definition allows also
to split certain atoms if bijections different from the identity such as ECD in
RCC11 are present.

Splitting atoms is only one method of generating new relation algebras from
given ones. Programs computing those algebras in the finite case has been de-
veloped previously using a variety of different methods. As examples we refer to
[18,23,24].

This paper is organized as follows. In the next section we want to recall some
fundamentals on relation algebras. In Section 3 we present atom structure and
complex algebras which are essential tools in implementing any algorithm on
relation algebras. We focus on the existing theory of splitting atoms in relation
algebras in Section 4. We will illustrate that mechanism in an example computed
by our implementation. In Section 5 we are going to present our approach to
splitting. We will provide necessary conditions so that the result of a splitting
is indeed a relation algebra. Finally, we will illustrate our procedure by some
examples before we close with some remarks on future research.

2 Relation Algebras

In this paper we will use the notion and basic definitions from [20]. In particu-
lar, we use the varieties NA and RA of nonassociative and associative relation
algebras. We assume that the reader is familiar with the basic notions from
Boolean algebras and lattice theory. For any notion used but defined here we
refer to [3,14,19].

Definition 1. A structure A = 〈A, +, ·, , 0, 1, ˘, ; , 1’ 〉 of type 〈2, 2, 1, 0, 0, 1, 2, 0〉
is called a relation algebra (RA) iff it satisfies the following:
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R1. 〈A, +, ·, , 0, 1〉 is a Boolean algebra.
R2. 〈A, ; , 1’ 〉 is a monoid.
R3. For all x, y, z ∈ A the following formulas are equivalent:

x; y · z = 0 ⇐⇒ x̆; z · y = 0 ⇐⇒ z; y̆ · x = 0.

We say that A is a nonassociative relation algebra (NA) if A is a structure
satisfying all of the axioms above except associativity of the composition oper-
ation ;, i.e., R2 is weakened by only requiring that 1’ is a neutral element for
composition.

We adopt the regular convention to denote the diversity element 1’ by 0’ .
The notion of a subalgebra is as usual, and we will denote the fact that B is

a subalgebra of A by B ⊆ A.
Oriented triangles can be used to visualize R3 and its immediate consequence

the so-called cycle law. It states that the following properties are equivalent:
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Besides the cycle law above, we will need some basic properties which are sum-
marized in the following lemma. A proof can be found in any of [20,22,27,29,30].

Lemma 1. Let B be a relation algebra, and let x, y, z ∈ B. Then we have:

1. 0̆ = 0, 1̆ = 1, 1̆’ = 1’ .
2. x ≤ x; x̆; x.
3. x; (y + z) = x; y + x; z.
4. if x̆; x ≤ 1’ , then x; (y · z) = x; y · x; z.
5. if x̆; x ≤ 1’ , then x; y ≤ x; y.

A relation x is called univalent (or functional) iff x̆; x ≤ 1’ . It is called injective
if x̆ is univalent. A univalent and injective relation is called bijective. We denote
the set of all bijections (bijective relations) of a relation algebra B by BijB. On
addition, we say that x is total if 1’ ≤ x; x̆ and surjective if x̆ is total. A function
(or map) is a univalent and total relation.

In the next lemma we have summarized some properties of atoms in relation
algebra that we will need in this paper. We will denote the set of atoms of a
relation algebra B by AtB.
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Lemma 2. Let B be a relation algebra, and x, y, z ∈ AtB. Then we have:

1. There is an atom i ≤ 1’ with x; i = x.
2. z ≤ x; y iff y ≤ x̆; z iff x ≤ z; y̆ iff z̆ ≤ y̆; x̆ iff y̆ ≤ z̆; x iff x̆ ≤ y; z̆.
3. If y is a bijection and x; y 	= 0, then x; y is an atom.

Again, a proof can be found in any of [17,20,21,22].
Of particular interest are integral relation algebras. They form basic building

block in constructing arbitrary algebras. For details on their importance, we
refer to [33,34].

Definition 2. A relation algebra A is called integral iff for all x, y ∈ A, x; y = 0
implies that x = 0 or y = 0.

It is well-known that the property of being integral is equivalent to the fact that
the identity is an atom of A. Another equivalent property is the requirement
that all relations of the algebra are total, i.e., 1’ ≤ x; x̆.

Notice that (1) and (3) of Lemma 2 become trivial in integral relation algebras
because the identity is an atom respectively every relation is total.

3 Atom Structures and Complex Algebras

In order to manipulate a finite relation algebra on the computer, atom structures
are of interest. Some relation algebras are made for special purposes, e.g., see [1],
and cannot be stored easily. Atom structures contain all necessary information to
obtain the algebra in a smaller format, namely as relations on the set of atoms.
For further details on atom structures and complex algebras not mentioned here
we refer to [16,20,21,22].

Definition 3. An atom structure AtA = 〈AtA, C(A), f, I(A)〉 of a NA A con-
sists of a non-empty set AtA of atoms, a unary predicate I(A) = {x ∈ AtA :
x ≤ 1’}, a unary function f : AtA → AtA defined by f(x) = x̆, and a ternary
relation C(A) = {〈x, y, z〉 : x, y, z ∈ AtA, x; y ≥ z}.

Conversely, we start from a relational structure S = 〈U, C, f, I〉, i.e., a set U
together with a ternary relation C on U , a unary function f : U → U , and a
subset I of U . One may construct an algebra of relational type on the powerset
SbU of U as follows.

Definition 4. Given a relational structure S = 〈U, C, f, I〉 the complex algebra
CmS = 〈SbU,∪,∩, , ∅, U, ; , ,̆ 1’〉 is defined by

X ; Y = {z ∈ U : ∃x ∈ X∃y ∈ Y 〈x, y, z〉 ∈ C} and X̆ = {f(x) : x ∈ X}.

The notion of a cycle is very helpful working with atom structures. Cycles ba-
sically reflect axiom R3 or the cycle law introduced earlier. For three elements
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x, y, z of a relational structure S = 〈U, C, f, I〉 we write [x, y, z] for the following
set of up to six triples:

[x, y, z] = {〈x, y, z〉, 〈x̆, z, y〉, 〈y, z̆, x̆〉, 〈y̆, x̆, z̆〉, 〈z̆, x, y̆〉, 〈z, y̆, x〉}.
[x, y, z] is called a cycle. Its importance can be seen in the next theorem. A proof
can be found in [21].

Theorem 1. Let S = 〈U, C, f, I〉 be a relational structure consisting of a set U
together with a ternary relation C on U , a unary function f : U → U , and a
subset I of U .

1. The following three conditions are equivalent:
(i) S is the atom structure of some complete atomic NA.

(ii) CmS is a NA.
(iii) S satisfies condition (a) and (b)

(a) if 〈x, y, z〉 ∈ C, then 〈f(x), z, y〉 ∈ C and 〈z, f(y), x〉 ∈ C.
(b) for all x, y ∈ U , x = y iff there is some w ∈ I such that 〈x, w, y〉 ∈ C.

2. CmS is a relation algebra iff CmS is a NA and it satisfies condition (c):
(c) for all x, v, w, x, y, z ∈ U , if 〈v, w, x〉 ∈ C and 〈x, y, z〉 ∈ C, then there is

some u ∈ U such that 〈w, y, u〉 ∈ C and 〈v, u, z〉 ∈ C.

From the theorem above one can easily see that condition (a) is already satisfied
if C is a union of cycles. Property (c) can nicely be visualized by the following
diagram.
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Notice that CmS is integral iff I is a singleton [22]. In an integral atom
structure, i.e., an atom structure of an integral NA, it is possible to remove the
cycle including the identity since property (b) determines them uniquely in this
case. Therefore, we will normally only list the diversity cycles, i.e., those cycles
that do not contain the identity.

4 Splitting Atoms in Relation Algebra

In [2] a method for splitting atoms in relation algebras was introduced. The
method of splitting is well known in cylindric algebra theory, originating with
L. Henkin et al. [15]. His work was used to obtain nonrepresentable cylindric
algebras from representable ones. In this section, we want to recall the theory
presented in the paper mentioned above.

Definition 5. Let A and B be atomic NA’s. We say that A is obtained from B
by splitting if the following conditions are satisfied:
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S1. A ⊇ B.
S2. Every atom x ∈ A is contained in an atom c(x) ∈ B, called the cover of x.
S3. For all x, y ∈ AtA, if x, y ≤ 0’ , then

x; y =
{

c(x); c(y) · 0’ iff x 	= y̆,
c(x); c(y) iff x = y̆.

Given an atomic NA B one might identify one or more atoms, provide for each
of those atoms a number into how many new atoms they should be split, and
how many of those new atoms are supposed to be symmetric. This information
can summarized by two functions η and θ mapping AtB to cardinals. We say
that A is obtained from B by splitting along η and θ if A is obtained from B by
splitting and for all x ∈ AtB

η(x) = |{y ∈ AtA : y ≤ x, y 	= y̆}| ,
θ(x) = |{y ∈ AtA : y ≤ x, y = y̆}| .

In [2] the following two theorems about the existence and uniqueness of a split-
ting along two functions were shown.

Theorem 2. Let A, A′, and B be complete atomic NA’s. Let η and θ be func-
tions mapping AtB to cardinals. If A and A′ are obtained from B by splitting
along η and θ, then A and A′ are isomorphic by an isomorphism that leaves B
fixed.

Theorem 3. Let B be an atomic NA. Let η, θ be functions mapping AtB to
cardinals, and let α(x) = η(x) + θ(x). Then we have:

1. There is an atomic NA A obtained from B by splitting along η and θ iff the
following conditions hold for all x ∈ AtB:
(a) α(x) ≥ 1.
(b) η(x) = η(x̆).
(c) x ≤ 1’ implies η(x) = 0.
(d) x = x̆ implies η(x) is even.
(e) x 	= x̆ implies θ(x) = 0.

2. Suppose A is an atomic NA and obtained from B by splitting along η and θ.
Then A is a RA iff B is a RA and for all x, y ∈ AtB we have; if α(x) > 1
and y; x 	= 0 and y ≤ 0’ , then y ≤ y; (x; x̆ · 0’).

The situation where a relation algebra and one atom that we want to split into
two atoms is given is of particular interest. Therefore, we say that x is splittable
in an atomic relation algebra B if the following three conditions are satisfied:

A1. x ≤ 0’ .
A2. If 0’ ≥ y ∈ AtB and x; y 	= 0, then y ≤ (x̆; x · 0’ ); y.
A3. If 0’ ≥ y ∈ AtB and y; x 	= 0, then y ≤ y; (x; x̆ · 0’).
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B is called splittable iff B has a splittable atom.
By Theorem 3 x is splittable in B iff there is a relation algebra A obtained

from B by splitting such that x /∈ AtA. Note that if B contains a functional
element y below 0’ , i.e., y̆; y ≤ 1’ and y ≤ 0’ , then B is not splittable. The
relation algebra RCC11 [6,7] is integral and contains the bijective relation ECD.
Therefore, no atom in RCC11 is splittable, and the theory above cannot be
applied.

We want to illustrate the definition by an example. This will also introduce the
way we represent integral relation algebras on the computer in order to actually
compute different methods for splitting.

Example 1. Let A be the relation relation algebra with AtA = {1, 2, 3, 4, 5, 6, 7, 8}.
In our representation the converse operation is induced by two numbers n and s,
n the total number of atoms and s the number of symmetric atoms, i.e., atoms
satisfying x = x̆. As above, atoms will be represented by the numbers 1, . . . , n
where the first s atoms are always symmetric and the remaining n− s atoms are
non-symmetric. They will always come in pairs with m̆ = m− 1 if m− s is even,
and m̆ = m+1 otherwise. Consequently, n−s must be even. In our example n = 8
and s = 4 so that 4̆ = 4, 5̆ = 6 and 6̆ = 5. C is given as a list of diversity cycles.
Therefore, any triple represents actually up to six triples.

C(A) = [ (2, 2, 2), (2, 2, 3), (2, 2, 4), (2, 2, 5), (2, 2, 7), (2, 3, 3), (2, 3, 4), (2, 3, 5),
(2, 3, 7), (2, 4, 4), (2, 4, 5), (2, 4, 7), (2, 5, 5), (2, 5, 7), (2, 7, 7), (3, 3, 3),
(3, 3, 4), (3, 3, 5), (3, 4, 4), (3, 4, 5), (3, 4, 7), (3, 5, 5), (3, 5, 7), (3, 7, 7),
(4, 4, 4), (4, 4, 5), (4, 4, 7), (4, 5, 5), (4, 5, 7), (4, 6, 6), (4, 6, 8), (4, 7, 7),
(4, 8, 8), (5, 5, 5), (5, 5, 7), (5, 7, 7), (5, 8, 8), (7, 7, 7)]

This algebra is in fact the RCC8 composition table. This algebra does not contain
any functions or bijections besides the identity so that the splitting mechanism
can be applied. We want to split Atom 4 into two atoms. After renaming some
atom in order to follow the convention on symmetric atoms followed by non-
symmetric atoms in pairs, we get a new algebra B with n = 9, s = 5 and the
following correlation between atoms in B and A:

Atoms of B 1 2 3 4 5 6 7 8 9
Atoms of A 1 2 3 4 4 5 6 7 8

The diversity cycles of the new algebra B are as follows:

C(B) = [ (2, 2, 2), (2, 2, 3), (2, 2, 4), (2, 2, 5), (2, 2, 6), (2, 2, 8), (2, 3, 3), (2, 3, 4),
(2, 3, 5), (2, 3, 6), (2, 3, 8), (2, 4, 4), (2, 4, 5), (2, 5, 5), (2, 4, 6), (2, 5, 6),
(2, 4, 8), (2, 5, 8), (2, 6, 6), (2, 6, 8), (2, 8, 8), (3, 3, 3), (3, 3, 4), (3, 3, 5),
(3, 3, 6), (3, 4, 4), (3, 4, 5), (3, 5, 5), (3, 4, 6), (3, 5, 6), (3, 4, 8), (3, 5, 8),
(3, 6, 6), (3, 6, 8), (3, 8, 8), (4, 4, 4), (4, 4, 5), (4, 5, 5), (5, 5, 5), (4, 4, 6),
(4, 5, 6), (5, 4, 6), (5, 5, 6), (4, 4, 8), (4, 5, 8), (5, 4, 8), (5, 5, 8), (4, 6, 6),
(5, 6, 6), (4, 6, 8), (5, 6, 8), (4, 7, 7), (5, 7, 7), (4, 7, 9), (5, 7, 9), (4, 8, 8),
(5, 8, 8), (4, 9, 9), (5, 9, 9), (6, 6, 6), (6, 6, 8), (6, 8, 8), (6, 9, 9), (8, 8, 8)]

The computation of this table took less than fraction of a second in our imple-
mentation. Computing it by hand is already tedious.
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4.1 The Extension of a Relation Algebra

In this section we will make use of ordinal arithmetics. Therefore, we want to
recall some of their basic properties needed throughout this paper. The definition
of addition can be given inductively:

α + 0 = α,

α + (β + 1) = (α + β) + 1,

and if δ is a limit ordinal, then α + δ =
⋃
{α + β : β < δ}.

Zero is an additive identity α + 0 = 0 + α = α, addition is associative (α +
β) + γ = α + (β + γ). Furthermore, ordinal addition is left-cancellative, i.e., if
α + β = α + γ, then β = γ. This property allows to define a left subtraction for
ordinals. However, right cancellation is not valid. Similar properties are shared
by ordinal multiplication recursively defined by:

α ∗ 0 = 0,

α ∗ (β + 1) = (α ∗ β) + α,

and if δ is a limit ordinal, then α ∗ δ =
⋃
{α ∗ β : β < δ}.

We have α ∗ 0 = 0 ∗ α = 0, multiplication is associative, 1 is an identity (or
unit) α ∗ 1 = 1 ∗ α = α, and satisfies a cancellation law, namely if α > 0 and
α ∗ β = α ∗ γ, then β = γ. As for addition right cancellation is not valid.

The notion of a splitting is too restrictive for our purposes because it does
not allow the splitting of algebras that contain bijections different from the
identity. The super algebra property together with the cover property seems to
be sufficient. This guarantees that the composition of elements in the subalgebra
can be computed by the elements of the super algebra.

Definition 6. Let A and B be atomic integral RA’s. We say that A is an ex-
tension of B if the following conditions are satisfied:

S1. A ⊇ B.
S2. Every atom x ∈ A is contained in an atom c(x) ∈ B, called the cover of x.

Notice that S2 is redundant if A and B are finite, but it is needed in the infinite
case.

If the atoms in A satisfy the condition imposed by to function η and θ, then we
say that A is an extension of B along η and θ. Notice that such an extension does
not have to be unique up to isomorphism. The next theorem provides necessary
conditions for the existence of an extension. Notice that the proof also provides
an explicit construction.

Theorem 4. Let B be a complete atomic integral RA. Let η, θ be functions
mapping AtB to cardinals, and let α(x) = θ(x) + η(x). Then there is a complete
atomic integral RA A that is an extension of B along η and θ if the following
conditions hold for all x, y ∈ AtB:
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(a) α(x) ≥ 1.
(b) η(x) = η(x̆).
(c) x ∈ BijB implies α(x) = 1.
(d) x = x̆ implies η(x) = even, i.e., η(x) = 2 ∗ β for some ordinal β.
(e) x 	= x̆ implies θ(x) = 0.
(f) y ∈ BijB implies α(x; y) = α(x).
(g) y ∈ BijB, x = x̆ and η(x) > 0 implies x; y = (x; y)̆ and θ(x) = θ(x; y).
(h) α(x) > 1, y; x 	= 0 and y /∈ BijB implies y ≤ y; (x; x̆ ∩ 0’ ).

Proof. First we want to show that α(x̆) = α(x) since we will use this property
frequently without mentioning. If x = x̆ the assertion is trivial. If x 	= x̆, then
α(x) = η(x) follows from (e), which shows together with (b) that α(x) = α(x̆).

We are going to construct a relational structure S = 〈U, C, f, I〉 so that CmS
is a RA and B can be embedded into CmS. Therefore, notice that θ(x), η(x)
as well as α(x) = θ(x) + η(x) are ordinals so that we can assume α(x) = {β :
β < α(x)}, θ(x) = {β : β < θ(x)} and η(x) = {β : θ(x) ≤ β < α(x)}. Let be
U = {(x, β) : β ∈ α(x)}, and define f : U → U by

f(x, β) =

⎧⎨
⎩

(x̆, β) if x 	= x̆ or β ∈ θ(x),
(x, β + 1) if x = x̆ and β ∈ η(x) and β = θ(x) + 2 ∗ β′,
(x, β − 1) if x = x̆ and β ∈ η(x) and β = θ(x) + 2 ∗ β′ + 1.

Obviously, we have f(f(u)) = u for all u ∈ U , and f(u) = u iff u = (x, β) with
x = x̆ and β ∈ θ(x). We will denote the second component of f(x, β) by f2(x, β)
so that f(x, β) = (x̆, f2(x, β)) and β = f2(x̆, f2(x, β)) follows. Also notice that
f2(x, β) = f2(x̆, β).

We want to show the following property:

(∗) If y ∈ BijB, then f2(x, β) = f2(x; y, β) for all β ∈ α(x) = α(x; y).

First, suppose f2(x, β) 	= β. Then x = x̆ and β ∈ η(x), and, hence, η(x) > 0,
by the definition of f . From (g) we get (x; y) = (x; y)̆ and θ(x) = θ(x; y).
This also implies that η(x) = η(x; y) because of (f) and the left-cancellation
property of ordinal addition. Consequently, we have β ∈ η(x; y), and, hence,
f2(x, β) = f2(x; y, β) follows. Now, assume f2(x, β) = β. If f2(x; y, β) 	= β, then
we conclude analogously to the previous case that f2(x, β) 	= β using that y̆ is a
bijection and that x; y; brevey = x. This is a contradiction so that f2(x; y, β) = β
follows.

Notice that we also have that y ∈ BijB implies f2(x, β) = f2(y; x, β) for all
β ∈ α(x) = α(y; x). This follows immediately from α(x) = α(x̆) and f2(x, β) =
f2(x̆, β) for all x and β.

Now let I := {(1’ , 0)} and define

C =
⋃
{[(x, β), (y, γ), (z, δ)] : z ≤ x; y and x, y, z /∈ BijB}

∪
⋃
{[(x, β), (y, 0), (z, β)] : z ≤ x; y and y ∈ BijB}.



340 P. Siddavaatam and M. Winter

In order to show that CmS is a NA it is sufficient to show Property (b) of
Theorem 1(1)(iii) since C is defined as a union of cycles.

Suppose (x, β) ∈ U . Then we have [(x, β), (1’ , 0), (x, β)] ⊆ C. For the converse
implication suppose 〈(x, β), (1’ , 0), (z, δ)〉 ∈ C. We obtain [(x, β), (1’ , 0), (z, δ)] =
[(z, δ), (1̆’ , 0), (x, β)] ⊆ C so that the definition of C implies that x = z and
β = δ.

In order to prove that CmS is a RA suppose 〈(v, β), (w, γ), (x, δ)〉 ∈ C and
〈(x, δ), (y, ε), (z, ρ)〉 ∈ C. We distinguish several cases:

1. v ∈ BijB: We want to show that (v̆; z, σ) with σ = f2(v̆; z, f2(z, ρ)) is the
required element, i.e., that

〈(v, 0), (v̆; z, σ), (z, ρ)〉 ∈ C and 〈(w, γ), (y, ε), (v̆; z, σ)〉 ∈ C.

First, we have ρ ∈ α(z) which implies f2(z, ρ) ∈ α(z̆) = α(z̆; v) using (f)
so that σ ∈ α(v̆; z), and, hence, (v̆; z, σ) ∈ U follows. Furthermore, we have
v; v̆; z = z and w; y = v̆; v; w; y ≥ v̆; x; y ≥ v̆; z so that the property in
the definition of C on the first components of each triple is satisfied. From
[(z̆, f2(z, ρ)), (v, 0), (z̆; v, f2(z, ρ))] ⊆ C by definition we conclude that the
first triple is clearly in C. In order to show that the second triple is also in
C we distinguish four cases:
(a) w, y, v̆; z /∈ BijB: In this case we have [(w, γ), (y, ε), (v̆; z, σ)] ⊆ C and we

are done.
(b) w ∈ BijB: Then x is a bijection too because x ≤ v; w and v and w

are bijections. We conclude from 〈(x, 0), (y, ε), (z, ρ)〉 ∈ C that we have
[(y̆, f2(y, ε)), (x̆, 0), (z̆, f2(z, ρ))] = [(z̆, f2(z, ρ)), (x, 0), (y̆, f2(y, ε))] ⊆ C,
and, hence, that f2(y, ε) = f2(z, ρ). This implies [(z̆; v, f2(z, ρ)), (w, 0),
(y̆, f2(y, ε))] ⊆ C which shows 〈(w, 0), (y, ε), (v̆; z, σ)〉 ∈ C.

(c) y ∈ BijB: Then we conclude from 〈(x, δ), (y, 0), (z, ρ)〉 ∈ C, and, hence,
[(x, δ), (y, 0), (z, ρ)] = [(z, ρ), (y̆, 0), (x, δ)] ⊆ C, that δ = ρ. Similarly,
from 〈(v, 0), (w, γ), (x, δ)〉 ∈ C, i.e., [(w̆, f2(w, γ)), (v̆, 0), (x̆, f2(x, δ))] =
[(x̆, f2(x, δ)), (v, 0), (w̆, f2(w, γ))] ⊆ C, we get f2(w, γ) = f2(x, δ) since v
is a bijection. We conclude

σ = f2(v̆; z, f2(z, ρ))
= f2(v̆; x; y, f2(x; y, δ)) δ = ρ and z = x; y
= f2(w; y, f2(x; y, δ)) v; w = x and v bijection
= f2(w, f2(x, δ)) (*) twice
= f2(w, f2(w, γ)) f2(w, γ) = f2(x, δ)
= γ,

so that 〈(w, γ), (y, 0), (v̆; z, ρ)〉 ∈ C follows.
(d) v̆; z ∈ BijB: This implies σ = 0 and that z = v; v̆; z is also a bijec-

tion, and, hence, ρ = 0. From 〈(v, 0), (w, γ), (x, δ)〉 ∈ C, and, hence,
[(x̆, f2(x, δ)), (v, 0), (w̆, f2(w, γ))] = [(w̆, f2(w, γ)), (v̆, 0), (x̆, f2(x, δ))] ⊆
C, we get f2(w, γ) = f2(x, δ). In addition 〈(x, δ), (y, ε), (z, 0)〉 ∈ C,
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and, hence, [(x̆, f2(x, δ)), (z, 0), (y, ε)] = [(y, ε), (z̆, 0), (x̆, f2(x, δ))] ⊆ C,
implies f2(x, δ) = ε. Together we obtain f2(w, γ) = f2(x, δ) = ε so
that [(w̆, f2(w, γ)), (v̆; z, 0), (y, ε)] ⊆ C, i.e., 〈(w, γ), (y, ε), (v̆; z, 0)〉 ∈ C,
follows.

2. The cases w or y ∈ BijB can be shown analogously by using the elements
(w; y, f2(w; y, f2(y, ε))), and (w; y, γ), respectively.

3. v, w, y /∈ BijB: Since x ≤ v; w, z ≤ x; y and B is a RA there is an element
u ∈ AtB with z ≤ v; u and u ≤ w; y. If u /∈ BijB, then we choose σ =
f2(v, β) if z ∈ BijB and an arbitrary σ ∈ α(u) otherwise. This choice gives
[(v̆, f2(v, β)), (z, ρ), (u, σ)] ⊆ C which immediately implies

〈(v, β), (u, σ)), (z, ρ)〉 ∈ C and 〈(w, γ), (y, ε), (u, σ)〉 ∈ C.

Now, suppose u ∈ BijB. If β = ρ and f2(w, γ) = ε, then [(v, β), (u, 0), (z, ρ)]
⊆ C and [f(w, γ), (u, 0), (y, ε)] ⊆ C implies the assertion. The remaining two
cases are shown as follows:
(a) β 	= ρ: Then β ∈ α(v) = α(v; u) = α(z) � ρ because of (f) and z = v; u.

Consequently α(z̆) = α(z) > 1. In addition x̆ ≤ w̆; v̆ = w̆; u; ŭ; v̆ = y; z̆
shows

w̆ = w̆; u; ŭ
= y; ŭ y = w̆; u since u ≤ w; y and u bijection
≤ y; (z̆; z · 0’); ŭ (h) since y 	∈ BijB, α(z̆) > 1 and y; z̆ > x̆

= w̆; u; (ŭ; v̆; v; u · 0’); ŭ y = w̆; u, z = v; u
= w̆; (v̆; v · u; 0’ ; ŭ) Lemma 1
= w̆; (v̆; v · 0’) Lemma 1.

This implies that there is an atom u′ ∈ B with w̆ ≤ w̆; u′ and u′ ≤ v̆; v ·0’
since otherwise w̆ = 0 would follow. In particular, u′ /∈ BijB because
otherwise w̆; u′ = w̆, and, hence, u′ = 1’ would follow, a contradiction to
u′ ≤ 0’ . Therefore, u′; u is an atom and not a bijection. Furthermore, we
have y = w̆; u ≤ w̆; u′; u = w̆; (u′; u) and u′; u ≤ (v̆; v · 0’); u ≤ v̆; v; u =
v̆; z so that u′; u ≤ w; y and z ≤ v; (u′; u) follows. Consequently, we can
use u′; u instead of the bijection u.

(b) f2(w, γ) = ε: This case is shown analogously to the previous case.

The algebra B can be embedded into CmS using the function h(b) = {(x, β) |
x ∈ AtB, x ≤ b, β ∈ α(x)} which is easy to verify. The obvious definition
c : AtCmS → Ath(B) by c(x, β) = h(x), i.e., c(x, β) = {(x, β) : β ∈ α(x)},
shows that CmS is an extension of the image h(B) along η and θ. Finally, we
obtain A by replacing the image h(B) of B in CmS by B itself. ��

4.2 Further Examples

In this section we present further examples showing situations in which the new
mechanism can or cannot be applied. We want to start with an example that
does not satisfy the requirements of Theorem 4 and does not lead to a relation
algebra after splitting.
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Example 2. Let A be the relation algebra with n = 3, s = 3 and the following
diversity cycles

C(A) = [(2, 2, 3), (2, 3, 3)].

The relation algebra above is the so-called pentagonal relation algebra [22]. If we
simply apply the splitting algorithm induced by Theorem 4 to split Atom 2, we
obtain the following new structure B with n = 4, s = 4, the following correlation
between atoms in B and A,

Atoms of B 1 2 3 4
Atoms of A 1 2 2 3

and the full composition table:

; 2 3 4
2 4 4 234
3 4 4 234
4 234 34 23

This structure is not a relation algebra since ({2}; {3}); {4} = {4}; {4} = {2, 3} 	=
{2, 3, 4} = {2}; {2, 3, 4} = {2}; ({3}; {4}). In fact, Property (h) of Theorem 4 is
violated since

2; (3; 3 · (2 + 3)) = 2; ((1 + 2) · (2 + 3)) = 2; 2 = 1 + 3 � 2.

We did some further investigation on this very interesting example. Actually
there is no integral extension of the relation algebra A along any possible pair of
functions so that Atom 2 or Atom 3 (or both) splits into two atoms. However, the
algebra is representable on set of five elements. All three atoms are represented
by non-atomic relations which shows that all atoms can be split resulting in a
simple (but not integral) relation algebra. Notice that in [12] it was shown that
there are even algebras that cannot be properly embedded in any simple relation
algebra.

The next example actually shows that our mechanism can be applied where
regular splitting will fail.

Example 3. Let A be the relation algebra with n = 11, s = 7 and the following
diversity cycles

C(A) = [ (8, 8, 8), (8, 8, 10), (8, 9, 2), (8, 9, 5), (8, 9, 3), (8, 10, 10), (8, 11, 11),
(8, 11, 5), (8, 11, 2), (8, 11, 3), (8, 5, 8), (8, 5, 10), (8, 5, 5), (8, 5, 3),
(8, 5, 2), (8, 6, 8), (8, 6, 5), (8, 6, 10), (8, 6, 6), (8, 6, 3), (8, 6, 4), (8, 7, 8),
(8, 7, 10), (8, 7, 5), (8, 7, 6), (8, 7, 7), (8, 3, 3), (8, 3, 2), (8, 4, 3), (8, 2, 2),
(10, 10, 10), (10, 11, 5), (10, 11, 3), (10, 11, 2), (10, 5, 10), (10, 5, 5),
(10, 5, 3), (10, 5, 2), (10, 6, 10), (10, 6, 5), (10, 6, 3), (10, 6, 2), (10, 7, 10),
(10, 7, 5), (10, 7, 6), (10, 7, 7), (10, 7, 3), (10, 7, 4), (10, 7, 2), (10, 3, 2),
(10, 4, 2), (10, 2, 2), (5, 5, 5), (5, 5, 6), (5, 5, 7), (5, 5, 2), (5, 5, 3), (5, 5, 4),
(5, 6, 6), (5, 6, 7), (5, 7, 7), (5, 3, 3), (5, 3, 2), (5, 2, 2), (6, 6, 6), (6, 6, 7),
(6, 7, 7), (7, 7, 7), (3, 3, 3), (3, 3, 2), (3, 2, 2), (2, 2, 2)]



Splitting Atoms in Relational Algebras 343

This algebra is actually the algebra RCC11 based on the atomic relationships
1’, DC, ECN, ECD, PON, PODY, PODZ, TPP, and NTPP numbered in that
order recognizing that TPP and NTPP are non-symmetric. For example, DC
is Atom 2, PODZ is Atom 7, TPP is Atom 8, TPP� is Atom 9, and NTPP is
Atom 10. For details on mereotopological properties of those atomic relations
we refer to [7]. As mentioned earlier this mereotopological example contains a
bijection different from the identity, the relation ECD or the Atom 4. No atom
of this algebra can be split using the mechanism in [2]. Using our approach we
can split TPP into two new atoms called TPPA and TPPB. As a consequence of
that fact that TPP is non-symmetric and that the algebra contains the bijection
ECD, and, hence, the Properties (b) and (f) of Theorem 4, we have also to split
TPP�, ECN, and PODY each into two new relations TPPA�, TPPB�, ECNA,
ECNB, PODYA and PODYB. This yields an algebra B with n = 15, s = 9, the
following correlation between the atoms

Names in B 1’ D
C

E
C

N
A

E
C

N
B

E
C

D
P

O
N

P
O

D
Y

A
P

O
D

Y
B

P
O

D
Z

T
P

PA
T

P
PA

�

T
P

P
B

T
P

P
B

�

N
T

P
P

N
T

P
P

�

Atoms of B 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Atoms of A 1 2 3 3 4 5 6 6 7 8 9 8 9 10 11

Names in A 1’ D
C

E
C

N
E

C
N

E
C

D
P

O
N

P
O

D
Y

P
O

D
Y

P
O

D
Z

T
P

P
T

P
P

�

T
P

P
T

P
P

�

N
T

P
P

N
T

P
P

�

and the following set of cycles:

C(A)= [ (10, 10, 10), (10, 10, 12), (10, 12, 10), (10, 12, 12), (12, 10, 10), (12, 10, 12),
(12, 12, 10), (12, 12, 12), (10, 10, 14), (10, 12, 14), (12, 10, 14), (12, 12, 14),
(10, 11, 2), (10, 13, 2), (12, 13, 2), (10, 11, 6), (10, 13, 6), (12, 13, 6),
(10, 11, 3), (10, 11, 4), (10, 13, 3), (10, 13, 4), (12, 13, 3), (12, 13, 4),
(10, 14, 14), (12, 14, 14), (10, 15, 15), (12, 15, 15), (10, 15, 6), (12, 15, 6),
(10, 15, 2), (12, 15, 2), (10, 15, 3), (10, 15, 4), (12, 15, 3), (12, 15, 4),
(10, 6, 10), (10, 6, 12), (12, 6, 12), (10, 6, 14), (12, 6, 14), (10, 6, 6),
(12, 6, 6), (10, 6, 3), (10, 6, 4), (12, 6, 3), (12, 6, 4), (10, 6, 2), (12, 6, 2),
(10, 7, 10), (10, 7, 12), (10, 8, 10), (10, 8, 12), (12, 7, 12), (12, 8, 12),
(10, 7, 6), (10, 8, 6), (12, 7, 6), (12, 8, 6), (10, 7, 14), (10, 8, 14), (12, 7, 14),
(12, 8, 14), (10, 7, 7), (10, 7, 8), (10, 8, 7), (10, 8, 8), (12, 7, 7), (12, 7, 8),
(12, 8, 7), (12, 8, 8), (10, 7, 3), (10, 7, 4), (10, 8, 3), (10, 8, 4), (12, 7, 3),
(12, 7, 4), (12, 8, 3), (12, 8, 4), (10, 7, 5), (10, 9, 10), (10, 9, 12), (12, 9, 12),
(10, 9, 14), (12, 9, 14), (10, 9, 6), (12, 9, 6), (10, 9, 7), (10, 9, 8), (12, 9, 7),
(12, 9, 8), (10, 9, 9), (12, 9, 9), (10, 3, 3), (10, 3, 4), (10, 4, 3), (10, 4, 4),
(12, 3, 3), (12, 3, 4), (12, 4, 3), (12, 4, 4), (10, 3, 2), (10, 4, 2), (12, 3, 2),
(12, 4, 2), (10, 5, 3), (10, 2, 2), (12, 2, 2), (14, 14, 14), (14, 15, 6),
(14, 15, 3), (14, 15, 4), (14, 15, 2), (14, 6, 14), (14, 6, 6), (14, 6, 3),
(14, 6, 4), (14, 6, 2), (14, 7, 14), (14, 8, 14), (14, 7, 6), (14, 8, 6), (14, 7, 3),
(14, 7, 4), (14, 8, 3), (14, 8, 4), (14, 7, 2), (14, 8, 2), (14, 9, 14), (14, 9, 6),
(14, 9, 7), (14, 9, 8), (14, 9, 9), (14, 9, 3), (14, 9, 4), (14, 9, 5), (14, 9, 2),
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(14, 3, 2), (14, 4, 2), (14, 5, 2), (14, 2, 2), (6, 6, 6), (6, 6, 7), (6, 6, 8),
(6, 6, 9), (6, 6, 2), (6, 6, 3), (6, 6, 4), (6, 6, 5), (6, 7, 7), (6, 7, 8), (6, 8, 8),
(6, 7, 9), (6, 8, 9), (6, 9, 9), (6, 3, 3), (6, 3, 4), (6, 4, 4), (6, 3, 2), (6, 4, 2),
(6, 2, 2), (7, 7, 7), (7, 7, 8), (7, 8, 8), (8, 8, 8), (7, 7, 9), (7, 8, 9), (8, 8, 9),
(7, 9, 9), (8, 9, 9), (9, 9, 9), (3, 3, 3), (3, 3, 4), (3, 4, 4), (4, 4, 4), (3, 3, 2),
(3, 4, 2), (4, 4, 2), (3, 2, 2), (4, 2, 2), (2, 2, 2), (12, 8, 5), (12, 5, 4)]

This splitting (and some further splittings) was already done in [7]. The main
difference is that in the aforementioned paper the algebra was basically computed
by hand, and the result above was obtained by a Haskell program implementing
our approach.

5 Conclusion and Outlook

We consider this paper as a starting point of a variety of methods for splitting
atoms in relation algebras. The very general definition of an extension provides
the opportunity for this study. It will be of particular interest to characterize
the different methods by additional properties. For example, the definition of a
splitting together with Theorem 3 characterizes this construction precisely. We
did not provide a full characterization for our method yet. We believe that our
method generates a maximal extension of the given algebra along the functions
η and θ within a certain class of extensions.

Another important process in generating new algebras from old ones is the
removal of cycles. First of all, one may obtain further extensions of an algebra by
applying Theorem 4 first, and then removing certain cycles. If Theorem 4 really
result in a maximal extension, one could actually obtain all extension using
this and similar approaches. Furthermore, this process has also applications in
mereotopology. We want to illustrate this by an example. In the process of
generating refinements of the algebra at hand, one considers an atom in one
spot of the composition table and investigates whether two subcases related to
the composition at hand are possible. For example, if one considers RCC11,
the relation TPP of tangential proper part, one may recognize that the table
suggests TPP≤ECN;TPP, i.e., whenever one region is inside another region so
that their borders intersect, then there is a region that is externally connected
to the first and itself a tangential proper part of the second. It is not hard to see
that one can construct examples as well as counterexamples for this statement.
This indicates that the composition table of RCC11 is not the composition table
of the concrete relations in a model of RCC. This situation can be taken as the
starting point for generating a new algebra, a refinement of RCC11. This is done
by first splitting TPP in RCC11 as in Example 3 obtaining an algebra with 15
atoms. In order to obtain a refinement of RCC11 we have also to remove the
cycle (ECN,TPP,TPP) for one of the two copies TPPA, TPPB of TPP in the
new algebra. The result of this process will produce the mereotopological algebra
RCC15 which can be further refined using similar steps to RCC25. For further
details about this process we refer to [7]. A mechanization of this second step
is also necessary in order to further advance relational methods in qualitative
spatial reasoning.
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Abstract. Homogeneous relation algebra is an elegant calculational
framework with many applications in computing science. In one applica-
tion of relation algebra, called Ampersand, heterogeneous relation alge-
bra is used as a specification language for business processes and infor-
mation systems. For this purpose a typed version of relation algebra is
needed together with subtyping. This requires heterogeneous relational
algebra. However, the partiality of the composition and union operators
in heterogeneous relational algebra are detrimental to its manipulative
power. This paper proposes a practical solution to this problem. The au-
thors suggest to relax the partiality of the heterogeneous operators. By
suitable choices this homogenisation allows for a type-based specification
language, which has sufficient manipulative power.

1 Introduction

A wealth of theory has been developed for binary relations (Tarski ([9]), Schmidt
and Ströhlein ([7]), Freyd and Scedrov ([4]), Backhouse et al ([1]), Brink et al
([3]), Maddux ([5]), etc), both in the homogeneous and heterogeneous versions.
The theory is interesting in itself, but it has lots of nice applications too. In
the current story we are concerned with the use of relations in the realm of
requirements and specification. In particular we want to use the manipulative
power of relation algebra to construct information systems that support business
processes.

This paper is a companion to ([8]) that to a large extent introduces and moti-
vates a method called Ampersand. Ampersand is intended for designing business
processes and information systems. It features tools that generate data models
and other design artifacts for constructing information systems. Ampersand de-
rives (generates) them from a collection of business rules. The tool is used to
specify real life systems and has been used successfully in industry as well as
in education. Requirements engineers express business rules in a heterogeneous
relation algebra. Thus, Ampersand defines business process(es) by constraints.
The heterogeneous version of relation algebra provides users with a type sys-
tem, which generates feedback on flawed scripts. Recently, Ampersand has been
enriched with generalization, which is not discussed in ([8]). In information sys-
tems, generalization is a standard feature. It is known under various names like
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specialization, sub- or supertyping. It manifests itself in information models via
ISA relations and inheritance. We shall freely use the terms generalization and
sub- or supertyping as synonyms throughout this paper. The combination of
heterogeneous relation algebra with generalization has been put to good use
in an improved (provisional) Ampersand compiler for ease of construction, ed-
itability and generating feedback. This paper introduces that combination and
studies its consequences for Tarski’s axioms. It turns out that the resulting lan-
guage has the same “homogeneous” three layer structure and satisfies similar
axioms.

Ampersand looks at data in an information system as a set of binary relations
that “store” the data. The data is organized by a structure that resembles an
ontology; it is built up of concepts, relations between concepts and rules gov-
erning the relations. A graph, in which concepts are represented by vertices and
relations by edges, is used in Ampersand as a conceptual model. Concepts may
range from concrete entities like names and numbers to complex entities like
orders and abstractions like delivery-appointments. Relations vary from deter-
ministic (functions) to partial multivalued ones. As data changes over time, the
contents of these relations do too. The representation of the data in the relations
in Ampersand is governed by rules that form a set of invariants. Every now and
then the rules may be violated by actions that change the actual content of re-
lations. Upon violation, the system must be brought back in a state where the
invariants are satisfied.

In Ampersand every relation is given a type at define time, as in R : A ∼ B .
This declaration implies that there exist concepts A and B , and every tuple
〈a, b〉 ∈ R implies a ∈ A and b ∈ B . This interpretation is specific for Ampersand
and is motivated in [8]. The user can formulate rules in terms of declared relations
only. Ampersand features a compiler, which deduces a computer program from
these rules. The resulting program maintains a database and keeps all rules
satisfied in that database. Note that the intended use is in real information
systems, which implies finiteness. The possible contents of the system may be
infinite, but the number of concepts and the number of basic relations in the
ontology certainly will be finite.

The feedback system of the Ampersand compiler ([8]) facilitates adaptation
of relations and rules. The user is signaled in cases of predictable errors, mainly
based on type information. If the user provides a formula the compiler cannot
assign a unique type to, there might be a mistake in the formula or a choice
between overloaded term names should be made. Well-typedness arguments are
straightforward in a fully typed heterogeneous relation algebra, but how should
we proceed in case supertyping is allowed. E.g. let R : A ∼ B and S : C ∼ D
where C is a supertype of B . The composition R o

9 S might make sense to
the user, but it is signaled incorrect by the typing mechanism. Relaxing the
stringent typing convention raises a question about the composition (¬R) o

9 S .
Do we consider the complement with respect to the type B we get from R or
should we use its supertype C resulting from S?
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1.1 Goal

For the purpose of generalization (subtyping or isa-constructions), the author of
an Ampersand script can specify an order between two different concepts. We
denote that order by C � D and say that C is a subtype of D or D is a
supertype of C . On the element level one may say a C -member is a D-member.
Users of Ampersand may (sloppily) refer to concepts as types. The concepts are
assumed to form a lattice with some appropriate special properties depending
on the problem domain. In fact a join semilattice would suffice, but assuming
finiteness we get the complete lattice structure for free. If a user does not specify
any order, the resulting lattice of concepts is flat.

The lattice has extreme elements representing extreme concepts: the empty
(⊥) and the universal one (�). Ampersand calls them nothing and anything.
These concepts are the ones that we try to avoid in specifying the system: nothing
doesn’t need rules and anything doesn’t allow them within reason. Ampersand’s
type checker rejects any relation term that has ⊥ or � as its type.
Although concepts may be seen as sets of elementary things (also known as
atoms in Ampersand), we should not necessarily interpret their meet and join
setwise. In the current research version of Ampersand with editing possibilities,
for example, the meet of two concepts is the more specific of the two if the
concepts are order related, but nothing if not. Another example may be the
join of vector spaces. In general we assume the (join semi-)lattice structure with
extremities and ignore the interpretation and specialties of the concepts until
the application section where choices of the concepts play a role.

Rules are constructed using the relations occurring in the ontology and they
may be transformed by way of the manipulative possibilities in relation algebra.
Users of Ampersand are meant to get help from relation calculus in formulating
and rewriting those rules. For this reason, we need to know which of Tarski’s
axioms are available as transformation rules to users. Because of the typing with
concepts, the homogeneous relation calculus is only locally applicable. The het-
erogeneous relation calculus, however, is too restrictive in its definedness of the
relevant operators. We opt for an intermediate form of relation calculus that
allows for subtyping, which has much of the calculational power of the homo-
geneous calculus and still has the typing advantages of heterogeneous relation
calculus.

1.2 Result

In this paper we propose such an intermediate relational calculus. Starting of
with a heterogeneous relation calculus we use generalization in order to view the
lattice and composition operators on relations as being totally defined. To that
end we make the subtyping explicit by introducing embeddings ε as relations
and use them in composition with the non-compatibly typed relations to turn
them into composable or addable relations. The typed lattice and composition
structure is thus slightly generalized and the reverse structure is unaltered. From
that point on, all we need to do is walk through Tarski’s axioms using the new
total operations and check their validity.
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It turns out that with this construction the homogeneous relations with the
ten Tarski axioms ([5], page 21) as manipulative power can be mimicked in the
heterogeneous relations, preserving almost everything except for negation and
the Schröder rules. But there is an acceptable way out of that omission: division
and the Dedekind rule.

For the Ampersand user, this has an implication in the use of the negation.
Instead of the unary complement he gets a binary subtraction operator that
enables Ampersand to infer a type specialization if necessary. By way of syntac-
tic sugar, he may omit the left hand argument, yielding the ‘look and feel’ of
the complement operator. The Ampersand compiler facilitates this by adding a
default value for the missing argument.

The Ampersand tool provides assistance in constructing relational terms by
means of a type checker. In the perception of users, the type system discrim-
inates meaningful expressions from meaningless ones. A meaningful expression
in Ampersand is a relation term, which has a unique type other than ⊥ or �.
Meaningless expressions are rejected by the type checker with an informative
diagnostic message. This choice for meaningless terms in the augmented Am-
persand tool is captured in the concept lattice and is thus separated from the
relational calculus. We consider two concepts to be unrelated if their join equals
�, the universe of things without discriminating properties. Composition and
gathering unrelated things is considered meaningless.

2 Definitions

First we introduce the usual system of heterogeneous relations and fix the no-
tation we use. (Such may be done via order enriched categories or via allegories
(e.g. [4]) but mastery of those fundamentals of mathematics is not necessary to
read this paper.) After that we propose the changes to facilitate the sub- and
supertyping.

2.1 Heterogeneous Relation Calculus

We consider the category (C,Rel) of relations on the concept set C 1. Following
the relational habit we shall denote the categorical and the relational composition
by a semicolon o

9 with high precedence. The sets of morphisms Rel (A, B), i.e. the
collections of all relations between the concepts A and B form complete, chain
distributive lattices and these lattices are interrelated by way of the composition
o
9 and the converse ∪, as follows:

o
9 : Rel(A, B)×Rel(B , C ) −→ Rel(A, C )

has identities as units, is associative and universally disjunctive
∪ : Rel(A, B) −→ Rel (B , A)

is an isomorphic involution (i.e. ∪ ◦ ∪ = id )
1 If you are not familiar with the notion of category, think of a transitive directed graph

whose vertices are concepts and whose edges are relations between the vertices they
connect. An edge is termed morphism or relation. Pasting edges is called composition.
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and they satisfy the converse-composition layer interface of contravariant
distribution

(R o
9 S )∪ = S∪ o

9 R∪

The homsets Rel(A, B) have a top ��A,B , the universal relation, and a
bottom ⊥⊥A,B , the empty relation. Where the context prevents ambiguous
interpretation, we shall omit subscripts.
Instead of R ∈ Rel(A, B) we prefer to write R : A ∼ B and pronounce R is
a relation between A and B (which by listening from left to right differs from
being a relation between B and A ).
We denote the left and right types of R by R� (= A above) and R� (= B above)
respectively.

The meet and join are written as � and � and they have the usual properties
except for arbitrary distributivity. Considering the set-theoretic interpretation
of relations in Ampersand, it is no coincidence that they look somewhat like
set-theoretic intersection and union.
Often the morphisms are even assumed to form complete, complemented lattices.
Moreover, the complement is used to formulate an interface between the three
layers of the relation calculus: the so called Schröder rule (but it has many names
and shapes)

equivalent are: R o
9 S � ¬T∪, T o

9 R � ¬S∪ and S o
9 T � ¬R∪

that connects the order, the composition and the converse. Although comple-
mentation might work well in the homogeneous case and even in the localized
heterogeneous version, we do not consider it because we will run into trouble
because of the intended additional subtyping and the consequential uncertainty
of the complementation domain. So we should cope without negation or at least
without negation in considering relations with different typing. Instead of nega-
tion we may use division (or factors) to be introduced shortly.

We replace the Schröder rule by the three-layer interface known as the modular
identity ([4]) or the Dedekind rule ([6]) that partly makes up for the lack of
conjunctivity of o

9 as follows:

R o
9 S � T � (R � T o

9 S∪) o
9 (S � R∪ o

9 T )

In the presence of complementation the Dedekind rule is equivalent to the
Schröder rule.

An interesting property of many relational systems, not captured by the ten
Tarski axioms, is the universal disjunctivity of the composition. I.e.

(�U : U ∈ U : U ) o
9 R = (�U : U ∈ U : U o

9 R) and
R o

9 (�U : U ∈ U : U ) = (�U : U ∈ U : R o
9 U )

Note that we use ternary notation for quantifications and repeated operator ap-
plications, similar to the Z-notation (with colons as separators in stead of a bar
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and a bullet). The first part of the quantification designates the repeated oper-
ator and the dummies to be used in the terms (e.g. in the second quantification
these are �U ), the second part indicates the domain for the dummies (U ∈ U)
and the third part is for the terms to be quantified (U o

9 R). In section 3.3 more
examples of this notation occur.

The universal disjunctivity property of relational systems is equivalent to ([2])
the existence of two Galois connections between the left and right compositions
and operations that might therefore be called factorisations or divisions (the
term that we shall use here):

R � S o
9 T ≡ R//T � S and S o

9 T � R ≡ T � S\\R
Adjointness of o

9T and //T and of S o
9 and S\\ is (in a certain sense) equivalent

to universal distributivity of o
9T and S o

9 respectively. The name division is
illustrated by the next cancellation property:

R � (R//T ) o
9 T and S o

9 (S\\R) � R

These cancellation properties show some typing restrictions in the hetero-
geneous setting. The composition and the inclusion should make sense, so the
typing of the lefthand division is R//T : R� ∼ T � and it only exists if the right
types of R and T are the same (R� = T �).

Division is strongly related to negation. Indeed, from the Schröder rule it
follows for instance that S\\R = ¬ (S∪ o

9¬R), and thus that ¬ S = S∪\\¬I . So,
considering the reluctant use of the negation in our lattice layer, division might
be a useful operation to replace some of the applications of negation. For the
application in constructing constraints and business rules the division has the
following set-theoretic interpretation:

a〈R//T 〉b ≡ (∀ c : b T c : a R c) and a〈S\\R〉b ≡ (∀ c : c S a : c R b)

2.2 Adding Supertyping

In information modeling the notion of ISA relation captures inheritance of en-
tities. It stands for embedding specialized things as things. Here we coin the
term generalization or supertyping for this. Generalization or supertyping may
be thought of as losing some but possibly not all information (e.g. a manager is
an employee), while subtyping stands for refining or specializing the information
(e.g. adding a locked drawer makes a desk more determined). In the standard
heterogeneous relation calculus we cannot add the fact that manager Baas uses
locked-drawer-desk ldd481 to the relation of employees using desks because the
types do not match. But we do want to do so because Baas is an employee and
ldd481 is a desk. What we can do is embedding subconcepts in concepts (or
concepts in superconcepts) and extend that embedding to relations, so employee
is a supertype of manager and locked-drawer-desk is a subtype of desk.

Having a relation between subconcepts, the question arises how to extend it
to their generalizations? And the other way around: can we restrict relations
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between types to subtypes? Instead of the given examples we may also think of
clients as special persons, appointments as generalized meetings, invitations of
clients to meetings or appointments for persons and the like.

In Ampersand the concepts occurring in the ontology may be sub- or su-
pertyped and we assume that the generalization is structured as a lattice with
extremal elements (⊥ and �). We consider the generalization as an order on the
concepts, given by way of embeddings of subtypes in types. The combination of
heterogeneous relation algebra and generalization is substantiated by introduc-
ing the embedding functions (ε) as heterogeneous relations, thus incorporating
the subtyping in the relation algebra. This enables us to extend the composition
and the definedness of the lattice operators. As follows:

Consider the lattice (C,�) of concepts as a subcategory of (C,Rel) by adding
an embedding relation εA,B for every A � B . Clearly, we want

εA,A = idA and εA,B
o
9 εB ,C = εA,C

Moreover, the embeddings should be injective and functional (total and univa-
lent) relations, hence

idA = εA,B
o
9 ε∪A,B and ε∪A,B

o
9 εA,B � idB

We assume that the concepts, their members and their relations are such that
this is possible.

Following the embedding of concepts, we can now embed the relations (the
homsets) too. Assume A � C and B � D , then R : A ∼ B is embedded as
relation between the supertypes C and D by composing it with the appropriate
embeddings:

if R : A ∼ B then ε∪A,C
o
9 R o

9 εB ,D : C ∼ D

Indeed, in the left concept only A-members of C are considered via ε∪A,C , while
the resulting B -members are properly embedded in D .

Not only can we embed relations in supertypes, we may also restrict relations
to subtypes:

if S : C ∼ D then εA,C
o
9 S o

9 ε∪B ,D : A ∼ B

Because of the embedding εA,C only A-members of C will occur on the left
type of S , while the resulting D -members are filtered by ε∪B ,D so that only
B -members are accepted.

As expected, restriction after embedding is just the identity, but embedding
after restriction stays restrictive. Indeed:

εA,C
o
9 ε∪A,C

o
9 R o

9 εB ,D
o
9 ε∪B ,D = idA

o
9 R o

9 idB = R

while

ε∪A,C
o
9 εA,C

o
9 S o

9 ε∪B ,D
o
9 εB ,D � idC

o
9 S o

9 idD = S
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Finally, note that if two concepts, say A and B , have a common supertype,
say C , we can consider the commonality within them: εA,C

o
9 ε∪B ,C : A ∼ B . In

particular this holds for the join A ∨ B instead of C as well as for � instead
of C .

3 Adapting the Operations

In our heterogeneous relation system we incorporated the sub- and supertyping
by embeddings between refining concepts, leading to embedding and restriction
of relations. The next step is to extend the inter-homset relation operators o

9 , ∪

and the homset lattice operations � and � , preferably retaining the interfaces
between the layers.

3.1 New Composition

In the heterogeneous system, the composition is only defined if the right concept
of the first and the left concept of the second argument are equal:

o
9 : (A ∼ B)× (B ∼ C ) −→ (A ∼ C )

We want to relax the equality “in the middle” so, that composition is also defined
in case the middle components are refining. To that end we define the extended
composition by

o
9© : (A ∼ B)× (C ∼ D) −→ (A ∼ D) with

R o
9©S = R o

9 εB ,B∨C
o
9 ε∪C ,B∨C

o
9 S

There is nothing new with the new composition (i.e. R o
9©S = R o

9 S ) in case
the right concept of R coincides with the left concept of S (i.e. B = C in the
above), so o

9© is a total extension of o
9.

The identity is also the unit of the new composition, but even more is true:
embedding and restriction are just new compositions with the appropriate iden-
tities. For the embedding (assuming R ∈ A ∼ B , A � C , B � D ):

ε∪A,C
o
9 R o

9 εB ,D = idC
o
9 εC ,C

o
9 ε∪A,C

o
9 R o

9 εB ,D
o
9 ε∪D,D

o
9 idD = idC

o
9©R o

9©idD

and, similarly for the restriction (assuming S ∈ C ∼ D , A � C , B � D ):

εA,C
o
9 S o

9 ε∪B ,D = idA
o
9 εA,C

o
9 ε∪C ,C

o
9 S o

9 εD,D
o
9 ε∪B ,D

o
9 idB = idA

o
9©S o

9©idB

3.2 New Order

The lattice operations are only defined per homset. If we want to join two re-
lations with different typings, we should look for a common supertype embed
the relations accordingly and join them there. Similarly we find the common
workspace for the meet of two relations of different types. We have to pay the
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price that we do lose some information (and we’ll never get that back) but the
relations can be joined where originally heterogeneity wouldn’t allow it. So define
�© and �© by

�©, �© : (A ∼ B)× (C ∼ D) −→ (A ∨ C ∼ B ∨D) with

R�©S = ε∪A,A∨C
o
9 R o

9 εB ,B∨D � ε∪C ,A∨C
o
9 S o

9 εD,B∨D

= idA∨C
o
9©R o

9©idB∨D � idA∨C
o
9©S o

9©idB∨D

R�©S = ε∪A,A∨C
o
9 R o

9 εB ,B∨D � ε∪C ,A∨C
o
9 S o

9 εD,B∨D

= idA∨C
o
9©R o

9©idB∨D � idA∨C
o
9©S o

9©idB∨D

The new lattice operations �© and �© are total extensions of the old ones � and
� . It is readily seen that �© and �© are symmetric and associative and that they
distribute. Zeros do exist for both �© and �©, viz. �� : � ∼ � and ⊥⊥: � ∼ � ,
but only �© allows for a unit: ⊥⊥:⊥∼⊥ . Therefore we don’t have to hope too
much for a suitable definition of a (new) negation.

Some doubt arises because of this anomaly, and quite rightly so. We can define
order extensions of � such that �© or �© are the join or meet, but not both. Let’s
define for R : A ∼ B and S : C ∼ D :

R �©S ≡ A � C ∧ B � D ∧ ε∪A,C
o
9 R o

9 εB ,D � S

Then �© is the disjunction (join) for �© and thus we have

R �©S ≡ R �©S = S

But be aware that with this choice �© is only locally the meet for �© . Because
all unions exist, the global meet for �© does exist, but it is not an operation
that is useful for our purposes. The meet would require restriction of the left and
right types, but domain restriction is not a reasonable operation on relations as
it suggests gain of knowledge or structure where we can only lose it by general-
ization. We had to forget about the specialties before we were able to intersect,
so the price of this totalization is that those specialties are lost.
In an Ampersand script, the user need not worry about the supertype level.
He uses �© as his meet operator, which is analyzed by the type checker. After
checking and inferring the correct types, Ampersand works exclusively locally,
so the almost-meet indeed is equivalent to � where it occurs.

Note that the local complements cannot be extended to a global complement
in general. Even globally complementing a local top for a nontrivial concept
will not succeed. In general the notion of complement doesn’t make sense in an
environment with generalization, because different supertypings destroy the base
of complementation. Instead we still may consider the typed complements like
��A,B \R for relation R : A ∼ B . This insight has influenced the implementation
of Ampersand. As of the next version, the complement operator is substituted by
a binary minus sign. If the left hand argument is missing, the compiler assumes
��A,B in which A ∼ B is the type of the right hand argument. The type checker
deduces the type and generates an error message if it is not uniquely defined.
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3.3 Interfaces

The converse doesn’t need adaptation since the definedness doesn’t change.
The reader may want to verify that the interface between the converse and the

composition layers smoothly carries over to the converse and the new
composition:

(R o
9©S )∪ = S∪ o

9©R∪

The interface between the composition and the lattice layer, i.e. the universal
disjunctivity of the composition, is also valid for the new versions of composition
and disjunction. To show that, let U be a collection of relations, say U : U � ∼ U �

for U ∈ U . Let A and B be the joins of their left and right domain concepts
respectively and let R : C ∼ D then

(
⊔©U) o

9©R

= { definition �© }
(�U : U ∈ U : ε∪U�,A

o
9 U o

9 εU�,B) o
9©R

= { definition o
9© }

(�U : U ∈ U : ε∪U�,A
o
9 U o

9 εU�,B) o
9 εB ,B∨C

o
9 ε∪C ,B∨C

o
9 R

= { universal distributivity of o
9 }

(�U : U ∈ U : ε∪U�,A
o
9 U o

9 εU�,B
o
9 εB ,B∨C

o
9 ε∪C ,B∨C

o
9 R)

= { transitivity of embeddings }
(�U : U ∈ U : ε∪U�,A

o
9 U o

9 εU�,B∨C
o
9 ε∪C ,B∨C

o
9 R)

= { exercise: X ∨ Z � Y ⇒ εX ,X∨Z
o
9 ε∪Z ,X∨Z = εX ,Y

o
9 ε∪Z ,Y }

(�U : U ∈ U : ε∪U�,A
o
9 U o

9 εU�,U�∨C
o
9 ε∪C ,U�∨C

o
9 R)

= { definition o
9© }

(�U : U ∈ U : ε∪U�,A
o
9 (U o

9©R))

= { definition �© }
(�©U : U ∈ U : U o

9©R)

Universal �©-junctivity of o
9© guarantees the existence of adjoint division

operators, say //© and \\©, given by

R �© S o
9©T ≡ R //©T �© S and S o

9©T �© R ≡ T �© S \\©R

The typing of the new factors should follow from their construction, e.g.

R //©T = (�©U : R �© U o
9©T : U )

leading to the typing R //©T : R� ∼ � , provided T � � R� , otherwise R //©T = ⊥
⊥⊥,⊥. Remember that R//T needed T � = R� , so the new factor is slightly more
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defined, with a (too) big right domain concept, but otherwise it is the same.
Indeed, here we also have

a〈R //©T 〉b ≡ (∀ c : b T c : a R c) and a〈S \\©R〉b ≡ (∀ c : c S a : c R b)

The interface between the converse and the lattice (order) layers carries over
smoothly to the converse and the new lattice(like) operations:

(R �©S )∪ = R∪ �©S∪ and (R�©S )∪ = R∪ �©S∪

After introducing the total versions of the composition and the disjunction
(order) we harvested the majority of the Tarski rules:

– We do have a suitably rich order structure, be it that we have an operation
that in several respects looks like the meet but it isn’t. It does have a reason-
able interpretation and sufficient manipulative possibilities to keep it (more
evidence below).

– The extended composition structure still forms a monoid
– The converse didn’t even change.
– All interfaces between the layers are preserved except for Schröders rule that

doesn’t make sense without complementation.

The interface between all three layers is still lacking. Our caution with respect
to the negation directed our interest towards the modular law ([4]). An inconve-
nience for the asymmetric modular law is the unfortunate typing, but this may
be corrected by choosing the slightly more complicated but symmetric version
called the Dedekind rule ([6]). (We gratefully thank the referee for suggesting the
symmetric version and pointing at the typing advantage.) A severe drawback is
the fact that the meet-like operator occurring in this new Dedekind rule is only
locally the meet. So, globally, the Dedekind rule does not capture the boundary
for conjunctivity as it did for the original relational calculus. Nevertheless we are
happy with it because it still gives the manipulative power comparable to the
original rule and it serves a purpose in mimicking the Tarski-rules for our new
operations in the heterogeneous setting with generalization. Indeed, the Amper-
sand user, though working in a heterogeneous setting, is allowed to transform
his expressions with this rule as if his environment is homogeneous, leaving the
reponsibility for the syntactic correctness to the type-checker.

So we will show that

R o
9©S �© T �© (R �© T o

9©S∪) o
9©(S �© R∪ o

9©T )

Let R : A ∼ B , S : P ∼ Q and T : X ∼ Y , then the two composed relations
on the righthand side are

ε∪A,A∨X
o
9 R o

9 εB ,B∨P � ε∪X ,A∨X
o
9 T o

9 εY ,Q∨Y
o
9 ε∪Q,Q∨Y

o
9 S∪ o

9 εP ,B∨P

and

ε∪P ,B∨P
o
9 S o

9 εQ,Q∨Y � ε∪B ,B∨P
o
9 R∪ o

9 εA,A∨X
o
9 ε∪X ,A∨X

o
9 T o

9 εY ,Q∨Y
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The supertyped relations ε∪ o
9 U o

9 ε occur in these expressions also in conversed
version with the same embeddings, so we may abbreviate them as R′, S ′, T ′ and
their converses in the calculation below

(R �© T o
9©S∪) o

9©(S �© R∪ o
9©T )

= { above with abbreviation }
(R′ � T ′ o

9 S ′∪) o
9©(S ′ � R′∪ o

9 T ′)
= { intermediate types are the same (B ∨P) , so the composition is local }

(R′ � T ′ o
9 S ′∪) o

9 (S ′ � R′∪ o
9 T ′)

� { Dedekind in the original relation calculus }
R′ o

9 S ′ � T
= { unfold abbreviation }

ε∪A,A∨X
o
9 R o

9 εB ,B∨P
o
9 ε∪P ,B∨P

o
9 S o

9 εQ,Q∨Y � ε∪X ,A∨X
o
9 T o

9 εY ,Q∨Y

= { new operators }
R o

9©S �© T

This concludes the rendering of almost all Tarski axioms from the homoge-
neous relations in our adaptation of the heterogeneous relations.

3.4 Example

A very small example to illustrate some of the above notions is about business
rules for a company that sells ordered items to clients and bills them either by
crediting them or, to evade taxes, by direct payment. So he needs two kinds of
bills modeled by subtypes, the black bills and the white ones. The mini-ontology
is:

Item Bill

Client

Black

White

paid

sent

credited

on

The following two business rules show the generalized composition and union
and show the use of division that cannot completely do without type restriction.

– An item on a bill that is paid for or credited is sent to the client.

on o
9©(paid�©credited) �© sent

– A black bill must be paid by the client when all items on it are sent to him.
For a translation we reformulate it into predicate calculus and transform it
to a rule in terms of relations: for arbitrary bill β and client γ
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(∀ i : i〈on〉β : i〈sent〉γ) ⇒ β〈paid〉γ
≡ { division }

β〈on\\sent〉γ ⇒ β〈paid〉γ
≈ { forall bills and clients }

on\\sent � paid
≈ { don’t mind the subtypes, but for a domain of black bills }

idBlack
o
9©(on \\©sent) �© paid

4 Application in Ampersand

Ampersand is a tool for constructing an information system from formally given
business rules. These rules are defined as relation terms over a finite set of re-
lations. Rules and relations are introduced (declared) by the user in a suitable
syntax. The system assists its users (business rule engineers as well as students)
in constructing relevant relational terms and rules. To that end a syntactic cal-
culus of relations based on the ten Tarski axioms is enriched with typing ar-
guments to filter out the evidently meaningless terms. The totalization of the
heterogeneous relations above represents the first stage in constructing Amper-
sand relation terms. Relation terms may be composed, joined, intersected and
reversed without bothering too much about the definedness of the operators.
The necessity of that carelessness stems from the polymorphic naming as well as
from the use of sub- and supertypes (overloading of relations and atoms, see [8]
section 3.3). E.g. if some director is combined with a specific desk it should not
primarily concern us whether he uses his desk as a manager, an employee or as
a person, we may not want to make that typing distinction when constructing
our desk-usage rule now. (Although it may be relevant later if the quality of
the drawer locks is at stake.) So we may discuss many relations all called “uses”
between every subtype of “person” and every subtype of “desk”. The totality of
the new operators allows that carelessness.

A user of Ampersand experiences that he needs not worry about types until
the type checker detects an ambiguity (or omission). The language contains a
mechanism by which the user can add type information to relation terms, in order
to disambiguate his expressions and satisfy the type checker. Since Ampersand
will not do anything until the script of the user is correct, (s)he experiences the
semantics of the operations in the second stage only.

The second stage starts with the introduction of a suitable concept lattice, the
generalizations in which are declared initially. We assume that that two concepts
are completely independent if they have � as join. We don’t have a relevant
supertype of numbers and employees, of currencies and blood pressures, of amino
acids and scientific journals. This is used in judging parts of relational terms:

– A composition with coarsest intermediate concept equal to � is certainly
empty, since the glued left and right types are completely independent.

– A disjunction of relations with one of the domain concepts � combines inde-
pendent things and is considered to be undesirable, we don’t mix unmixable
atoms.
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The types of all domain concepts are calculated by the type checker and the
instances of the above anomalies are detected and used to inform the user of
probable mistakes. The precision of catching mistakes depends heavily on the
strength of the concept lattice as a discriminator of (ir)relevancies. But it may
give hints even if independence is not equivalent to joining up to � .
The Ampersand user, or the information architect in the preceding modeling
process, may define the dependencies and independencies in the subtyping order
corresponding to her own needs. E.g. in recent provisional Ampersand applica-
tions the choice for trivial concept conjunctions was made, in older ones the flat
lattice resulted. It is up to the user.

In the current Ampersand version negation poses a problem. If we have a re-
lation in ordinary and supertype version, what should we do with the negation?
Are we dealing with the complement in the ordinary type or does the comple-
ment in the supertype play a role. This is especially relevant in case the relation
is composed with terms related to the supertype. In fact, that problem was the
incentive for the investigations in this paper. The situation can now be signifi-
cantly improved by adopting division while replacing the Schröder rules by the
Dedekind rule and suitably restricting the �-side of the division.
Negation is undoubtedly a natural element in specification of real world phe-
nomena. In the industrial practice, negation is typically used in conjunction
with other operators that allow the compiler to replace it. In case it is used
explicitly by the user, the type checker helps. If the use of negation is such that
an ambiguity arises, the user can fix this error by adding the intended type
information. Theoretically we are not too much astray, since division and nega-
tion are related by a combination of the Schröder rule (though replaced by the
Dedekind rule) and the complement of the identity, which exists in Ampersand.
With this combination of theoretical and practical typing assistance Ampersand
offers a version of relation calculus to its users that has appeared to be more
than acceptable in practice.

5 Conclusion

We have enriched the heterogeneous relations with the notion of supertyping.
With a rather natural construction the partial operations (composition and dis-
junction) are extended to total operations, so that much of the manipulative
power of the homogeneous relations is regained for the heterogeneous relations.
The result is a relational framework that explains why the current typing ar-
guments in the business rule tool Ampersand do stand to reason. It also raises
the question what we can do about the role of the negation, a partial answer
to which may be found in the use of the division.The design advantage and the
educational value of the Dedekind rule and the divisions could has not been
judged, since these novelties are not yet taught in relation to Ampersand. The
use of negation in constructing business rules needs to be investigated further.
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