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Abstract

We extend Kozen’s theory KA of Kleene Algebra to axiomatize parts of the
equational theory of context-free languages, using a least fixed-point operator µ
instead of Kleene’s iteration operator ∗.

Although the equational theory of context-free languages is not recursively
axiomatizable, there are natural axioms for subtheories KAF ⊆ KAR ⊆ KAG:
respectively, these make µ a least fixed point operator, connect it with recursion,
and express S. Greibach’s method to replace left- by right-recursion and vice
versa. Over KAF , there are different candidates to define ∗ in terms of µ,
such as tail-recursion and reflexive transitive closure. In KAR, these candidates
collapse, whence KAR uniquely defines ∗ and extends Kozen’s theory KA.

We show that a model M = (M,+, 0, ·, 1, µ) of KAF is a model of KAG,
whenever the partial order ≤ on M induced by + is complete, and + and · are
Scott-continuous with respect to ≤. The family of all context-free languages
over an alphabet of size n is the free structure for the class of submodels of
continuous models of KAF in n generators.

1 Introduction

Regular algebra is the equational theory of the algebra of regular languages, initiated
by Kleene[6]. Redko[13] showed that this theory is not axiomatizable by finitely many
equations between regular expressions. Recently, two finite axiomatizations by other
means have been given. Pratt[12]’s theory of Action Logic, ACT , enriches Kleene’s
set {+, 0, ·, 1,∗ } of regular operations by left and right residuals ← and →, and is
axiomatized by finitely many equations. Iteration ∗ is characterized in ACT by its
monotonicity properties and the equation (x → x)∗ = x → x of ‘pure induction’.
Kozen[8]’s theory of Kleene Algebra, KA, sticks to Kleene’s regular operations, but
characterizes ∗ by universal Horn-axioms. Both ACT and KA are complete for regular
algebra.

One of the motivations behind these axiomatizations was to provide an alternative
to the largely combinatorial constructions of current treatments of the theory of regular
languages. We believe that reasoning about context-free languages could also profit
from algebraic and logical means based on axiomatic theories. In particular, it seems
that in studying context-free languages, the algebraic tool of formal power series could
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sometimes be replaced by simpler logical methods exploiting properties of a least-
fixed point operator. The aim of this paper is to stimulate research in this direction
by giving some basic considerations and problems.

Recall that regular expressions are inductively defined by

r := 0 | 1 | x | a | (r + r) | (r · r) | r∗ ,

where a ranges over a finite list or alphabet Σ of constants, and x over an infinite list
of variables. With a least-fixed-point operator µ, we define µ-regular expressions by

r := 0 | 1 | x | a | (r + r) | (r · r) | r∗ | µx r.

There are two standard interpretations of regular expressions:

In the language interpretation, LΣ, variables range over the universe of all subsets
(or formal languages) of the set Σ∗ of finite sequences (or words) of elements of Σ,
0 denotes the empty set, 1 the singleton set containing the empty word ε only, the
constant a denotes {a}, + is set union, · is element-wise concatenation, and ∗ is the
union of all finite concatenations of a language with itself. By REGΣ we understand
the subclass of all regular languages over Σ, which are those elements of LΣ that are
the value of a closed regular expression, i.e. one without free variables.

In the relation interpretation, RK , variables range over the universe of all binary
relations on a set K, with the empty relation as 0, the identity on K as 1, union and
composition as + and ·, and reflexive transitive closure as ∗. As an interpretation
for the constants a we can take any relations Ra ⊆ K × K; however, as there is no
canonical choice for these, it seems natural here to consider pure expressions only, i.e.
those containing no constants except 0 and 1.

Since all operations are monotone with respect to set and relation inclusion, respec-
tively, we can extend these standard interpretations to µ-regular expressions, letting µ
pick the least fixed point of monotone functions. The fundamental theorem of recur-
sion theory on the natural numbers, saying that (i) a partial function f is definable
by a system of Gödel-Herbrand-Kleene-equations iff (ii) f is µ-recursively definable iff
(iii) f is computable by a Turing-machine, has the following analogue concerning the
definability of formal languages1:

Theorem 1.1 For every language A ⊆ Σ∗, the following conditions are equivalent:

(i) A is definable by a system of regular equations,

(ii) A is definable by a µ-regular expression,

(iii) A is accepted by a pushdown-store automaton.

1In characterizations of context-free languages in the literature, condition (ii) often is missing. This
is true at least for Hopcroft/Ullman[5], Lewis/Papadimitriou[9], and Harrison[4]. Salomaa[15] has
(ii), but in a somewhat less persipcious notation. Essentially, the pushdown store is just the procedure
return stack by which the finite automata for the ri organize the ‘calling’ of each other, i.e. their
transitions labelled with variables. This offers a nice and simple way to introduce pushdown-store
automata and to explain why an implementation of recursion µ needs a stack.
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Here, definable by a system of regular equations means to be a component of the least
solution of a system

x1 = r1(x1, . . . , xm)
...

...
...

xm = rm(x1, . . . , xm),

where each ri is a regular expression whose free variables are among the pairwise
distinct recursion variables x1, . . . , xm. Context-free grammars can be seen as systems
{xi = ri}1≤i≤m of regular equations where the ri are ∗-free and in disjunctive normal
form. One can use more restrictive normal forms, such as Greibach’s[3], or more
general expressions, such as µ-regular ones, without changing the class of languages
that are definable by systems of equations.

In the present paper, we will use µ-regular expressions as a naming system for
context-free languages2 to axiomatize pieces of their equational theory. This will be
done in three steps:

First, we add to the algebraic properties of +, 0, ·, 1 the assumption that µ picks
the least pre-fixed point of definable functions λx.r, for each µ-regular expression
r(x, y1, . . . , yn):

∀y1 . . .∀yn (r[µx.r/x] ≤ µx.r ∧ ∀x(r ≤ x→ µx.r ≤ x)). (1)

To express minimality, we need universal Horn-axioms, with conditional (in)equations
in the quantifier free part. The resulting theory will be called Kleene algebra with least
fixed points, or KAF for short. (Actually, this is a misnomer, if we drop ∗ from the
language).

In a second step, we extend KAF by equational axioms to obtain a theory of
Kleene algebra with recursion, KAR, that can model iteration ∗ by recursion µ, a
suitably restricted form of the least fixed point operator. In KAR, we relate µ with
the algebraic operations + and · by

∀a, b. (µx(b + ax) = µx(1 + xa) · b ∧ µx(b + xa) = b · µx(1 + ax)). (2)

(In the following, we often write a, b for free variables, while ai will be a constant of Σ
that may be added to the pure language, without adding any relations between these.)
Using these equations and taking µx(1 + ax) as a∗, the least fixed point properties
for µx(b + ax) and µx(b + xa) in KAF are just the properties of ∗ taken as axioms
in Kozen’s[8] theory KA of Kleene algebra. Hence, KAR is indeed a theory of Kleene
algebras, with iteration generalized to recursion. While KAR proves all equations
between regular expressions that are valid in the language interpretation, it cannot
prove all valid equations between µ-regular expressions, nor can it be completed to do
so.

In spite of this limitation, in a third step we look for larger fragments of the
equational theory of context-free languages that have natural axioms. We note that

2Niwinski[10] investigates the hierarchy of ω-languages obtained by nested least and largest fixed
point operators.
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S.Greibach’s way to eliminate left recursion in context-free grammars relies on an
equivalence between grammars that can compactly be expressed as an equation schema
between µ-regular expressions r, s, possibly containing x:

µx(s + rx) = µx(µy(1 + yr) · s) ∧ µx(s + xr) = µx(s · µy(1 + ry)). (3)

Adding this schema to KAF gives a theory KAG , which extends KAR. It remains to
be seen to what extent common reasoning about the equivalence between context-free
grammars can be carried out within KAG .

Equations (2) can also be read as claiming continuity properties about + and ·. We
consider continuous models of KAF and relate these to Conway’s[2] notion of Standard
Kleene Algebra. It will be shown that all continuous models of KAF , in particular
the standard interpretations, satisfy the identities (3). Moreover, an equation between
µ-regular expressions that is valid in the interpretation by context-free languages holds
universally in the continuous models of KAF .

2 Kleene algebras with least fixed points

Kleene[6] introduced regular expressions and showed that their equivalence (i.e. equal-
ity in the language interpretation) is decidable via finite automata. Several attempts
have been made to give a complete axiomatization of this equivalence, notably by
Salomaa[14], Conway[2], Pratt[12], and Kozen[8]. The main obstacle was Redko’s[13]
result that there can be no finite axiomatization by means of equations between reg-
ular expressions. Recently, Kozen[8] presented the following axiomatization using
Horn-formulas.

Definition 2.1 (D. Kozen) The theory of Kleene algebras, KA, stated in the language
{+, 0, ·, 1,∗ }, consists of (1) the theory of idempotent semirings, which says that

• + is associative, commutative, idempotent, and has 0 as neutral element,

• · is associative and has 1 as neutral element from both sides,

• 0 is an annihilator for · from both sides, i.e. ∀x(0 · x = 0 = x · 0),

• · distributes over + from both sides,

and (2) the following assumptions about ∗, universally quantified over a, b:

1 + aa∗ ≤ a∗, and ∀x(b + ax ≤ x → a∗b ≤ x), (4)

1 + a∗a ≤ a∗, and ∀x(b + xa ≤ x → ba∗ ≤ x). (5)

We use a ≤ b as shorthand for b = (a + b). Since + is idempotent, associative, and
commutative, the relation ≤ is reflexive, transitive, and anti-symmetric, i.e. a partial
ordering.

Several other notions of Kleene algebra have been studied in the literature; c.f.
Conway[2], Büchi[1], and Pratt[11, 12]. Kozen[8], Theorem 5.5, shows that KA is
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equationally complete with respect to the language interpretation: for all closed regular
expressions r and s over Σ,

KA � r = s if and only if REGΣ |= r = s,

where � is provability in first-order logic.

A model of the equational theory of REGΣ is called a regular algebra. By Theorem
1.1, the closed µ-regular expressions define exactly the context-free languages. Let
CFLΣ be the class of context-free languages over Σ, and let µ-regular algebra (over
Σ) be the equational theory of CFLΣ. We are interested in subtheories of µ-regular
algebra that can be axiomatized in the language of µ-regular expressions. In the rest
of this section, we will consider a very basic theory of this kind, fixing µ to be a least
fixed point operator.

We want to look at some ways to define ∗ in terms of µ, and for that reason we
will not use ∗ in µ-regular expressions henceforth, but only +, ·, 0, 1, and µ. The
models of our theory are certain structuresM = (M, +, 0, ·, 1, µ), where (M, +, 0, ·, 1)
is a first-order structure, and µ a functional on M that associates to every definable
function f : M →M an element µ(f) of M , the least pre-fixed point of f .

Definition 2.2 The theory of Kleene Algebra with least fixed points, KAF , consists
of (i) the theory of idempotent semirings (as above), and (ii) the following schemata
of least pre-fixed points: for all µ-regular expressions r,

r[µx.r/x] ≤ µx.r, (6) and ∀x(r ≤ x→ µx.r ≤ x). (7)

A more accurate name would be idempotent semiring with least fixed points, in
particular since we dropped ∗. The expected monotonicity and fixed-point properties
follow easily from the axioms for µ:

Proposition 2.3 For all µ-regular expressions r,s, and variables y �≡ x �≡ z,

KAF � ∀x(s ≤ r)→ µx.s ≤ µx.r, (8)

KAF � ∀y∀z (y ≤ z → µx.r[y/v] ≤ µx.r[z/v]), (9)

KAF � µx.r = r[µx.r/x]. (10)

Proof To show (8), from ∀x(s ≤ r) we first get s[µx.r/x] ≤ r[µx.r/x] ≤ µx.r,
using (6) for the second step. With (7), this then gives µx.s ≤ µx.r. To show (9)
for r(x, v), note that by induction we may assume y ≤ z → ∀x(r(x, y) ≤ r(x, z)),
using monotonicity of the regular operations for µ-free expressions r. By (8), we get
µx.r(x, y) ≤ µx.r(x, z). Finally, for (10), from axiom (6) we get r[r[µx.r/x]/x] ≤
r[µx.r/x] by monotonicity, and by axiom (7) this implies µx.r ≤ r[µx.r/x]. �

Let us now see whether we can define Kleene’s iteration ∗ in KAF . At first sight,
Kozen’s axioms for ∗ are instances of our µ-axioms for r(a, b, x) := (b + ax),

b + a · µx(b + ax) ≤ µx(b + ax), and ∀x(b + ax ≤ x→ µx(b + ax) ≤ x).
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Writing a∗b for µx(b + ax) these are just the first (with b = 1) and second part of (4).
Similarly, we obtain (5) by taking µx(b + xa) for ba∗.

However, this does not give one definition for a∗, by taking b = 1, but two of them:
the right iteration µx(1 + ax) and the left iteration µx(1 + xa) of a, respectively.
Since · need not be commutative, in some models of KAF it can make a difference
whether we iterate a to the left or to the right. But in the standard interpretations
of the Introduction, both iterations of a coincide, and in fact are equal not only to
the both-sided iteration µx(1 + ax + xa) of a, but also to µx(1 + a + xx), the reflexive
transitive closure of a. It seems that in KAF , we can only prove part of this:

Proposition 2.4 KAF � µx(1+ax)+µx(1+xa) ≤ µx(1 + ax + xa) ≤ µx(1 + a + xx).

Proof The first inequation is obvious. For the second, let x̄ be µx(1 + a + xx). Then
(i) 1 ≤ x̄, (ii) a ≤ x̄, and (iii) x̄x̄ ≤ x̄. By monotonicity of + and ·, we get

1 + ax̄ + x̄a ≤(ii) 1 + x̄x̄ + x̄x̄ ≤(iii) 1 + x̄ + x̄ ≤(i) x̄ + x̄ + x̄ = x̄.

By the minimality axiom (7), this implies µx(1 + ax + xa) ≤ x̄. �

We note that Conway has given a finite nonstandard model of regular algebra where
a∗ is not the reflexive transitive closure of a. (Such models are excluded by ACT and
KA.) To understand better why the various definitions of a∗ coincide in the language
and in the relation interpretation, we now look at a specific class of models of KAF .

3 Continuous models of KAF

As is well-known, an n-ary function f : Mn →M on a complete partial order (M, 0,≤)
is Scott-continuous if and only if for all i and all parameters b1, . . . , bi−1, bi+1, . . . , bn,

f(b1, . . . , bi−1,
⊔

D, bi+1, . . . , bn) =
⊔

d∈D

f(b1, . . . , bi−1, d, bi+1, . . . , bn),

for each directed set D ⊆ M . Moreover, every continuous function f : M →M has a
least fixed-point µx.f(x), which, by Kleene’s fixed point theorem, is

µx.f(x) :=
⊔

n∈ω

fn(0), where f0(x) = 0, fk+1(x) := f(fk(x)). (11)

Definition 3.1 An idempotent semiring (M, +, 0, ·, 1) is continuous , if the partial
ordering ≤ induced by + makes (M,≤, 0) a complete partial order, and + and · are
continuous functions with respect to the Scott topology on (M, 0,≤) and its cartesian
product. A continuous model of KAF is a modelM of KAF whose underlying semiring
is continuous.

Proposition 3.2 The family LΣ of all languages over an alphabet Σ and the family
RK of all binary relations over a set K each form a continuous model of KAF .
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The proof is obvious and hence omitted. But note that although the class of
context-free languages has enough fixed points to form a model of KAF , it is not a
continuous model, because its partial ordering is incomplete (in fact, not even closed
under unions of increasing chains).

The next lemma shows that the various definitions for a∗ coincide not only in the
standard interpretations, but in all (substructures of) continuous models of KAF .

Lemma 3.3 If M |= KAF is continuous, M |= ∀a. µx(1 + ax) = µx(1 + a + xx).

Proof By Proposition 2.4, it is sufficient to proveM |= ∀a. µx(1 + a + xx) ≤ µx(1+
ax). Let x̄ be µx(1 + ax), whence we have 1 + ax̄ ≤ x̄. From 1 + ax̄ ≤ x̄ we get
(i) 1 ≤ x̄, and then (ii) a ≤ x̄ using a = a · 1 ≤ a · x̄ ≤ x̄. To show (iii) x̄x̄ ≤ x̄,
define x0 := 0, xn+1 := rM[xn/x], where r = (1 + ax). By monotonicity of + and
·, xn ≤ xn+1, and by completeness of the partial order, there is a least upper bound

n∈ωxn ∈ M for {xn | n ∈ ω}. Since λx.r is continuous on M by the continuity of +
and ·, from Kleene’s fixed-point theorem (11) we get µx.r = 
n∈ωxn. Finally, we need
xnx̄ ≤ x̄ for all n: this is clear for n = 0, and by induction,

xn+1x̄ = (1 + axn)x̄ = x̄ + axnx̄ ≤ x̄ + ax̄ ≤ x̄,

using ax̄ ≤ 1 + ax̄ ≤ x̄ in the last step. Hence, (iii) holds, since

x̄x̄ = (
n∈ωxn)x̄ = 
n∈ω(xnx̄) ≤ 
n∈ωx̄ = x̄.

From (i) - (iii) it follows that µx(1 + a + xx) ≤ x̄, by minimality. �

Theorem 3.4 Every continuous idempotent semiring (M, +, 0, ·, 1) can uniquely be
expanded to a continuous model M = (M, +, 0, ·, 1, µ) of KAF.

To show this, note that least fixed points of continuous functions exist by (11),
and so it remains to note that nesting least fixed-points does not take us beyond the
continuous functions:

Lemma 3.5 Let M be a continuous idempotent semiring, and r(x, y1, . . . , yn) a con-
tinuous function from Mn+1 to M . The function

λ(a1, . . . , an) µb.r(b, a1, . . . , an) : Mn →M

that picks the least fixed point of λb.r(b, a1, . . . , an) according to (11), is a continuous
function on Mn.

Proof It is sufficient to show continuity in each dimension, so let r be r(x, y), and
Y ⊆M a directed set. To show

µx.r(x,
⊔

Y ) =
⊔

y∈Y

µx.r(x, y),
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we write x̄ := µx.r(x,
⊔

Y ), xy := µx.r(x, y) for y ∈ Y , and xY :=
⊔

y∈Y xy.

Claim 1: x̄ ≥ xY . By definition of x̄ and monotonicity of r in y,

x̄ ≥ r(x̄,
⊔

Y ) ≥ ⊔

y∈Y

r(x̄, y) ≥ r(x̄, y)

for each y ∈ Y , and hence x̄ ≥ µx.r(x, y) = xy for each y ∈ Y . Since Y is directed, so
is {r(x̄, y) | y ∈ Y }, and taking the sup gives x̄ ≥ ⊔

y∈Y xy = xY .

Claim 2: x̄ ≤ xY . Note that

r(xY ,
⊔

Y ) =
⊔

y∈Y r(xY , y) =
⊔

y∈Y

⊔
z∈Y r(xz, y)

=
⊔

y∈Y,z∈Y r(xz, y) =
⊔

y∈Y r(xy, y)
≤ ⊔

y∈Y xy = xY ,

and hence x̄ ≤ xY by minimization. �

Conway[2] has studied several notions of Kleene algebra, and we next relate con-
tinuous models of KAF to his Standard Kleene Algebras, which are defined in terms
of an infinitary summation Σ.

Definition 3.6 (Conway[2], Chapter 3) A Standard Kleene Algebra, or S-algebra, is
a structure (M,

∑
, 0, ·, 1,∗ ) satisfying the following conditions, for arbitrary index sets

I, J , Ji (i ∈ I) and elements ei ∈M , using e0 = 1, en+1 = en · e:
∑

i∈∅ ei = 0 e · 1 = e = 1 · e∑
i∈I(

∑
j∈Ji

ej) =
∑

j∈∪i∈IJi
ej (e1 · e2) · e3 = e1 · (e2 · e3)

(
∑

i∈I ei) · (∑j∈J ej) =
∑

(i,j)∈I×J ei · ej e∗ =
∑

n∈ω en.

The binary addition is defined by e1 + e2 :=
∑

i∈{1,2} ei. The properties of
∑

make
(M, +, 0, ·, 1) an idempotent semiring, and hence e1 ≤ e2 :↔ e1 + e2 = e2 induces
a partial order ≤ on M . According to Kozen, “S-algebras are defined in terms of
an infinitary summation operator

∑
, whose sole purpose, it seems, is to define ∗”.

Actually, there is more to
∑

than defining ∗: by the properties of
∑

, M is a complete
semi-lattice with respect to ≤, and the operations + and · are Scott-continuous with
respect to ≤.

Proposition 3.7 Every S-algebraM can be expanded to a continuous model of KAF,
by defining a µ-operator via

(µx.r)M :=
∑

n∈ω

rMn with rM0 := 0, rMn+1 := rM[rMn /x].

The structure (M, µ) satisfies ∀a(µx(1 + ax) = a∗).

Proof By Kleene’s fixed point theorem (11), the defined µ makes µx.r the least
fixed point of λx.r on M. This implies that the µ-axioms of KAF are satisfied.
Continuity and the semiring properties follow from Conway’s axioms about

∑
. Finally,

a∗ =
∑

n∈ω an = µx(1 + ax)M. �
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Conway[2] (Chapter 4, Theorem 6) shows that LΣ, the family of all formal lan-
guages over the alphabet Σ, is the free S-algebra in the generators Σ. We now give a
similar characterization for CFLΣ and the class of substructures of continuous models
of KAF . The construction needs a bit more care than the one for S-algebras, since
models of KAF need not even be closed under suprema of monotone sequences, as
CFLΣ shows.

Definition 3.8 A subset A ⊆ M of a structure M for the language {+, 0, ·, 1, µ} is
a set of generators for M if every element of M is the value rM[a1, . . . , an] of a pure
µ-regular expression r(x1, . . . , xn) with parameters a1, . . . , an from A. If C is a class
of structures, M ∈ C is free for C in its set A ⊆ M of generators, if for all elements
a1, . . . , an of A and all µ-regular expressions s and t,

M |= (s = t)[a1/x1, . . . , an/xn] ⇒ C |= ∀x1 . . .∀xn(s = t).

This means that in a free structure for a class of models only those relations between
generators hold that are universally valid in the class.

Theorem 3.9 The algebra CFLΣ of all context-free languages over the finite alphabet
Σ is free for the class of substructures of continuous models of KAF with |Σ | many
generators.

Proof By Theorem 1.1, CFLΣ is just the substructure of LΣ that consists of the
µ-regularly definable languages (that is, definable without parameters other than the
a ∈ Σ). As LΣ is an S-algebra, by Proposition 3.7 we know that CFLΣ is a substructure
of a continuous model of KAF . We assume Σ = {a1, . . . , an} and write CF instead of
CFLΣ.

Let r and s be pure regular expressions such that CF |= (r = s)[{a1}, . . . , {an}], and
M = (M, +, 0, ·, 1, µ) be a continuous model of KAF . To showM |= ∀x1 . . . xn.r = s,
let b1, . . . , bn be elements of M. It is sufficient to present a homomorphism from CF
toM, mapping the atoms {ai} to the bi.

Define ¯ : CF →M by putting L :=
⊔{∑w∈E w | E ⊆ L is finite}, for context-free

languages L ⊆ Σ∗, where v · w := v ·w, ai := bi, and ε := 1. We leave it to the reader
to check that for all languages L1, L2,

Claim 1: L1 + L2 = L1 + L2, L1 · L2 = L1 · L2, and ∅ = 0M, {ε} = 1M.

To see that ¯ is a homomorphism, we show the following

Claim 2: For every µ-regular expression r(x0, . . . , xn) and all languages L0, . . . , Ln in
CFLΣ:

(i) rCF [L0, . . . , Ln] = rM[L0, . . . , Ln],

(ii) rCFk [L1, . . . , Ln] = rMk [L1, . . . , Ln], for all k ∈ ω, where for all models A and
Li ∈ A,

rA0 [L1, . . . , Ln] := 0A and rAk+1[L1, . . . , Ln] := rA[rAk [L1, . . . , Ln], . . . , L1, . . . , Ln].
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Proof by induction on the nesting depth of µ’s in r. If r has µ-depth 0, (i) is clear by
Claim 1, as is (ii) for k = 0. By induction, one has

rCFk+1[L1, . . . , Ln] = rCF [rCFk [L1, . . . , Ln], L1, . . . , Ln]

= rM[rCFk [L1, . . . , Ln], L1, . . . , Ln] (by (i))

= rM[rMk [L1, . . . , Ln], L1, . . . , Ln] (by induction)

= rMk+1[L1, . . . , Ln],

and hence (ii) is shown. For µ-depth k + 1, consider µx.r where r(x, x0, . . . , xn) has
µ-depth at most k. To see part (i), we calculate

(µx.r)CF [L0, . . . , Ln] =
⋃

k∈ω rCFk [L0, . . . , Ln]

=
⊔{∑w∈E w | E ⊆ ⋃

k∈ω rCFk [L0, . . . , Ln] finite}
=

⊔ ⋃
k∈ω{

∑
w∈E w | E ⊆ rCFk [L0, . . . , Ln] finite}

(∗) =
⊔

k∈ω rCFk [L0, . . . , Ln]

=
⊔

k∈ω(rMk [L0, . . . , Ln]) (by (ii) for r)

= (µx.r)M[L0, . . . , Ln],

using in (*) that
⊔

(
⋃

i∈ω Mi) =
⊔

i∈ω(
Mi) for ascending chains M0 ⊆M1 ⊆ . . . ⊆M .
Part (ii) follows from (i) for µx.r, exactly as shown for µ-depth 0 above.

By induction on pure µ-regular expressions, these claims yield

rCF [L1, . . . , Ln] = rM[L1, . . . , Ln] (12)

for every r(x1, . . . , xn); using Li = {ai} shows that ¯ is a homomorphism.

If N is the substructure of M that is µ-regularly generated by the elements bi,
this homomorphism is onto N . If, in addition, N is a free structure for the class of
substructures of continuous models of KAF , then ¯ is an isomorphism. �

4 Kleene algebras with recursion

In Section 2 we have seen that Kozen’s axiom for ∗ could almost be seen as instances
of the least fixed point properties of KAF . The problem was that µx(b + ax) and
µx(b + xa), intended to represent a∗ · b and b · a∗, do not agree for b = 1 to give one
candidate for a∗.

Reading the µx(b + xa) as a recursive program, it is clear that in terminating
executions essentially we first do b and then repeatedly do a, i.e. the finite behaviour
of recursive programs satisfies µx(b + xa) = b · µx(1 + ax). The following makes this
link between recursion and iteration explicit.

Definition 4.1 The theory of Kleene Algebra with recursion, KAR, is the extension
of the above theory KAF by the following assumptions, for all a and b:

b · µx(1 + ax) ≤ µx(b + xa) (13)

µx(1 + xa) · b ≤ µx(b + ax) (14)

10



It seems plausible that these axioms are independent of KAF and of each other,
because the minimality conditions in axioms (4) and (5) are independent over KA, as
shown by Kozen[7].

Proposition 4.2 In KAF, (13) and (14) together are equivalent to

µx(b + xa) = b · µx(1 + ax) (15)

µx(b + ax) = µx(1 + xa) · b (16)

Proof To see that (15) and (16) follow from the axioms, first note that by taking
b = 1 in (13) and (14), we obtain

KAR � µx(1 + ax) = µx(1 + xa). (17)

The missing inequations can now be obtained by substituting (17) into the following:

KAF � µx(b + xa) ≤ b · µx(1 + xa) (18)

KAF � µx(b + ax) ≤ µx(1 + ax) · b (19)

To show (19), we use x̄ := µx(1 + ax). By definition, we have 1 ≤ x̄ and ax̄ ≤ x̄, and
thus

b + ax̄b ≤ b + x̄b ≤ (1 + x̄)b ≤ x̄b.

This implies µx(b + ax) ≤ x̄b by minimality. By symmetry, we also have (18). �

We are now ready to see that in KAR all of the previously discussed iterations of
a coincide.

Lemma 4.3 KAR � µx(1 + ax) = µx(1 +xa) = µx(1 + ax+xa) = µx(1 + a+xx).

Proof The claim reduces by (17) and Proposition 2.4 to µx(1+a+xx) ≤ µx(1+ax).
Since obviously 1 + a ≤ µx(1 + ax), we only have to show that

µx(1 + ax) · µx(1 + ax) ≤ µx(1 + ax), (20)

and then use minimality of µx(1 + a + xx). We can now mimick an argument of
Pratt[12], abbreviating µx(b + ax) by [a∗, b] for clarity. By the µ-axioms of KAF , we
have

b + a[a∗, b] ≤ [a∗, b], (21)

b + ax ≤ x → [a∗, b] ≤ x. (22)

From (21) and [a∗, b] ≤ [a∗, b] we get [a∗, b]+a[a∗, b] ≤ [a∗, b], hence [a∗, [a∗, b]] ≤ [a∗, b]
by (22). Equations (17) and (14) yield [a∗, 1] · b ≤ [a∗, b], and by instantiating b to
[a∗, b] we get

[a∗, 1] · [a∗, b] ≤ [a∗, [a∗, b]] ≤ [a∗, b].

Taking b = 1 here gives transitivity [a∗, 1] · [a∗, 1] ≤ [a∗, 1] of [a∗, 1], which is (20). �

From equations (16) and (17) and the discussion of Kozen’s axioms in Section 2,
we conclude that all the µ-definable iterations above have the properties of Kleene’s
iteration operator ∗:

11



Corollary 4.4 Under the translation a∗ := µx(1 + ax), KA is a subtheory of KAR.

By Kozen’s completeness theorem for KA, it follows that every equation between
regular expressions that is valid in the language interpretation can be proven in KAR.

It is natural to ask whether KAR is complete for the equational theory of context-
free languages, i.e. whether every equation between µ-regular expressions valid in the
language interpretation is provable in KAR. This is not the case: the equivalence
between context-free grammars is not recursively enumerable (combine Corollary 1
with the proof of Theorem 8.11 of Hopcroft/Ullman[5], p. 192 and p. 203). Since there
is an effective translation between context-free grammars and µ-regular expressions
(in a proof of Theorem 1.1), the equational theory of context-free languages in terms
of µ-regular expressions is not axiomatizable at all.

Clearly, the standard interpretations give models not only of KAF , but also of
KAR. It follows from Theorem 5.3 below that every continuous model of KAF is a
model of KAR.

5 Elimination of left-recursion

The axioms of KAR are special instances of S. Greibach’s trick for eliminating left-
recursive grammar rules by right-recursive ones and vice versa. We will now express the
core of Greibach’s method as an equation between µ-regular expressions that appears
to be independent of KAR, but is valid in all continuous models of KAF .

Definition 5.1 The theory of Kleene Algebra with Greibach’s inequations for recur-
sion, KAG , is the extension of the theory KAF by the following axiom schemata: for
all µ-regular expressions r and s with y not free in r, add the universal closures of

µx(s · µy(1 + ry)) ≤ µx(s + xr) (23)

µx(µy(1 + yr) · s) ≤ µx(s + rx) (24)

Note that KAG extends KAR: if x is not free in s and r, the µx on the left hand
side of (23) and (24) can be dropped; for variables r and s this gives axioms (15) and
(16) of KAR.

Proposition 5.2 In KAF, the schemata (23) and (24) together are equivalent to the
following two schemata for µ-regular expressions r and s with y not free in r:

µx(s · µy(1 + ry)) = µx(s + xr), (25)

µx(µy(1 + yr) · s) = µx(s + rx). (26)

Proof By the above remark, it is sufficient to show

KAR � µx(xr + s) ≤ µx(s · µy(1 + ry)). (27)

Let x̄ be µx(s(x) · µy(1 + r(x) · y)), suppressing other free variables in the notation.
We prove

x̄ · r(x̄) + s(x̄) ≤ x̄, (28)
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which implies (27) by minimization. Let ȳ be µy(1 + r(x̄) · y). By properties of x̄ and
ȳ, we get s(x̄) · (1 + r(x̄) · ȳ) ≤ s(x̄) · ȳ ≤ x̄, hence s(x̄) ≤ x̄ and s(x̄) · r(x̄) · ȳ ≤ x̄. It
remains to show x̄ · r(x̄) ≤ x̄. From (15), (16) and (17) we have

KAR � ∀a. µy(1 + ay) · a = µy(a + ay) = a · µy(1 + ay).

Thus, ȳ · r(x̄) = µy(1 + r(x̄) · y) · r(x̄) = r(x̄) · µy(1 + r(x̄) · y) = r(x̄) · ȳ, and hence
(28) follows by x̄ · r(x̄) = s(x̄) · ȳ · r(x̄) = s(x̄) · r(x̄) · ȳ ≤ x̄. �

To explain why we call (23) and (24) Greibach’s axioms, let us recall S. Greibach’s[3]
way to eliminate left recursive rules from a context-free grammar (c.f. [5, 4]). Suppose

A = Av1 + · · ·+ Avn + w1 + · · ·+ wm

combines all the A-rules of the grammar, where the vi and wj are concatenations of
grammar symbols, and no wj begins with the variable A. Using a fresh variable B,
the rules corresponding to the above equation are replaced by those corresponding to
the equations

A = w1 + · · ·+ wm + w1B + · · ·+ wmB,

B = v1 + · · ·+ vn + v1B + · · ·+ vnB.

Writing r for (v1+· · ·+vm) and s for (w1+· · ·+wm), we just have replaced the equation
A = Ar + s by the equations A = s + sB and B = r + rB. Since we are dealing with
least solutions, we have in fact replaced µA(Ar + s) by µA(s + s · µB(r + rB)), i.e.
we used

µA(s + Ar) = µA(s + s · µB(r + rB)). (29)

As B was fresh, in KAR we can reformulate the right hand side as

µA(s + s · µB(r + rB)) = µA(s · (1 + µB(r + rB)))
= µA(s · (1 + r · µB(1 + rB)))
= µA(s · µB(1 + rB)),

and (29) becomes µA(s + Ar) = µA(s · µB(1 + rB)), an instance of (25)3. Of course,
for suitable s only, in particular those corresponding to the above constraint that no
wj begins with A, can we conclude that µA(s · µB(1 + rB)) is not left-recursive (with
respect to µA).

It is well known that for fixed sets r and s of words, the least solution of x = xr+s is
sr∗. This is just the content of axiom (15) of KAR, using the right-recursive definition
µx(1 + ax) for the iteration a∗.4

3This corresponds to the replacement of the original grammar rules for A by the new equations

A = w1B + · · ·+ wmB, B = 1 + v1B + · · ·+ vnB.

These are simpler than the standard ones given above, but contain an undesired ‘ε-rule’ in B = 1+rB.

4Note that µx(b + ax) = a∗ · b can be read as ‘tail recursion is implementable by iteration’ .
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Greibach’s ‘elimination of left recursion’ is based on a more general fact, expressed
in (25): the least solution of x = xr + s is the least solution of x = sr∗, even if r and
s µ-regularly depend on x. We finally prove that this is a true identity not only in the
language interpretation, but in all continuous models of KAF :

Theorem 5.3 Every continuous model of KAF is a model of KAG.

Proof LetM be a continuous model of KAF . By symmetry, it is sufficient to show
thatM satisfies (23). Let x̄ be µx(x · r(x)+ s(x)) inM, under a given assignment for
free variables that are not explicitly mentioned. We will show that s(x̄)·µy(1+r(x̄)y) ≤
x̄, which gives (23) by minimization. Let ȳ := µy(1 + r(x̄)y) inM. Since x̄ · r(x̄) ≤ x̄
and s(x̄) ≤ x̄ by the choice of x̄, we get s(x̄)·ȳ ≤ x̄ȳ. To show the remaining inequation
x̄ȳ ≤ x̄, note that since M is continuous, ȳ = 
n∈ωyn with y0 := 1 + r(x̄) · 0 = 1,
yn+1 := 1 + r(x̄) · yn. From x̄y0 ≤ x̄ we get x̄yn+1 = x̄ + x̄ · r(x̄) · yn ≤ x̄ + x̄yn ≤ x̄ by
induction, so x̄ȳ = 
n∈ωx̄yn ≤ x̄ by continuity. �

6 Open problems

We have demonstrated that µ-regular expressions can be useful to study questions
about equality and subsumption between context-free languages in an algebraic and
logical manner. The two main arguments in this exercise have been (i) minimality
of least fixed points on a continuous idempotent semiring and (ii) induction on the
number of iterations of a definable monotone function on this ring.

The axiom systems KAF ⊆ KAR ⊆ KAG separate the basic properties of least
fixed points from aspects of continuity that can be expressed as equations between
µ-regular expressions. But we have left open all non-trivial questions, for example:

(i) Is KAF strictly weaker than KAR, and KAR strictly weaker than KAG?

(ii) Is KAF , or KAG relative to KAF , finitely axiomatizable?

(iii) Let K be a model of KAR. Can the algebra Kn of n × n-matrices over K be
expanded to a model of KAR by adding an appropriate µ? Is the same true for
KAG? (C.f. Conway[2] for S-algebras and Kozen[8] for models of KA.)

(iv) Are there natural equations between µ-regular expressions that are valid in all
continuous models of KAF , but go beyond KAG? Good candidates are those
equations that arise by transforming a simultaneously regular definition into
different µ-regular ones.

(v) Is the equational theory of linear languages, i.e. linear µ-regular expressions,
more tractable than the general case?

Note that in order to show strictness in (i), we need non-continuous models in which
the definable functions have least fixed points.
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