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1 Introduction

“Program correctness and incorrectness are
two sides of the same coin.”

— O’Hearn [9]

We argue that the object of discourse is not a coin and that
it has at least three sides or rather dimensions:

1. correctness vs. incorrectness

2. totality vs. partiality

3. reachability vs. unreachability

We will explore how one can pigeonhole total and partial

correctness, as well as incorrectness into this view and ex-
plore further program properties that emerge from exhaust-
ing all combinations of the above dimensions. We will fur-
thermore explore how to express validity of those properties
in the language of Kleene algebras with top and tests [11].

2 Canonical Exegeses of Triples

The central notion of Hoare logic [4] are triples of the form
{1} ? {2}, where ? is a program,1 is a precondition on initial
states, and 2 is a postcondition on final states. To give mean-
ing to a triple, it must be exegeted when a triple is considered
valid and when it is not. For Hoare logic, there are two such
exegeses: validity for total and for partial correctness.

Exegesis I: Partial Correctness. {1} ? {2} is valid for
partial correctness iff all executions of ? that start in 1 can
only ever terminate in 2 . The execution is allowed to diverge.
For example, validity for partial correctness of

{wrong password} ?login {login failed}

specifies that when the user enters a wrong password, ?login
will either diverge or terminate with a failed login. In par-
ticular, successful login is impossible with the wrong pass-
word.

Exegesis II: Total Correctness. {1} ? {2} is valid for total
correctness iff all executions of ? that start in 1 definitely
terminate and they do so in 2 . Reusing the example above,

validity for total correctness of

{correct password} ?login {login successful} ,

specifies that when the user enters the correct password, the
login will definitely be successful.

It is noteworthy that both partial and total correctness are
about coreachability of all initial states: {1} ? {2} is valid if
all initial states in 1 are (partially) mapped by ? into (but not
necessarily onto) the final states in 2 .

Weakest (Liberal) Preconditions. Proposed byDijkstra [2],
weakest (liberal) preconditions are a very versatile alterna-
tive to Hoare logic and led to numerous extensions [5, 6, 8,
12]. Given only a program ? and a postcondition 2 , theweak-
est liberal precondition is the weakest predicate wlpÈ?É (2),
such that all executions of ? that start in wlpÈ?É (2) either
diverge or terminate in 2 . One can (re)define partial correct-
ness in terms of weakest liberal preconditions: {1} ? {2} is
valid for partial correctness iff 1 =⇒ wlpÈ?É (2).

For total correctness, the weakest precondition is the weak-
est predicate wpÈ?É (2), such that all executions of ? that
start in wpÈ?É (2) definitely terminate and they do so in 2 .
One can define total correctness in terms of weakest pre-
conditions: {1} ? {2} is valid for total correctness iff 1 =⇒
wpÈ?É (2).

Exegesis III: Incorrectness. Incorrectness triples were in-
troduced by De Vries and Koutavas [1] and later indepen-
dently reintroduced by O’Hearn [9]. [1] ? [2] is valid for
incorrectness iff all executions of ? that terminate in 2 could
have started in 1. In other words: iff ? maps (a subset of) 1
onto 2 . In that sense, incorrectness is really about reachabil-
ity of all final states. If 2 is a set of error states, then validity
of [1] ? [2] for incorrectness indeed proves that executing
? on 1 is not safe, because doing so can reach an error in 2 .
For example, validity for incorrectness of

[correct password] ?login [program crash]

specifies that ?login can crash on entering a correct pass-
word.

Strongest Postconditions. Given only a program ? and a
precondition1, the strongest postcondition [3] is the strongest
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1 =⇒ wpÈ?É (2)total correctness wlpÈ?É (2) =⇒ 1 ???

1 =⇒ wlpÈ?É (2) wpÈ?É (2) =⇒ 1

spÈ?É (1) =⇒ 2

slpÈ?É (1) =⇒ 2¿¿¿

partial correctness

2 =⇒ slpÈ?É (1)

2 =⇒ spÈ?É (1) incorrectness

partial incorrectness

Figure 1. An overview of the exegeses of Hoare triples and how they are related. The dotted green arrows in the middle
symbolize contrapositives and the orange arrows symbolize equivalences through Galois connections.

predicate spÈ?É (1), such that any state in spÈ?É (1) is reach-
able from 1 by executing ? . We can redefine incorrectness
in terms of strongest postconditions [12]: [1] ? [2] is valid
for incorrectness iff 2 =⇒ spÈ?É (1).

sp has a Galois connection to wlp, namely

1 =⇒ wlpÈ?É (2) iff spÈ?É (1) =⇒ 2 . (†)

Because of this, we can also define partial correctness in
terms of strongest postconditions: {1} ? {2} is valid for
partial correctness iff spÈ?É (1) =⇒ 2 . Notice that the
difference between incorrectness and partial correctness is
merely the direction of the implication between 2 and spÈ?É (1).

3 Completive Exegeses of Triples

Given a triple of precondition 1, program ? , and postcondi-
tion 2 , we have so far seen three exegesis of such triples, all
given in terms of wlp/wp/sp and implications:

total correctness 1 =⇒ wpÈ?É (2)

partial correctness
1 =⇒ wlpÈ?É (2)

spÈ?É (1) =⇒ 2

incorrectness 2 =⇒ spÈ?É (1)

From inspecting this table, we can make out three degrees
of freedom one has in exegeting triples:

1. The difference between total correctness and partial
correctness is the usage of wp vs. wlp.

2. The difference between partial correctness and incor-
rectness is the direction of the implication.

3. The difference between total correctness and incor-
rectness is wp vs. sp.

This immediately gives rise to two questions: What about
wpÈ?É (2) =⇒ 1 andwlpÈ?É (2) =⇒ 1? And can we define
strongest liberal postconditions?

Strongest Liberal Postconditions. Indeed, these can be sen-
sibly defined [12]. The difference between wlp and wp is

that the liberal variant additionally contains all states that
diverge, i.e. those initial states for which there exists no final

state in which the execution of ? could terminate. Dually,
slpÈ?É (1) contains also all states that cannot be reached at

all by executing ? , i.e. those final states for which there ex-

ists no initial state in which the execution of ? could have
started.

slp also has a Galois connection [12], but to wp, namely

wpÈ?É (2) =⇒ 1 iff 2 =⇒ slpÈ?É (1) . (‡)

Exhaustively combining wp, wlp, sp, and slp with all impli-
cation directions gives a completed canon of in total 8 dif-
ferent exegeses of triples, four of which reduce to only two
via Galois connections, see Figure 1.

Exegesis IV:Partial Incorrectness. The difference between
total and partial correctness is the use of wp vs. wlp. Con-
sequently, when we replace sp by slp in the defining impli-
cation 2 =⇒ spÈ?É (1) of incorrectness, we should arrive
at the exegesis of partial incorrectness, as suggested (but not
further explored) by Zhang and Kaminski [12]: [1]? [2] is
valid for partial incorrectness iff 2 =⇒ slpÈ?É (1) (and
by (‡) equivalently iff wpÈ?É (2) =⇒ 1), which means
that all states in 2 are either unreachable (from anywhere)
or reachable from1 by executing ? . For example, validity for
partial incorrectness of

[wrong password] ?login [login successful]

specifies that any state where the login was successful is ei-
ther entirely unreachable, or reachable by entering a wrong
password, thus constituting a potential bug.

Exegesis V andVI. There are two remaining triple exege-
ses, defined by wlpÈ?É (2) =⇒ 1 and slpÈ?É (1) =⇒ 2 ,
respectively. These have also been suggested by Zhang and
Kaminski [12], but not further explored.

Contrapositives. Besides some actual equivalences via Ga-
lois connections, some triples are contrapositives of each
other [12]. In fact, the entire left-hand-side (in some sense
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the correctness side) is the contrapositive of the right-hand-
side (the incorrectness side) in Figure 1. For example,

1 =⇒ wlpÈ?É (2) iff wpÈ?É (¬2) =⇒ ¬1

and hence partial correctness is the contrapositive of par-
tial incorrectness and so both describe in some sense the
same class of specifications. We would claim, however, that
it might be more intuitive for a working programmer to
specify either a partial incorrectness triple or a partial cor-
rectness triple, depending on the property they have inmind.

4 Kleene Algebra with Top and Tests

Kleene algebra with tests (KAT), introduced by Kozen [7], is
another alternative for specifying and reasoning about pro-
gram properties. KAT terms are generalized regular expres-
sions over a two-sorted alphabet comprising (i) programs
(?,@, . . .) and (ii) tests (1,2, . . .). We interpret these symbols
as relations: a program ? relates (maps) initial states to final
states by its execution. Initial states on which ? diverges are
not related with any final states. Similarly, unreachable final
states are not related with any initial states. A test 1 maps
initial states satisfying 1 to themselves, and those not satis-
fying 1 to no state. In this sense, tests act as filters.

Testing for false is denoted by 0 and gives the empty rela-
tion. In the lattice of relations (ordered by set inclusion), 0
is the least/bottom element. In Kleene algebra with top and

tests (TopKAT), we now additionally add a⊤ element to KAT,
which codes for the universal relation relating every initial
state to every final state [11].

Composing symbols means composing relations: For exam-
ple, the term 1?@2 intuitively means: first test for 1, then
execute ? (but only on states that satisfy 1), then execute @,
then test for 2 . Executions that fail to satisfy initially 1 or fi-
nally 2 are filtered out and not part of the resulting relation.

Partial Correctness in TopKAT. We can express partial
correctness by the TopKAT equation ⊤1?2 = ⊤1? . Prepend-
ing the top element on both relations in the equation amounts
to comparing their codomains, i.e. their final states. Hence,
⊤1?2 = ⊤1? expresses that the set of final states in 2 in
which ? can terminate starting from 1 is exactly those final
states in which ? can terminate from 1 at all. No statement
is made about initial states in 1 on which ? diverges.

Incorrectness in TopKAT. It is not possible to express in-
correctness inKAT, but this is possible in TopKAT [11], namely
by ⊤1?2 = ⊤2 . On the left-hand-side of the equation, we se-
lect all final states in 2 that were reachable by executing ?

on 1. On the right-hand-side, we select all final states in 2 .

NondeterminismandCorrectness inKAT. So far, we have
kept quiet about nondeterminism, but in Kleene algebras it
is very natural tomodel nondeterministic programs. Consid-
ering total correctness of {1} ? {2}, one then has to decide:

(i) must all execution paths emerging from any state in 1

terminate in 2 , or (ii) must there merely exist some path that
does so? The former is called the demonic exegesis of non-
determinism while the latter is called angelic. On that note,
Zhang and Kaminski [12] always interpret nondeterminism
angelically for their nonliberal pre- and postconditions, and
demonically for their liberal ones. Only this way, they obtain
the Galois connections (†) and (‡). However, the standard
notion of total correctness is demonic and not angelic.

Unfortunately, it is known that demonic total correctness is
inexpressible inKAT [10] because it lacks a way of reasoning
about nontermination: Nonterminating executions are just
not part of the resulting relation. For the angelic variant,
however, 1?2⊤ = 1⊤ indeed expresses that from all intial
states in 1, it is possible for ? to terminate in 2 , thus:

{1} ? {2} is valid for angelic total correctness

iff

1?2⊤ = 1⊤

This is, to the best of our knowledge, a novel result. More-
over, this result renders all triples depicted in Figure 1 ex-
pressible in TopKAT in a syntactically very similar manner:

total correctness 1?2⊤ = 1⊤

partial correctness ⊤1?2 = ⊤1?

incorrectness ⊤1?2 = ⊤2

The opposite-hand-sides are expressible via contrapositives.
For example, validity of [1] ? [2] for partial incorrectness
is expressible via 1?2⊤ = ?2⊤. And more equations fit into
this pattern, for example ⊤1?2 = ⊤?2 and 1?2⊤ = 1?⊤. In-
terestingly, these two express the angelic variants of partial
correctness and incorrectness, respectively, and thus lead to
further exegeses of triples.

5 Ongoing and Future Work

There are many open questions left to investigate. One di-
rection is to investigate deeper the different exegesis of non-
determinism, which would lead to a total combination of 16
possible exegeses, of whichwe conjecture that still only four
of them reduce to two via Galois connections, thus ending
up with 14 possible exegeses. We would then like to investi-
gate the impact of different assumptions about the program
on this picture: For example, what happens if we assume
that executions started in 1 always terminate? What hap-
pens if all states in 2 are reachable? What if the program is
deterministic or reversible?

As for a different direction, none of the aforementioned triples
expresses the existence of (at least) one path from 1 to 2 .
However, being able to more directly specify a bug like “it
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is possible to enter awrong password and yet obtain success-
ful login” would be quite desirable. The following equations
would express a property of this form:

1?2 ≠ 0 and equivalently wpÈ?É (2) ∧ 1 ≠ false

In contrast to the existing triples, this property speaks nei-
ther about all initial states in 1 nor all final states in 2 .
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