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Abstract
We propose algorithms for checking language equivalence of finite
automata over a large alphabet. We use symbolic automata, where
the transition function is compactly represented using (multi-
terminal) binary decision diagrams (BDD). The key idea consists
in computing a bisimulation by exploring reachable pairs symboli-
cally, so as to avoid redundancies. This idea can be combined with
already existing optimisations, and we show in particular a nice in-
tegration with the disjoint sets forest data-structure from Hopcroft
and Karp’s standard algorithm.

Then we consider Kleene algebra with tests (KAT), an alge-
braic theory that can be used for verification in various domains
ranging from compiler optimisation to network programming anal-
ysis. This theory is decidable by reduction to language equivalence
of automata on guarded strings, a particular kind of automata that
have exponentially large alphabets. We propose several methods
allowing to construct symbolic automata out of KAT expressions,
based either on Brzozowski’s derivatives or on standard automata
constructions.

All in all, this results in efficient algorithms for deciding equiv-
alence of KAT expressions.

Categories and Subject Descriptors F.4.3 [Mathematical Logic]:
Decision Problems; F.1.1 [Models of computation]: Automata;
D.2.4 [Program Verification]: Model Checking

Keywords Binary decision diagrams (BDD), symbolic automata,
Disjoint set forests, union-find, language equivalence, Kleene al-
gebra with tests (KAT), guarded string automata, Brzozowski’s
derivatives, Antimirov’ partial derivatives.
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1. Introduction
A wide range of algorithms in computer science build on the abil-
ity to check language equivalence or inclusion of finite automata. In
model-checking for instance, one can build an automaton for a for-
mula and an automaton for a model, and then check that the latter is
included in the former. More advanced constructions need to build
a sequence of automata by applying a transducer, and to stop when-
ever two subsequent automata recognise the same language [7].
Another field of application is that of various extensions of Kleene
algebra, whose equational theories are reducible to language equiv-
alence of various kinds of automata: regular expressions and fi-
nite automata for plain Kleene algebra [26], “closed” automata for
Kleene algebra with converse [5, 15], or guarded string automata
for Kleene algebra with tests (KAT) [28].

The theory of KAT has been developed by Kozen et al. [12,
27, 28], it has received much attention for its applications in var-
ious verification tasks ranging from compiler optimisation [29] to
program schematology [3], and very recently for network program-
ming analysis [2, 17]. Like for Kleene algebra, the equational the-
ory of KAT is PSPACE-complete, making it a challenging task to
provide algorithms that are computationally practical on as many
inputs as possible.

A difficulty with KAT is that the underlying automata work on
an input alphabet which is exponentially large in the number of
variables of the starting expressions. As such, it renders standard
algorithms for language equivalence intractable, even for reason-
ably small inputs. This difficulty is shared with other fields where
various people proposed to work with symbolic automata to cope
with large, potentially infinite, alphabets [10, 41]. By symbolic au-
tomata, we mean finite automata whose transition function is rep-
resented using a compact data-structure, typically binary decision
diagrams (BDDs) [9, 10], allowing one to explore the automata in
a symbolic way.

D’Antoni and Veanes recently proposed a minimisation algo-
rithm for symbolic automata [13], which is much more efficient
than the adaptations of the traditional algorithms [22, 31, 32]. How-
ever, to our knowledge, the simpler problem of language equiv-
alence for symbolic automata has not been covered yet. We say
‘simpler’ because language equivalence can be reduced trivially to
minimisation—it suffices to minimise the disjoint union of the au-
tomata and to check whether the corresponding initial states are
equated—but minimisation has complexity nlnn while Hopcroft
and Karp’s algorithm for language equivalence [23] is almost lin-
ear [40]. (This latter algorithm for checking language equivalence
of finite automata can be seen as an instance of Huet’s first-order
unification algorithm without occur-check [24, Section 5.8]: one
tries to unify the two automata recursively, keeping track of the
generated equivalence classes of states using an efficient union-find
data-structure.)
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Our main contributions are the following:

• We propose a simple coinductive algorithm for checking lan-
guage equivalence of symbolic automata (Section 3). This al-
gorithm is generic enough to support various improvements that
have been proposed in the literature for plain automata [1, 6, 14,
42].

• We show how to combine binary decisions diagrams (BDD) and
disjoint set forests, the efficient data-structure used by Hopcroft
and Karp to define their almost linear algorithm [23, 40] for
deterministic automata. This results in a new version of their
algorithm, for symbolic automata (Section 3.3).

• We study several constructions for building efficiently a sym-
bolic automaton out of a KAT expression (Section 4): we
consider symbolic versions of the extensions of Brzozowski’s
derivatives [11] and Antimirov’ partial derivatives [4] to KAT,
as well as a generalisation of Ilie and Yu’s inductive construc-
tion [25]. The latter construction also requires us to generalise
the standard procedure consisting of eliminating epsilon transi-
tions.

Notation
We denote sets by capital letters X,Y, S, T . . . and functions by
lower case letters f, g, . . . Given sets X and Y , X × Y is their
Cartesian product, X � Y is their disjoint union and XY is the
set of functions f : Y → X . The collection of subsets of X is
denoted by P(X). For a set of letters A, A� denotes the set of all
finite words overA; ε the empty word; and uv the concatenation of
words u, v ∈ A�. We use 2 for the set {0, 1}.

2. Preliminary material
We first recall some standard definitions about finite automata and
binary decision diagrams.

For finite automata, the only slight difference with the setting
described in [6] is that we work with Moore machines [31] rather
than automata: the accepting status of a state is not necessarily a
Boolean, but a value in a fixed yet arbitrary set. Since this general-
isation is harmless, we stick to the standard automata terminology.

2.1 Finite automata
A deterministic finite automaton (DFA) over the input alphabet A
and with outputs in B is a triple 〈S, t, o〉, where S is a finite set of

states, o : S → B is the output function, and t : S → SA is the
(total) transition function which returns, for each state x and for
each input letter a ∈ A, the next state ta(x). For a ∈ A, we write

x
a→ x′ for ta(x) = x′. For w ∈ A�, we denote by x

w→ x′ the

least relation such that (1) x
ε→ x and (2) x

au→ x′ if x
a→ x′′ and

x′′ u→ x′ for some x′′.
The language accepted by a state x ∈ S of a DFA is the function

�x� : A� → B defined as follows:

�x�(ε) = o(x) , �x�(aw) = �ta(x)�(w) .

(When the output set is 2, these functions are indeed characteristic
functions of formal languages). Two states x, y ∈ S are said to be
language equivalent (written x ∼ y) when they accept the same
language.

2.2 Coinduction
Checking whether two states of two distinct automata recognise the
same language reduces to checking whether two states of a single
automaton recognise the same language: one can always build the
disjoint union of the two automata. We thus fix a single DFA, and
we define bisimulations. We make explicit the underlying notion of
progression which we need in the sequel.

1 type (s,β) dfa = {t: s→ A→ s; o: s→ β}
2
3 let equiv (M: (s,β) dfa) (x y: s) =
4 let r = Set.empty () in
5 let todo = Queue.singleton (x,y) in
6 while ¬Queue.is_empty todo do
7 (* invariant: r � r ∪ todo *)
8 let (x,y) = Queue.pop todo in
9 if Set.mem r (x,y) then continue

10 if M.o x 	= M.o y then return false
11 iterA (fun a→ Queue.push todo (M.t x a, M.t y a))
12 Set.add r (x,y)
13 done
14 return true

Figure 1. Simple algorithm for checking language equivalence.

Definition 1 (Progression, Bisimulation). Given two relations
R,R′ ⊆ S × S on the states of an automaton, R progresses to
R′, denoted R� R′, if whenever x R y then

1. o(x) = o(y) and
2. for all a ∈ A, ta(x) R′ ta(y).

A bisimulation is a relation R such that R� R.

Bisimulations provide a sound and complete proof technique for
checking language equivalence of DFA:

Proposition 1 (Coinduction). Two states of an automaton are
language equivalent iff there exists a bisimulation that relates them.

Accordingly, we obtain the simple algorithm described in Fig-
ure 1, for checking language equivalence of two states of the given
automaton.

This algorithm works as follows: the variable r contains a rela-
tion which is a bisimulation candidate and the variable todo con-
tains a queue of pairs that remain to be processed. To process a pair
(x, y), one first checks whether it already belongs to the bisimula-
tion candidate: in that case, the pair can be skipped since it was al-
ready processed. Otherwise, one checks that the outputs of the two
states are the same (o(x) = o(y)), and one pushes all derivatives
of the pair to the todo queue: all pairs (ta(x), ta(y)) for a ∈ A.
(This requires the type A of letters to be iterable, and thus finite,
an assumption which is no longer required with the symbolic algo-
rithm to be presented in Section 3.) The pair (x, y) is finally added
to the bisimulation candidate, and we proceed with the remainder
of the queue.

The main invariant of the loop (line 7: r� r ∪ todo) ensures
that when todo becomes empty, then r contains a bisimulation, and
the starting states were indeed bisimilar. Another invariant of the
loop is that for any pair (x′, y′) in todo, there exists a word w such

that x
w→ x′ and y

w→ y′. Therefore, if we reach a pair of states
whose outputs are distinct—line 10, then the word w associated
to that pair witnesses the fact that the two initial states are not
equivalent.

Remark 1. Note that such an algorithm can be modified to check
for language inclusion in a straightforward manner: assuming an
arbitrary preorder ≤ on the output set B, and letting language
inclusion mean x ≤ y if for all w ∈ A�, �x�(w) ≤ �y�(w), it
suffices to replace line 10 in Figure 1 by

if ¬(M.o x ≤ M.o y) then return false.

2.3 Up-to techniques
The previous algorithm can be enhanced by exploiting up-to tech-
niques [36, 39]: an up-to technique is a function f on binary rela-
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tions such that any relation R satisfying R � f(R) is contained
in a bisimulation. Intuitively, such relations, that are not necessar-
ily bisimulations, are constrained enough to contain only language
equivalent pairs.

We have recently shown with Bonchi [6] that the standard al-
gorithm by Hopcroft and Karp [23] actually exploits such an up-to
technique: on line 9, rather than checking whether the processed
pair is already in the candidate relation r, Hopcroft and Karp check
whether it belongs to the equivalence closure of r. Indeed the func-
tion e mapping a relation to its equivalence closure is a valid up-to
technique, and this optimisation allows the algorithm to stop earlier.
Hopcroft and Karp moreover use an efficient data-structure to per-
form this check in almost constant time [40]: disjoint sets forests.
We recall this data-structure in Section 3.3.

Other examples of valid up-to techniques include context-
closure, as used in antichain based algorithms [1, 14, 42], or con-
gruence closure [6], which combines both context-closure and
equivalence closure. These techniques require working with au-
tomata whose states carry a semi-lattice structure, as is typically
the case for a DFA obtained from a non-deterministic automaton
through the powerset construction.

2.4 Binary decision diagrams
Assume an ordered set (A,<) and an arbitrary set B. Binary
decision diagrams are directed acyclic graphs that can be used to
represent functions of type 2A → B. When B = 2 is the two
elements set, BDDs thus intuitively represent Boolean formulas
with variables in A.

Formally, a (multi-terminal, ordered) binary decision diagram
(BDD) is a pair (N, c) where N is a finite set of nodes and c is
a function of type N → B � (A×N×N) such that if c(n) =
(a, l, r) and either c(l) = (a′, , ) or c(r) = (a′, , ), then a < a′.

The condition on c ensures that the underlying graph is acyclic,
which makes it possible to associate a function �n : 2A → B to
each node n of a BDD:

�n(α) =

⎧⎪⎨
⎪⎩
b if c(n) = b ∈ B

�l(α) if c(n) = (a, l, r) and α(a) = 0

�r(α) if c(n) = (a, l, r) and α(a) = 1

Let us now recall the standard graphical representation of
BDDs:

• A node n such that c(n) = b ∈ B is represented by a square
box labelled by b.

• A node n such that c(n) = (a, l, r) ∈ A×N ×N is a decision
node, which we picture by a circle labelled by a, with a dotted
arrow towards the left child (l) and a plain arrow towards the
right child (r).

For instance, the following drawing represents a BDD with four
nodes; its top-most node denotes the function given on the right-
hand side.

b2 b1

a2

a1

α �→
{
b1 if α(a1) = 1 and α(a2) = 0

b2 otherwise

A BDD is reduced if c is injective, and c(n) = (a, l, r) entails
l 	= r. (The above example BDD is reduced.) Any BDD can be
transformed into a reduced one. WhenA is finite, reduced (ordered)

1 type β node = β descr hash_consed
2 and β descr = V of β | N of A × β node × β node
3
4 val hashcons: β descr→ β node
5 val c: β node→ β descr
6 val memo_rec: ((α’→β’→γ)→α’→β’→γ)→α’→β’→γ
7 (* with α’ = α hash_consed, β’ = β hash_consed *)
8
9 let constant v = hashcons (V v)

10 let node a l r = if l==r then l else hashcons (N(a,l,r))
11
12 let apply (f: α→ β → γ): α node→ β node→ γ node =
13 memo_rec (fun app x y→
14 match c(x), c(y) with
15 | V v, V w→ constant (f v w)
16 | N(a,l,r), V _→ node a (app l y) (app r y)
17 | V _, N(a,l,r) → node a (app x l) (app x r)
18 | N(a,l,r), N(a’,l’,r’) →
19 if a=a’ then node a (app l l’) (app r r’)
20 if a<a’ then node a (app l y ) (app r y )
21 if a>a’ then node a’ (app x l’) (app x r’))

Figure 2. An implementation of BDDs.

BDD nodes are in one-to-one correspondence with functions from
2A to B [9, 10]. The main interest in this data-structure is that it is
often extremely compact.

In the sequel, we only work with reduced ordered BDDs, which
we simply call BDDs. We denote by BDDA[B] the set of nodes
of a BDD with values in B, which is large enough to represent
all considered functions. We let �f� denote the unique BDD node

representing a given function f : 2A → B. This notation is useful
to give abstract specifications to BDD operations: in the sequel, all
usages of this notation actually underpin efficient BDD operations.

Implementation. To better explain parts of the proposed algo-
rithms, we give a simple implementation of BDDs in Figure 2.

The type for BDD nodes is given first: we use Filliâtre’s hash-
consing library [16] to enforce unique representation of each node,
whence the two type declarations and the two conversion functions
hashcons and c between those types. The third utility function
memo_rec is just a convenient operator for defining recursive mem-
oised functions on pairs of hash-consed values.

The function constant creates a constant node, making sure
it was not already created. The function node creates a new de-
cision node, unless that node is useless and can be replaced by
one of its two children. The generic function apply is central to
BDDs [9, 10]: many operations are just instances of this function.
Its specification is the following:

apply f x y = �α �→ f(�x(α))(�y(α))�
This function is obtained by “zipping” the two BDDs together until
a constant is reached. Memoisation is used to exploit sharing and
to avoid performing the same computations again and again.

Suppose now that we want to define logical disjunction on
Boolean BDD nodes. Its specification is the following:

x ∨ y = �α �→ �x(α) ∨ �y(α)�.
We can thus simply use the apply function, applied to the Boolean
disjunction function:

1 let dsj: bool node→ bool node→ bool node = apply (||)
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6

s1

3

s2

a

n

6

s3

6

s4

3

s5

b

m

b

n1

b

n2

c

n3

s1, s2, s3 s4, s5
a 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
b 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
c 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
t s1 s3 s2 s2 s3 s3 s2 s2 s4 s4 s5 s5 s4 s4 s5 s5

Figure 3. A symbolic DFA with five states.

Note that this definition could actually be slightly optimised by
inlining apply’s code, and noticing that the result is already known
whenever one of the two arguments is a constant:

1 let dsj: bool node→ bool node→ bool node =
2 memo_rec (fun dsj x y→
3 match c(x), c(y) with
4 | V true, _ | _, V false→ x
5 | _, V true | V false, _→ y
6 | N(a,l,r), N(a’,l’,r’) →
7 if a=a’ then node a (dsj l l’) (dsj r r’)
8 if a<a’ then node a (dsj l y ) (dsj r y )
9 if a>a’ then node a’ (dsj x l’) (dsj x r’))

We ignore such optimisations in the sequel, for the sake of clarity.

3. Symbolic automata
A standard technique [10, 13, 20, 41] for working with automata
over a large input alphabet consists in using BDDs to represent the
transition function: a symbolic DFA with output set B and input
alphabet A′ = 2A for some set A is a triple 〈S, t, o〉 where S is the
set of states, t : S → BDDA[S] maps states into nodes of a BDD
over A with values in S, and o : S → B is the output function.

Such a symbolic DFA is depicted in Figure 3. It has five states,

input alphabet 2{a,b,c}, and natural numbers as output set. We
represent the BDD graphically; rather than giving the functions t
and o separately, we label the square box corresponding to a state
x with its output value o(x) and we link this box to the node
t(x) defining the transitions of x using a solid arrow. The explicit
transition table is given below the drawing.

The simple algorithm described in Figure 1 is not optimal when
working with such symbolic DFAs: at each non-trivial iteration of
the main loop, one goes through all letters of A′ = 2A to push
all the derivatives of the current pair of states to the queue todo
(line 11), resulting in a lot of redundancies.

Suppose for instance that we run the algorithm on the DFA of
Figure 3, starting from states s1 and s4. After the first iteration, r
contains the pair (s1, s4), and the queue todo contains eight pairs:

(s1, s4), (s3, s4), (s2, s5), (s2, s5), (s3, s4), (s3, s4), (s2, s5), (s2, s5)

1 let iter2 (f: α × β → unit): α node→ β node→ unit =
2 memo_rec (fun iter2 x y→
3 match c(x), c(y) with
4 | V v, V w→ f (v,w)
5 | V _, N(_,l,r) → iter2 x l; iter2 x r
6 | N(_,l,r), V _→ iter2 l y; iter2 r y
7 | N(a,l,r), N(a’,l’,r’) →
8 if a=a’ then iter2 l l’; iter2 r r’
9 if a<a’ then iter2 l y ; iter2 r y

10 if a>a’ then iter2 x l’; iter2 x r’)

Figure 4. Iterating over the set of pairs reachable from two nodes.

1 type (s,β) sdfa = {t: s→ s bdd; o: s→ β}
2
3 let symb_equiv (M: (s,β) sdfa) (x y: s) =
4 let r = Set.empty() in
5 let todo = Queue.singleton (x,y) in
6 let push_pairs = iter2 (Queue.push todo) in
7 while ¬Queue.is_empty todo do
8 let (x,y) = Queue.pop todo in
9 if Set.mem (x,y) r then continue

10 if M.o x 	= M.o y then return false
11 push_pairs (M.t x) (M.t y)
12 Set.add r (x,y)
13 done;
14 return true

Figure 5. Symbolic algorithm for checking language equivalence.

Assume that elements of this queue are popped from left to right.
The first element is removed during the following iteration, since
(s1, s4) already is in r. Then (s3, s4) is processed: it is added
to r, and the above eight pairs are appended again to the queue,
which now has fourteen elements. The following pair is processed
similarly, resulting in a queue with twenty one (14 − 1 + 8) pairs.
Since all pairs of this queue are already in r, it is finally emptied
through twenty one iterations, and the algorithm returns true.

Note that it would be even worse if the input alphabet was

actually declared to be 2{a,b,c,d}: even though the bit d of all letters
is irrelevant for the considered DFA, each non-trivial iteration of the
algorithm would push even more copies of each pair to the todo
queue.

What we propose here is to exploit the symbolic representation,
so that a given pair is pushed only once. Intuitively, we want to
recognise that starting from the pair of nodes (n,m), the letters

010, 011, 110 and 111 are equivalent1, since they lead to the
same pair, (s2, s5). Similarly, the letters 001, 100, and 101 are
equivalent: they lead to the pair (s3, s4).

This idea is easy to implement using BDDs: like for the apply
function (Figure 2), it suffices to zip the two BDDs together, and to
push pairs when we reach two leaves. We use for that the procedure
iter2 from Figure 3, which successively applies a given function
to all pairs reachable from two nodes. Its code is almost identical to
apply, except that nothing is constructed (and memoisation is just
used to remember those pairs that have already been visited).

We finally modify the simple algorithm from Section 2.1 by us-
ing this procedure on line 11; we obtain the code given in Figure 5.
We apply iter2 to its first argument once and for all (line 6), so
that we maximise memoisation: a pair of nodes that has been vis-

1 Letters being elements of 2{a,b,c} here, we represent them with bit-
vectors of length three
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ited in the past will never be visited again, since all pairs of states
reachable from that pair of nodes are already guaranteed to be pro-
cessed. (As an invariant, we have that all pairs reachable from a
pair of nodes memoised in push_pairs appear in r ∪ todo.)

Let us illustrate this algorithm by running it on the DFA from
Figure 3, starting from states s1 and s4 as previously. During the
first iteration, the pair (s1, s4) is added to r, and push_pairs
is called on the pair of nodes (n,m). This call virtually results

in building the following BDD, where leaves consist of calls to
Queue.push todo.

s1, s4 s2, s4 s3, s5

n, m

n1, m n2, m

n3, s4

The following three pairs are thus pushed to todo.

(s1, s4), (s3, s4), (s2, s5)

The first pair is removed by a trivial iteration: (s1, s4) already
belongs to r. The two other pairs are processed by adding them to r,
but without pushing any new pair to todo: thanks to memoisation,
the two expected calls to push_pairs n m are skipped.

All in all, each reachable pair is pushed only once to the todo
queue. More importantly, the derivatives of a given pair are ex-
plored symbolically. In particular, the algorithm would execute ex-
actly in the same way, even if the alphabet was actually declared
to be much larger (for instance because the considered states were
part of a bigger automaton with more letters). In fact, the main loop
is executed at most n2 times, where n is the total number of BDD
nodes (both leaves and decision nodes) reachable from the starting
states.

Finally note that in the code from Figure 5, the candidate rela-
tion r is redundant, as the pairs it contains are also stored implicitly
in the memoisation table of iter2 (except for the initial pair). The
corresponding lines (4, 9, and 12) can thus be removed.

3.1 Displaying symbolic counter-examples.
Bisimulation-based algorithms for language equivalence can be
instrumented to produce counter-examples in case of failure, i.e.,
a word which is accepted by one state and not by the other.

An advantage of the previous algorithm is that those counter-
examples can be displayed symbolically; thus enhancing readabil-
ity. This is particularly important in the context of formal assisted
proofs (e.g., when working with KAT in Coq [34]), where a plain
guarded string is often too big to be useful to the user, while a
‘symbolic’ guarded string—where only the bits that are relevant for
the counter-example are displayed—can be really helpful to under-
stand which hypotheses have to be used to solve the current goal.

Consider for instance the following automaton.

0

s

a

0

t

a

0

t"

1

s'

1

s"

1

t'

c

2

b

Intuitively, the topmost states s and t are not equivalent because t
can take two transitions to reach t′′, with output 0, while with two
transitions, s can only reach s′′, with output 1.

More formally, the word 100 001 over 2{a,b,c} is a counter-
example: we have

�s�(100 001) = �s′�(001) = o(s′′) = 1 ,

�t�(100 001) = �t′�(001) = o(t′′) = 0 .

But there are plenty of other counter-examples of length two: it
suffices that: a be assigned true and b be assigned false in the first
letter, and that c be assigned true in the second letter. The values
of the bit c in the first letter, and of the bits a and b in the second
letter do not change the above computation. As a consequence, this
counter-example is best described as the pseudo-word 10- - -1, or
alternatively the word (a ∧ ¬b) c whose letters are conjunctions of
literals indicating the least requirements to get a counter example.

The algorithm from Figure 5 makes it possible to give this
information back to the user:

• modify the queue todo to store triples (w, x, y) where (x, y)
is a pair of states to process, and w is the associated potential
counter-example;

• modify the function iter2 (Figure 3), so that it uses an ad-
ditional argument to record the encountered node labels, with
negative polarity when going through the recursive call for the
left child, and positive polarity for the right child;

• modify line 10 of the main algorithm to return the symbolic
word associated with the current pair when the output test fails.

3.2 Non-deterministic automata
Standard coinductive algorithms for DFA can be applied to non-
deterministic automata (NFA) by using the powerset construction.
This construction transforms a non-deterministic automaton into a
deterministic one; we extend it to symbolic automata in the obvious
way.

A symbolic NFA is a tuple 〈S, t, o〉 where S is the set of states,
o : S → B is the output function, and t : S → BDDA[P(S)]
maps a state and a letter of the alphabet A′ = 2A to a set of
possible successor states, using a symbolic representation. The set
B of output values must be equipped with a semi-lattice structure
〈B,∧,⊥〉. Assuming such an NFA, one defines a symbolic DFA
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〈P(S), t�, o�〉 as follows:

t�({x1, . . . , xn}) � t(x1) ∪ . . . ∪ t(xn) ,

o�({x1, . . . , xn}) � o(x1) ∨ · · · ∨ o(xn) .
(Where ∪ denotes the pointwise union of two BDDs over sets:
n ∪ m = �φ �→ �n(φ) ∪ �m(φ)�.)

This DFA has exponentially many states. However, when apply-
ing bisimulation-based algorithms to such automata, one explores
them on the fly, and only those subsets that are reachable from the
initial states need to be visited. This number of reachable subsets
is usually much smaller than the exponential worst-case bound; in
fact it is quite often of the same order as the number of states of the
starting DFA (see, e.g., the experiments in Section 5).

3.3 Hopcroft and Karp: disjoint sets forests
The previous algorithm can be freely enhanced by using up-to
techniques, as described in Section 2.3: it suffices to modify line 9
to skip pairs more or less aggressively, according to the chosen up-
to technique. For an up-to technique f , line 9 thus becomes

if Set.mem (x,y) (f r) then continue .

The up-to-equivalence technique used in Hopcroft and Karp’s
algorithm can however be integrated in a deeper way, by exploiting
the fact that we work with BDDs. This leads to a second algorithm,
which we describe in this section.

Let us first recall disjoint sets forests, the data structure used by
Hopcroft and Karp to represent equivalence classes. This standard
data-structure makes it possible to check whether two elements
belong to the same class and to merge two equivalence classes,
both in almost constant amortised time [40].

The idea consists in storing a partial map from elements to ele-
ments and whose underlying graph is acyclic. An element for which
the map is not defined is the representative of its equivalence class,
and the representative of an element pointing in the map to some y
is the representative of y. Two elements are equivalent if and only
if they lead to the same representative; to merge two equivalence
classes, it suffices to add a link from the representative of one class
to the representative of the other class. Two optimisations are re-
quired to obtain the announced theoretical complexity:

• when following the path leading from an element to its repre-
sentative, one should compress it in some way, by modifying
the map so that the elements in this path become closer to their
representative. There are various ways of compressing paths, in
the sequel, we use the method called halving [40];

• when merging two classes, one should make the smallest one
point to the biggest one, to avoid generating too many long
paths. Again, there are several possible heuristics, but we elude
this point in the sequel.

As explained above, the simplest thing to do would be to replace
the bisimulation candidate r from Figure 5 by a disjoint sets forest
over the states of the considered automaton.

The new idea consists in relating the BDD nodes of the sym-
bolic automaton rather than just its states (i.e., just the BDD leaves).
By doing so, one avoids visiting pairs of nodes that have already
been visited up to equivalence.

Concerning the implementation, we first introduce a BDD uni-
fication algorithm (Figure 3.3), i.e., a variant of the function iter2
which uses disjoint sets forest rather than plain memoisation. This
function first creates an empty forest (we use Filliâtre’s module
Hmap of maps over hash-consed values to represent the correspond-
ing partial maps). The function link adds a link between two rep-
resentatives; the recursive terminal function repr looks for the rep-
resentative of a node and implements halving. The inner function

1 let unify (f: β × β → unit): β node→ β node→ unit =
2 (* the disjoint sets forest *)
3 let m = Hmap.empty() in
4 let link x y = Hmap.add m x y in
5 (* representative of a node *)
6 let rec repr x =
7 match Hmap.get m x with
8 | None→ x
9 | Some y→ match Hmap.get m y with

10 | None→ y
11 | Some z→ link x z; repr z
12 in
13 let rec unify x y =
14 let x = repr x in
15 let y = repr y in
16 if x 	= y then
17 match c(x), c(y) with
18 | V v, V w→ link x y; f (v,w)
19 | V _, N(_,l,r) → link y x; unify x l; unify x r
20 | N(_,l,r), V _→ link x y; unify l y; unify r y
21 | N(a,l,r), N(a’,l’,r’) →
22 if a=a’ then link x y; unify l l’; unify r r’
23 if a<a’ then link x y; unify l y ; unify r y
24 if a>a’ then link y x; unify x l’; unify x r’)
25 in unify

Figure 6. Unifying two nodes of a BDD, using disjoint set forests.

1 let dsf_equiv (M: (s,β) sdfa) (x y: s) =
2 let todo = Queue.singleton (x,y) in
3 let push_pairs = unify (Queue.push todo) in
4 while ¬Queue.is_empty todo do
5 let (x,y) = Queue.pop todo in
6 if M.o x 	= M.o y then return false
7 push_pairs (M.t x) (M.t y)
8 done;
9 return true

Figure 7. Symbolic algorithm optimised with disjoint set forests.

unify is defined similarly as iter2, except that it first takes the
representative of the two given nodes, and that it adds a link from
one to the other before recursing.

Those links can be put in any direction on lines 18 and 22, and
we should actually use an appropriate heuristic to take this decision,
as explained above. In the four other cases, we put a link either from
the node to the leaf, or from the node with the smallest label to the
node with the biggest label. By proceeding this way, we somehow
optimise the BDD, by leaving as few decision nodes as possible.

It is important to notice that there is actually no choice left
in those four cases: we work implicitly with the optimised BDD
obtained by mapping all nodes to their representatives, so that we
have to maintain the invariant that this optimised BDD is ordered
and acyclic. (Notice that this optimised BDD need not be reduced
anymore: the children of given a node might be silently equated,
and a node might have several representations since its children
might be silently equated with the children of another node with
the same label)

We finally obtain the algorithm given in Figure 7. It is similar
to the previous one (Figure 5), except that we use the new function
unify to push pairs into the todo queue, and that we no longer
store the bisimulation candidate r: this relation is subsumed by the
restriction of the disjoint set forests to BDD leaves.
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If we execute this algorithm on the symbolic DFA from Fig-
ure 3, between states s1 and s4, we obtain the disjoint set forest
depicted below using dashed red arrows. This actually corresponds
to the pairs which would be visited by the first symbolic algorithm
(Figure 5).

6 63

a

6 3

bb b

c

If instead we start from the top-most nodes in the following
partly described automaton, we would get the disjoint set forest
depicted similarly in red, while the first algorithm would go through
all violet lines, one of which is superfluous.

a

b

c

a

d

b

c

d

The corresponding optimised BDD consists of the three nodes
labelled with a, b, and d on the right-hand side. This BDD is
not reduced, as explained above: the node labelled with b should
be removed since it points twice to the node labelled with d, and
removing this node makes the node labelled with a useless, in turn.

Complexity. Concerning complexity, while the algorithm from
Figure 5 is quadratic in the number n of BDD nodes (and leaves)
that are reachable from the starting symbolic DFA, the optimised
algorithm from Figure 7 performs at most n iterations: two equiv-
alence classes of nodes are merged each time a link is added, and
we start with the discrete partition of nodes.

Unfortunately, we cannot immediately deduce that the algo-
rithm is almost linear, as did Tarjan for Hopcroft and Karp’s al-
gorithm [40]. The problem is that we cannot always freely choose
how to link two representatives (i.e., on lines 19, 20, 23, and 24 in
Figure 3.3), so that we cannot guarantee that the amortised com-
plexity of maintaining those equivalence classes is almost constant.
We conjecture that such a result holds, however, as the choice we

enforce in those cases virtually suppresses binary decision nodes,
thus reducing the complexity of subsequent BDD unifications.

Unification with row types. As mentioned in the Introduction,
Hopcroft and Karp’s algorithm can be seen as an instance of
Huet’s first-order unification algorithm for recursive terms (i.e.,
without occur-check). The algorithm presented in Figure 7, and
more specifically the BDD unification sub-algorithm (Figure 3.3)
is reminiscent of Rémy’s extension of this unification algorithm
for dealing with row types—to obtain an ML-like type inference
algorithm in presence of extensible records [33, 37, 38].

More precisely, row types are almost-constant functions from a
given set of labels to types, typically represented as association lists
with a default value. Unification of such row types is performed
pointwise, and is implemented by zipping the two association lists
together, as we do here with BDDs (which generalise from almost
constant functions to functions with finitely many output values).

It would thus be interesting to understand whether our gener-
alisation of this unification sub-algorithm, from association lists to
BDDs, could be useful in the context of unification: either by ex-
ploiting the richer structure of functions represented by BDDs, or
just for the sake of efficiency, when the set of labels is large (e.g.,
for type inference on object-oriented programs, where labels corre-
spond to method names).

4. Kleene algebra with tests
Now we consider Kleene algebra with tests (KAT), for which we
provide several automata constructions that allow us to use the
previous symbolic algorithms.

A Kleene algebra with tests is a tuple 〈X,B, ·,+, ·�,¬, 1, 0〉
such that:

(i) 〈X, ·,+, ·�, 1, 0〉 is a Kleene algebra [26], i.e., an idempotent
semiring with a unary operation, called “Kleene star”, satisfy-
ing the following axioms:

1 + x · x� ≤ x�

y · x ≤ x ⇒ y� · x ≤ x

x · y ≤ x ⇒ x · y� ≤ x

(the preorder (≤) being defined by x ≤ y � x+ y = y);

(ii) B ⊆ X;

(iii) 〈B, ·,+,¬, 1, 0〉 is a Boolean algebra.

The elements of the set B are called “tests”; we denote them
by φ, ψ. The elements ofX , called “Kleene elements”, are denoted
by x, y, z. We sometimes omit the operator “·” from expressions,
writing xy for x · y. The following (in)equations illustrate the kind
of laws that hold in all Kleene algebra with tests:

φ+ ¬φ = 1 φ · (¬φ+ ψ) = φ · ψ = ¬(¬φ+ ¬ψ)

x�x� = x� (x+y)� = x�(yx�)� (x+xxy)� ≤ (x+xy)�

φ · (¬φ · x)� = φ φ · (φ · x · ¬φ+ ¬φ · y · φ)� · φ ≤ (x · y)�

The laws from the first line come from the Boolean algebra struc-
ture, while the ones from the second line come from the Kleene
algebra structure. The two laws from the last line require both
Boolean algebra and Kleene algebra reasoning.

Binary relations. Binary relations form a Kleene algebra with
tests; this is the main model we are interested in, in practice. The
Kleene elements are the binary relations over a given set S, the tests
are the predicates over this set, encoded as sub-identity relations,
and the star of a relation is its reflexive transitive closure.

363



This relational model is typically used to interpret imperative
programs: such programs are state transformers, i.e., binary rela-
tions between states, and the conditions used to define the control-
flow of these programs are just predicates on states. Typically, a
program “while φ do p” is interpreted through the KAT expres-
sion (φ · p)� · ¬φ.

KAT expressions. We denote by Reg(V ) the set of regular ex-
pressions over a set V :

x, y ::= v ∈ V | x+ y | x · y | x� .

Assuming a set A of elementary tests, we denote by B(A) the
set of Boolean expressions over A:

φ, ψ ::= a ∈ A | 1 | 0 | φ ∧ φ | φ ∨ φ | ¬φ .

Further assuming a set Σ of letters (or atomic Kleene elements),
a KAT expression is a regular expression over the disjoint union
Σ � B(A). We let p, q range over elements of Σ. Note that the
constants 0 and 1 from the signature of KAT, and usually found in
the syntax of regular expressions, are represented here by injecting
the corresponding tests.

Guarded string languages. Guarded string languages are the nat-
ural generalisation of string languages for Kleene algebra with
tests. We briefly define them.

An atom is a valuation from elementary tests to Booleans; it
indicates which of these tests are satisfied. We let α, β range over
atoms, the set of which is denoted by At: At = 2A. A Boolean
formula φ is valid under an atom α, denoted by α � φ, if φ
evaluates to true under the valuation α.

A guarded string is an alternating sequence of atoms and letters,
both starting and ending with an atom:

α1, p1, α2, . . . , αn, pn, αn+1 .

The concatenation u ∗ v of two guarded strings u, v is a partial
operation: it is defined only if the last atom of u is equal to the
first atom of v; it consists in concatenating the two sequences and
removing one copy of the shared atom in the middle.

To any KAT expression, one associates a guarded string lan-
guage, i.e., a set of guarded strings, as follows.

G(φ) = {α ∈ At | α � φ} (φ ∈ B(A))

G(p) = {αpβ | α, β ∈ At} (p ∈ Σ)

G(x+ y) = G(x) ∪G(y)

G(xy) = {u ∗ v | u ∈ G(x), v ∈ G(y)}
G(x�) = {u1 ∗ · · · ∗ un | ∃u1 . . . un, ∀i ≤ n, ui ∈ G(x)}

KAT Completeness. Kozen and Smith proved that the equational
theory of Kleene algebra with tests is complete over the relational
model [30]: any equation that holds universally in this model can
be proved from the axioms of KAT. Moreover, two expressions
are provably equal if and only if they denote the same language
of guarded strings. By a reduction to automata theory this gives
algorithms to decide the equational theory of KAT. Now we study
several such algorithms, and we show each time how to exploit
symbolic representations to make them efficient.

4.1 Brzozowski’s derivatives
Derivatives were introduced by Brzozowski [11] for (plain) regular
expressions; they make it possible to define a deterministic automa-
ton where the states of the automaton are the regular expressions
themselves.

Derivatives can be extended to KAT expressions in a very natu-
ral way [28]. We recall this extension in Figure 8: one first defines a
Boolean function εα, that indicates whether an expression accepts

εα(x+y) = εα(x)+εα(y)

εα(x·y) = εα(x)·εα(y)
εα(x

�) = 1

εα(q) = 0

εα(φ) =

{
1 if α � φ
0 oth.

δαp(x+y) = δαp(x)+δαp(y)

δαp(x·y) =
{
δαp(x)·y if εα(x) = 0

δαp(x)·y+δαp(y) oth.

δαp(x
�) = δαp(x) · x�

δαp(q) =

{
1 if p = q

0 oth.

δαp(φ) = 0

Figure 8. Explicit derivatives for KAT expressions

εs(x+y) = εs(x)∨εs(y)
εs(x·y) = εs(x)∧εs(y)
εs(x�) = 1

εs(p) = 0

εs(φ) = φ

δs(x+y) = δs(x)⊕ δs(y)

δs(x·y) = (δs(x)� y)⊕ (εs(x)⊗ δs(y))

δs(x�) = δs(x)� x�

δs(p) = �p �→ 1, �→ 0
δs(φ) = 0

Figure 9. Symbolic derivatives for KAT expressions

the single atom α; this function is then used to define the deriva-
tion function δαp, that intuitively returns what remains of the given
expression after reading the atom α and the letter p. These two
functions make it possible to give a coalgebraic characterisation of
the characteristic function of G. We have:

G(x)(α) = εα(x) , G(x)(αpu) = G(δαp(x))(u) .

The tuple 〈Reg(Σ � B(A)), δ, ε〉 can be seen as a determin-

istic automaton with input alphabet At × Σ, and output set 2At.
Thanks to the above characterisation, a state x in this automaton
accepts precisely the guarded string language G(x)—modulo the

isomorphism (At× Σ)� → 2At ≈ P((At× Σ)� ×At).
However, we cannot directly apply the explicit algorithm from

Section 2.1, because this automaton is not finite. First, there are
infinitely many KAT expressions, so that we have to restrict to
those that are accessible from the expressions we want to check for
equality. This is however not sufficient: we also have to quotient
regular expressions w.r.t. a few simple laws [28]. This quotient is
simple to implement by normalising expressions; we thus assume
that expressions are normalised in the remainder of this section.

Symbolic derivatives. The input alphabet of the above automaton
is exponentially large w.r.t. the number of primitive tests:At×Σ =
2A × Σ. Therefore, the simple algorithm from Section 2.1 is not
tractable in practice. Instead, we would like to use its symbolic
version (Figure 5).

The output values, in (2At = 2A → 2), are also exponentially
large, and are best represented symbolically, using Boolean BDDs.
In fact, any test appearing in a KAT expression can be pre-compiled
into a Boolean BDD: rather than working with regular expressions
over Σ � B(A) we thus move to regular expressions over Σ �
BDDA[2], which we call symbolic KAT expressions. We denote
the set of such expressions by SyKAT, and we let �e� denote the
symbolic version of a KAT expression e.

Note that there is a slight discrepancy here w.r.t. Section 3: the

input alphabet is 2A × Σ rather than just 2A
′

for some A′. For the
sake of simplicity, we just assume that Σ is actually of the shape

2Σ
′
; alternatively, we could work with automata whose transition

functions are represented partly symbolically (for At), and partly
explicitly (for Σ)—this is what we do in the implementation.
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We define the symbolic derivation operations in Figure 9.
The output function, εs, has type SyKAT → BDDA[2], it maps

symbolic KAT expressions to Boolean BDD nodes. The operations
used on the right-hand side of this definition are those on Boolean
BDDs. The function εs is much more efficient than its explicit coun-
terpart (ε, in Figure 8): the set of all accepted atoms is computed at
once, symbolically.

The function δs has type SyKAT → BDDA�Σ′ [SyKAT].
It maps symbolic KAT expressions to BDDs whose leaves are
themselves symbolic KAT expressions. Again, in contrast to its
explicit counterpart, δs computes all the transitions of a given
expression once and for all. The operations used on the right-hand
side of the definition are the following ones:

• n ⊕ m is defined by applying pointwise the syntactic sum
operation from KAT expressions to the two BDDs n and m:
n⊕m = �φ �→ �n(φ) + �m(φ)�;

• n � x syntactically multiplies all leaves of the BDD n by the
expression x, from the right: n� x = �φ �→ �n�(φ) · x�;

• f ⊗ n “multiplies” the Boolean BDD f with the BDD n:
f ⊗ n = �φ �→ �n�(φ) if �f�(φ) = 1, 0 otherwise�.

• �q �→ 1, �→ 0� is the BDD mapping q to 1 and everything else

to 0 (q ∈ Σ = 2Σ
′

being cast into an element of 2A�Σ′
).

By two simple inductions, one proves that for every expression
x ∈ SyKAT, atom α ∈ At, and letter p ∈ Σ, we have:

�εs�x�(α) = εα(x)

�δs�x�(αp) = �δαp(x)�

(Again, we abuse notation by letting the pair αp denote an element

of 2A�Σ′
.) This ensures that the symbolic deterministic automaton

〈SyKAT, δs, εs〉 faithfully represents the previous explicit automa-
ton, and that we can use the symbolic algorithms from Section 3.

4.2 Partial derivatives
An alternative to Brzozowski’s derivatives consists in using An-
timirov’ partial derivatives [4], which generalise to KAT in a
straightforward way [34]. The difference with Brzozowski’s deriva-
tive is that they produce a non-deterministic automaton: states are
still expressions, but the derivation function produces a set of ex-
pressions. An advantage is that we do not need to normalise ex-
pressions on the fly: the set of partial derivatives reachable from an
expression is always finite.

We give directly the symbolic definition, which is very similar
to the previous one.

δ
′s(x+y) = δ

′s(x) ∪ δ
′s(y)

δ
′s(x·y) = (δ

′s(x) � y) ∪ (εs(x)� δ
′s(y))

δ
′s(x�) = δ

′s(x) � x�

δ
′s(p) = �p �→ {1}, �→ ∅�
δ
′s(φ) = ∅

The differences lie in the BDD operations, whose leaves are now
sets of expressions:

• n ∪ m = �φ �→ �n(φ) ∪ �m(φ)�;

• n� x = �φ �→ {x′ · x | x′ ∈ �n(φ)}�;

• f � n = �φ �→ �n(φ) if �f(φ) = 1, ∅ otherwise�.

One can finally relate partial derivatives to Brzozowski’s one:

KA �
∑

�δ′s(x)(αp) = �δαp(x)� .

(The above Σ denotes the iterated sum of the set of partial
derivatives—we do not have a syntactic equality because partial
derivatives inherently exploit the fact that multiplication distributes
over sums.) Using symbolic determinisation as described in Sec-
tion 3.2, one can thus use the algorithm from Section 3 with An-
timirov’ partial derivatives.

4.3 Ilie & Yu’s construction
Other automata constructions from the literature can be generalised
to KAT expressions. We can for instance consider Ilie and Yu’s
construction [25], which produces non-deterministic automata with
epsilon transitions with exactly one initial state, and one accepting
state.

We consider a slightly simplified version here, where we omit a
few optimisations and just proceed by induction on the expression.
The four cases are depicted below: i and f are the initial and
accepting states, respectively; in the concatenation and star cases, a
new state j is introduced.

p : i p
�� f x · y : i A(x) j A(y) f

x+ y : i

A(y)

A(x)

f
x� : i

1
�� j

1
��

A(x)

f

To adapt this construction to KAT expressions, it suffices to
generalise epsilon transitions to transitions labelled by tests. In the
base case for a test φ, we just add a transition labelled by φ between
i and f ; the two epsilon transitions needed for the star case just
become transitions labelled by the constant test 1.

As expected, when starting from a symbolic KAT expression,
those counterparts to epsilon transitions are labelled by Boolean
BDD nodes rather than by explicit Boolean expressions.

Epsilon cycles. The most important optimisation we miss with
this simplified presentation of Ilie and Yu’s construction is that we
should merge states that belong to cycles of epsilon transitions. An
alternative to this optimisation consists in normalising first the ex-
pressions so that for all subexpressions of the shape e�, e does not
contain 1, i.e., εs(e) 	= 1. Such a normalisation procedure has been
proposed for plain regular expressions by Brüggemann-Klein [8].
When working with such normal forms, the automata produced
by the above simplified construction (on plain regular expressions)
have acyclic epsilon transitions, so that the aforementioned optimi-
sation is unnecessary.

This normalisation procedure generalises easily to (symbolic)
KAT expressions. For instance, here are typical normalisations:

(φ+ p)� �→ p� (1)

(p� + q)� �→ (p+ q)� (2)

((1 + p)(1 + q))� �→ (p+ q)� (3)

We say that Symbolic KAT expressions satisfying the above prop-
erty are in strict star form. The normalisation procedure is linear in
the size of the expressions; it always produces a smaller expression.
As a consequence, when deciding whether a KAT equation holds
or not, it is always beneficial to put the expressions in strict star
form first, independently from the considered automata construc-
tion. (See the experiments in Section 5).

According to the example (1), it might be tempting to strengthen
example (3) into ((φ + p)(ψ + q))� �→ (p + q)�. Such a step is
invalid, unfortunately. (The second expression accepts the guarded
string αpβ for all α, β, while the starting expression needs β � ψ.)
This example seems to show that one cannot ensure that all starred
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iterations time
NFA states DFA states

symb equiv dsf equiv symb equiv dsf equiv
Antimirov ◦ ssf 6 715 3 980 0.53s 0.47s 2 704 4 142
Antimirov 7 141 4 256 0.84s 0.74s 3 039 4 442
Ilie & Yu ◦ ssf 6 985 4 209 1.77s 1.73s 4 716 4 441
Ilie & Yu 7 328 4 445 3.89s 3.83s 5 730 4 647
Brzozowski ◦ ssf 11 952 6 525 6.88s 4.67s - 6 684
Brzozowski 19 781 10 080 43.00s 30.00s - 10 265

Table 1. Checking random saturated pairs of expressions.

subexpressions are mapped to 0 by εs. As a consequence we cannot
assume that test-labelled transitions generated by Ilie and Yu’s
construction form an acyclic graph in general.

4.4 Test-labelled transitions removal
The above construction produces symbolic NFA with test-labelled
transitions, which have to be eliminated in order to apply the algo-
rithms from Section 3. Other constructions from the literature pro-
duce automata with epsilon transitions and can be adapted to KAT
using test-labelled transitions. A generic procedure for eliminating
such transitions is thus desirable.

The usual technique with plain automata consists in computing
the reflexive transitive closure of epsilon transitions, to precompose
the other transitions with the resulting relation, and declare a state
as accepting in the new automaton whenever it can reach an accept-
ing state through this reflexive-transitive closure.

More formally, let us recall Kozen’s matricial representation
of non-deterministic automaton with epsilon transitions [26], as
tuples 〈n, u, J,N, v〉, where u is a (1, n) 01-matrix denoting the
initial states, J is a (n, n) 01-valued matrix denoting the epsilon
transitions, N is a (n, n) matrix representing the other transitions
(with entries sets of letters in Σ), and v is a (n, 1) 01-matrix
encoding the accepting states.

The language accepted by such an automaton can be represented
by the following matricial product, using Kleene star on matrices:

u · (J +N)� · v .

Thanks to the algebraic law (a+b)� = a� · (b ·a�)�, which is valid
in any Kleene algebra, we get

KA � u · (J +N)� · v = u · (J�N)� · (J�v) .

We finally check that 〈n, u, 0, J�N, J�v〉 represents a non-deterministic
automaton without epsilon transitions. This is how Kozen validates
epsilon elimination for plain automata, algebraically [26].

The same can be done here for KAT by noticing that tests (or
Boolean BDD nodes) form a Kleene algebra with a degenerate star
operation: the constant-to-1 function. One can thus generalise the
above reasoning to the case where J is a tests-valued matrix rather
than a 01-matrix.

The iteration J� of such a matrix can be computed using stan-
dard shortest-path algorithms [21], on top of the efficient semiring
of Boolean BDD nodes. The resulting automaton has the expected
type:

• there is a transition labelled by αp between i and j if there
exists a k such that α � (J�)i,k and p ∈ Nk,j . (The corre-
sponding non-deterministic symbolic transition function can be
computed efficiently using appropriate BDD functions.)

• The output value of a state i is the Boolean BDD node obtained
by taking the disjunction of all the (J�)i,j such that j is an
accepting state (i.e., just (J�)(i,f) when using Ilie and Yu’s
construction).

5. Experiments
We implemented all presented algorithms in OCaml; the corre-
sponding library is available online, together with an applet allow-
ing to trace them on user-provided examples [35].

Symbolic KAT expressions are hash-consed, which allows us
to represent sets of expressions using Patricia trees (e.g., for An-
timirov’ partial derivates). Expressions are also normalised us-
ing smart constructors: sums associated to the left, sorted, and
without duplicates; products are associated to the left; consecutive
tests are merged; units are cancelled as much as possible. For An-
timirov’ construction and for Ilie and Yu’s construction, the pro-
duced symbolic NFA are memoised once and for all, and reindexed
so that their states are just natural numbers. This allows us to use
bit-vectors to represent sets produced during determinisation. The
queue todo used for storing the pairs to process is a FIFO queue,
so that the automata are explored in a breadth-first manner.

We performed a few experiments to compare the presented algo-
rithms and constructions. We generated random KAT expressions
over two sets of seven primitive tests and seven atomic elements,
with seventy connectives, and excluding explicit occurrences of the
constants 0 and 1. A hundred pairs of random expressions were
checked for equality after being saturated by adding the constant
Σ� on both sides. (A difficulty here is that random pairs of ex-
pressions are almost always distinguished by a very short guarded
string, which is found almost immediately thanks to the breadth-
first strategy, independently from the size of the expressions and
from the up-to techniques at work. Instead, we would like to evalu-
ate the algorithms based on their running time on more interesting
pairs, where the expressions are either equivalent or distinguished
only by long guarded strings. By saturating the expressions with
the constant Σ�, we artificially make the expressions equivalent.
Moreover, looking at an execution of the presented algorithms on
such saturated pairs, what happens is that the output test (line 10
on Figure 1) always succeeds, so that the algorithms stop only once
the whole automata have been explored and a bisimulation has been
found. Moreover, an analysis of the various automata constructions
shows that the automata constructed for an expression p are very
similar to the automata constructed for the expression p + Σ�: ex-
ploring the latter is as hard as exploring the former.)

The results are displayed in Table 1: for each construction and
for each of the two symbolic algorithms, we give the total num-
ber of iterations (i.e., the number of times we execute line 10 in
Figure 5), and the global running time2. Each construction is asso-
ciated to two lines, depending on whether we first put expressions
in strict star form or not. We additionally provide the total number
of NFA states generated by Antimirov’ and Ilie and Yu’s construc-
tions, as well as the total number of DFA states generated for the
three constructions.

One can notice than Antimirov’ partial derivatives provide the
fastest algorithms. Ilie and Yu’s construction yield approximately

2 Theses experiments were performed on a MacBook Pro, OS X 10.9.5,
2,4GHz Intel Core i7, 4Go 1333MHz DDR3, OCaml 4.02.1
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the same number of iterations as Antimirov’ partial derivatives,
but require more time: computing the transitive closure for epsilon
removal is a costly operation. Brzozowski’s construction gives poor
results both in terms of time and iterations: the produced automata
are larger, and more difficult to compute.

Concerning the equivalence algorithm, one notices that using
disjoint set forests significantly reduces the number of iterations.
There is almost no difference in the running times with the first
two constructions, because most of the time is spent in constructing
the automata rather than checking them for equivalence. This is no
longer true with Brzozowski’s construction, for which the automata
are sufficiently big to observe a difference.

6. Directions for future work
The equational theory of KAT is PSPACE-complete, but none of
the presented algorithms are PSPACE (just because of the use
BDDs, but also because the bisimulation candidate, which has to be
stored, can be exponentially large). Experiments however suggest
that they can be useful in practice: the symbolic DFA produced
by the various constructions proposed in this paper tend to be of
reasonable size. Quantifying this empirical observation in a formal
way seems extremely difficult.

A natural extension of this work would be to apply the proposed
algorithms to KAT+B! [19] and NetKAT [2], two extensions of
KAT with important applications in verification: while programs
with mutable tests in the former case, and network programming in
the later case.

KAT+B! has a EXPSPACE-complete equational theory, and its
structure makes explicit algorithms completely useless. Designing
symbolic algorithms for KAT+B! seems challenging.

NetKAT remains PSPACE-complete, and Foster et al. propose
in the present volume a coalgebraic decision procedure relying on
a variation of Antimirov’ derivatives [17]. To get a practical al-
gorithm, they represent automata transitions using sparse matri-
ces, and they exploit some form of symbolic treatment by using
what they call “bases”. KAT can be encoded into NetKAT, so that
their algorithm could be used for KAT. This encoding is however
not streamlined, and it is non-trivial to understand the behaviour
of their algorithm on the resulting instances. Conversely, adapting
the algorithms presented in the present paper to cope with NetKAT
seems feasible, although not straightforward. Concerning the sym-
bolic treatment of automata, our use of BDDs seems more powerful
and less ad-hoc than their use of bases, but the precise relationship
remains unclear, and we leave its formal analysis for future work.

Moving away from KAT specificities, we leave open the ques-
tion of the complexity of our symbolic variant of Hopcroft and
Karp’s algorithm (Figure 7). Tarjan proved that their algorithm is
almost linear in amortised time complexity, and he made a list of
heuristics for linking and path compression schemes that lead to
that complexity [40]; together with Goel, Khanna and Larkin, he
recently showed that this complexity is still reached (asymptoti-
cally) with randomized linking [18]. A similar study for the sym-
bolic counterpart we propose here remains to be done.
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[8] A. Brüggemann-Klein. Regular expressions into finite automata.
Theoretical Computer Science, 120(2):197–213, 1993.

[9] R. E. Bryant. Graph-based algorithms for boolean function manipula-
tion. IEEE Trans. Computers, 35(8):677–691, 1986.

[10] R. E. Bryant. Symbolic Boolean manipulation with ordered binary-
decision diagrams. ACM Computing Surveys, 24(3):293–318, 1992.

[11] J. A. Brzozowski. Derivatives of regular expressions. Journal of the
ACM, 11(4):481–494, 1964.

[12] E. Cohen, D. Kozen, and F. Smith. The complexity of Kleene algebra
with tests. Technical Report TR96-1598, CS Dpt., Cornell University,
1996.

[13] L. D’Antoni and M. Veanes. Minimization of symbolic automata. In
POPL, pages 541–554. ACM, 2014.

[14] L. Doyen and J.-F. Raskin. Antichain Algorithms for Finite Automata.
In Proc. TACAS, volume 6015 of Lecture Notes in Computer Science.
Springer Verlag, 2010.
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[38] D. Rémy. Extension of ML type system with a sorted equational
theory on types, 1992. Research Report 1766.

[39] D. Sangiorgi. On the bisimulation proof method. Mathematical
Structures in Computer Science, 8:447–479, 1998.

[40] R. E. Tarjan. Efficiency of a good but not linear set union algorithm.
Journal of the ACM, 22(2):215–225, 1975.

[41] M. Veanes. Applications of symbolic finite automata. In CIAA,
volume 7982 of Lecture Notes in Computer Science, pages 16–23.
Springer Verlag, 2013.

[42] M. D. Wulf, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Antichains:
A new algorithm for checking universality of finite automata. In
Proc. CAV, volume 4144 of Lecture Notes in Computer Science, pages
17–30. Springer Verlag, 2006.

368




