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Abstract

We propose a method for verification of probabilistic distributed systems in which a variation of Kozen’s Kleene Algebra with
Tests [Dexter Kozen, Kleene algebra with tests, ACM Trans. Programming Lang. Syst. 19(3) (1997) 427–443] is used to take
account of the well known interaction of probability and “adversarial” scheduling [Annabelle McIver, Carroll Morgan, Abstrac-
tion, Refinement and Proof for Probabilistic Systems, Technical Monographs in Computer Science, Springer-Verlag, New York,
2004].

We describe pKA, a probabilistic Kleene-style algebra, based on a widely accepted model of probabilistic/demonic computation
[Jifeng He, K. Seidel, A.K. McIver, Probabilistic models for the guarded command language, Sci. Comput. Programming 28 (1997)
171–192; Roberto Segala, Modeling and verification of randomized distributed real-time systems, Ph.D. thesis, MIT, 1995; Roberto
Segala, Modeling and Verification of Randomized Distributed Real-Time Systems, PhD thesis, MIT, 1995; Annabelle McIver, Carroll
Morgan, Abstraction, Refinement and Proof for Probabilistic Systems, Technical Monographs in Computer Science, Springer-Verlag,
New York, 2004]. Our technical aim is to express probabilistic versions of Cohen’s separation theorems [E. Cohen, Separation and
reduction, in: Mathematics of Program Construction, 5th International Conference, LNCS, vol. 1837, Springer-Verlag, July 2000,
pp. 45–59].

Separation theorems simplify reasoning about distributed systems, where with purely algebraic reasoning they can reduce
complicated interleaving behaviour to “separated” behaviours each of which can be analysed on its own. Until now that has not
been possible for probabilistic distributed systems.

We present two case studies. The first treats a simple voting mechanism in the algebraic style, and the second—based on Rabin’s
Mutual exclusion with bounded waiting [Eyal Kushilevitz, M.O. Rabin, Randomized mutual exclusion algorithms revisited, in:
Proceedings of the 11th Annual ACM Symposium on Principles of Distributed Computing, 1992, pp. 275–283]—is one where
verification problems have already occurred: the original presentation [M.O. Rabin, N-process mutual exclusion with bounded
waiting by 4 log 2n-valued shared variable, Journal of Computer and System Sciences, 25(1) (1982) 66–75] was later shown to
have subtle flaws [I. Saias, Proving probabilistic correctness statements: the case of Rabin’s algorithm for mutual exclusion, in:
Proceedings of the 11th Annual ACM Symposium on Principles of Distributed Computing, 1992]. It motivates our interest in algebras,
where assumptions relating probability and secrecy are clearly exposed and, in some cases, can be given simple characterisations
in spite of their intricacy.

� This work extends an earlier report [17].
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Finally we show how the algebraic proofs for these theorems can be automated using a modification of Aboul-Hosn and Kozen’s
KAT-ML [Kamal Aboul-Hosn, Dexter Kozen, KAT-ML: An interactive theorem prover for Kleene algebra with tests, J. Appl.
Non-Classical Logics 1 (2006)].
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The verification of probabilistic systems creates significant challenges for formal proof techniques. The chal-
lenge is particularly severe in the distributed context where quantitative system-wide effects must be assembled
from a collection of disparate localised behaviours. Here carefully prepared probabilities may become inadver-
tently skewed by the interaction of so-called adversarial scheduling, the well-known abstraction of unpredictable
execution order of the distributed components’ behaviours. Indeed whilst this interaction and possible skewing
effects can lead to violation of the protocol’s specification [26], the source of the error may be very difficult to
locate.

One approach to the verification problem is probabilistic model checking [25], but it often quickly becomes
overwhelmed by state-space explosion, and so verification is often possible only for small problem instances. On
the other hand quantitative proof-based approaches [20,11], though in principle independent of state-space issues, may
similarly fail due to the difficulties of calculating complicated probabilities, effectively “by hand”.

In this paper we propose a third way, in which we combine some proof with numerical computations. The idea
is to apply algebraic proofs in a “pre-processing” stage to simplify a distributed architecture without the need to
do any numerical calculations whatsoever. When numerical calculations are required, they can then be applied to
the significantly simpler “serialised systems”, where more general analytic results can often be found [12]. The
proposed method is based on reduction, the well-known strategy of simplifying distributed algorithms, but applied
in the probabilistic context. In this context, the demonstration that a complex distributed scenario is equivalent to a
simpler serial one is effectively the same as showing that the adversarial scheduler is unable to skew the probabilities
in an undesirable manner.

Weak Kleene algebra, pKA

We review the program algebra pKA [18] in which standard Kleene algebra [14] has been adapted to reflect
the interaction of probabilistic assignments with nondeterminism, where the latter is used to model the unpre-
dictable actions of the scheduler. Standard (i.e. non-probabilistic) Kleene algebra his been used effectively to verify
some non-trivial distributed protocols [6], and we will argue that the benefits carry over to the probabilistic setting
as well. The main difference between pKA and standard Kleene algebra is that pKA disallows certain distribu-
tive laws, just in those cases where the interaction of the probability and nondeterminism is an issue [29,9,20].
The impoverished algebra is then repaired by replacing those axioms with adjusted (weaker) probabilistic ver-
sions.

Algebraic specification and verification

Our main case study is inspired by Rabin’s solution to the mutual exclusion problem with bounded waiting [26,15],
whose original formulation was found to contain some subtle flaws [28] due precisely to the combination of adversarial
and probabilistic choice we address. Later it became clear that the assumptions required for the correctness of Rabin’s
probabilistic protocol—that the outcome of some probabilistic choices should be invisible to the adversary—cannot be
supported by the Markov Decision Process-style model, now generally accepted for probabilistic systems [9,20,25].
We discuss the implications on the model and algebra of adopting those assumptions which, we argue, have wider
applications for secrecy and probabilities.
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Computer support for pKA

One advantage of the algebraic approach is the opportunity for computer support for the proofs. Not only can a proof
script act as a “certificate”, increasing the confidence in the result, but a sophisticated interactive tool can automate
many of the steps required in a fully formal proof. In the context of probabilistic systems, mechanised proof is a
rarity, with the combination of real-number arithmetic and complex Boolean expressions militating against extensive
automation—whilst sequential programs can be mechanised and verified in detail [5], more complex distributed
protocols are significantly more challenging. In terms of practical verification, using a qualitative algebra to simplify
the form of a protocol to one which is essentially sequential—a task which in itself can easily be automated—brings
the verification of probabilistic distributed protocols within range of full automation after all.

In this paper we consider the automation of the simplification stage, and base it on KAT-ML, a tool originally
designed by Aboul-Hosn and Kozen [3] for reasoning within standard Kleene algebra with tests. We show that a
modification of that tool can be used to provide such support even for pKA—we describe the modification and use it
to automate all the proofs of the main algebraic theorems used for our protocol verification.

Overall, our specific contributions in this paper are as follows:
1. A summary of pKA’s characteristics (Section 2), including a generalisation of Cohen’s work on separation [6] for

probabilistic distributed systems using pKA (Section 4);
2. A “tutorial-style” description of how the algebraic approach may be applied in probabilistic verification of a simple

voting scheme (Section 3);
3. Application of the general separation results to Rabin’s solution to distributed mutual exclusion with bounded

waiting (Section 7);
4. A description of how the algebraic proofs may be automated in an adapted version of Aboul-Hosn and Kozen’s

KAT-ML system [3] (Section 5).
We end in Section 8 with a discussion of how the algebraic approach may be used for simple specifications of the

critical “secrecy” properties mentioned above.

The notational conventions used are as follows. Function application is represented by a dot, as in f.x. If K is
a set then K is the set of discrete probability distributions over K , that is the normalised functions from K into the
real interval [0, 1]. A point distribution centered at a point k is denoted by δk , and is defined so that δk.k

′ =̂ 1 just
when k = k′. The (p, 1−p) -weighted average of distributions d and d ′ is denoted d p⊕ d ′, and is defined to be the
distribution given by (d p⊕ d ′).k =̂ p×d.k + (1−p)×d ′.k. If K ′ is a subset of states, and d a distribution, we write
d.K ′ for

∑
k∈K ′ d.k. The power set of K is denoted PK . We use early letters a, b, c for general Kleene expressions,

late letters x, y for variables, and t for tests (introduced below).

2. Probabilistic Kleene algebra

Given a (discrete) state space S, the set of functions S → PS, from (initial) states to subsets of distributions over
(final) states has now been thoroughly worked out as a basis for the transition-system style model now generally
accepted for probabilistic systems [20] though, depending on the particular application, the conditions imposed on the
subsets of (final) probability distributions can vary [24,9]. Briefly the idea is that probabilistic systems comprise both
quantifiable arbitrary behaviour (such as the chance of winning an automated lottery) together with un-quantifiable
arbitrary behaviour (such as the precise order of interleaved events in a distributed system). The functions S → PS

model the unquantifiable aspects with powersets (P(·)) and the quantifiable aspects with distributions (S).
For example, a program that simulates a fair coin is modelled by a function that maps an arbitrary state s to (the

singleton set containing only) the distribution weighted evenly between states 0 and 1; we write it

flip =̂ s := 0 1/2⊕ s := 1, (1)

which we can abbreviate s := 0 1/2⊕ 1.
In contrast a program that simulates a possible 0-bias of at most 1/6 is modelled by a nondeterministic choice

delimiting a range of behaviours:
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biasFlip =̂ s := 0 1/2⊕ 1 � s := 0 2/3⊕ 1, (2)

and in the semantics (given below) its result set is represented by the set of distributions defined by the two extremal
probabilities 1/2 and 2/3.

In setting out the details, we follow Morgan et al. [24] and take a domain theoretical approach, restricting the result
sets of the semantic functions according to an underlying order on the state space. We take a “(co-) flat” domain
(S�, 	), where S� is S ∪ {�} (in which � is a special state used to model miraculous behaviour) and the order 	 is
constructed so that � dominates all (proper) states in S, which are otherwise unrelated.

The principal reason for using this domain is that we wish only to model “normal” program operation (i.e. the
result of state changes) together with miracles, and both those types of behaviours are captured adequately by our
semantic model. We note that our use of the special � state becomes necessary only in the probabilistic context—
standard relational models of programming do not require it, using instead the “empty result set” to indicate miraculous
behaviour. In generalising those ideas to include probability the problem is that we cannot formalise distributions over
empty results; but our introduction of an explicit � suffices [22].

Definition 1. Our probabilistic power domain is a pair (S�, 	), where S� is the set of normalised functions from S�
into the real interval [0, 1], and 	 is induced from the underlying “co-flat” order 	 on S� so that

d 	 d ′ iff (∀K ⊆ S · d).K� ≤ d ′.K�.2

Probabilistic programs are now modelled as the set of functions from initial state in S� to sets of final distributions
over S�, where the result sets are restricted by so-called healthiness conditions characterising viable probabilistic
behaviour, motivated in detail elsewhere [20]. They are up-closure, convex-closure and Cauchy closure. A set D of
distributions is up-closed if whenever d ∈ D, and d 	 d ′, then d ′ ∈ D; a set D of distributions is convex-closed if
whenever d, d ′ ∈ D, then their p-weighted average d p⊕ d ′ ∈ D, for any real 0 ≤ p ≤ 1; a set D of distributions is
Cauchy closed if it contains all its limit points.3 These healthiness conditions mean that the semantics accounts for
specific features of probabilistic programs by construction. For example viable computations are those in which miracles
dominate (refine) all other behaviours (implied by up-closure), nondeterministic choice is refined by probabilistic choice
(implied by convex closure), and classic limiting behaviour of probabilistic events (such as so-called “zero-one laws”4)
is also accounted for (implied by Cauchy closure). A further bonus is that, as for standard relational models of programs,
program refinement is simply defined as reverse set-inclusion. We observe that probabilistic properties are preserved
with increase in this order.

Definition 2. The space of probabilistic programs is given by (LS, 	) where LS comprises those �-preserving
functions from S� to the power set of S� restricted to subsets which are Cauchy- , convex- and up-closed with respect
to 	, where �-preserving maps � to {δ�}. The order between programs is defined

Prog 	 Prog′ iff (∀s ∈ S · Prog.s ⊇ Prog′.s),

where both Prog, Prog′ ∈ LS, and thus are functions S� → PS� as above.

For example the healthiness conditions mean that the semantics of the program at (2) contains all mappings of the
form

s �→ δ0 q⊕ δ1, for 2/3 ≥ q ≥ 1/2,

where respectively δ0 and δ1 are the point distributions on the states s = 0 and s = 1.

2 The definition of 	 is equivalently (∀s: S · d.s ≥ d.s′) because distributions are 1-summing. We leave it as it is because it shows more clearly
the connection with the probabilistic powerdomain construction [13].

3 In a metric space a limit point d of a set D is a point such that, given any ε > 0, there is some dε ∈ D with dist(d, dε) < ε, where dist is the
distance function defining the metric. In our space of distributions, where the state space is finite we can define that distance as the maximum of
|d.k − d ′.k|, taken over all states k (including �).

4 An easy consequence of a zero-one law is that if a fair coin is flipped repeatedly, then with probability 1 a head is observed eventually. See the
program ‘flip’ inside an iteration, which is discussed below.
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Fig. 1. Mathematical operators on the space of programs [20].

In Fig. 1 we define some mathematical operators on the space of programs: they will be used to interpret our language
of Kleene terms. Informally composition Prog ; Prog′ corresponds to a program Prog being executed followed by Prog′,
so that from initial state s, any result distribution d of Prog.s can be followed by an arbitrary distribution of Prog′.
The probabilistic operator p⊕ takes the average of the distributions of each of its operands, weighted according to the
real-value p; the nondeterminism operator takes the union of its operands’ results (with closure).

Iteration is the most intricate of the operations—operationally Prog∗ represents the program that can execute Prog
an arbitrary number of times, but must stop iterating at some point; however the “decision” whether or not to continue
iterating is effectively made “on-the-fly”. In the probabilistic context, as well as generating the results of all “finite
iterations” of (Prog � skip) (viz. a finite number of compositions of (Prog � skip)), imposition of Cauchy closure
acts as usual on metric spaces in that it also generates all limiting distributions—i.e. if d0, d1, . . . are distributions
contained in a result set U , and they converge to d , then d is contained in U as well. The intuition for including limit
distributions in the semantics is based on the observation that there is no test which can effectively distinguish between
a program which can establish a specific condition “with probability 1” and one which can establish the same condition
“with probability arbitrarily close to 1”—thus (by imposing Cauchy closure) we ensure that the semantics does not
distinguish those cases either.

To illustrate, we consider

halfFlip =̂ if s=0 then flip else skip, (3)

where flip was defined at (1). It is easy to see that the iteration halfFlip∗ corresponds to a transition system which can
(but does not have to) flip the state from s = 0 an arbitrary number of times. Thus after N iterations of halfFlip, the
result set contains all the distributions δ0 1/2n⊕ δ1 for n ≤ N . Cauchy Closure then implies the result distribution set
must contain δ1 as well.

We shall repeatedly make use of tests, defined as follows. Given B, a Boolean-valued function of the state space,
we write [B] for the test

if B then skip else magic, (4)
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viz. the program which skips if the initial state satisfies B, and behaves like a miracle otherwise. We use [¬B] for the
complement of [B]. Tests are standard (non-probabilistic) programs which, given the definitions at Fig. 1 satisfy the
following properties:
• [B]; [¬B] = magic—a test followed by its negation results in a miracle (and is a “zero” of Composition);
• [B] � [¬B] = skip—the nondeterministic choice between a test and its negation is the “identity” of Composition;
• skip 	 [B]—the identity is refined by any test.
• Prog ; [B] determines the probabilities with which Prog may establish B. To see that, let d be any distribution in the

result set of (Prog ; [B]).s0 , where s0 is some initial state. The presence of the test [B] means that for any (proper)
state s /= �, we can have d.s > 0 only if s “was allowed through” by the skip part of [B], i.e. satisfies B. Hence
the sum d.S gives the overall probability that the final result of executing Prog from s0 satisfies B in that case.
For example consider biasFlip at (2). The program biasFlip ; [s = 0] is

(s := 0) 1/2⊕ magic � (s := 0) 2/3⊕ magic = (s := 0) 2/3⊕ magic,

a program whose probability (2/3) of not being blocked (by a miracle) is the maximum probability with which
biasFlip can establish s = 0, since the demonic choice is resolved to avoid (miraculous) blocking.

• Similarly, Prog ; [B] ; chaosK = chaosK ps ⊕ magic, where ps is the greatest probability that Prog may
establish B from initial state s, because chaosK masks all information except for the probability that the test is
successful. For example in the example above, we have biasFlip ; [s = 0] ; chaosS is

(s := 0 2/3⊕ magic); chaosS = chaosS 2/3⊕ magic.

• Tests distribute over nondeterministic choice since, more generally, if Prog contains no probabilistic choice, then
Prog distributes over � , i.e. for any Prog′ and Prog′′, we have

Prog ; (Prog′ � Prog′′) = Prog ; Prog′ � Prog ; Prog′′.
Now we have introduced a model for general probabilistic contexts, our next task is to investigate its program

algebra.

2.1. Mapping pKA into LS

In our use of Kleene algebra the variables denote programs, with distinguished programs 1 and 0; and the operators
comprise sequential composition (having identity 1 and zero 0), a binary plus + and unary star ∗. Terms are ordered
by ≤ induced from + (see Fig. 2), and both binary as well as the unary operators are monotone with respect to that
order. Sequential composition is indicated by the sequencing of terms in an expression so that ab means the program
(denoted by) a is executed first, and then b. The expression a + b means that either a or b is executed, and the Kleene
star a∗ represents an arbitrary number of executions of the program a.

In Fig. 2 we set out the rules for the probabilistic Kleene algebra, pKA. These are the same as standard Kleene
algebra, except for the (weaker) rules indicated by (†) and (‡); we justify the weakening below. We shall also use tests,
whose denotations are programs of the kind (4). We normally denote a test by t , and its complement is ¬t .

The next definition gives an interpretation of pKA in LS.

Definition 3. Assume that for all variables x the denotation [[x]] ∈ LS as a program (including tests) is given explicitly.
We interpret the Kleene operators over terms as follows:

[[1]] =̂ skip, [[0]] =̂ magic,

[[ab]] =̂ [[a]]; [[b]], [[a + b]] =̂ [[a]] � [[b]], [[a∗]] =̂ [[a]]∗.
Here a and b stand for other terms, including simple variables.

The order ≤ of pKA is identified with � from Definition 2 (note reversal); for example 0 ≤ 1 corresponds to
[[0]] � [[1]], that is magic � skip.

The next result shows that Definition 3 is a valid interpretation for the rules in Fig. 1, in that theorems in pKA apply
in general to probabilistic programs.

Theorem 4 [18]. Let [[·]] be an interpretation as set out at Definition 3. The rules at Fig. 2 are all satisfied, namely if
a ≤ b is a theorem of pKA set out at Fig. 2, then indeed [[b]] 	 [[a]].
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To see why we cannot have equality at (†) in Fig. 2, consider the expressions a(b + c) and ab + ac with [[a]] = flip
and [[b]] = skip and [[c]] = (s := 1−s). Then [[a(b + c)]] is

s := 0 1/2⊕ 1; (skip � s := 1−s),

where we can see clearly that the demonic choice is made after the probabilistic choice in flip has been resolved. This
means that one possible result is for s to be assigned 0 with probability 1, since the following valid refinement

s := 0 1/2⊕ 1; if s=0 then skip else s := 1−s,

is semantically equivalent to s := 0 (each probabilistic branch is followed by a program which has the effect of setting
s to 0).

On the other hand, denotation [[ab + ac]] is the program

s := 0 1/2⊕ 1; skip � s := 0 1/2⊕ 1; s := 1−s

= s := 0 1/2⊕ 1 � s := 0 1/2⊕ 1
= s := 0 1/2⊕ 1,

which clearly does not have the property that s may be set to 0 with probability 1. In the second case the demonic
choice is resolved before the probabilistic choice, and thus cannot exploit the result of the subsequent random flip.

In summary, the failure of distribution (of a) over the demonic choice indicates that there is more information
available to the demon after execution of a than before.

Similarly the rule at Fig. 2 (‡) is not the usual one for Kleene algebra. Normally this induction rule only requires
a weaker hypothesis, but that (weaker) rule, ab ≤ a ⇒ ab∗ = a, is unsound for the interpretation in LS for similar
reasons.

Consider the interpretation where each of a, b and c represent flip defined at (1). We show below that flip∗ = s :=
0 � 1 (using a similar abbreviation), so that

flip ; flip∗ = s := 0 � 1 /= flip,

in spite of the fact that flip ; flip = flip.
To see why flip∗ results in the nondeterministic choice,
we reason

flip∗
= (νX · flip; X � skip)

	 (νX · if s=1 then flip; X else skip)

= s := 0, because Cauchy closure includes the limit point

and note that similar reasoning yields flip∗ 	 s := 1.
The first refinement represents the case where the demon continues to execute flip until the result s = 0 is achieved,

and in the second the demon strives for 1. Thus we establish flip∗ 	 s := 0 � 1 at least (sufficient to make our point),
though in fact they are equal.

For the sound rule (‡), the antecedent fails. Indeed the effect of the (1 + b) in that rule is to capture explicitly the
action of the demon, and the hypothesis is satisfied only if the demon cannot skew the probabilistic results in the way
illustrated above.

Whilst Theorem 4 establishes the soundness of the rules at Fig. 2 for probabilistic semantics, we note that there
are other nonprobabilistic models which also satisfy them. These include Monodic tree languages [30] (in fact having
the same equational theory as pKA); programming models accommodating both angelic and demonic choices [4]; and
other formulations of programming frameworks such as the Lazy Kleene Algebras (which among other things provides
an abstraction of predicate transformers) [21]. However in the current context—restricted only to nondeterminism and
probability (although the latter only implicitly)—pKA’s lack of distributivity through nondeterministic choice indicates
that there is a conflict between the two types of branching construct, and thus distinguishes between the presence, or
absence of probability.

The use of implicit probabilities fits in well with our applications, where probability is usually confined to code
residing at individual processors within a distributed protocol and nondeterminism refers to the arbitrary sequencing
of actions that is controlled by a so-called adversarial scheduler [29]. For example, if a and b correspond to atomic
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Fig. 2. Rules of Probabilistic Kleene algebra pKA [18].

program fragments (containing probability), then the expression (a + b)∗ means that either a or b (possibly containing
probability) is executed an arbitrary number of times (according to the scheduler), and in any order. In other words it
corresponds to the concurrent execution of a and b.

Typically a two-stage verification of a probabilistic distributed protocol might involve first the transformation of
a distributed implementation architecture, such as (a+b)∗, to a simple, separated specification architecture, such as
a∗b∗ (first a executes for an arbitrary number of times, and then b does), using general hypotheses, such as ab ≤ ba

(program fragments a and b sub-commute). The second stage would then involve a model-based analysis in which the
hypotheses postulated to make the separation go through would be individually validated by examining the semantics
in LS of the precise code for each.

In the next section we illustrate how the combination of the algebraic and semantic approaches overall simplifies
the verification of a straightforward probabilistic voting mechanism. In Section 6 we describe how the method can be
used for a much more intricate protocol.

3. A simple voting scheme

Probability can offer an attractive implementation mechanism for distributed voting; and our algebraic approach
can be used to simplify the verification task: that despite adversarial scheduling, the voting protocol is still impartial.
We illustrate this with a simple example.

N processes wish to decide which one of them is to be granted exclusive access to a critical section. They do so
by executing a distributed election protocol, where an adversarial scheduler “moderates” which of the processes
is allowed to participate. The protocol must be designed to meet the following fairness criterion: any pair of
processes have equal chance of winning any competition in which they both take part.

It is normal practice to assume that the scheduler is not only able to choose the execution order of the processes,
but also which ones to schedule in any competition—the only expected commitment is that eventually each process
must be scheduled [27]. Under that weak constraint, the above additional fairness condition ensures that the scheduler
cannot favour one process over another.

A simple scheme to implement distributed voting is set out at Fig. 3. Each process, if selected, first checks whether
it has already voted, and if it has not, sets itself to be the winner, via the assignment “w := x” with probability
1/n, after incrementing the variable n recording the current number of participants. The behaviour of the whole
system—comprising a (finite) set X of processes—is specified using the Kleene star over their generalised sum5,

Election =̂ (+x∈X Vx)
∗, (5)

where the adversarial choice is modelled by the nondeterministic choice. In program execution terms, we are saying
that each process may execute its voting program “for a while”.6

5 We use +i∈Iai for the generalised nondeterministic choice over programs ai , where i is drawn from a finite index set I.
6 Here we are making the (possibly too strong) assumption that the code in Fig. 3 is executed “atomically”.
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Fig. 3. Local code for node x in a distributed voting scheme.

The intuition behind this straightforward scheme is based on a simple property of probability as follows. Observe
first that the later a process casts its vote, the lower is the chance of winning, but that the probabilities are carefully
chosen so that the overall fairness is unaffected by the specific voter line-up. The reason is that the apparent advantage
for early voters is offset by the (repeated) chance that the current winner is usurped.

For example, we can prove by an inductive argument that after m participants V0, . . . Vm−1 have voted independently,
then the probability that w = i, for 0 ≤ i < m is 1/m. The base case is dealt with trivially, for m is assumed to be 0
initially, and then w is set to the identity of the first participant (say V0) after first incrementing n. The overall effect
of that is to assign w the value 0 with probability 1 = 1/1, and n the value of 1.

For the inductive step, we assume that m participants have voted, so that n is m, and that the result is the uniform
probabilistic assignment to w over m values, which we denote by the generalised probabilistic choice as follows; the
program so far is effectively

n := m;
⊕

0≤i<n

w := i @1/n,

where we have introduced a notation for generalised probabilistic choice. If participant Vm is now selected, the program
so far becomes

n := m; (
⊕

0≤i<n w := i @1/n); n := n+1; (w := n 1/n⊕ skip)

= n := m+1; (
⊕

0≤i<n−1 w := i @1/(n−1)); (w := n 1/n⊕ skip)

= n := m+1; (
⊕

0≤i<n−1 w := n 1/n⊕ i @1/(n−1))

= n := m+1; w := n 1/n⊕ (
⊕

0≤i<n−1 w := i @1/(n−1))

= n := m+1; (
⊕

0≤i<n w := i @1/n),

thus establishing the induction. Finally we note that this general property ensures the pairwise fairness criterion stated
above.

Unfortunately the above argument does not take adversarial scheduling into account, in particular (5) that the
adversary not only controls the order, but also the list of participants. As explained above such freedom is typically
considered in the system model during verification so that the verification covers “worst case” scenarios—protocols
which can withstand this level of scheduler interference would be deemed to be very robust indeed. In this case the
analysis (set out below) shows that the protocol at Fig. 3 is not resilient against such disturbance and indeed the
adversary can favour one process over another by exercising its control. This indicates that either the adversary’s
freedom must be curtailed, or the protocol significantly strengthened.

To see an example of what can happen, consider the run of Election set out at Fig. 4 in a system comprising 3 voters.
Here the adversary in (Vx + Vy + Vz)

∗ executes Vx , then Vy ; but he goes on to execute Vz only if x is still the current
winner. The probabilistic behaviour of this schedule can be seen from Fig. 4—and a brief examination shows that it
presents a counterexample to the pairwise fairness criterion. For example, suppose we select competitions in which
both y and z participate—in Fig. 4 we see that only happens in the case that y has already lost, thus the chance that y

wins (restricted to those competitions) is 0, whereas z’s chance of winning is 1/3.7

7 This is using the standard probabilistic technique of conditioning applied to the tree in Fig. 4: the probability that y wins given that both y and
z participate is 0.
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Fig. 4. A voting run with adversarial choice.

The underlying problem here is that with such powerful adversarial scheduling, the fact that the scheduler has
knowledge of the result of previous probabilistic choices matters—a so-called oblivious scheduler (in which the
scheduler’s behaviour cannot be correlated with the results of probabilistic branching) would not gain that advantage,
and similarly would not be able to discriminate against y in the way illustrated here.8 The fact that we do not have
oblivious scheduling here in Fig. 4 is a depiction of the failure of distributivity

VxVy(1 + Vz) /= VxVy + VxVyVz,

for the right-hand side does not include the possibility of Vz being scheduled on the basis of Vy’s luck, as the left-hand
side does. Were the distributivity to hold, we would easily be able to show that Election is equivalent to distributing all
the nondeterminism (+) to the front of the expression, so that the scheduler would be forced to decide beforehand which
processes to schedule for the competition. Indeed, that being so, we would have proved the pairwise fairness criterion
after all. In pKA however that possibility does not exist precisely because in probabilistic programming schedulers are
not in general oblivious, and can only made to appear so by careful protocol design.

This example illustrates the difficulties lurking in a probabilistic analysis (and indeed in specifications9), even within
apparently very simple protocols. In this case the problem is that the scheduler is too powerful, able to construct his
schedule on the basis of the outcome of the coin flips. The intention however, is to force the scheduler to behave
obliviously, namely that his schedule should be somehow chosen independently of probabilistic outcomes.

One simple way to avoid the scheduler deciding to exclude a process is to enforce a condition that all three must
participate. We do this with the test T =̂ vx ∧ vy ∧ vz, and then define the distributed protocol to be

3-Election =̂ (Vx + Vy + Vz)
∗ [T ], (6)

which now excludes the schedule depicted in Fig. 4, where in one of the possible executions, Vz is scheduled, and in
another it is not.

We can explain (6) in terms of the semantics as follows. First, the Kleene star operator accounts for all possible
actions of the scheduler, but then the following test “winnows out” all schedules that fail T . In the case that any of the
three vi’s is false initially, the test [T ] thus enforces a final result where vi = true, indicating that participant Vi was
indeed scheduled.10

Next we make the allusion to fairness precise by decreeing an election to be fair if it yields the same result as the
serialisation VxVyVz—which as we have seen sets each process to be winner with probability 1/3. Thus 3-Election is
fair if the refinement

8 It turns out however that “oblivious scheduling” does have a neat algebraic characterisation as a distribution law involving +, and we discuss
this later in Section 8.

9 The problems with such informal specifications, especially in the probabilistic context, have been pointed out by Saias [28].
10 In this example the scheduler may schedule each participant Vi with probability 1, and if he does so, inspection of the code at Fig. 3, implies
that the corresponding guard vi must be set to true with probability 1 as well.
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Fig. 5. Properties satisfied by the implementation at Fig. 3.

3-Election ≤ VxVyVz, (7)

is valid. Finally, we use pKA reasoning to establish that refinement, with the minimal amount of numerical calculation,
and in particular without having to consider all possible execution orders.

First we set out at Fig. 5 some simple properties of the programs Vi’s (for i ∈ {x, y, z})—these algebraic rules
provide the hypotheses under which the protocol may be proved correct, and collectively they form an algebraic
specification.11

Whilst the algebraic proof below ensures that the specification (7) is met, when presented with a concrete system
(such as Fig. 3) the hypotheses must be verified directly using the probabilistic semantics Fig. 1, to complete the link
between the concrete protocol and the abstract algebraic reasoning. The advantage of using this kind of verification
rather than building a concrete model of the whole distributed protocol (in general involving many more than just 3
processes) is that all quantitative reasoning at the concrete level becomes entirely localised and can be carried out in
small pieces: in some cases it can even be automated [10].

Fortunately for the protocol at Fig. 3, checking the hypotheses is very easy. In (a) for example once Vi has executed,
then the guard in Vi makes (1 + Vi) behave as skip. For (b) we use the program- (not Kleene-) algebra of pGCL in a
similar style to our earlier proof of the induction step (but dropping the “

⊕
” for neatness): we reason

(w := i 1/n⊕ skip); (w := j 1/n+1⊕ skip)

= w := i; w := j @(1/n)(1/n+1)

w := i; skip @(1/n)(1 − 1/n+1)

skip; w := j @(1 − 1/n)(1/n+1)

skip; skip @(1 − 1/n)(1 − 1/n+1)

= w := j @(1/n)(1/n+1)

w := i @(1/n)(1 − 1/n+1)

w := j @(1 − 1/n)(1/n+1)

skip @(1 − 1/n)(1 − 1/n+1)

= w := i @1/n+1
w := j @1/n+1
skip @1 − 2/n+1,

which is symmetric in i, j .

11 Note that the extra “1+” in (a) and (c) are examples of where the stronger hypotheses are needed to allow appeal to the (daggered) rules at Fig. 2.
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For (c) we assume first that vx = vy = vz = false initially, and we note that since execution of Vi does not
change the variables vj for j /= i, then (1+Vx)(1+Vy)(1+Vx)[T ] = VxVyVz[T ]. The result now follows for this
case since by property Fig. 5(b) the Vi’s commute. The other cases where one or more of the vi’s is initially true,
the argument is the same, once we observe that (1 + Vi) is equivalent to the identity 1 in the case that vi = false
initially.

More generally, approaches for carrying out such small intricate proofs can be done using quantitative program
logic described elsewhere [20]. Whilst that logic is not optimised for checking full refinements, in some special cases
there do exist practical verification rules for probabilistic refinement checking [10].

Now we have algebraic properties at Fig. 3, we are able to prove entirely within the algebra pKA the refinement
given by (7) and we note that crucially the proof does not rely on detailed arithmetic calculation at all. Proofs
proceed effectively by re-writing subexpressions to equivalent, or weaker ones, with the validity guaranteed by the
hypotheses (in this case Fig. 5) or the general pKA axiom set at Fig. 2. We illustrate the style with the following
calculation.

Lemma 5. The hypotheses at Fig. 5 imply (7), i.e. 3-Election ≤ VxVyVz.
Proof. Write V for (1+Vx)(1+Vy)(1+Vz), and reason

(Vx+Vy+Vz)V [T ]
= VxV [T ]+VyV [T ]+VzV [T ] Fig. 2(iv,ix)
= Vx(1+Vx)(1+Vy)(1+Vz)[T ] + VyV [T ]+VzV [T ] Definition of V

= Vx(1+Vy)(1+Vz)[T ] + VyV [T ]+VzV [T ] Vx(1+Vx) = Vx , Fig. 5(a)
≤ V [T ]+VyV [T ]+VzV [T ] Vx ≤ (1+Vx); definition of V

≤ V [T ] + V [T ] + V [T ] As above and Fig. 5(c left)
= V [T ].
From this we can appeal to Fig. 2(xiii) and Fig. 5(c right) to deduce that

(Vx+Vy+Vz)
∗V [T ] ≤ V [T ],

but now 1 ≤ V and so we have after all that the left-hand side is at least (Vx+Vy+Vz)
∗[T ], from which (7) follows.

In fact this result can be applied more generally to an election of N voters: provided the scheduler allows each
voter to make their choice, the election will be fair. Here the scheduler is still able to choose the order, yielding many
complicated trace patterns than are possible in the 3-voter election. Unfortunately (7) does not generalise, and in this
case we need to prove a slightly weaker result using the more complicated serialisability results dealt with in Section 7
below.

Rather than setting out that algebraic proof here, we discuss those more general serialisation-style theorems in the
next section. We examine how to carry out formal proofs of such algebraic properties in Section 5, and apply the results
to a much more sophisticated mutual exclusion protocol, of which fairness is a subtle issue.

4. Separation theorems

Voting schemes usually make up only part of a larger protocol, designed to achieve some other goal such as electing
a leader. Thus to be useful the protocol must ensure that the winner and losers are somehow notified of the result.
Thus a protocol is often divided into two “phases”: one for voting, and one for notification.12 In distributing such
phased protocols, typical is the apparent mixing up of the two phases, with the consequence that it is no longer
clear that the fairness criterion is met. One of the tasks of the verification exercise is to show that the phases can be
separated throughout the system, revealing after all a pattern of straightforward behaviour which can then be more
easily analysed.

Separation is the standard technique applicable in such situations, and in this section we extend some standard
separation theorems of Cohen [6] to the probabilistic context, so that we may apply them to probabilistic protocol

12 A phase of a program is a fragment of a full program—when represented by a term a, it satisfies all the rules in Fig. 2.
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verification. Although the lemmas are somewhat intricate we stress their generality: proved once, they can be used in
many applications. We do not attempt to explain the proofs in detail in pKA here—we leave that until Section 5, where
we discuss proof automation.

Our first results at Lemma 6 consider a basic iteration, generalising loop-invariant rules to allow the body of an
iteration to be transformed by passage of a program a.

Lemma 6

ac ≤ cb ⇒ a∗c ≤ cb∗ (8)

a(b + 1) ≤ ca + d ⇒ ab∗ ≤ c∗(a + db∗) (9)

Proof. For (8) see the Appendix; for (9) see [7, Lemma 2(6)]. �

Note that the weaker commutativity condition of ab ≤ ca + d will not do at (9), as a, b, c =̂ flip and d =̂ magic
illustrates. In this case we recall that a∗ and b∗ both correspond to the program s := 0 � 1, and this is not the same
as the corresponding interpretation for c∗a which corresponds to flip again.

Lemma 6 implies that with suitable commutativity between phases of a program, an iteration involving the interleav-
ing of the phases may be thought of as executing in two separated pieces. Here, if we think of a and b now representing
those two phases, we note that again we need to use a hypothesis b(1 + a) ≤ (1 + a)b, rather than a weaker ba ≤ ab.

Lemma 7. b(1 + a) ≤ (1 + a)b ⇒ (a + b)∗ ≤ a∗b∗.
Proof. See Lemma 2 at Computer Formalised Proofs [7]. �

In some cases however we might know that b is standard (has no probability), so that it distributes + from the right:
in that case the hypothesis of Lemma 7 is after all equivalent to the simpler ba ≤ ab.

5. Computer support for pKA proofs

One could express pKA in the logical framework of one of the several successful proof assistants. But that could
easily turn into a major proof formalisation effort on its own: compare the experience of Hurd in a closely related
problem, the formalisation of pGCL in HOL [12].

Instead we chose the simpler and much more accessible alternative of using the interactive theorem prover KAT-ML
developed by Aboul-Hosn and Kozen [3,1]. This tool is designed to help a user to perform interactive equational (and
quasi-equational) proofs in the formal system of Kleene algebras with tests (KAT ), an extension of Kleene algebras
with an embedded Boolean subalgebra (see elsewhere for details [14]). A reason for our choosing KAT-ML is that
with a relatively simple modification of its code, we could use a new set of axioms for pKA instead of the hard-coded
original set for KA. This did not require any modification of the proof machinery of the original tool, thus saving a
big amount of effort. A second reason, and in particular for not doing this development in a logical framework (such
as Isabelle, HOL or Coq) is one that the authors of KAT-ML already held: as the intended use of the tool is performing
equational reasoning (as opposed to, say, formalising the model theory of pKA), the full power and complexity of those
other tools is not necessary, and the extra effort required for a user to master enough of those tools’ particularities is
avoided in favor of a simpler and cleaner development.

KAT-ML is based on the concepts set out in Aboul-Hosn’s PhD thesis [2], in which the relationship between proofs
in a proof library is just as formal as the steps of those same proofs. While the prover represents the proofs done by
the user as λ-terms, the user does not need to deal with this representation and works purely in the KAT syntax. Proofs
can be stored in and retrieved from library files, and there’s also a facility to create nicely formatted LaTeX versions
of the proofs. The prover can be used in a command-line or a graphical interface mode—in particular the interaction
involves specifically “focusing” and “unfocusing” on parts of an equation to be proved. The focussed part is rewritten
by appealing to the appropriate axioms or previously proved theorems in library files. We set out the axioms and an
example proof in the appendix. Regarding the automation provided by this tool, it is able to explore the search tree
of a goal proof to a depth indicated in a run-time parameter (inside a configuration file), and this search tries to make
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use not just of the axioms for pKA but also of any known theorems already available in the proof environment as it
stands at that moment. In practice, we have found this pretty much eliminates the need for the user to do almost all the
tedious parts of proofs (in particular the many applications of commutativity and monotonicity), and it takes care of a
good amount of non-trivial applications of other axioms and theorems.

Considering all the features just described, and the closeness of pKA to KA as algebraic systems (as discussed in
the introduction of the present work), we have chosen to use a modified version of KAT-ML to support our proofs
mechanically. The modification consists of replacing the hard-coded set of axioms in the original KAT-ML prover by
the corresponding set of pKA axioms shown above at Fig. 2. At this point, the new axiom set implies that many of
the theorems in the original KAT-ML library are incorrect, and we needed to reconstruct by hand a new library set
based on pKA. Fortunately many slightly weaker versions of the original theorems were found to remain true for pKA,
however often with new and different proofs.

Aside from that our modification left the interface elements and the whole of the prover’s engine untouched. The
program with its sources and the new proof libraries can be found through the second author’s web page [7].

A desirable further modification in the near future would be to make the axiom set loadable from an external file, so
both our proofs and the original ones for KAT can be used with the same program. This would also allow the tool to
support other variations of Kleene algebra. A limitation of our tool that comes from the original system is the inability
to do proofs that involved a variable number of formulas (think for instance of a general distributivity theorem where
the number of elements involved is arbitrary, as in Lemma 8 and Lemma 9 below). While in a few cases some suitable
introduction of names for such variable-length expressions and the provision of special hypothesis could allow one
to carry a proof of such theorem, in general we need more than the tool currently provides. In this respect, logical
frameworks could be a good solution: interfacing our modified KAT prover with such a framework would be very
useful for that kind of proof.

6. Mutual exclusion with bounded waiting

In this section we describe the mutual exclusion protocol, and discuss how to apply the algebraic approach to it.

Let P1, . . . PN , be N processes that from time to time need to have exclusive access to a shared resource.
The mutual exclusion problem is to define a protocol which will ensure both the exclusive access, and the

“lockout-free” property, namely that any process needing to access the shared resource will eventually be allowed
to access it.

A protocol is said to satisfy the bounded waiting condition if, whenever no more than K processes are actively
competing for the resource, each has probability at least α/K of obtaining it, for some fixed α (independent of
N ).13

The randomised solution we consider is based on one proposed by Rabin [15]. Processes can coordinate their
activities by use of a shared “test-and-set” variable, so that “testing and setting” is an atomic action. The solution assumes
an “adversarial scheduler”, the mechanism which controls the otherwise autonomous executions of the individual
processes. The scheduler chooses nondeterministically between them, and the chosen Pi then may perform a single
atomic action, which might include the test and set of the shared variable together with some updates of its own local
variables. Whilst the scheduler is not restricted in its choice, it treats the processes fairly in the sense that it must always
eventually schedule any particular process.

The broad outline of the protocol is as follows; more details are set out at Fig. 6. Each process executes a program
which is split into two phases, one voting, and one notifying. In the voting phase, processes participate in a lottery,
each drawing a number; the current winner’s lottery number is recorded as part of the shared variable. Processes draw
at most once in each voting phase, and the winner is notified when it executes its notification phase. The notification
phase begins only when the critical section becomes free.

Our aim is to show that when processes follow the above protocol, the bounded-waiting condition is satisfied. Rabin
observed that in a lottery in which tickets are drawn according to (independent) exponential distributions, there is a

13 Note that this is a much stronger condition than a probability α/N for some constant α, since it is supposed that in practice K � N .
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Fig. 6. The key events in a single round of the mutual exclusion protocol.

probability of at least 2/3 of a unique winner [15].14 However that model-based proof cannot be applied directly here,
since it assumes (a) that there is no scheduler/probability interaction; (b) that the voting is unbiased between processes,
and (c) that the voting may be separated from the notification. In Rabin’s original solution, (c) was false, and that in
turn implied problems with (a) and (b) as well. We observe however that his highly novel model-based argument still
applies provided that voting may be (almost) separated from notification. We shall use an algebraic approach to do
exactly that for a modified protocol, which does indeed allow the separation, and is a feature of a later proposal for
solving the mutual exclusion problem [15].

7. The probability that a participating process loses

We now show how the lemmas of Section 4 can be applied to the abstract example of Section 6: we compute the
probability that a particular process P0 loses. Writing V0 and T0 for the two phases of P0’s protocol, respectively vote
and notify (recall Fig. 6), and we introduce abbreviations V̂ =̂ +iVi and V =̂ +i /=0Vi so that V̂ = V + V ; similarly
T̂ and T . The chance that P0 loses can be computed easily from the following expression

(V̂ + T̂ + C)∗ A0,

where A0 abstracts the results, preserving only the value of the highest vote (in the case that P0 drew it or has not
yet voted), or that P0 has lost. In the lemmas below we shall show that this expression is equivalent to a competition
between P0 and a pool of anonymous contestants—overall the competition can be serialised, thus simplifying the
calculation necessary to compute the actual chance of P0’s success.

The necessary algebraic properties of the program fragments are set out at Fig. 7, and as a separate analysis the
verifier must ensure that the actual code fragments implementing the various phases of the protocol satisfy them.
This, as we saw for3-Election, is done at a lower conceptual level, in the program algebra of pGCL, rather than in the
Kleene algebra; the crucial advantage is that the Kleene-algebraic “pre-analysis” has allowed those code fragments to
be treated one-by-one, in isolation. An alternative way to think of Fig. 7 is as an algebraic specification for the concrete
protocol code.

The next lemma uses separation to show that we can separate the voting from the notification within a single round,
with the round effectively ending the voting phase with the execution of the critical section. (Note that we cannot prove

14 Each process Pi independently chooses ti≥1 with probability 1/2ti ; then with probability ≥2/3 one choice will strictly exceed all others, no
matter how many processes chose. (If the choices are bounded, the 2/3 must be adjusted.)
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Fig. 7. Algebraic properties of the system.

Lemma 8 and Lemma 9 completely in KAT-ML as they contain parameters which cannot be expressed in that system;
the proofs below are done by hand where necessary.)

Lemma 8. We may assume all voting to come before the critical section is released, and all notification to come after:
(V̂ + T̂ + C)∗ ≤ V̂ ∗ C∗ T̂ ∗.

Proof. From Fig. 7 we can show

T̂ (V̂ + C + 1) ≤ (V̂ + C + 1) T̂ , and
C(V̂ + 1) ≤ (V̂ + 1)C

(since T̂ has a standard denotation, so distributes +). These now form the general hypotheses for Lemma 8 at Computer
Formalised Proofs [7], from which our result follows. �

Next we may consider the voting to occur in an orderly manner in which the selected process P0 votes last, with
the other processes effectively acting as a pool of anonymous opponents who collectively attempt to lower the chance
of its winning—this is the fact allowing us to use the model-based observation of Rabin to compute a lower bound on
the chance that P0 wins.

Lemma 9. Participant P0’s chance of losing is bounded above by that chance in a schedule in which it votes last:
V̂ ∗A0 ≤ V A0

∗
(V0A0)

∗A0.

Proof. The proof can be found at Lemma 9 at Computer Formalised Proofs [7]. The hypotheses may be deduced
from Fig. 7(c) and the properties of A0 listed there.15 �

With Lemma 9, we have finally established the goal of serialising a single round of Rabin’s (revised) protocol, thus
justifying Rabin’s original intuitions [15] that participants’ votes can be considered to be carried out independently of
eachother. However that justification relies on the separation of the voting and notification phases, each controlled by
the release of the critical section—that crucial separation, which emerged in a later protocol [15], was not present in
Rabin’s original proposal.

To complete the proof of the fairness criterion a detailed numerical proof is required, set out elsewhere [12]—
however we note here that the proof assumes that the round can be separated as above. Thus Lemma 9 plays the crucial
role in establishing the hypotheses required for the results of the numerical proof to apply to Rabin’s protocol.

15 Note that in KAT-ML it is not possible to state the general distributivity (of A0) through + as a hypothesis; any appeal to distributivity must be
stated explicitly relative to specific expressions.
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The calculation above is based on the assumption that P is eligible to vote when it is first scheduled in a round. In
Rabin’s implementation, the mechanism for testing eligibility uses a round number as part of the shared variable, and
after a process votes, it sets a local variable to the same value as the round number recorded by the shared variable.
By this means the process is prevented from voting more than once in any round. In the case that the round number
is unbounded, P will indeed be eligible to vote the first time it is scheduled. However one of Rabin’s intentions was
to restrict the size of the shared variable, and in particular the round number. His observation was that round numbers
may be reused provided they are chosen randomly at the start of the round, and that the scheduler cannot see the result
when it decides which process to schedule. In the next section we discuss the implications of this assumption on LS

and pKA.

8. Secrecy and its algebraic characterisation: discussion

The actual behaviour of Rabin’s protocol includes probabilistically setting the round number, which we denote R

and which makes the protocol in fact

(R(V̂ + T̂ + C)∗)∗, (10)

where the outer ∗ means that the single round is repeated some number of times.
The problem is that the interpretation in LS assumes that the value chosen by R is observable by all, in particular by

the adversarial scheduler, that latter implying that the scheduler can use the value during voting to determine whether
to schedule P . In a multi-round scenario, that would in turn allow the policy that P is scheduled only when its just-
selected round variable is (accidentally) the same as the current global round: while satisfying fairness (since that
equality happens infinitely often with probability one), it would nevertheless allow P to be scheduled only when it
cannot possibly win (in fact will not even be allowed to vote). Thus, in this case we would find that P ’s ineligibility to
vote would be correlated with his being selected to participate in any round—just as in the adversary in the simple voting
mechanism could correlate his choice of which process to schedule, based on the result of a previous probabilistic
choice.

Clearly that strategy must be prevented (if the algorithm is to be correct!)—and unfortunately in this case it must
be prevented by the explicit assumption that the scheduler cannot see the value set by R. However the scheduler
formalised using the nondeterminism given by Definition 1 implies that it can see the result of previous probabilistic
outcomes—that is precisely the behaviour illustrated by Fig. 4. Thus we need a rather more complicated model to
support algebraic characterisations for “cannot see”, and we end this section by discussing what that would be.

The following (sketched) description of a model QS [19, Key QMSRM]—necessarily more detailed than LS—is
able to model cases where probabilistic outcomes cannot be seen by subsequent demonic choice. The idea (based on
“non-interference” in security) is to separate the state into visible and hidden parts, the latter not accessible directly
by demonic choice. The state s is now a pair (v, h) where v, like s, is given some conventional type but h now has
type distribution over some conventional type. The QS model is effectively the LS model built over this more detailed
foundation.16

For example, if a sets the hidden h probabilistically to 0 or 1 then (for some p) in the QS model a denotes

Hidden resolution of probability (v, h)
a�→ { (v, (0 p⊕ 1) ) }.17

In contrast, if b sets the visible v similarly we’d have b denoting

Visible resolution of probability (v, h)
b�→ { (0, h) 1/2⊕ (1, h) }.

The crucial difference between a and b above is in their respective interactions with subsequent nondeterminism;
for we find

a(c + d) = ac + ad

but in general b(c + d) /= bc + bd,

16 Thus we have “distributions over values-and-distributions” so that the type of a program in QS is (V × H) → P (V × H)�, that is LS where
S = V × H .
17 Strictly speaking we should write δ0 p⊕ δ1.
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because in the a case the nondeterminism between c and d “cannot see” the probability hidden in h. In the b case, the
probability (in v) is not hidden.18

A second effect of hidden probability is that tests are no longer necessarily “read-only”. For example if t denotes
the test [h = 0] then we would have (after a say)

(v, (0 p⊕ 1) )
t�→ {(v, 0) p⊕ magic}

where the test, by its access to h, has revealed the probability that was formerly hidden and, in doing so, has changed
the state (in what could be called a particularly subtle way—which is precisely the problem when dealing with these
issues informally!)

In fact this state-changing property gives us an algebraic characterisation of observability.

Definition 10. Observability; resolution.
For any program a and test t we say that “t is known after a” just when

a(t + ¬t) = a. (11)

As a special case, we say that “t is known” just when t + ¬t = 1.
Say that Program a “contains no visible probability” just when for all programs b, c we have

a(b + c) = ab + ac.

Thus the distributivity through + in Definition 10 expresses the adversary’s ignorance in the case that a contains hidden
probabilistic choice. If instead the choice were visible, then the +-distribution would fail: if occurring first it could not
see the probabilistic choice 19 whereas, if occurring second, it could.

Secrecy for the randomised round number

We illustrate the above by returning to mutual exclusion. Interpret R as the random selection of a local round
number rn (as suggested above), and consider the probability that the adversarial scheduler can guess the outcome.
For example, if the adversary may guess the round number (here assumed to take only two values) with probability 1
during the voting phase, according to Definition 10 we would have

R V̂ ∗([rn = 0] + [rn = 1]) chaos = chaos,

(because [rn = 0] + [rn = 1] would be skip).20 But since

(V̂ + 1)([rn = 0] + [rn = 1]) = ([rn = 0] + [rn = 1])(V̂ + 1), (12)

we may reason otherwise:

RV̂ ∗([rn = 0] + [rn = 1])chaos
= R([rn = 0] + [rn = 1])(V̂ )∗chaos (9) and (8); see below.
= R[rn = 0]chaos + R[rn = 1]chaos. Definition 10 and (11)

For the “see below”, we note that the equality at (12) can be reformulated as two inequalities. Then, with the inter-
pretation d =̂ magic, b, a =̂ (V̂ + 1) and c =̂ [rn = 0] + [rn = 1] we can apply separately (9) and (8) at Lemma 6,
to give the required equality.

Now, back in the model, we can compute R[rn = 0]chaos + R[rn = 1]chaos = magic 1/2⊕ chaos, and deduce
that the chance that the scheduler may guess the round number is at most 1/2, and not 1 at all.

18 See the example set out below Theorem 4 for an illustration of the non equality of b(c + d) and bc + bd, in the context where nondeterministic
choice is always sensitive to the outcome of preceding probabilistic choices.
19 Here it cannot see it because it has not yet happened, not because it is hidden.
20 Here we are abusing notation, by using program syntax directly in algebraic expressions.
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We end by noting that this model has been worked out in detail for verifying secrecy-style properties with the
probabilities abstracted [23].

9. Conclusions and other work

Rabin’s probabilistic solution to the mutual exclusion problem with bounded waiting is particularly apt for demon-
strating the difficulties of verifying probabilistic protocols, as the original solution contained a particularly subtle flaw
[28]. The use of pKA makes it clear what assumptions need to be checked relating to the individual process code and
the interaction with the scheduler, and moreover a model-based verification of a complex distributed architecture is
reduced to checking the appropriate hypotheses are satisfied. Our decision to introduce the models separately stems
from QS’s complexity to LS, and the fact that in many protocols LS is enough. The nice algebraic characterisations
of hidden and visible state, may suggest that QS may support a logic for probabilities and ignorance in the refinement
context, though that remains an interesting research.

A number of topics for investigation are suggested by our experiments in automating the proofs. For example the
KAT-ML tool does not handle proofs with generalised choice, which are often features of parameterised proofs. It would
also be interesting to explore practical techniques for verifying the hypotheses at the concrete level. The problem is
essentially one of verifying general program refinements in the probabilistic context—whilst the theory of probabilistic
refinement is well-understood, there are very few examples of automated proof assistants for its verification [10], and
even in those cases they apply to a restricted class of refinements.

A more practical approach could involve techniques used in probabilistic model checking, but should be a signifi-
cantly simpler problem, as they would only need be applied to ∗-free programs.

Others have investigated instances of Rabin’s algorithm using model checking [25]; there are also logics for
“probability-one properties” [16], and models for investigating the interaction of probability, knowledge and adversaries
[8].

Appendix

A. pKA axiom list for KAT prover formalisation

The axiom list below is that used within the adaptation of the KAT-ML prover [3]. Note that the sequential
composition ab is expressed as a · b; moreover associativity of + and · is handled automatically and implicitly by the
KAT prover

(ref=) x = x
(sym=) x = y ⇒ y = x
(trans=) x = y ⇒ y = z ⇒ x = z
(cong+R) x = y ⇒ x + z = y + z
(cong.L) y = z ⇒ x · y = x · z
(cong.R) x = y ⇒ x · z = y · z
(cong*) x = y ⇒ x∗ = y∗
(<intro) x + y = y ⇒ x ≤ y
(<elim) x ≤ y ⇒ x + y = y
(commut+) x + y = y + x
(id+L) 0 + x = x
(idemp+) x + x = x
(id.L) 1 · x = x
(id.R) x · 1 = x
(annihL) 0 · x = 0
(annihR) x · 0 = 0
(distrL) x · y + x · z ≤ x · (y + z)
(distrR) (x + y) · z = x · z + y · z
(unwindL) x∗ = 1 + x · x∗
(*L) x · (y + 1) ≤ x ⇒ x · y∗ = x
(*R) x · y ≤ y ⇒ x∗ · y = y
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B. Auxiliary theorems

The theorems below are all proved using the above equational axioms.

(trans<) x < y ⇒ y < z ⇒ x < z
(add∗R) x < x · y∗
(=<) x = y ⇒ x < y
(supR) y < x + y
(mono.R) x < y ⇒ x · z < y · z
(mono.L) y < z ⇒ x · y < x · z

C. An example KAT-ML style automated proof for pKA

The KAT-ML tool outputs the results of a completed interactive proof in a “pretty-printed” style, an example of
which is set out here. All the other automated proofs may be accessed at [7].

Note that the proof obligations are given in a list—for example both (13) and (14) below are the result of appealing
to trans<, on the right hand side of (12), and both goals must be discharged with further appeal to the axioms or other
already proved properties.

Theorem 11 (Lemma 6(9))

a · c≤c · b ⇒ a∗ · c ≤ c · b∗. (C.1)

By trans<, it suffices to show that

a∗ · c≤a∗ · c · b∗ (C.2)

a∗ · c · b∗ ≤c · b∗ (C.3)

Consider (C.2). By add*R, we have what we need.

Consider (C.3). By =<, it suffices to show that

a∗ · c · b∗ =c · b∗ (C.4)

Consider (C.4). By *R, it suffices to show that

a · c · b∗ ≤c · b∗ (C.5)

Consider (C.5). By trans<, it suffices to show that

a · c · b∗ ≤c · b · b∗ (C.6)

c · b · b∗ ≤c · b∗ (C.7)

Consider (C.6). By mono.R, it suffices to show that

a · c≤c · b (C.8)

Consider (C.8). By (C.1), we have what we need.
Consider (C.7). By mono.L, it suffices to show that

b · b∗ ≤b∗ (C.9)
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Consider (C.9). By trans<, it suffices to show that

b · b∗ ≤ 1 + b · b∗ (C.10)

1 + b · b∗ ≤ b∗ (C.11)

Consider (C.10). By supR, we have what we need.
Consider (C.11). By =<, it suffices to show that

1 + b · b∗ =b∗ (C.12)

Consider (C.12). By sym=, it suffices to show that

b∗ =1 + b · b∗ (C.13)

Consider (C.13). By unwindL, we have what we need. �
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