
Concurrent Kleene algebra with tests

Peter Jipsen

School of Computational Sciences and
Center of Excellence in Computation, Algebra and Topology (CECAT)

Chapman University, Orange, California

April 28, 2014

Outline

I Short review of Kleene Algebras (KA), KA with Tests
(KAT) and Concurrent KA (CKA)

I Generalize to Concurrent KAT (CKAT)

I Automata for guarded series-parallel strings

I Trace semantics for CKAT

I Concurrent relation algebras with transitive closure

Introduction

Kleene algebras with tests (KAT) are de�ned by Kozen and
Smith in 1997 as Kleene algebras with a subalgebra of Boolean
tests, with semantics based on guarded strings

Concurrent Kleene algebras (CKA) are introduced by Hoare,
Möller, Struth and Wehrman in 2009 as idempotent bisemirings
that satisfy a concurrency inequation and have a Kleene-star for
both sequential and concurrent composition

Concurrent Kleene algebras with tests (CKAT) combine these
concepts

Guarded strings are generalized to guarded series-parallel

strings (gsp-strings)

Sets of gsp-strings provide a concrete language model for CKAT

Guarded automata of Kozen [2003] combined with

branching automata of Lodaya and Weil [2000]

=⇒ a model for computing in parallel on gsp-strings

=⇒ trace semantics for simple concurrent computations

Motivation

Relation algebras and Kleene algebras with tests can model
speci�cations and programs

Automata and coalgebras can model state based systems and
object-oriented programs

These paradigms are well suited for single threaded
computations

Multi-core architectures and cluster-computing are now widely
available

The recent development of concurrent Kleene algebra (CKA)
builds on a computational model (KA) that is elegant and has
numerous applications

Useful to explore which aspects of Kleene algebras with tests
can be lifted easily to a concurrent setting

Preserve the simplicity of regular languages and (guarded)
strings

For the nonguarded case many interesting results have been
obtained by Lodaya and Weil [2000] using labeled posets (or
pomsets) of Pratt [1986] and Gisher [1988], but restricted to the
class of series-parallel pomsets called sp-posets

Want to extend guarded strings to handle concurrent
composition with the same approach as for sp-posets

Review of KAT

A Kleene algebra with tests (KAT) is an idempotent semiring

with a Boolean subalgebra of tests and

a unary Kleene-star operation that plays the role of
re�exive-transitive closure

I.e., a two-sorted algebra of the form A = (A,A′,+, 0, ·, 1, ,̄∗)

where A′ is a subset of A,

(A,+, 0, ·, 1,∗) is a Kleene algebra and

(A′,+, 0, ·, 1,)̄ is a Boolean algebra

Complementation is only de�ned on A′

Let Σ be a set of basic program symbols p, q, r , p1, p2, . . . and

T a set of basic test symbols t, t1, t2, . . . (assume Σ ∩ T = ∅)

Elements of T are Boolean generators

write 2T for the set of atomic tests,

= characteristic functions on T , denoted by α, β, γ, α1, α2, . . .

The set of guarded strings over Σ ∪ T is

GSΣ,T = 2T ×
⋃
n<ω

(Σ× 2T)n

A typical guarded string is denoted by α0p1α1p2α2 . . . pnαn,

or by α0wαn for short, where αi ∈ 2T and pi ∈ Σ

For �nite T the members of 2T ⊆ GSΣ,T can be identi�ed with
the atoms of the free Boolean algebra generated by T

Concatenation of guarded strings is via the coalesced product:

wα � βw ′ = wαw ′ if α = β and unde�ned otherwise

For subsets L,M of GSΣ,T de�ne

I L + M = L ∪M
I LM = {v � w : v ∈ L,w ∈ M and v � w is de�ned}
I 0 = ∅
I 1 = 2T

I L̄ = 2T \ L if L ⊆ 2T

I L∗ =
⋃
n<ω L

n where L0 = L and Ln = LLn−1 for n > 0

Then P(GSΣ,T) is a KAT under these operations

De�ne a map G from KAT terms over Σ ∪ T to this concrete
model by

I G (t) = {α ∈ 2T : α(t) = 1} for t ∈ T ,

I G (p) = {αpβ : α, β ∈ 2T} for p ∈ Σ,

I G (p + q) = G (p) + G (q), G (pq) = G (p)G (q),
G (p∗) = G (p)∗, for any terms p, q and

I G (0) = 0, G (1) = 1, G (b̄) = G (b) for any Boolean term b.

The language model GΣ,T is the subalgebra of P(GSΣ,T)
generated by {G (t) : t ∈ T} ∪ {G (p) : p ∈ Σ}

GΣ,T is the free KAT and its members are the rational guarded
languages

Subsets of 2T are called Boolean tests

Other members of GΣ,T are called programs

A nondeterministic guarded automaton is a tuple A = (X , δ,F)
where

I δ ⊆ X × (Σ ∪ P(2T))× X is the transition relation and

I F ⊆ X is the set of �nal states

(x , t, y) ∈ δ is a test transition if t ∈ P(2T)

Acceptance of a guarded string w by A starting from initial
state x0 and ending in state xf is de�ned recursively by:

I If w = α ∈ 2T then w is accepted i� for some n ≥ 1 there is
a path x0t1x1t2 . . . xn−1tnxf in A of n test transitions
ti ∈ P(2T) such that α ∈ ti for i = 1, . . . , n

I If w = αpv then w is accepted i� there exist states x1, x2
such that α is accepted ending in state x1, there is a
transition labeled p from x1 to x2 (i.e., (x1, p, x2) ∈ δ) and v

is accepted by A starting from initial state x2

Finally, w is accepted by A starting from x0 if the ending state
xf is indeed a �nal state, i.e., satis�es xf ∈ F

The regular guarded languages are sets of guarded strings that
are accepted by a �nite automaton starting from some initial state

Kleene showed that rational languages = regular languages;
same holds for guarded languages

Kozen [2003] proved that the equational theory of KAT is
decidable in PSPACE

KAT is more versatile that Kleene algebra

E.g. can express � if b then p else q� by the term bp + b̄q and

�while b do p� using (bp)∗b̄

KAT also interprets Hoare logic

Distinguishes between simple Boolean tests and complex
assertions

Adding concurrency

Now generalize these de�nitions to handle concurrency

Elements P,Q of a concurrent Kleene algebra with tests are
programs or program fragments

They are represented by sets of �computation paths� (traces)

Need to add concurrent composition P||Q

In the sequential model the computation paths are guarded
strings

Want to place two such sequential strings �next to each other�

Also need to sequentially compose such �concurrent strings� etc

View sequential composition as vertical concatenation (top to
bottom) and

concurrent composition as horizontal concatenation

E.g., given two guarded strings α0vαm and β0wβn construct

α0 β0
v w

αm βn

As with sequential composition, this operation is not always
de�ned

To be concurrently composable, require α0 = β0 and αm = βn

So we have α0vαm||α0wαm and denote result by α0{|v ,w |}αm or
vertically by

α0

v w

αm

If α, β are distinct atomic tests then α||β is unde�ned

α||α = α

α||βwγ is unde�ned for all atomic tests α, β, γ

Concurrent composition is commutative:

{|v ,w |} = {|w , v |} is a multiset

|| is associative, i.e., {|{|u, v |},w |} is normalized to {|u, v ,w |}

Hence (αpβ||αqβ)||αrβ = α{|p, q, r |}β = αpβ||(αqβ||αrβ)

Guarded series-parallel strings, or gsp-strings for short are
constructed by successive concurrent and sequential compositions

Formally the set of gsp-strings generated by Σ,T is the smallest
set GSPΣ,T that has 2T and 2T × Σ× 2T as subsets and

is closed under coalesced product � and concurrent product ||

E.g., if Σ = {p, q} and T = {t} then, abbreviating 2T by {α, β},
the following expressions are gsp-strings:

α, αpα, αpβ, α{|p, q|}α, α{|p, q|}αqβ, α{|p, {|p, q|}αq|}β,
...

The language model over gsp-strings is de�ned as in the case of
guarded strings, except that we now have an additional operation.
For L,M ∈ P(GSPΣ,T) let

I L||M = {v ||w : v ∈ L,w ∈ M and v ||w is de�ned}

This makes P(GSPΣ,T) into a complete bisemiring with a

Kleene-star for sequential composition

The map G from is extended to all terms of KAT with ||, by
de�ning G (p||q) = G (p)||G (q)

The bi-Kleene algebra CΣ,T of rational gsp-languages is the

subalgebra generated by {G (t) : t ∈ T} ∪ {G (p) : p ∈ Σ}

Note that for b ∈ P(2T) and for any subset p of GSPΣ,T the
concurrent composition b||p is equal to b ∩ p

=⇒ concurrent and sequential composition coincide on tests

However, in general || is not idempotent for sets of gsp-strings and

the identity 1 of sequential composition is not an identity of
concurrent composition

With this language model as guide, we now de�ne a concurrent

Kleene algebra with tests (CKAT) as an algebra
A = (A,A′,+, 0, ||, ·, 1,∗ ,)̄ where

I (A,A′,+, 0, ·, 1,∗ ,)̄ is a Kleene algebra with tests,

I (A,+, 0, ||) is a commutative semiring with 0 (but possibly
no unit), and

I b||c = bc for all b, c ∈ A′.

Iterated parallel composition (i.e., parallel star) is not included in
CKAT

It would prevent the generalization of Kleene's theorem to
gsp-languages

The language model also shows that the concurrency inequation
(x ||y)(z ||w) ≤ (xz)||(yw) of CKA is not satis�ed under the
present de�nition of CKAT

E.g., let x = {αpβ}, y = {αqβ}, z = {βpγ}, and w = {βqγ}

Then (x ||y)(z ||w) = {α{|p, q|}β{|p, q|}γ}

whereas (xz)||(yw) = {α{|pβp, qβq|}γ}

So each expression produces a singleton set, but the two elements
are distinct, hence the two expressions are not comparable

However one can impose the concurrency inequation on the
generators of the regular gsp-languages to obtain a homomorphic
image that satis�es this condition

Automata over gsp-strings

LetM(X) be the set of multisets of X with more than one
element

A guarded branching automaton is speci�ed by a tuple
A = (X , δ, δfork, δjoin,F), where

I (X , δ,F) is a guarded automaton,

I δfork ⊆ X ×M(X) and

I δjoin ⊆M(X)× X

Fork transitions in δfork are denoted (x , {|x1, x2, . . . , xn|})

If the multiset has n elements they are called forks of arity n

Join transitions of arity n are de�ned by ({|x1, x2, . . . , xn|}, x)

A weak guarded series parallel string (or wgsp-string for short)
is a gsp-string but possibly without the �rst and/or last atomic
test

Acceptance of a wgsp-string w by A starting from initial
state x0 and ending at state xf , is de�ned recursively by:

I If w = α ∈ 2T then w is accepted i� for some n ≥ 1 there is
a sequential path x0t1x1t2 . . . xn−1tnxf in A (i.e.,
(xi−1, ti , xi) ∈ δ) of n test transitions ti ∈ P(2T) such that
α ∈ ti for i = 1, . . . , n.

I If w = p ∈ Σ then w is accepted i� there exist a transition
labeled p from x0 to xf .

I If w = {|u1, . . . , um|}v for m > 1 then w is accepted i� there
exist a fork (x0, {|x1, . . . , xm|}) and a join ({|y1, . . . , ym|}, y0)
in A such that ui is accepted starting from xi and ending at yi
for all i = 1, . . . ,m, and furthermore βv is accepted by A
starting at y0 and ending at xf .

I If w = uv then w is accepted i� there exist a state x such
that u is accepted ending in state x and v is accepted by A
starting from initial state x and ending at xf .

Finally, w is accepted by A starting from x0 if the ending state
xf ∈ F

A fork transition corresponds to the creation of n separate
processes that can work concurrently on the acceptance of the
wgsp-strings u1, . . . , un

The matching join transition then corresponds to a
communication or merging of states that terminates these
processes and continues in a single thread

The sets of gsp-strings that are accepted by a �nite automaton
are called regular gsp-languages

For sets of (unguarded) strings, the regular languages and the
rational languages (i.e., those built from Kleene algebra terms)
coincide

Loyala and Weil show that e.g. the language {p, p||p, p||p||p, . . .}
is a regular sp-language , but not a rational sp-language

The width of an sp-poset or a gsp-string is the maximal
cardinality of an antichain in the underlying poset

A (g)sp-language is said to be of bounded width if there exists
n < ω such that every member of the language has width less
than n

Intuitively this means that the language can be accepted
�e�ciently� by a machine that has no more than n processors

The rational gsp-languages are of bounded width since
concurrent iteration is not included as one of the operations of
CKAT

For languages of bounded width Kleene's theorem holds (Lodaya
and Weil):

A sp-language is rational if and only if it is regular (i.e., accepted
by a �nite automaton) and has bounded width

Now relate the rational sp-languages to rational gsp-languages

Let T = {t̄ : t ∈ T} be the set of negated basic tests

Assume T = {t1, . . . , tn} is �nite

Consider atomic tests α to be (sequential) strings of the form
b1b2 . . . bn where each bi is either the element ti or t̄i

Every term p can be transformed into a term p′ in negation

normal form using DeMorgan laws and ¯̄b = b, so that negation
only appears on ti

Hence the term p′ is also a CKA term over the set Σ ∪ T ∪ T

Let R(p′) be the result of evaluating p′ in the set of sp-posets of
Lodaya and Weil

Kozen and Smith show how to transform p′ further to a sum p̂ of
externally guarded terms such that p = p′ = p̂ in KAT and
R(p̂) = G (p̂)

This argument also applies to terms of CKAT since || distributes
over +

So the completeness result of Lodaya and Weil extends as follows

Theorem 1. CKAT |= p = q ⇐⇒ G (p) = G (q)

It follows that CΣ,T is indeed the free algebra of CKAT

Theorem 2. A set of gsp-strings is rational (i.e. an element of
CΣ,T) if and only if it is accepted by a �nite guarded branching
automaton and has bounded width.

A run of A is called fork-acylic if a matching fork-join pair never
occurs as a matched pair nested within itself

A is fork-acylic if all accepted runs of A are fork-acyclic

Lodaya and Weil prove that if a language is accepted by a
fork-acyclic automaton then it has bounded width, and their
proof applies equally well to gsp-languages

Trace semantics for CKAT

Kozen and Tiuryn [2003] provide trace semantics for programs
(i.e. terms) of Kleene algebra with tests

This is based on an elegant connection between computation
traces in a Kripke structure and guarded strings

This connection extends very simply to the setting of CKAT,
where

traces are related to labeled Hasse diagrams of N-free posets

that are associated with guarded series-parallel strings

As for KAT, a Kripke frame over Σ,T is a structure (K ,mK)
where

K is a set of states, mK : Σ→ P(K × K) and mK : T → P(K)

An sp-trace τ in K is essentially a gsp-string with the atomic
guards replaced by states in K , such that whenever a triple
spt ∈ K × Σ× K is a subtrace of τ then (s, t) ∈ mK (p)

As with gsp-strings, there is a coalesced product σ � τ of two
sp-traces σ, τ (if σ ends at the same state as where τ starts) and

a parallel product σ||τ (if σ and τ start at the same state and end
at the same state)

These partial operations lift to sets X ,Y of sp-traces by

I XY = {σ � τ : σ ∈ X , τ ∈ Y and σ � τ is de�ned}
I X ||Y = {σ||τ : σ ∈ X , τ ∈ Y and σ||τ is de�ned}

Programs (terms of CKAT) are interpreted in K using the inductive
de�nition of Kozen and Tiuryn extended by a clause for ||:

I [[p]]K = {spt|(s, t) ∈ mK (p)} for p ∈ Σ

I [[0]]K = ∅ and [[b]]K = mK (b) for b ∈ T

I [[b̄]]K = K \mK (b) and [[p + q]]K = [[p]]K ∪ [[q]]K
I [[pq]]K = ([[p]]K)([[q]]K) and [[p∗]]K =

⋃
n<ω[[p]]n

K

I [[p||q]]K = [[p]]K ||[[q]]K .

Each sp-trace τ has an associated gsp-string gsp(τ) obtained by
replacing every state s in τ with the corresponding unique atomic
test α ∈ 2T that satis�es s ∈ [[α]]K

It follows that gsp(τ) is the unique guarded string over Σ,T such
that τ ∈ [[gsp(τ)]]K

Hence the connection between sp-trace semantics and
gsp-strings is the same as by Kozen and Tiuryn [2003] (the proof
is also by induction on the structure of p)

Theorem 3. For a Kripke frame K , program p and sp-trace τ , we
have τ ∈ [[p]]K if and only if gsp(τ) ∈ G (p), whence
[[p]]K = gsp−1(G (p)).

In fact gsp−1 is a CKAT homomorphism from the free algebra
CΣ,T to the algebra of rational sets of sp-traces over K .

The trace model for guarded strings has many applications since
each trace in [[p]]K can be interpreted as a sequential run of the
program p starting from the �rst state of the trace

The sp-trace model provides a similar interpretation for a program
that forks and joins threads during their runs

Each sp-trace in [[p]]K is a representation of the basic programs and
tests that were performed during the possibly concurrent execution
of the program p

Note that there are no explicit fork and join transitions in an
sp-trace (unlike a gsp-automaton which has to allow for
nondeterministic choice)

While series-parallel traces are more complex than linear traces,
they can be represented by planar lattice diagrams:

parallel composition is denoted by placing traces next to each
other (with only one copy of the start state and end state)

sequential composition is given by placing traces vertically above
each other (with only one connecting state between them).

The sp-trace semantics are useful for analyzing the behavior of
threads that communicate only indirectly with other concurrent
threads via joint termination in a single state

This is a restricted model of concurrency, but it has a simple
algebraic model based on Kleene algebras with tests, and it
satis�es most of the laws of concurrent Kleene algebra

Expanding relation algebras with concurrency

Kleene algebra with tests provides a reasonable semantics for
imperative programs

For speci�cation purposes it is useful to have the full language of
binary relations to reason about concurrent software

Hence want to augment relation algebras with a || operation

Recall that a relation algebra is of the form
A = (A,+, 0,∧,>, ,̄ ; , 1,`) where (A,+, 0,∧,>,)̄ is a Boolean
algebra, (A, ; , 1) is a monoid and for all x , y , z ∈ A

x ; y ≤ z̄ ⇐⇒ x`; z ≤ ȳ ⇐⇒ z ; y` ≤ x̄ .

It follows that both ; and ` distribute over the Boolean join,
and that ` is an involution, i.e., x`` = x and (x ; y)` = y`; x`

Jónsson and Tarski [1951]: Every relation algebra A can be
embedded in a complete and atomic relation algebra

One can de�ne a relational structure on the set of atoms from
which the algebra can be reconstructed as a complex (powerset)
algebra

The structure is known as atom structure or ternary Kripke

frame or arrow frame, and is actually a coalgebra

De�ne an arrow coalgebra to be of the form
γ : X → P(X 2)× X × 2 such that for all x , y , z ∈ X ,

I (x ◦ y) ◦ z = x ◦ (y ◦ z) where x ◦ y = γ−10 {(x , y)} and
A ◦ z = {a ◦ z : a ∈ A},

I I ◦ x = x = x ◦ I where I = γ−12 {1} and
I (x , y) ∈ γ0(z) ⇐⇒ (x`, z) ∈ γ0(y) ⇐⇒ (z , y`) ∈
γ0(x) where x` = γ1(x).

For A,B ⊆ X , de�ne A;B = {a ◦ b : a ∈ A, b ∈ B} and
A` = {a` : a ∈ A} and 1 = I

Then the complex algebra over γ, denoted

Cm(γ) = (P(X),∪, ∅,∩,X , ,̄ ; ,` , 1′)

is a complete relation algebra and ; ,` distribute over arbitrary
unions

Expand this algebra to a relation algebra with re�exive
transitive closure (or RAT for short) by

I x∗ =
⋃
n<ω x

n, where x0 = 1′ and xn = x ; xn−1 for n > 0.

The variety generated by these algebras has a �nite equational
axiomatization, and has been studied by Tarski and Ng [1977]

Expand arrow coalgebras further by adding another factor P(X 2)
to the type functor to interpret a concurrency operator

A concurrent arrow coalgebra is of the form
γ : X → P(X 2)×X × 2×P(X 2) such that the projection onto the
�rst three components is an arrow coalgebra and for all x , y ∈ X ,

I (x ||y)||z = x ||(y ||z) and x ||y = y ||x where x ||y = γ−13 {x , y}
I x ∈ γ−12 (1) implies x ||x = x and if x 6= y then x ||y is
unde�ned

The complex algebra of a concurrent arrow coalgebra is a
relation algebra with an additional binary operation || de�ned on
subsets A,B of X by A||B = {a||b : a ∈ A, b ∈ B}

Adding re�exive transitive closure is done as before

A concurrent relation algebra with re�exive transitive closure

(or CRAT) is an algebra of the form

A = (A,+, 0,∧,>, ,̄ ||, ; , 1,` ,∗)

where A = (A,+, 0,∧,>, ,̄ ; , 1,` ,∗) is a RAT, (A,+, 0, ||) is a
commutative semiring with zero and (x ∧ 1)||y = x ∧ y ∧ 1
holds for all x , y ∈ A.

Theorem 4. The complex algebra of a concurrent arrow
coalgebra is a CRAT, and every CRAT can be embedded into
such a complex algebra.

A connection between CRAT and CKAT:

Theorem 5. Let A = (A,+, 0,∧,>, ,̄ ||, ; , 1,` ,∗) be a CRAT and
de�ne A′ = {b ∈ A : b ≤ 1}. Then A′′ = (A,A′,+, 0, ||, ·, 1, ,̄ ,∗) is
a CKAT.

The proof is simply a matter of checking that the axioms of CKAT
hold for A′′. It is currently not known if every CKAT is embeddable
into an algebra of the form A′′.

The concurrency inequality (x ||y); (z ||w) ≤ (x ; z)||(y ;w) can be
added to CRAT and de�nes a proper subvariety

In the language of concurrent arrow coalgebras the inequality
takes the following form: for all t, u, v ,w , x , y , z ∈ X

I t ∈ u ◦ v and u ∈ x ||y and v ∈ z ||w
=⇒ ∃r , s ∈ X (t ∈ r ||s and r ∈ x ◦ z and s ∈ y ◦ w)

Other inequations that could be considered are x ||x = x or
x ; y ≤ x ||y or x ||y ≤ x ; y

Unlike Kleene algebras with tests, the equational theory of
relation algebras is known to be undecidable

This is a consequence of having complementation de�ned on
the whole algebra, together with the associativity of a
join-preserving operation (Kurucz, Nemeti, Sain, Simon 1993)

Andreka, Mikulas and Nemeti [2011] show that Kleene lattices
have relational representations

It is an interesting question whether this can be extended to
Kleene lattices with tests or concurrent Kleene lattices (with
tests)

Conclusion

Can add tests to CKA in a natural way

Extend several results from KAT to CKAT (completeness, trace
semantics)

Can add concurrency to relation algebras with re�exive and
transitive closure

Makes concurrent composition part of this well-known and
expressive algebraic setting

References
Andréka, H., Mikulás, S.: Németi, I., The equational theory of Kleene lattices.
Theoret. Comput. Sci. 412 (2011), no. 52, 7099�7108.

Gisher, L.: The equational theory of pomsets. Theoretical Computer Science
62 (1988) 299�224

Hoare, C. A. R., Möller, B., Struth, G., Wehrman, I.: Concurrent Kleene
algebra and its foundations. J. Log. Algebr. Program. 80 (2011), no. 6,
266�296.

Hoare, C. A. R., Möller, B., Struth, G., Wehrman, I.: Foundations of
concurrent Kleene algebra. Relations and Kleene algebra in computer science,
166�186, Lecture Notes in Comput. Sci., 5827, Springer, Berlin, 2009.

Kurucz, Á., Németi, I., Sain, I., Simon, A.: Undecidable varieties of
semilattice-ordered semigroups, of Boolean algebras with operators, and logics
extending Lambek calculus. Logic Journal of IGPL, 1(1) (1993) 91�98.

Kozen, D.: Automata on guarded strings and applications. 8th Workshop on
Logic, Language, Informations and Computation�WoLLIC'2001 (Brasília).
Mat. Contemp. 24 (2003), 117�139.

Kozen, D.: On the representation of Kleene algebras with tests. Mathematical
foundations of computer science 2006, 73�83, Lecture Notes in Comput. Sci.,
4162, Springer, Berlin, 2006.

Kozen, D., Smith, F.: Kleene algebra with tests: completeness and decidability.
Computer science logic (Utrecht, 1996), 244�259, Lecture Notes in Comput.
Sci., 1258, Springer, Berlin, 1997.

Kozen, D., Tiuryn, J.: Substructural logic and partial correctness. ACM Trans.
Computational Logic, 4(3) (2003) 355�378.

Lodaya, K., Weil, P.: Series-parallel languages and the bounded-width property.
Theoret. Comput. Sci. 237 (2000), no. 1-2, 347�380.

Ng, K. C.: Relation Algebras with Transitive Closure. PhD thesis, University of
California, Berkeley, 1984.

Ng, K. C., Tarski, A.: Relation algebras with transitive closure, Abstract
742-02-09, Notices Amer. Math. Soc. 24 (1977), A29�A30.

Pratt, V.: Modelling concurrency with partial orders. Internat. J. Parallel Prog.
15 (1) (1986) 33�71.

Thank You

