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Abstract

Concurrent Kleene algebra with tests (CKAT) combines Kleene algebra with
tests (KAT) of Kozen and Smith with concurrent Kleene algebras (CKA), in-
troduced by Hoare, Möller, Struth and Wehrman. CKAT provides a relatively
simple algebraic model for reasoning about operational semantics of concurrent
programs. We generalize guarded strings to guarded series-parallel strings, or
gsp-strings, to give a concrete language model for CKAT. Combining nondeter-
ministic guarded automata of Kozen with branching automata of Lodaya and
Weil one obtains a model for processing gsp-strings in parallel. To ensure that
the model satisfies the weak exchange law (x||y)(z||w) ≤ (xz)||(yw) of CKA,
we make use of the subsumption order of Gisher on the gsp-strings. Using
the coalgebraic viewpoint, we also define deterministic branching automata and
investigate their relation to (nondeterministic) branching automata.

To express basic concurrent algorithms, we define concurrent deterministic
flowchart schema and relate them to branching schematic automata and to
concurrent schematic Kleene algebras with tests.

Key words: Concurrent Kleene algebra, Kleene algebra with tests, parallel
programming models, deterministic fork-join automata, series-parallel strings,
weak exchange law, positive separation algebra

1. Introduction

Relation algebras and Kleene algebras with tests have been used to model
specifications and programs, while automata and coalgebras have been used
to model state based systems and object-oriented programs. To compensate
for plateauing processor speed, multi-core architectures and cluster-computing
are becoming widely available. However there is little agreement on how to
efficiently develop software for these technologies or how to model them with
suitably abstract and simple principles. The recent development of concurrent

Email addresses: jipsen@chapman.edu (Peter Jipsen), moshier@chapman.edu (M.
Andrew Moshier)

Preprint submitted to Elsevier June 30, 2015



Kleene algebra [8, 9, 10] builds on an algebraic computational model that is
well understood and has numerous applications. Hence it is useful to explore
which aspects of Kleene algebras can be lifted fairly easily to the concurrent
setting, and whether the simplicity of regular languages and guarded strings
can be preserved along the way.

This paper is concerned with four classes of algebras and their relationships:
Kleene algebra (KA), Kleene algebra with tests (KAT), concurrent Kleene alge-
bra (CKA) and the newly defined concurrent Kleene algebra with tests (CKAT).

KA → KAT
↓ ↓

CKA → CKAT

Each of them is axiomatized by a simple finite list of (quasi)equations based on
the equational axioms of idempotent semirings. However they differ in expres-
sive power as far as the programming language concepts that they can express.
KA is the algebraic model of regular languages which can express nondetermin-
istic choice +, sequential composition · and finite unbounded iteration ∗. It also
includes the two constants 0, 1 representing the programs abort and skip. KAT
adds complementation¯restricted to a Boolean subalgebra of tests, allowing it to
express if-then-else and while-do. CKA adds concurrent composition || to
KA which models fork and join operations of concurrent programs, while CKAT
combines the features of KAT and CKA, using the signature +, 0, ·, 1,∗ , ||.

Given a signature of operations and variables (or generators) Σ = {p1, . . . , pn},
the term algebra T (Σ) is the set of all terms that can be constructed by repeat-
edly applying the operations to the variables. Operations from the signature
are then defined on these terms by “concatenation of symbols”, so term alge-
bras are absolutely free in the sense that they do not satisfy any nontrivial
equations, hence only represent syntax. Any class of algebras that is defined
by (quasi)equations over the given signature contains a free algebra F (Σ) that
is a homomorphic image of the term algebra by identifying all terms whose
equality follow from the equational consequences of the axioms. In each of the
four classes of interest, the generators represent basic (indivisible) programs, the
term algebra represents abstract programs written in the syntax of the signa-
ture, while the free algebra shows which programs are semantically equivalent,
i.e., have the same computational effect. In general it can be difficult to check
this equivalence in the free algebra, but for KA and KAT the semantic models
of all regular languages and all guarded regular languages give a concrete rep-
resentation of the free algebra. Using automata that recognize these languages,
it is possible to decide if two terms of the term algebra become identified in the
free algebra, hence program equivalence is testable.

An automaton can also be viewed as an (abstract) implementation of a pro-
gram (= term) in the sense that it can execute primitive commands (represented
by the generating variables) and produce sets of traces that represent specific
runs of the nondeterministic program. For KA the traces are sequences of gen-
erators, so the set of all traces is the set Σ∗ of all strings with symbols from Σ.
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For KAT there are two types of generators: basic programs in Σ and basic tests
T = {t1, . . . , tm}. From the basic tests a set Γ = 2T of guards (or atomic tests)
is constructed and the relevant notion of a trace is now a guarded string starting
and ending with a guard, and otherwise alternating basic programs with guards.

For CKA many interesting results have been obtained by Lodaya and Weil
[18, 19] using traces that are partially ordered multisets (or pomsets) of Pratt
[21] and Gisher [6], but restricted to the class of series-parallel pomsets called
sp-posets (detailed definitions are given later). This is related to the set-based
traces and dependency relation used in [8, 9, 10] to motivate the laws of CKA.
However the model of Lodaya and Weil does not satisfy the weak exchange
law (x||y)(z||w) ≤ (xz)||(yw) of CKA, so using the approach of Gisher we find
a submodel that does satisfy this law. So in this model x||y means that the
programs x, y are allowed to be run in parallel, but can also be run sequentially
in either order.

Our main aim is to investigate how to extend guarded strings to handle con-
current composition with a similar approach as for sp-posets in [19], and con-
structing a model of CKAT that satisfies the weak exchange law. In this setting
the set Γ of guards is given the structure of a positive separation algebra [5]
where the separating conjunction determines when two guarded series-parallel
strings can be composed concurrently.

We also define a simpler notion of deterministic branching automaton, in-
spired by the categorical approach to automata in [4]. In the guarded case we
extend the nondeterministic automata of Lodaya and Weil to accept guarded
series parallel strings. We also define a trace model for CKAT and give some
examples of flowchart schemes to indicate how abstract programs of CKAT re-
late to some simple concurrent while-programs with assignments. Finally we
show how the structure of a separation algebra on Γ can be used to introduce a
concurrent composition on binary relations, hence giving a relational model for
concurrent programs that identifies two such programs if they have the same
input-output relation.

2. Kleene algebra and deterministic automata in coalgebraic form

Recall that an idempotent semiring is of the form (A,+, 0, ·, 1) such that
(A, ·, 1) is a monoid (i.e., · is associative (xy)z = x(yz) and x1 = x = 1x),
(A,+, 0) is a (join-)semilattice with bottom (i.e., + is associative, commutative
x+ y = y + x, idempotent x+ x = x, and x+ 0 = x) and x(y + z) = xy + xz,
(x+ y)z = xz + yz, x0 = 0 = 0x.

A Kleene algebra (A,+, 0, ·, 1,∗ ) is an idempotent semiring (A,+, 0, ·, 1) with
a unary operation ∗ that satisfies the (quasi)identities x∗ = 1 + x+ x∗x∗, xy ≤
y =⇒ x∗y ≤ y and yx ≤ y =⇒ yx∗ ≤ y.

An important example of a Kleene algebra is (P(Σ∗),∪, ∅, ·,Σ,∗ ) where Σ
is a (usually finite) set of basic programs, and for subsets X,Y of Σ∗ X · Y =
{vw : v ∈ X,w ∈ Y }, X0 = 1 = Σ, Xn+1 = X · Xn and X∗ =

⋃
n<ωX

n.
A homomorphism R if defined from the term algebra TKA(Σ) to P(Σ∗) by
evaluation, i.e.,
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• R(p) = {p} for p ∈ Σ, R(0) = ∅, R(1) = Σ

• R(r + s) = R(r) ∪R(s), R(r · s) = R(r) ·R(s) and R(s∗) = R(s)∗.

The subalgebra RΣ = {R(s) : s ∈ TKA(Σ)} is the algebra of regular languages
and the completeness theorem for Kleene algebra, due to Kozen [13], states that
RΣ is isomorphic to the free Kleene algebra FKA(Σ).

We now recall the definition of a deterministic automaton as given in the
language of bialgebras in [4]. A deterministic automaton X over a set Σ of basic
programs is given by

X : 1
iX−→ X

〈tX ,fX 〉
−−−−−−−→ XΣ × 2

where iX (1) is the initial state, tX : X → XΣ is the transition function, and
fX : X → 2 determines the final states F = {x ∈ X : f(x) = 1}.

If Y : 1
iY−→ Y

〈tY ,fY〉
−−−−−−−→ Y Σ × 2 is also such an automaton, then a

homomorphism h : X → Y is given by a function h : X → Y such that the
following diagram commutes:

1

1

X

Y

XΣ × 2

Y Σ × 2

id1 h

iX

iY

〈tX , fX 〉

〈tY , fY〉

hΣ × id2

Here the map hΣ is given by hΣ(g) = h ◦ g for all g ∈ XΣ, and idZ is the
identity map on the set Z. When confusion is unlikely, we write i, t, f without
subscripts.

The set Σ∗ of all strings is an automaton

1
ε−→ Σ∗

〈t,f〉
−−−→ (Σ∗)Σ × 2

where ε(1) is the empty string, t(w)(a) = wa for w ∈ Σ∗ and a ∈ Σ, and f is
arbitrary.

The set 2Σ∗ of all languages over Σ∗ is also an automaton, with

1
i−→ 2Σ∗

〈δ,f〉
−−−→ (2Σ∗)Σ × 2

given by δ(L)(a) = {w : wa ∈ L} = the language derivative La, and f(L) = 1 if
and only if ε ∈ L. The map i is arbitrary.

Reachability and observability of an automaton X are defined by two homo-
morphisms r : Σ∗ → X and o : X → 2Σ∗ . To define them, we first allow strings
to act on states via xε = x and xwa = t(xw)(a). Then

r(w) = iX (1)w and o(x) = {w : fX (xw) = 1},
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and they are homomorphisms if we define f(w) = fX (r(w)) and i(1) = o(iX (1)).
Note that

o(iX (1)) = {w : fX (iX (1)w) = 1} = {w : fX (r(w)) = 1} = {w : f(w) = 1}

is the language accepted by X , denoted L(X ). An automaton is finite if the set
X is finite. Kleene’s theorem states that a subset of Σ∗ is a regular language if
and only if it is accepted by some finite automaton.

3. Kleene algebras with concurrency

A concurrent Kleene algebra (CKA) [10] is of the form (A,+, 0, ·, 1,∗ , ||)
such that (A,+, 0, ·, 1,∗ ) is a Kleene algebra, (A,+, 0, ||, 1) is a commutative
idempotent semiring and the weak exchange law holds: for all x, y, z, w ∈ A

(x||y)(z||w) ≤ xz||yw.

Note that the same element 1 is an identity for · and ||, so the weak exchange
law implies (x||y)w ≤ x||yw, x(z||w) ≤ xz||w and yz ≤ y||z. The definition of
CKA sometimes also includes a unary operation ~ for finite iterations of ||, but
this operation is not used in the present paper.

A model of CKA is given by (certain) subsets of Σsp, the set of all sp-
strings defined in the previous section. Note that sp-strings can be represented
uniquely as N-free pomsets (see [6, 7]). Since we make use of these normal forms
for sp-strings, we recall the definition here. A Σ-labeled poset is of the form
(P,≤, `) where (P,≤) is a partially ordered set and ` : P → Σ is a labeling
function. Another labeled poset (P ′,≤′, `′) is isomorphic to (P,≤, `) if there is
a bijection f : P ′ → P such that x ≤′ y ⇔ f(x) ≤ f(y), and `′(x) = `(f(x))
for all x, y ∈ P ′. A pomset is an isomorphism class of Σ-labeled posets, and it
is N-free if the underlying poset does not have an induced subposet shaped like
an N, i.e., with 4 elements a, b, c, d such that a, b < c and b < d but a � d. The
sequential composition of two pomsets is defined by their ordinal sum and the
parallel composition is disjoint union.

Gisher [6] defined a partial order on pomsets, called the subsumption order
v, as follows: (P,≤, `) v (P ′,≤′, `′) if there exists a bijection f : P ′ → P such
that x ≤′ y ⇒ f(x) ≤ f(y), and `′(x) = `(f(x)) for all x, y ∈ P ′ (see Figure 1
for a fragment of the subsumption order). Under this ordering (Σsp, ·, ||,v)
is an ordered bimonoid, i.e., a bimonoid in which both operations are order-
preserving. Gisher [6] then proved that the set of N-free pomsets is the free
algebra generated by Σ in the variety of partially ordered bi-monoids that satisfy
the weak exchange law (x||y)(z||w) v yz||xw. A shorter proof of this result is
given by Bloom and Esik in [3].

The set of all subsets of Σsp is not a model of CKA under subset inclusion
with ·, || lifted to sets, since the singletons {(p||q)(r||s)} and {qr||ps} are incom-
parable for p, q, r, s ∈ Σ, hence the weak exchange law fails. However, if one
restricts to all downward-closed subsets

Dn(Σsp) = {X ⊆ Σsp : y v x ∈ X =⇒ y ∈ X for all x, y}
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x||y

xy

x||y||x

x(y||x)

xyx

(x||y)x

x||yx

x||y||z||w

x||y||zw

x||(y||z)w

(x||y||z)w

(x||yz)w

(x||y)zw

xyzw

xy(z||w)

x(yz||w)

x(y||z||w)

x(y||z)||wxy||zw

x||yzw

(x||y)(z||w)

x(y||z)w

Figure 1: The Gisher subsumption order on some gsp-strings with ≤ 4 elements. The curved
line is the weak exchange law, and the other order relations follow from it.

then one obtains a model of CKA by defining

X||Y = {z ∈ Σsp : z v x||y for some x ∈ X, y ∈ Y }
X · Y = {xy : x ∈ X, y ∈ Y }
X + Y = X ∪ Y.

Now, e.g., {qr}||{ps} = {(p||q)(r||s), qr||ps, pqrs, pqsr, psqr, qprs, qpsr, qrps} ⊇
{(p||q)(r||s)} = {p||q}{r||s}. Gisher [6] proved that the idempotent semiring
axioms and the weak exchange law hold for Dn(Σsp) ordered by ⊆. Defining
X∗ =

⋃
n∈ωX

n, it is straight forward to verify that all the CKA axioms are
satisfied. We summarize these observations in the following result.

Theorem 1. The algebra (Dn(Σsp),∪, ∅, ·, {1},∗ , ||) is a concurrent Kleene al-
gebra.

4. Deterministic and nondeterministic branching automata

We now modify these automata to deterministic branching automata. Let ||
be a commutative associative binary operation symbol, and for any set S define
S|| to be the free commutative monoid generated by S. Note that the elements
of S|| can be identified with finite multisets over S so, for example, p||p||q is
written {|p, p, q|}. The set Σsp of series-parallel strings (or sp-strings) over Σ
is defined as the smallest set S that satisfies Σ ∪ S∗ ∪ S|| ⊆ S. The operation
|| is considered a parallel composition, and does not interact with sequential
composition, except that the empty string ε and the empty multiset {||} are
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identified. Note that the set Σsp can be defined directly as the Σ-generated free
bimonoid (Σsp, ·, ||, 1) subject to the additional identity x||y = y||x.

A deterministic branching automata over Σ is given by

X : 1
i−→ X

〈t,f〉
−−−→ XΣ∪NX

× 2.

Here NX is considered as the collection of multisets over X. For a state x
and a multiset of states {|y1, . . . , yn|} the transition function produces a state
y = t(x)({|y1, . . . , yn|}). This corresponds to processing a multiset {|u1, . . . , un|}
of sp-strings by forking into n processes in state x that process the ui in parallel
starting from x, and if the ith process reaches state yi for i = 1, . . . , n then all
these states are joined into the state y. The states x, y are called a fork-join
pair.

The set Σsp of all sp-strings also forms a branching automaton, defined as
for strings, but with t(w)({|u1, . . . , un|}) = w{|u1, . . . , un|} added. The set 2Σsp

of all sp-languages is also a branching automaton, where the language derivative
is extended by the clause

δ(L)({|L1, . . . , Ln|}) = {w : {|u1, . . . , un|}w ∈ L for some ui ∈ Li, i = 1, . . . , n}.

The action of sp-strings on states is extended by

xw{|u1,...,un|} = t(xw)({|xwu1 , . . . , xwun |}).

As for ordinary automata, an sp-string w is accepted by a branching automaton
if f(i(1)w) = 1. However the branching automata defined above have implicit
looping forks, so it is possible that a fork-join appears nested within itself during
the trace that accepts w (e.g. this happens if the join loops back into a thread
of the fork-join, see [19]). The fork-acyclic language Lfa(X ) accepted by X is
the set of all sp-strings that are accepted by X without using nested fork-joins.

Figure 2 shows an example comparing a deterministic branching automaton
with a branching automaton of Lodaya and Weil. The latter needs more states
even though it is nondeterministic. The first automaton has a junk state x5,
and the dotted line points from the fork state x1 to the corresponding join
state. All other (infinitely many) multisets of states have an (implicit) arrow
to the junk state (not shown on the diagram). Both automata accept the term
b+ a(a||b)∗ba.

A nondeterministic branching automaton over Σ is given by

X : 1
i−→ X

〈t,f〉
−−−→ P(X)Σ∪NX

× 2.

Hence from a state x ∈ X there may be many (or no) states that are reached
via a given action a ∈ Σ or via a multiset in NX . The action of an sp-string w
on a state x is now a subset of states, with xε = {x}, xwa =

⋃
{t(z)(a) : z ∈ xw}

and

xw{|u1,...,un|} =
⋃
{t(z)({|z1, . . . , zn|}) : z ∈ xw, zi ∈ xwui

, i = 1, . . . , n}.
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x0 x1

x2

x3

x4 x5

a

b

a

b
a, ba

x4
a, b

b
a, b

x0 x1

x2

x3

x4

x5x6

x6

a

b

a

b

b

a
x7

Figure 2: A deterministic branching automaton that accepts b + a(a||b)∗ba, and the corre-
sponding nondeterministic automaton of Lodaya and Weil.

An sp-string w is accepted by such an automaton if f(z) = 1 for some z ∈
i(1)w. With these definitions we now prove that a nondeterministic branching
automaton can be lifted to a deterministic one that accepts the same (fork-
acyclic) sp-language.

Theorem 2. Let X be a nondeterministic branching automaton, and define X̂

to be 1
î−→ P(X)

〈t̂,f̂〉
−−−−→ P(X)Σ∪NP(X) × 2 where î(1) = {i(1)},

t̂(S0)({|S1, . . . , Sn|}) =
⋃
{t(z0)({|z1, . . . , zn|}) : zi ∈ Si for i = 0, . . . , n}

and f̂(S) = 1 if and only if f(z) = 1 for some z ∈ S. Then X̂ is a deterministic
branching automaton that accepts the same language as X .

Proof. It suffices to observe that, by induction, xw = {x}w holds for all x ∈ X,
where the action on the right is computed in X̂ . �

The sp-languages that are accepted by a finite branching automaton are
called regular. The series-rational terms are defined as the absolutely free
terms over the signature +, ·, ||,∗ , 1 of concurrent Kleene algebras, with vari-
ables ranging over Σ. If the iterated parallel composition ~ is included (where
a~ = a + a||a + a||a||a + . . .), then we obtain the set of series-parallel-rational
terms. The set 2Σsp

of all sp-languages is a concurrent Kleene algebra under the
operations L + M = L ∪M , L ·M = {uv : u ∈ L, v ∈ M}, L||M = {u||v : u ∈
L, v ∈ M}, L∗ =

⋃
{Ln : n ∈ ω} and 1 = {ε}. The series-rational languages

are exactly the members of the subalgebra of 2Σsp

generated by the singleton
languages {a} for a ∈ Σ, and the series-parallel-rational languages are the ones
obtained if we also include iterated parallel composition during the subalgebra
generation process.

The width wd(u) of an sp-string u is defined inductively by wd(a) = 1 for a ∈
Σ, wd(uv) = max{wd(u), wd(v)} and wd(u||v) = wd(u) +wd(v). Alternatively,
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the width of an sp-string is the maximum number of incomparable elements in
the underlying poset (see the previous section and [6] for details on pomsets and
their underlying posets). An sp-language L is of bounded width if there exists
an integer n such that wd(w) ≤ n for all w ∈ L. It is easy to see that a series-
parallel-rational language has bounded width if and only if it is a series-rational
language.

Lodaya and Weil [18, 19] proved a version of Kleene’s Theorem for sp-
languages. In particular, they proved that regular sp-languages of bounded
width coincide with series-rational languages, but their notion of branching au-
tomaton is different from the one used in this section. We give more details
about the difference in Section ?? where we define guarded branching automata
in the style of Lodaya and Weil.

We now show that Kleene’s Theorem also holds for the coalgebraic branch-
ing automata defined in the current section, using an argument similar to the
standard one for finite automata. This is not a new result since the original
result by Lodaya and Weil [18] already proved Kleene’s Theorem, but the proof
is shorter and the automata are new.

Theorem 3. If X is a finite deterministic branching automaton then Lfa(X ) is
series-rational. Conversely, any series-rational language L is regular, i.e., there
exists a finite branching automaton X such that L = Lfa(X ).

Proof. Suppose X is a finite deterministic branching automaton over Σ =
{a1, . . . , am}. We can assume that X contains only binary fork-joins, since
k-ary fork-joins can be constructed from binary ones. The states of X will
be X = {1, . . . , n}. We need to construct a series-rational term p such that
L(X ) is obtained by evaluating p in 2Σsp

. Let Rkij be the set of all sp-strings
w such that starting in state i and using only intermediate states 1, . . . , k the
automaton X processes w and reaches state j along a fork-acyclic trace. By
giving an inductive definition of Rkij it follows that each of these languages is
series rational:

R0
ij = {a : t(i)(a) = j} ∪ {ε : i = j}

Rkij = Rk−1
ij ∪Rk−1

ik (Rk−1
kk )∗Rk−1

kj ∪R
k−1 where

Rk−1 =
⋃
{Rk−1

ix ((Rk−1
xy1 ||R

k−1
xy2 )Rk−1

yx )∗(Rk−1
xy1 ||R

k−1
xy2 )Rk−1

yj :

tX (x)({|y1, y2|}) = y and k ∈ {x, y1, y2, y} ⊆ {1, 2, . . . , k}}.

Since Σ is finite, each R0
ij is a finite set of actions, and hence generated by a

term r0
ij that is the sum of these actions. Since the automaton is finite, Rk−1 is

a finite union, hence Rkij is generated by a term rkij that is a finite sum of terms
constructed from rk−1

ij using CKA operations. Finally, the term p is the finite
sum of terms rniX (1)x where x ranges over all final states of X .

Conversely, suppose L is a series-rational language, and let p be the ~-free
concurrent Kleene algebra term that defines the language L. The automaton X
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is constructed in the usual way by combining automata for subexpressions of p.
Here we outline the steps for sequential and parallel composition and refer to
the traditional proof for the remaining details (see e.g. [11]).

Suppose Y and Y ′ are nondeterministic automata for subterms q, q′ of p.
An automaton Z for qq′ is obtained by taking Z to be the disjoint union of Y ,
Y ′ and defining iZ(1) = iY(1) and fZ(y) = 0 for all y ∈ Y , fZ(y) = fY′(y) for
all y ∈ Y ′. At every final state of Y, we duplicate the outgoing actions of iY′(1)
as well as all the fork-join multiset actions. Specifically, for all y ∈ Y such that
f(y) = 1, let

tZ(y)(a) = tY(y)(a) ∪ tY′((iY′)(1))(a)

and similarly for a replaced by a multiset S = {|y1, . . . , yn|} where S ⊆ Y or
S ⊆ Y ′. For multisets that contain elements from both Y and Y ′, the transition
function is defined to be the empty set. Given these definitions, one then checks
that Lfa(Z) = Lfa(Y) · Lfa(Y ′).

To construct a nondeterministic automaton for Lfa(Y)||Lfa(Y ′) we take Z to
be the disjoint union of Y and Y ′ together with one new (final) state z1 and let
fZ(z1) = 1, while fZ(y) = 0 otherwise. We identify iY(1) and iY′(1) and define
this identified state to be iZ(1). Finally, for each pair of states y ∈ Y, y′ ∈ Y ′
such that fY(y) = 1 = fY′(y

′), we let t(iZ(1))({|y, y′|}) = {z1}. As in the
sequential case, all other transitions on multistep with states from both Y and
Y ′ are defined to be the empty set. The resulting automaton then satisfies
Lfa(Z) = Lfa(Y)||Lfa(Y ′). �

The fork-join automata of Lodaya and Weil do not lend themselves to this type
of constructive proof of Kleene’s theorem since they are inherently nondetermin-
istic and sequential composition can result in so-called misbehaved automata.
This is excluded for the type of automata used here since a join transition is
always matched to a specific state at which the process forked.

5. Concurrent Kleene algebras with tests

5.1. A brief review of Kleene algebras with tests
We now consider the addition of Boolean tests to this setup. Recall from

[16] that a Kleene algebra with tests (KAT) is an idempotent semiring with a
Boolean subalgebra of tests and a unary Kleene-star operation that plays the
role of reflexive-transitive closure. More precisely, it is a two-sorted algebra of
the form A = (A,A′,+, 0, ·, 1, ,̄∗ ) where A′ is a subset of A, (A,+, 0, ·, 1,∗ ) is a
Kleene algebra and (A′,+, 0, ·, 1, )̄ is a Boolean algebra (the complementation
operation ¯ is only defined on A′).

Let Σ be a set of basic program symbols p, q, r, p1, p2, . . . and T a set of basic
test symbols t, t1, t2, . . ., where we assume that Σ ∩ T = ∅. Elements of T are
Boolean generators, and we write 2T for the set of guards (or atomic tests),
given by characteristic functions on T and denoted by α, β, γ, α1, α2, . . .

The collection of guarded strings over Σ∪T is GSΣ,T = 2T×
⋃
n<ω(Σ×2T )n,

and a typical guarded string is denoted by α0p1α1p2α2 . . . pnαn, or by α0wαn

10



for short, where αi ∈ 2T , pi ∈ Σ and w = p1α1p2α2 . . . pn. Note that for finite
T the members of 2T ⊆ GSΣ,T can be identified with the atoms of the free
Boolean algebra generated by T .

Concatenation of guarded strings is via the guarded sequential product :

αvβ � γwδ =

{
αvβwδ if β = γ

undefined otherwise.

For subsets L,M of GSΣ,T define

• L+M = L ∪M ,

• LM = {v � w : v ∈ L,w ∈M and v � w is defined},

• 0 = ∅, 1 = 2T , B = GSΣ,T \B for B ⊆ 2T and

• L∗ =
⋃
n<ω L

n where L0 = 1 and Ln = LLn−1 for n > 0.

Then (P(GSΣ,T ),P(2T ),∪, ∅, ·, 2T ,∗ , )̄ is a Kleene algebra with tests. Note that
if L,M ⊆ 2T are sets of atomic tests then LM = L ∩M . Consider the map G
from KAT terms over Σ ∪ T to this concrete model defined by

• G(t) = {α ∈ 2T : α(t) = 1} for t ∈ T ,

• G(p) = {αpβ : α, β ∈ 2T } for p ∈ Σ,

• G(p+ q) = G(p)+G(q), G(pq) = G(p)G(q), G(p∗) = G(p)∗, for any terms
p, q and

• G(0) = 0, G(1) = 1, G(b̄) = G(b) for any Boolean term b.

The language theoretic model GΣ,T is the subalgebra of P(GSΣ,T ) generated by
{G(t) : t ∈ T} ∪ {G(p) : p ∈ Σ}. In fact GΣ,T is the free KAT and its members
are the regular guarded languages. Subsets of 2T are called Boolean tests, and
other members of GΣ,T are called programs.

A nondeterministic guarded automaton is a coalgebra

X : X
〈t,f〉
−−−→ P(X)Σ∪P(2T ) × 2

where X is a set of states, t(x)(y) is the set of successor states of x ∈ X for
symbol y ∈ Σ ∪ P(2T ), and F = {x : f(x) = 1} is the set of final states.
Alternatively one can describe these automata in the more traditional way as a
tuple X ′ = (X, δ, F ) where δ ⊆ X × (Σ ∪ P(2T ))×X is the transition relation
and F ⊆ X is the set of final states. Acceptance of a guarded string w by X
starting from initial state x0 and ending in state xf is defined recursively by:

• If w = α ∈ 2T then w is accepted iff for some n ≥ 1 there is a path
x0t1x1t2 . . . xn−1tnxf in X of n test transitions ti ∈ P(2T ) such that
α ∈ ti for i = 1, . . . , n.
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• If w = αpv then w is accepted iff there exist states x1, x2 such that α is
accepted ending in state x1, there is a transition labeled p from x1 to x2

(i.e., x2 ∈ t(x1)(p)) and v is accepted by X starting from initial state x2.

Finally, w is accepted by X starting from x0 if the ending state xf is indeed a
final state, i.e., satisfies xf ∈ F .

Kozen [14] proved that the equational theory of KAT is decidable in PSPACE.
Moreover KAT is much more versatile that Kleene algebra since it can faith-
fully express “if b then p else q” by the term bp + b̄q and “while b do p” using
(bp)∗b̄, as well as several other standard programming constructs. It also inter-
prets Hoare logic and properly distinguishes between simple Boolean tests and
complex assertions.

5.2. Adding concurrency to Kleene algebras with tests
After this rather brief discussion of the language semantics and operational

semantics of KAT, we now describe how these definitions generalize to handle
concurrency. Intuitively, elements P,Q of a concurrent Kleene algebra with
tests can be thought of as concurrent programs or program fragments, and they
are represented by sets of “multi-threaded computations”. The operation that
needs to be added to KAT is the concurrent composition P ||Q. Whereas in the
sequential model the computation paths are guarded strings, we now need to
be able to place two such sequential strings “next to each other”, and then we
also need to be able to sequentially compose such “concurrent strings” etc. A
convenient way to visualize the semantic objects that we would like to construct
is to view sequential composition as vertical concatenation (top to bottom) and
concurrent composition as horizontal concatenation.

So for example, given two guarded strings α0vαm and β0wβn we would like
to construct

α0 β0

v w
αm βn

As with the guarded sequential product, this concurrent operation is not
always defined. The guards or atomic tests are generalized to partial functions
from the set of basic tests T to 2 = {0, 1}. Such a partial function α has domain
dom(α) ⊆ T and is given by its set of ordered pairs {(t, α(t)) : t ∈ dom(α)}.
We denote the set of all guards by Γ, and define a partial binary operation ⊕
on Γ by

α⊕ β =

{
α ∪ β if dom(α) ∩ dom(β) = ∅
undefined otherwise.

The operation ⊕ comes from separation logic [20, 23], and the partial algebra
(Γ,⊕,u) is an example of a separation algebra [5], where u is the empty partial
function. Specifically, this means ⊕ has u as unit element (x⊕u = x = u⊕ x),
and is associative, commutative and cancellative:

(x⊕ y)⊕ z = x⊕ (y ⊕ z) x⊕ y = y ⊕ x x⊕ z = y ⊕ z =⇒ x = y.
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Figure 3: The natural order on Γ when T = {t1, t2}

Here an equation is satisfied in Γ if, for all assignments of values to variables,
both sides are undefined, or both are defined and equal, while a quasiequation
is satisfied if, whenever all premises are defined on both sides and are equal,
then the conclusion is defined on both sides and the equality holds.

The operation ⊕ defined above is also positive: α ⊕ β = u implies α = u.
Some readers may notice that positive separation algebra are also known in
quantum logic as generalized effect algebra, but we do not elaborate on possible
connections in this direction.

Recall the definition of sp-strings and the set Σsp of all such strings from
Section 4. We enlarge this set to (Σ ∪ Γ)sp and define the following operation
of guarded parallel composition: For α, β, γ, δ ∈ Γ and v, w ∈ (Σ ∪ Γ)sp let

αvβ|γwδ =

{
(α⊕ γ)(v||w)(β ⊕ δ) if α⊕ γ, β ⊕ δ are defined
undefined otherwise.

α|γvδ = γvδ|α =

{
(α⊕ γ)v(α⊕ δ) if α⊕ γ, α⊕ δ are defined
undefined otherwise.

α|γ = α⊕ γ

Note that in this definition, v||w is the parallel composition of sp-strings, rep-
resented by the multiset {|v, w|}. The set of guarded series parallel strings, or
gsp-strings for short, is defined as the smallest set GSPΣ,T that has Γ and
Γ × Σ × Γ as subsets and is closed under the guarded sequential product �
as well as the guarded concurrent product |. For example, if Σ = {p, q} and
T = {t} then Γ has three elements α = {(t, 1)}, β = {(t, 0)} and u = ∅, so for
example, the following expressions are gsp-strings:

α, u, αpα, αpβ, α{|p, q|}α, α{|p, q|}αqβ, α{|p, {|p, q|}αq|}β, . . .

where, e.g., the last term listed above is the normalization of αpβ|(αpα|αqα)αqβ.
If α, β are guards with overlapping domains then α|β is undefined. In par-

ticular, if α 6= u then α|α is undefined. Note that parallel composition of
gsp-strings is commutative, which is already reflected in our choice of notation:
{|v, w|} = {|w, v|} is a multiset. Moreover it is associative, which means that
in these “strings”, multisets are not members of multisets, i.e., {|{|u, v|}, w|} is
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normalized to {|u, v, w|}. This ensures that

(αpβ|γqδ)|εrφ = (α⊕ γ ⊕ ε){|p, q, r|}(β ⊕ δ ⊕ φ) = αpβ|(γqδ|εrφ).

Recall that the collection of all subsets of guarded strings forms a Kleene
algebra with tests. However, for concurrent KAT this would prevent 1 = Γ
from being an identity for concurrent composition, and it would also lead to
the failure of the weak exchange law of CKA. To address these two issues, we
introduce an ordering on gsp-strings based on Gisher’s [6] subsumption order,
and consider only subsets of gsp-strings that are upward-closed in this order.

In any commutative partial monoid, the natural order is defined by α ≤ β if
and only if there exists γ such that α⊕γ = β. It is easy to see that this relation is
reflexive and transitive since a monoid has an identity relation and is associative.
Cancellativity and positivity imply that the relation is also antisymmetric, hence
it is a partial order. For example, Figure 3 shows the natural order on the set Γ
of all partial functions from T = {t1, t2} to {0, 1}. The bottom element labeled
uu is the partial monoid identity u.

We aim to extend this partial order to all gsp-strings by incorporating the
Gisher subsumption order. Hence we first extend it from Γ to Σ∪Γ by agreeing
that for p ∈ Σ and x ∈ Σ ∪ Γ we have p ≤ x if and only if p = x. So a basic
program is incomparable with any other basic program or guard.

As mentioned in the previous section on CKA, a term v ∈ (Σ ∪ Γ)sp is
represented by a pomset (Pv,≤v, `v) where `v : Pv → Σ∪Γ is a labeling function.
We denote by P̂v the set of all elements in Pv that are labeled by members of
Σ, so P̂v = {x ∈ Pv : `v(x) ∈ Σ}. The guarded dual subsumption order v on
v, w ∈ (Σ∪Γ)sp is given by v v w if and only if there exists an order-preserving
function f : Pv → Pw such that f restricts to a bijection from P̂v to P̂w and for
all x ∈ Pv we have `v(x) ≤ `w(f(x)).

Our semantic CKAT model will be based on GSPΣ,T ⊆ (Σ ∪ Γ)sp so we
mostly make use of the restriction of v to gsp-strings. Recall that in a poset, b
is a cover of a if a is below b and there is no element strictly between a, b. In
this case we also say that a is a co-cover of b.

Lemma 4. If T is finite then (GSPΣ,T ,v) has no infinite chains, and it is
decidable if v v w holds for two gsp-strings.

Proof. Note that if v v w holds then v, w have the same finite number, say
n, of elements labeled by basic programs of Σ and these sets of labels coincide.
They may differ on the number of elements from Γ (= partial functions from
T to 2), but these elements are covers or co-covers of basic programs, and each
basic program has exactly one cover and one co-cover. Hence there are at most
3n elements in v and w, so there are at most (3n)! gsp-strings above and below
any v. �

For a poset Γ, we use the notation Up(Γ) for the set of all upward closed
subsets of Γ. The language model over gsp-strings is defined as in the case of
guarded strings, except that we use only upward closed subsets, replace 2T by
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Γ, redefine complementation as pseudocomplementation, and we now have to
define the additional operation of concurrent composition. For B ∈ Up(Γ) and
L,M ∈ Up(GSPΣ,T ) let

• 1 = Γ, B =
⋃
{C ∈ Up(Γ) : B ∩ C = ∅}, and

• L||M = {w : u|v v w for some u ∈ L, v ∈M and u|v is defined}.

This makes Up(GSPΣ,T ) into a complete bisemiring with a Kleene-star for se-
quential composition. Note the use of upward closed sets rather than downward
closed sets as in Theorem 1. The reason is that the natural order on Γ needs to
be compatible with the subsumption order, hence the latter is reversed in the
definition of guarded dual subsumption.

The map G from the previous subsection is modified and extended homo-
morphically to all terms of KAT with || as follows:

• G(t) = {α ∈ Γ : α(t) = 1} for t ∈ T ,

• G(p) = {αpβ : α, β ∈ Γ} for p ∈ Σ,

• G(p+q) = G(p)∪G(q), G(pq) = G(p)G(q), G(p||q) = G(p)||G(q), G(p∗) =
G(p)∗, for any terms p, q and

• G(0) = 0, G(1) = 1, G(b̄) = G(b) for any term b without occurrences of
any basic program p ∈ Σ.

The bi-Kleene algebra of series-rational gsp-languages, denoted by CΣ,T , is the
subalgebra generated by {G(t) : t ∈ T} ∪ {G(p) : p ∈ Σ}. The phrase “series-
rational” comes from the paper by Lodaya and Weil [19], where they use the
name series-rational sp-language for the members of their language model.

With this language model as guide, we now define a concurrent Kleene al-
gebra with tests (CKAT) as an algebra A = (A,A′,+, 0, ||, ·, 1,∗ , )̄ where

1. (A,+, 0, ·, 1,∗ ) is a Kleene algebra,
2. (A,+, 0, ||, 1) is a commutative semiring with 0 and identity 1,
3. (A′,+, 0, ·, 1) is a bounded distributive lattice with A′ ⊆ A,
4. b̄ =

∑
{c ∈ A′ : b · c = 0} exists for all b ∈ A′, and

5. the weak exchange law (x||y)(z||w) ≤ xz||yw holds for all x, y, z, w ∈ A.

Although the fourth axiom appears to be infinitary, it can be replaced by the
(two) quasiequations c ≤ b̄ ⇐⇒ b · c = 0 for all b, c ∈ A′, and these in turn are
equivalent to the identities bbc = bc̄, 0̄ = 1 and bar1 = 0. Further details about
pseudocomplemented distributive lattices can be found, e.g., in [2], although
this paper uses only basic properties of these algebras. An alternative would
be to use a Heyting algebra for the test elements of a CKAT since that would
be a good match with separation logic. However it would change the syntax
(replacing ¯with the Heyting implication →) and the subalgebra of tests would
lose the property of being locally finite (the 1-generated free Heyting algebra is
infinite whereas any finitely generated pseudocomplemented distributive lattice
is finite).
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Theorem 5. (Up(GSPΣ,T ),Up(Γ),∪, ∅, ||, ·,Γ,∗ , )̄ is a concurrent Kleene alge-
bra with tests. If T = ∅ then the -̄free reduct of this algebra is isomorphic to the
CKA Dn(Σsp) from Theorem 1.

Proof. It is easy to see that Up(GSPΣ,T is closed under the operations. In
particular, the operation L||M is defined to be the upward closure of {u|v : u ∈
L, v ∈M} to ensure that the result is in Up(GSPΣ,T ), whereas ∪, ·,∗ ,¯preserve
the property of being upward closed.

The KA axioms for ∪, ∅, ·,Γ,∗ are also straight forward to check since they
hold for all subsets of GSPΣ,T . Similarly || is associative, commutative, dis-
tributes over ∪ and has ∅ as a zero. To see that Γ is an identity for ||, we note
that L||{u} = ↑L ⊆ L, hence L||Γ ⊆ L. For the reverse inclusion, w ∈ L||Γ
implies v|α v w for some v ∈ L and α ∈ Γ. Since v v v|α and L is upward
closed, it follows that v ∈ ↑L = L.

To prove that the weak exchange law holds, let L,M,P,Q ∈ Up(GSPΣ,T )
and suppose r ∈ (L||M)(P ||Q). Then r = x � y for some x ∈ L||M and
y ∈ P ||Q. It follows that x w αsα′|βtβ′, y w γuγ′|δvδ′, α′ ⊕ β′ = γ ⊕ δ and
r w (α ⊕ β)(s||t)(α′ ⊕ β′)(u||v)(γ′ ⊕ δ′), where αsα′ ∈ L, βtβ′ ∈ M , γuγ′ ∈ P
and δvδ′ ∈ Q.

Let κ = α′ ⊕ β′. Since L,M,P,Q are upward closed, αsκ ∈ L, βtκ ∈ M ,
κuγ′ ∈ P and κvδ′ ∈ Q. Using the definition of the guarded subsumption order
we see that

r w (α⊕ β)(s||t)(α′ ⊕ β′)(u||v)(γ′ ⊕ δ′) w (α⊕ β)(sκu||tκv)(γ′ ⊕ δ′)

where the order-preserving function f between the gsp-strings sends the two
elements labeled κ to the element labelled α′ ⊕ β′ and is the unique order-
preserving bijection on the other elements. The right hand gsp-string is an
element in LP ||MQ, hence r is also in this upward closed set.

If T = ∅ then Γ = {u}, hence Up(Γ) = {∅, {u}} = {0, 1}. The set GSPΣ,∅ is
isomorphic to Σsp, where the isomorphism g is given by deleting all the guards
in the gsp-string. This map lifts to an isomorphism ĝ between the algebras. �

We do not include iterated concurrent composition (i.e., parallel star) in the
definition of a CKAT since this operation prevents the generalization of Kleene’s
theorem to gsp-languages (see [19, Sec. 3] for further discussion). However the
notation ||ni=1pi is used to abbreviate the (fixed length) term p1||p2|| · · · ||pn that
corresponds to a parallel for-loop.

There are several other models of concurrency that are similar to our ap-
proach but they differ in the details. In particular the notion of synchronous
Kleene algebra (SKA) by Prisacariu [22] is quite close to CKA, and the cited
paper also contains an extension to SKA with tests (SKAT). However the mod-
els in that paper do not satisfy the weak exchange law of CKA (though they do
satisfy the stronger equational version on a subset of idempotent basic actions).
For more details about the relationship between SKA and other concurrency
models, including pomsets and CKA, see [22, Sec. 4].
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6. Automata over guarded series-parallel strings

The notion of nondeterministic automaton for gsp-strings is based on the
one for guarded strings, but it is expanded with fork and join transitions taken
from the branching automata of Lodaya and Weil [19]. Specifically a guarded
branching automaton is of the form

X : X
〈t,k,j,f〉
−−−→ P(X)Σ∪Up(Γ) × P(M(X))× P(M(X))× 2

where X is a set andM(X) is the collection of multisets of X with more than
one element. As for guarded automata, t is the transition function and f is the
characteristic function defining the set of final states. The functions k and j give
the fork and join relations respectively. In traditional notation, the automaton
can also be specified by the tuple X ′ = (X, δ, δfork, δjoin, F ), where

• (X, δ, F ) is a guarded automaton,

• δfork ⊆ X ×M(X) and

• δjoin ⊆M(X)×X.

Fork transitions in δfork are denoted (x, {|x1, x2, . . . , xn|}), and if the multiset
has n elements they are called forks of arity n. The join transitions of arity n
are defined similarly, but with the order of the two components reversed.

While coalgebraic automata do not have an explicit initial state, they can be
augmented with such a state whenever this is required. The advantages of the
coalgebraic point of view is that it turns the class of all automata for this functor
into a concrete category, and allows many standard results on bisimulation and
coalgebraic modal logic to be applied to this setting.

The acceptance condition for gsp-strings needs to be defined carefully since
it substantially extends the one for guarded strings. Intuitively one can think
of an automaton as evaluating the acceptance condition for parallel parts of the
input string concurrently on separate processors. In many cases, when large
scale parallel programs are run on a distributed cluster of computers, (part of)
the program code is distributed to all the available processors and executes in
separate environments until at an appropriate point results are communicated
back to a subset of the processors (perhaps a single one) and combined into a
new state. This fork and join paradigm is of course a fairly restricted model of
concurrent programming, which has the merit of being quite simple and alge-
braic since it avoids syntactic annotations for named channels and other more
architecture-dependent features. It also meshes well with our generalization of
guarded strings and with the laws of concurrent Kleene algebra.

For the actual definition of acceptance we do not need to have separate copies
of automata, instead we simply map the parallel parts of a gsp-string into the
same automaton. Looking back at the recursive definition of acceptance for a
(non-concurrent) guarded string relative to an initial state x0, it is apparent
that this condition is equivalent to finding a path from x0 to some final state
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xf such that the basic program symbols in the string match with symbols along
the path in the same order, and if pi−1αipi occurs in the guarded string then
there is a path β1 . . . βni

of tests βk ≥ αi along edges of the automaton that lie
between the edges matched by pi−1 and pi. For gsp-strings we define a similar
“embedding” into the automaton where parallel branches correspond to a fork
transition, followed by parallel (not necessarily disjoint) paths along matching
edges until they reach a join transition. The precise recursive definition is as
follows: A weak guarded series parallel string (or wgsp-string for short) is a
gsp-string but possibly without the first and/or last guard. Acceptance of a
wgsp-string w by X starting from initial state x0 and ending at state xf, is
defined recursively by:

• If w = α ∈ Γ then w is accepted iff for some n ≥ 1 there is a sequential
path x0t1x1t2 . . . xn−1tnxf in X (i.e., (xi−1, ti, xi) is an edge in X ) of n
test transitions ti ∈ P(Γ) such that α ∈ ti for i = 1, . . . , n.

• If w = p ∈ Σ then w is accepted iff there exist a transition labelled p from
x0 to xf.

• If w = {|u1, . . . , um|} for m > 1 then w is accepted iff there exist a fork
(x0, {|x1, . . . , xm|}) and a join ({|y1, . . . , ym|}, xf) in X such that ui is ac-
cepted starting from xi and ending at yi for all i = 1, . . . ,m.

• If w = uv then w is accepted iff there exist a state x such that u is accepted
ending in state x and v is accepted by X starting from initial state x and
ending at xf.

Finally, w is accepted by X starting from x0 if the ending state xf is indeed a
final state, i.e., satisfies f(xf) = 1.

In the second recursive clause the fork transition corresponds to the cre-
ation of n separate processes that can work concurrently on the acceptance
of the wgsp-strings u1, . . . , un. The matching join-operation then corresponds
to a communication or merging of states that terminates these processes and
continues in a single thread.

The sets of gsp-strings that are accepted by a finite automaton are not
necessarily upward closed in the guarded dual subsumption order, hence we
define a regular gsp-language to be a set of gsp-strings that is the upward closure
of a set of all gsp-strings that are accepted by some finite automaton.

For sets of (unguarded) strings, the regular languages and the series-rational
languages (i.e., those built from Kleene algebra terms) coincide. However, Loy-
ala and Weil pointed out that this is not the case for sp-strings, since for example
the language {p, p||p, p||p||p, . . .} is regular, but not a series-rational language.
As for sp-strings, the width of a gsp-string is the maximal cardinality of an an-
tichain in the underlying poset. A (g)sp-language is said to be of bounded width
if there exists n < ω such that every member of the language has width less than
n. Intuitively this means that the language can be accepted by a machine that
has at least n (virtual) processors. The series-rational languages are of bounded
width since concurrent iteration was not included as one of The condition of

18



bounded width can be rephrased as a restriction on the automaton. A run of
X is called fork-acylic if a matching fork-join pair never occurs as a matched
pair nested within itself. The automaton is fork-acylic if all the accepted runs
of X are fork-acyclic. Lodaya and Weil prove that if a language is accepted by
a fork-acyclic automaton then it has bounded width, and their proof applies
equally well to gsp-languages.

At this point it is not clear whether the algebra of regular gsp-languages is
isomorphic to the free CKAT, or if guarded branching automata give a decision
procedure for the equational theory of concurrent Kleene algebras with tests.

7. Trace semantics for concurrent Kleene algebras with tests

Kozen and Tiuryn [17] (see also [14]) show how to provide trace semantics
for programs (i.e. terms) of Kleene algebra with tests. This is based on an
elegant connection between computation traces in a Kripke frame and guarded
strings. Here we point out that this connection extends very simply to the
setting of concurrent Kleene algebras with tests, where traces are related to
labeled Hasse diagrams of posets and these objects in turn are associated with
guarded series-parallel strings.

Adapting the Kripke frames for KAT, we define a separation frame over
Σ, T to be a structure (K,⊕,u,mK) where K is a set of states that is the
base set of a positive separation algebra (K,⊕,u), mK : Σ → Up(K ×K) and
mK : T → Up(K). Here the upward closure is computed with respect to the
natural order of K, defined as before by s ≤ t if and only if there exists r ∈ K
such that s⊕ r = t. The upward closure in K ×K is calculated in the cartesian
product of the poset (K,≤) with itself.

A gsp-trace τ in K is essentially a gsp-string with the guards replaced by
states in K, such that whenever a triple spt ∈ K × Σ × K is a subtrace of
τ then (s, t) ∈ mK(p). The set of all gsp-traces over K is denoted GSPK .
The subsumption order v on GSPK is defined exactly as for gsp-strings, and
likewise for the coalesced product σ � τ of two gsp-traces σ, τ (if σ ends at the
same state as where τ starts) as well as the parallel product σ|τ (where ⊕ is
used to combine the first two states as well as the last two states, while the
remaining parts of the gsp-traces are combined using the parallel composition
of their pomsets). These partial operations lift to sets X,Y of gsp-traces by

• XY = {σ � τ : σ ∈ X, τ ∈ Y and σ � τ is defined}

• X||Y = {ρ : σ|τ v ρ for some σ ∈ X, τ ∈ Y and σ|τ is defined}.

The proof of the following result is very similar to the preceeding proof for
GSPΣ,T .

Theorem 6. For any separation frame (K,⊕,u,mK) the algebra

(Up(GSPK),Up(K),∪, ∅, ||, ·,K,∗ , )̄

is a CKAT.

19



For a subset B of a poset (K,v), we use the notation ↓B for the set {x ∈
K : x ≤ y for some y ∈ B, and dually ↑B denotes the set {x ∈ K : y ≤
x for some y ∈ B. Programs (= terms of CKAT) are interpreted in K using a
modified inductive definition of Kozen and Tiuryn [17] extended by a clause for
||:

• [[p]]K = {spt|(s, t) ∈ mK(p)} for p ∈ Σ

• [[0]]K = ∅ and [[b]]K = mK(b) for b ∈ T

• [[b̄]]K = K \ ↓mK(b) and [[p+ q]]K = [[p]]K ∪ [[q]]K

• [[pq]]K = ([[p]]K)([[q]]K) and [[p∗]]K =
⋃
n<ω[[p]]nK

• [[p||q]]K = [[p]]K ||[[q]]K .

Each gsp-trace τ has an associated gsp-string gsp(τ) obtained by replacing every
state s in τ with the corresponding unique guard α ∈ Γ that satisfies s ∈ [[α]]K .
It follows that gsp(τ) is the unique guarded sp-string over Σ, T such that τ ∈
[[gsp(τ)]]K . As a result there is a similar connection between gsp-trace semantics
and gsp-strings as in [17] (the proof is by induction on the structure of p).

Theorem 7. For a separation frame (K,⊕,u,mK), program p and gsp-trace
τ , we have τ ∈ [[p]]K if and only if gsp(τ) ∈ G(p), whence [[p]]K = gsp−1(G(p)).

The trace model for guarded strings has many applications since each trace in
[[p]]K can be interpreted as a sequential run of the program p starting from the
first state of the trace. The gsp-trace model provides a similar interpretation
for programs that fork and join threads during their runs. Each gsp-trace in
[[p]]K is a representation of the basic programs and tests that were performed
during the possibly concurrent execution of the program p. Note that there are
no explicit fork and join transitions in a gsp-trace since, unlike a gsp-automaton
(which has to allow for nondeterministic choice), whenever a state in a gsp-trace
has several immediate successor states, this is the result of a fork, and similarly
states with several immediate predecessors represent a join.

While series-parallel traces are more complex than linear traces, they can,
like gsp-strings, still be represented by planar lattice diagrams where parallel
composition is denoted by placing traces next to each other (with partial sum
of the start states and end states), and sequential composition is given by plac-
ing traces vertically above each other (with only one connecting state between
them).

The gsp-trace semantics are useful for analysing the behavior of threads that
communicate only indirectly with other concurrent threads via joint termination
in a single state. While this is a restricted model of concurrency, it has a simple
algebraic model based on Kleene algebras with tests, and it satisfies the laws of
concurrent Kleene algebra including the weak exchange law.

At the end of the next section we present another model where states are
assignments from variables to values. In such a setting the notion of separa-
tion algebra is used to guarantee the absence of race conditions in concurrent
programs.
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8. Concurrent flowchart schemes and Kleene algebras with tests

In order to code specific concurrent algorithms, we first recall flowchart
schemes and then extend them with fork and join statements. Flowchart schemes
were originally introduced by Ianov [12], and later related to Kleene algebras
with tests by Angus and Kozen [1]. They are defined over a standard first-
order signature consisting of finitely many function symbols f, g, . . . and pred-
icate symbols P,Q, . . ., each with a fixed arity. Terms are built from variables
{xi, yi, zi : i = 1, 2, . . .} and function symbols, and an expression t(x,y) indi-
cates that the term t uses (some) variables from the sequences x = x1, . . . , xm
and y = y1, . . . , yn.

Deterministic flowchart schemes are finite directed graphs with nodes la-
beled by statements. A start statement with one outgoing edge is followed by
assignment statements y := t(x,y) with one outgoing edge, test statements
P (t(y)) with two outgoing edges labeled T and F and halt statements with no
outgoing edges. A start statement has no incoming edges and all other state-
ments have a finite non-zero number of incoming edges. Here t = t1, . . . , tn are
terms, x are input variables, y are work variables, and P is a predicate symbol.
An assignment statement y1, . . . , yn := t1, . . . , tn is between sequences of the
same length, where the terms ti on the right are first all evaluated and then
assigned to their corresponding variable on the left. Given extra work variables,
such an assignment can be simulated by a sequential list of simple assignments
of the form y := t.

The general form of a deterministic flowchart scheme is given in Figure 4.
The unique start statement must be followed directly by an initialization state-
ment that assigns values to all work variables using only the input variables.
Every halt statement is preceded by a finalization statement that assigns values
to all output variables z = z1, . . . , zl. In Figure 4 the close coupling of the start
statement with initialization, and likewise of finalization with the halt state-
ment, is suggested by drawing them close together. These syntactic restrictions
ensure that the output values are a function of the input values.

Concurrent deterministic flowchart schemes are defined as above, but with
two more statement types: fork and join. Each fork statement has k > 1
outgoing edges followed directly by initialization statements yi := ri(x,y) for
i = 1, . . . , k. Here yi = yi1, . . . , yini is a sequence of work variables distinct
from all other variables. Operationally, when a fork is processed, the current
process is suspended, the initialization statements of the k new processes are
evaluated, and then these processes continue concurrently. The work variables
of the suspended process can be accessed by the new processes, but this can
lead to race conditions where two concurrent processes modify/read the same
variable, resulting in potential nondetermnism. A flowchart scheme is called
cautious if any two paths starting from the same fork reach the same join, and
(after initialization) only have access to disjoint sets of variables. This separation
condition ensures the absence of race conditions so that the flowchart scheme is
deterministic. After the fork statement, each computation path evolves its own
state, but at the join statement the k states are merged (by set union) into a
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start start statement

y := q(x) initialization statement

y := r(y) assignment statement

P (s(y)) test statement

z := t(y) finalization statement

halt halt statement

F
T

Figure 4: A flowchart scheme showing the different types of statements

common state.
Note that each strand of a fork-join block has its own initialization statement,

and that the work variables of a strand are separated from all other variables.
This simplifies reasoning about the semantics of such concurrent processes, and
also implies that concurrent schemes are reasonable models for distributed com-
puting as well as for shared memory multicore processing. All strands of a fork
are initialized concurrently, before any of them are processed. After the ini-
tialization step, they can be processed in any order, in parallel or sequentially,
without affecting the semantics. Thus strands do not necessarily correspond to
parallel threads, they merely indicate which parts of the flowchart scheme can
be processed in parallel.

As an example of a concurrent scheme, consider the flowchart in Figure 5.
For an associative operation ⊕, it evaluates the term x1 ⊕ x2 ⊕ · · · ⊕ x8 concur-
rently, using three iterations of a 4-ary fork-join. Note that this flowchart can
easily be translated into a CKAT term of the form

p(b(p1q1||p2q2||p3q3||p4q4)q)∗b̄r

where p is the initial assignment, b is the test h > 0, piqi are the assignments
between the fork and join, q is the decrement and r is the finalization.

Figure 6 shows how to construct a concurrent flowchart that implements a
parallel for-loop. Strictly speaking, this is not a scheme, since the symbols +,−
are to be interpreted as integer addition and subtraction. The first strand of
the fork also has paths that do not end at the join, though one can observe
that all actual computation paths (traces) out of the fork do in fact arrive at
the join. With the help of this forpar construct, a more general version of the
term-evaluation algorithm is given in Figure 7.

We now construct a concurrent Kleene algebra with tests that gives trace
semantics for concurrent flowchart schemes. Since Kleene algebras are closely
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start

y1, . . . , y8, h := x1, . . . , x8, 3

h > 0

fork
y11, y12 := y1, y2

y1 := y11 ⊕ y12

y21, y22 := y3, y4

y2 := y21 ⊕ y22

y31, y32 := y5, y6

y3 := y31 ⊕ y32

y41, y42 := y7, y8

y4 := y41 ⊕ y42

join

h := h− 1

z1 := y1 halt
T

F

Figure 5: A concurrent scheme for calculating x1 ⊕ x2 ⊕ · · · ⊕ x8

connected to automata, we first consider how flowcharts can be translated to
automata on guarded strings.

Flowcharts have nodes labelled by actions or tests, whereas automata have
edges labelled by actions and nodes correspond to states (that corespond to code
points in the program represented by the automaton or flowchart). To convert
a flowchart into a guarded automaton, it suffices to move the action labels from
the nodes to the outgoing edges. For a test statement b that has two outgoing
edges, the label b is moved to the true edge and b̄ is moved to the false edge.
The (now unlabeled) nodes of the flowchart will then correspond to the states
of the automaton. To obtain a deterministic automaton from a deterministic
flowchart, a junk state can be added as a target for all actions that do not lead
to an accepted computation. Forks and joins of flowcharts correspond to forks
and joins in Lodaya and Weil’s branching automata, but note that a k-ary join
node in the flowchart expands into k states in the automaton (see Figure 8).

We now define a CKAT model that provides trace semantics for concurrent
flowchart schemes. Let N = {xi, yi, zi : i = 1, 2, 3, . . .} be a namespace of
variables and let V be a set of values (e. g. V = Z). The set of states is

X = {s : s is a partial function from N to V with finite domain}.

Thus a state s ∈ X specifies the values for a finite set D = dom(s) of variables.
As in separation logic [23, 20], states r, s are said to be separated if dom(r) ∩
dom(s) = ∅, denoted r ⊥ s. Recall that Xsp is the set of all sp-strings over the
set X. An sp-string is called an sp-trace if

1. its underlying poset has a largest and a smallest element,
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i := 1

i ≤ m

forki := i+ 1

y1i := i

p(y1i)

joini := i− 1

i > 1

T

F

T

F

forpar i := 1 to m

y1i := i

p(y1i)

join

≡

Figure 6: Implementing forpar using binary fork and join

2. any two incomparable states are separated, and
3. if s1, s2, . . . , sk are all the covers or all the co-covers of state r then

dom(r) = dom(s1) ∪ · · · ∪ dom(sk).

The trace semantics of a concurrent flowchart scheme p is the set [p] of all
sp-traces that are finite execution traces of the flowchart. For a flowchart that
is expressible as a CKAT algebra term, [p] can be calculated by evaluating the
term in the following way.

For an assignment such as y := t(x1, . . . , xn), the semantics are

[y := t(x)] = {(s, s′) ∈ X2 :x ∈ dom(s) = dom(s′) and
s′ = s[y 7→ t(s(x1), . . . , s(xn))}.

For a test P (y1, . . . , yn), the semantics are a set of length-one sequences

[P (y1, . . . , yn)] = {(s) ∈ X1 : y1, . . . , yn ∈ dom(s) and P (s(y1), . . . , s(yn))}.

A sequence of states (s1, . . . , sn) is also written simply as s1s2 . . . sn and is called
a linear trace. As for gsp-strings, sequential composition of sp-traces uses the
coalesced product � which is well-defined since each sp-trace has a first and last
element:

rur′ � svs′ =

{
rusvs′ if r′ = s

undefined otherwise.

The concurrent composition is based on a separated product:

rur′|svs′ =

{
(r ∪ s)(u||v)(r′ ∪ s′) if r ⊥ s
undefined otherwise.
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start

y, h := (x1, . . . , x2k), k

h > 0

forpar i := 1 to 2h−1

yi1, yi2 := y[2i− 1], y[2i]

y[i] := yi1 ⊕ yi2

join

h := h− 1

z1 := y[1] halt
T

F

Figure 7: Using forpar to calculate x1 ⊕ x2 ⊕ · · · ⊕ x2k

b

fork

p q r

join

s

T

F

b

b̄

p q r

s

Figure 8: Correspondence between flowcharts and automata
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Note that here || is the parallel composition of sp-strings from Section 5. The
definitions for some of the less obvious special cases are r � s = r if r = s,
else undefined; rr′|svs′ = (r ∪ s)v(r′ ∪ s′) if r ⊥ s; and r|svs′ = rr|svs′. The
associativity and commutativity of the operation | is easily checked.

Let Xspt be the set of all sp-traces. As usual, one now extends the above
two operations to subsets by

• R · S = {v � w : v ∈ R,w ∈ S and v � w is defined}

• R||S = {w : u | v v w for some v ∈ R,w ∈ S and v | w is defined}

• R+ S = R ∪ S

• 0 = ∅, 1 = X1, B = X1 \B and

• R∗ =
⋃
n<ω R

n.

With these operations one obtains the CKAT (Up(Xspt),Up(X),+, 0, ||, ·, 1,∗ , )̄.
By first choosing an interpretation I for the function symbols and predicate sym-
bols, and then generating the subalgebra of all assignment statements and tests,
one obtains the algebra of all concurrent programs generated by the functions
and tests of the interpretation I.

A subset of Xspt determines an obvious binary relation, by mapping each
sp-trace svs′ to the pair (s, s′). This map from trace semantics to denotational
semantics is a homomorphism from a CKAT to a relational Kleene algebra,
where the tests are subsets of the identity. If one starts out with a sequen-
tial program and modifies it to run concurrently on a multicore processor or
a distributed system, then this homomorphism is useful for checking that the
concurrent version and the sequential version still satisfy the same input/output
relation.

The algebra of binary relations in the previous paragraph can also be con-
structed directly (and more generally) by starting with any positive separation
algebra (Γ,⊕,u) and defining partial operations for sequential and parallel prod-
ucts on Γ2 = Γ× Γ as follows:

(a, b) � (c, d) =

{
(a, d) if b = c

undefined otherwise

(a, b) | (c, d) =

{
(a⊕ c, b⊕ d) if a ⊥ c, b ⊥ d
undefined otherwise.

The subsumption order (a, b) v (c, d) is given by the pointwise natural order,
and the partial operations �, | are lifted to Up(Γ2) in the same way as in the
preceding gsp-string models. The proof of our last result is very similar to the
proof of Theorem 5.

Theorem 8. For any positive separation algebra (Γ,⊕,u), the two-sorted alge-
bra (Up(Γ2),Up(idΓ),∪, ∅, ||, ·, 1,∗ , )̄ is a CKAT.
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9. Conclusion

Many theoretical models of concurrency have been proposed and studied
during the last five decades. Here we have taken an algebraic approach starting
from Kleene algebra with tests and adapting this model to concurrent Kleene
algebra and bounded-width series-parallel language models. This provides se-
mantics for concurrency based on standard notions such as regular languages
and automata. The addition of tests allows KAT to express standard imper-
ative programming constructs such as if-then-else and while-do. Adding
concurrency into this elegant algebraic model is likely to lead to new applica-
tions such as verifying compiler optimizations targeting multicore architectures
or modeling computations on large distributed clusters. In recent years, several
programming languages have added fork-join commands (e.g. Java) or related
constructs such as spawn-sync (e.g. cilk) or async (c++11). Concurrent de-
terministic flowchart schemes are closely related to concurrent Kleene algebras
with test, and are able to express a variety of concurrent algorithms in a gen-
eral formalism that can be adapted to many types of parallel hardware, from
multicore processors to distributed computing clusters.

We would like to thank the anonymous referees for many useful comments
that have substantially improved this article.
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