
On the Completeness of the Equations

for the Kleene Star in Bisimulation

Wan Fokkink

Utrecht University, Department of Philosophy
Heidelberglaan 8, 3584 CS Utrecht, The Netherlands

fokkink@phil.ruu.nl

Abstract. A classical result from Redko [20] says that there does not
exist a complete finite equational axiomatization for the Kleene star mod-
ulo trace equivalence. Fokkink and Zantema [13] showed, by means of a
term rewriting analysis, that there does exist a complete finite equational
axiomatization for the Kleene star up to strong bisimulation equivalence.
This paper presents a simpler and shorter completeness proof. Further-
more, the result is extended to open terms, i.e., to ω-completeness. Fi-
nally, it is shown that the three equations for the Kleene star are all
essential for completeness.

1 Introduction

Kleene [15] defined a binary operator x∗y in the context of finite automata,
which denotes the iterate of x on y. Intuitively, the expression x∗y can choose
to execute either x, after which it evolves into x∗y again, or y, after which it
terminates. An advantage of the Kleene star is that on the one hand it can
express recursion, while on the other hand it can be captured in equational laws.
Hence, one does not need meta-principles such as the Recursive Specification
Principle from Bergstra and Klop [8]. Kleene formulated several equations for
his operator, notably x∗y = x(x∗y) + y.
Redko [20] (see also Conway [10]) proved that there does not exist a com-

plete finite equational axiomatization for the Kleene star in language theory. We
observe that Redko’s proof can be transposed to the binary Kleene star in Basic
Process Algebra, denoted by BPA∗, modulo trace equivalence. This observation
is not immediate because Redko studies the Kleene star in the presence of the
special constants 0 and 1 from language theory, which are not present in BPA∗.
However, Redko’s proof does not use these constants; the basic idea is that x∗x
is trace equivalent with (xn)∗(x + x2 + . . . + xn−1) for each n ≥ 2, and this
infinite number of equivalences cannot be expressed in finitely many equations.
This reasoning is also valid in BPA∗ modulo trace equivalence.
Bergstra, Bethke and Ponse [7] studied BPA∗ modulo bisimulation equiva-

lence, and they suggested a finite equational axiomatization for it. Fokkink and
Zantema [13] proved that this axiomatization is complete, by means of a so-
phisticated term rewriting analysis. The completeness proof in [13] is deplorably
long and complicated. Therefore, the completeness result itself was presented in

the recent handbook chapter of Baeten and Verhoef [6], but its proof was omit-
ted because it was considered beyond the scope of that paper. Here, a simpler
completeness proof is proposed, which is based on induction on the structure of
process terms. This proof is better suited for presentation in a handbook, or at
an advanced process algebra course. Also, the proof method employed here is a
general strategy, which can be applied to other iteration constructs just as well,
see [3, 2].
Following [17, 14, 3], the preliminaries and the completeness proof focus on

open terms, so that we obtain not only completeness, but also ω-completeness
of the axioms. This last result is new.
Finally, it is shown that the completeness result is lost if either one of the

three equations for the Kleene star is removed from the axiomatization. The
proof strategy is to find a model for the axioms minus one of the equations for
the Kleene star.
Sewell [22] proved that if the deadlock δ is added to BPA∗, then a complete

finite equational axiomatization does not exist. Milner [16] formulated an ax-
iomatization for BPA∗ together with the deadlock δ and the empty process ε,
which includes a conditional axiom which stems from Salomaa [21] in the set-
ting of language theory. He asked whether his axiomatization is complete with
respect to bisimulation. The proof that is presented here stems from an, up to
now unsuccessful, attempt to solve this problem. However, the proof in this pa-
per may constitute a first step towards solving Milner’s problem. For example,
in the setting of BPA∗ with the deadlock δ, the cases that are not yet covered
by this proof can all be reduced to the form p∗δ ↔ q∗δ.

Acknowledgements. Luca Aceto and Rob van Glabbeek taught me how to
deal with ω-completeness. Alban Ponse provided useful comments.

2 BPA with Binary Kleene Star

2.1 The Syntax

We assume a non-empty alphabet A of atomic actions, with typical elements
a, b, c, and a countably infinite set Var of variables, with typical elements x, y, z.
We shall use α, β to range over A ∪ Var. Furthermore, we have three binary
operators: alternative composition +, sequential composition ·, and the Kleene
star ∗. The language of Basic Process Algebra with the binary Kleene star,
denoted by T(BPA∗(A)), with typical elements P,Q,R, S, T, U, V , consists of all
the open terms that can be constructed from the atomic actions and the three
binary operators. That is, the BNF grammar for the collection of process terms
is as follows:

P ::= α | P + P | P · P | P ∗P.

In the sequel the operator · will often be omitted, so PQ denotes P · Q. As
binding convention, ∗ and · bind stronger than +.

T (BPA∗(A)) denotes the subset of closed process terms in T(BPA∗(A)), that
is, the process terms which do not contain any variables.

2.2 Operational Semantics

Table 1 presents an operational semantics for T(BPA∗(A)) in Plotkin style [19],
where variables are taken to be atomic actions, that is, variable x can execute x
and then terminate; the special symbol

√
represents (successful) termination.

α
α−→
√

P
α−→ √

P +Q
α−→ √ α←− Q+ P

P
α−→ P ′

P +Q
α−→ P ′ α←− Q+ P

P
α−→ √

P ·Q α−→ Q

P
α−→ P ′

P ·Q α−→ P ′ ·Q

P
α−→ √

P ∗Q
α−→ P ∗Q

P
α−→ P ′

P ∗Q
α−→ P ′(P ∗Q)

Q
α−→ √

P ∗Q
α−→ √

Q
α−→ Q′

P ∗Q
α−→ Q′

Table 1. Action rules for T(BPA∗(A))

Process terms are considered modulo bisimulation equivalence from Park [18].
Intuitively, process terms are bisimilar if they have the same branching structure.

Definition 1. Two processes P and Q are bisimilar, denoted by P ↔ Q, if there
is a symmetric binary relation B on processes which relates P and Q such that:

- if R B S and R
α−→ R′, then there is a transition S

α−→ S′ such that R′ B S′,
- if R B S and R

α−→ √, then S α−→ √.

The action rules in Table 1 are in the ‘path’ format of Baeten and Verhoef [5].
Hence, bisimulation equivalence is a congruence with respect to all the operators,
which means that if P ↔ P ′ and Q↔ Q′, then P+Q↔ P ′+Q′ and PQ↔ P ′Q′

and P ∗Q↔ P ′ ∗Q′. See [5] for the definition of the path format, and for a proof
of this congruence result. Their proof uses the extra assumption that the rules
are well-founded; Fokkink and Van Glabbeek [12] showed that this requirement
can be dropped.
Note that we give operational semantics to open terms, following [17, 14]

for process algebra with abstraction, and [3] for process algebra with the prefix
iteration operator from [11], which is a restricted version of the Kleene star.
This approach deviates from the standard approach, which prescribes to give
operational semantics to closed terms only, and to give meaning to open terms
by defining P ↔ Q if Pσ ↔ Qσ for all substitutions σ : Var→ T (BPA∗(A)). The
next lemma implies that both approaches yield the same notion of bisimulation

equivalence on T(BPA∗(A)), that is, in our setting, two open terms are bisimilar
if and only all their closed instantiations are bisimilar.

Lemma2. P ↔ Q if and only if Pσ ↔ Qσ for all substitutions σ : Var →
T (BPA∗(A)).

This lemma can be proved following the strategy that was employed in [3] for
prefix iteration, although in the case of the binary Kleene star the technical
details are considerably more complicated [1]. An easy way out is offered by
Sewell [22][Theorems 4 and 5], where this type of result is proved in the more
general setting of a simply typed lambda calculus, which captures iteration.
According to Lemma 2, if an axiomatization E for T(BPA∗(A)) is sound and

complete modulo bisimulation, then it is ω-complete for T (BPA∗(A)) modulo
bisimulation. Namely, if E ` Pσ = Qσ for all σ : Var → T (BPA∗(A)), then
soundness yields Pσ ↔ Qσ for all σ : Var→ T (BPA∗(A)), so Lemma 2 implies
P ↔ Q. Then completeness yields E ` P = Q.

2.3 The Axioms

Table 2 contains an axiom system for T(BPA∗(A)). It consists of the standard
axioms A1-5 together with three axioms BKS1-3 for the binary Kleene star. The
most advanced axiom BKS3 originates from Troeger [23]. In the sequel, P = Q

will mean that this equality can be derived from the axioms.
This axiomatization is sound for T(BPA∗(A)) with respect to bisimulation

equivalence, i.e., if P = Q then P ↔ Q. Since bisimulation equivalence is a con-
gruence, this can be verified by checking soundness for each axiom separately,
which is left to the reader. The purpose of this paper is to prove that the axiom-
atization is complete with respect to bisimulation, i.e., if P ↔ Q then P = Q.

A1 x+ y = y + x

A2 (x+ y) + z = x+ (y + z)
A3 x+ x = x

A4 (x+ y)z = xz + yz

A5 (xy)z = x(yz)

BKS1 x(x∗y) + y = x∗y

BKS2 (x∗y)z = x∗(yz)
BKS3 x∗(y((x+ y)∗z) + z) = (x+ y)∗z

Table 2. Axioms for T(BPA∗(A))

In the sequel, terms are considered modulo associativity and commutativity of
the +, and we write P =AC Q if P and Q can be equated by axioms A1,2. As
usual,

∑n

i=1 Pi represents P1+ . . .+Pn. In the sequel, we will take care to avoid
empty sums (where

∑
i∈∅ Pi +Q is not considered empty).

For each process term P , its collection of possible transitions is non-empty

and finite, say {P αi−→ Pi | i = 1, ...,m} ∪ {P
βj−→ √ | j = 1, ..., n}. We call

m∑

i=1

αiPi +

n∑

j=1

βj

the expansion of P . The terms αiPi and βj are called the summands of P .

Lemma3. Each process term is provably equal to its expansion.

Proof. Straightforward, by structural induction, using axioms A4,5 and BKS1.

3 A New Completeness Proof

In this section we present a new proof for the fact that the axioms A1-5+BKS1-3
completely axiomatize T(BPA∗(A)) modulo bisimulation.
We start with determining a collection of normal forms such that for each in-

finite derivation P0
a0−→ P1

a1−→ P2
a2−→ · · · with P0 a normal form, there is a nor-

mal form R∗S and a natural N such that each Pn for n > N is of the form either
R∗S or R′(R∗S). Thus, the completeness proof boils down to checking the fol-
lowing three cases: R∗S ↔ T ∗U and R′(R∗S)↔ T ∗U and R′(R∗S)↔ T ′(T ∗U).
Such pairs of bisimilar terms are shown to be provably equal by structural in-
duction with respect to a subtle ordering on terms.

3.1 A Lemma for Normed Processes

Process terms in T(BPA∗(A)) are normed, which means that they are able to
terminate in finitely many transitions. The norm of a process yields the length of
the shortest termination trace of this process; this notion stems from [4]. Norm
can be defined inductively as follows.

|α| = 1
|P +Q| = min{|P |, |Q|}
|PQ| = |P |+ |Q|
|P ∗Q| = |Q|.

Note that bisimilar processes have the same norm.

Definition 4. P ′ is a derivative of P if P can evolve into P ′ by zero or more
transitions. A derivative P ′ of P is proper if P can evolve into P ′ by one or more
transitions.

The following lemma, which is due to Caucal [9], is typical for normed processes.

Lemma5. Let PQ↔ RS. By symmetry we may assume |Q| ≤ |S|. We can

distinguish two cases:

- either P ↔ R and Q↔ S,

- or there is a proper derivative P ′ of P such that P ↔ RP ′ and P ′Q↔ S.

Proof. We prove this lemma from the following facts A and B.

A. If PQ↔ RS and |Q| ≤ |S|, then eitherQ↔ S, or there is a proper derivative
P ′ of P such that P ′Q↔ S.

Proof. We apply induction on |P |. First, let |P | = 1. Then P α−→ √ for some
α, so PQ

α−→ Q. Since PQ↔ RS, we have two options:

- R
α−→ √ and Q↔ S. Then we are done.

- R
α−→ R′ and Q↔ R′S. This leads to a contradiction: |Q| ≤ |S| <

|R′S| = |Q|.
Next, suppose that we have proved the case for |P | ≤ n, and let |P | = n+1.

Then there is a P ′ with |P ′| = n and P
α−→ P ′, which implies PQ

α−→ P ′Q.
Since PQ↔ RS, we have two options:

- R
α−→ √ and P ′Q↔ S. Then we are done.

- R
α−→ R′ and P ′Q↔ R′S. Since |P ′| = n, induction yields either Q ↔ S

or P ′′Q↔ S for a proper derivative P ′′ of P ′. Again, we are done.

B. If PQ↔ RQ, then P ↔ R.

Proof. Define a binary relation B on process terms by T B U if TQ↔ UQ.
We show that B constitutes a bisimulation relation between P and R:

- Since ↔ is symmetric, so is B.

- PQ↔ RQ, so P B R.

- Suppose that T B U and T
α−→ T ′. Then TQ

α−→ T ′Q, so TQ↔ UQ

implies that this transition can be mimicked by a transition from UQ.
This cannot be a transition UQ

α−→ Q because |T ′Q| > |Q|, so appar-
ently there is a transition U

α−→ U ′ with T ′Q↔ U ′Q. Hence, T ′ B U ′.

- Similarly, we find that if T B U and T
α−→ √, then U α−→ √.

Finally, we show that facts A and B together prove the lemma. Let PQ↔ RS

with |Q| ≤ |S|. According to fact A we can distinguish two cases:

- Q↔ S. Then PQ↔ RS ↔ RQ, so fact B yields P ↔ R.

- P ′Q↔ S for some proper derivative P ′ of P . Then PQ↔ RS ↔ RP ′Q, so
fact B yields P ↔ RP ′. 2

3.2 Basic Terms

We construct a set B of basic process terms, such that each process term is
provably equal to a basic term. We will prove the completeness theorem by
showing that bisimilar basic terms are provably equal.

Table 3 presents a rewrite system R, which consists of directions of the axioms
A4,5 and BKS2, pointing from left to right. The rules in R are to be interpreted
modulo AC of the +. R is terminating, which means that there are no infinite

(x+ y)z −→ xz + yz

(xy)z −→ x(yz)
(x∗y)z −→ x∗(yz)

Table 3. The rewrite system R

reductions. This follows from the following weight function w in the natural
numbers.

w(α) = 2
w(P +Q) = w(P) + w(Q)
w(PQ) = w(P)2w(Q)
w(P ∗Q) = w(P) + w(Q).

It is easy to see that if R reduces P to Q, then w(P) > w(Q). Since the ordering
on the natural numbers is well-founded, we can conclude that R is terminating.
Let G denote the collection of ground normal forms of R, i.e., the collection of
process terms that cannot be reduced by rules in R. Since R is terminating,
and since its rules are directions of axioms, it follows that each process term is
provably equal to a process term in G. The elements in G are defined by:

P ::= α | P + P | αP | P ∗P.

G is not yet our desired set of basic terms, due to the fact that there exist process
terms in G which have a derivative outside G. We give an example.

Example 1. Let A = {a, b, c}. Clearly, (a∗b)∗c ∈ G, and

(a∗b)∗c
a−→ (a∗b)((a∗b)∗c).

However, the derivative (a∗b)((a∗b)∗c) is not in G because the third rule in R
reduces this term to a∗(b((a∗b)∗c)).

In order to overcome this complication, we introduce the following collection of
process terms:

H = {P ∗Q, P ′(P ∗Q) | P ∗Q ∈ G ∧ P ′ proper derivative of P}.

We define an equivalence relation ∼= on H by putting P ′(P ∗Q) ∼= P ∗Q for proper
derivatives P ′ of P , and taking the reflexive, symmetric, transitive closure of ∼=.
The set B of basic terms is the union of G and H.

Lemma6. If P ∈ B and P
α−→ P ′, then P ′ ∈ B.

Proof. We apply induction on the structure of P .
If P ∈ H\G, then it is of the form Q′(Q∗R) for some normal form Q∗R. So

P ′ is of the form either Q∗R or Q′′(Q∗R) for some proper derivative Q′′ of Q′.
In both cases, P ′ ∈ B.

If P ∈ G, then it is of the form
∑

i αiQi +
∑

j R
∗
jSj +

∑
k βk, where the

Qi and Rj and Sj are normal forms. So P
′ is of the form either Qi or R

∗
jSj

or R′
j(R

∗
jSj) or S

′
j , which are all basic terms (in the last case, this follows by

structural induction). 2

3.3 An Ordering on Basic Terms

Norm does not constitute a nice ordering on process terms, because it does
not respect term size, for example, |aa + a| < |aa|. L-value, from Fokkink and
Zantema [13], induces an ordering which does not have this drawback. It is
defined as follows:

L(P) = max{|P ′| | P ′ proper derivative of P}.

Note that L(P) < L(PQ) because for each proper derivative P ′ of P , P ′Q is
a proper derivative of PQ. Likewise, L(P) < L(P ∗Q). Since norm is preserved
under bisimulation, it follows that the same holds for L-value, that is, if P ↔ Q

then L(P) = L(Q).
We define an ordering on B as follows:

- P < Q if L(P) < L(Q),
- P < Q if P is a derivative of Q but Q is not a derivative of P ,

and we take the transitive closure of <.
Note that if P,Q ∈ H with P ∼= Q, then P and Q have the same proper

derivatives, and so L(P) = L(Q). These observations imply that the ordering <
on B respects the equivalence ∼= on H, that is, if P ∼= Q < R ∼= S, then P < S.

Lemma7. < is a well-founded ordering on B.

Proof. If P is a derivative of Q, then all proper derivatives of P are proper
derivatives of Q, so L(P) ≤ L(Q). Hence, if P < Q then L(P) ≤ L(Q).
Suppose that < is not well-founded, so there exists an infinite chain P0 >

P1 > P2 > · · ·. Then L(Pn) ≥ L(Pn+1) for all n, so there is an N such that
L(PN) = L(Pn) for all n > N . Since PN > Pn for n > N , it follows that Pn is a
derivative of PN for n > N . Each process term has only finitely many derivatives,
so there are m,n > N with m < n and Pm =AC Pn. Then Pm 6> Pn, so we have
found a contradiction. Hence, < is well-founded. 2

In the next two lemmas, we need a weight function g in the natural numbers,
which is defined inductively as follows:

g(α) = 0
g(P +Q) = max{g(P), g(Q)}
g(PQ) = max{g(P), g(Q)}
g(P ∗Q) = max{g(P), g(Q) + 1}

It is not hard to see, by structural induction, that if P
α−→ P ′, then g(P) ≥ g(P ′).

Lemma8. Let P ∗Q ∈ B. If Q′ is a proper derivative of Q, then Q′ < P ∗Q.

Proof. Since Q′ is a derivative of Q, it follows that g(Q′) ≤ g(Q). Hence,
g(Q′) < g(P ∗Q), so P ∗Q cannot be a derivative of Q′. On the other hand,
Q′ is a derivative of P ∗Q, so then Q′ < P ∗Q. 2

Lemma9. If P ∈ B and P
α−→ P ′, then either P ′ < P , or P, P ′ ∈ H and

P ∼= P ′.

Proof. We will use the following two facts A and B.

A. If P ∈ B and P ′ 6∈ H and P
α−→ P ′, then P ′ has smaller size than P .

Proof. We apply induction on the structure of P . If P ∈ H\G then it follows
that P ′ ∈ H, so then we are done. Hence, we may assume that P ∈ G:

P =AC

∑

i

αiQi +
∑

j

R∗
jSj +

∑

k

βk.

Since P
α−→ P ′, we find that P ′ is of one of the following forms:

- P ′ =AC Qi for some i. In this case we are done because the Qi have
smaller size than P .

- P ′ =AC R′
j(R

∗
jSj) or P

′ =AC R∗
jSj for some j. These cases contradict

the assumption that P ′ 6∈ H.
- Sj

α−→ P ′ for some j. In this last case, induction yields that P ′ has
smaller size than Sj , and thus P

′ has smaller size than P .

B. If P ∈ H and P
α−→ P ′, then either g(P) > g(P ′), or P ′ ∈ H and P ∼= P ′.

Proof. Since P ∈ H, either P =AC Q′(Q∗R) or P =AC Q∗R for some Q
and R. Hence, either P ′ =AC Q′′(Q∗R) or P ′ =AC Q∗R or P ′ =AC R′ for a
proper derivative R′ of R. In the first two cases P ′ ∈ H and P ∼= P ′, and in
the last case g(P ′) = g(R′) ≤ g(R) < g(Q∗R) = g(P).

Now, we are ready to prove the lemma. Let P
α−→ P ′ with P ′ 6< P ; we prove

that P, P ′ ∈ H and P ∼= P ′.
Since P ′ is a derivative of P and P ′ 6< P , apparently P is a derivative of P ′.

So there exists a derivation

P0
α1−→ P1

α2−→ · · · αn−→ Pn =AC P0, n ≥ 1.

where P0 =AC P and P1 =AC P ′ and Pn =AC P ′.
Suppose that Pk 6∈ H for all k. Then according to fact A, Pk+1 has smaller size

than Pk for k = 0, ..., n−1, so Pn =AC P0 has smaller size than P0; contradiction.
Hence, Pl ∈ H for some l.
Since each Pk is a derivative of each Pk′ , we have g(Pk) ≤ g(Pk′) for k and

k′, so g(Pk) must be the same for all k. Then it follows from fact B, together
with Pl ∈ H, that Pk ∈ H for all k and P0

∼= P1
∼= · · · ∼= Pn. 2

Elements of B × B are considered modulo commutativity. The well-founded
ordering < on B is extended to a well-founded ordering on B × B as expected:
(P,Q) < (R,S) if P < R and Q ∼= S.

3.4 The Main Theorem

Now we are ready to prove the desired completeness result.

Theorem10. If P ↔ Q, then A1-5+BKS1-3 ` P = Q.

Proof. Each process term is provably equal to a basic term, so it is sufficient
to show that bisimilar basic terms are provably equal. Assume P,Q ∈ B with
P ↔ Q; we show that P = Q, by induction on the ordering < on B × B. So
suppose that we have already dealt with pairs of bisimilar basic terms that are
smaller than (P,Q).
First, assume that P or Q is not in H, say P 6∈ H. Since P ↔ Q, by using

axiom A3 we can adapt the expansions of P and Q to the following forms:

P =
m∑

i=1

αiPi +
n∑

j=1

βj , Q =
m∑

i=1

αiQi +
n∑

j=1

βj ,

where Pi ↔ Qi for i = 1, ...,m. Since P 6∈ H, Lemma 9 says that Pi < P for
i = 1, ...,m. Furthermore, Lemma 9 says that either Qi < Q or Qi

∼= Q for
i = 1, ...,m. Then (Pi, Qi) < (P,Q), so induction yields Pi = Qi for i = 1, ...,m.
Hence, P = Q.
Next, assume P,Q ∈ H. We distinguish three cases.

1. Let P =AC R∗S and Q =AC T ∗U . We prove R∗S = T ∗U .
We spell out the expansions of R and T :

R =
∑

i∈I

Ri, T =
∑

j∈J

Tj ,

where the Ri and the Tj are of the form either αV or α.
Clearly, the summands of T ∗U are the summands of T (T ∗U) together with
the summands of U . Hence, since R∗S ↔ T ∗U , each term Ri(R

∗S) for i ∈
I is bisimilar either to Tj(T

∗U) for a j ∈ J or to a summand of U . We
distinguish these two cases.
(a) Ri(R

∗S)↔ Tj(T
∗U) for a j ∈ J . Then Ri(R

∗S)↔ Tj(R
∗S) because

R∗S ↔ T ∗U , so Lemma 5 implies Ri ↔ Tj .

(b) Ri(R
∗S)↔ αU ′ for a U

α−→ U ′.
Thus, I can be divided into the following, not necessarily disjoint, subsets.

I0 = {i ∈ I | ∃j ∈ J (Ri ↔ Tj)}
I1 = {i ∈ I | ∃U α−→ U ′ (Ri(R

∗S)↔ αU ′)}

Similarly, J can be divided:

J0 = {j ∈ J | ∃i ∈ I (Tj ↔ Ri)}
J1 = {j ∈ J | ∃S α−→ S′ (Tj(T

∗U)↔ αS′)}

If both I1 and J1 are not empty, then U
′ ↔ R∗S for a proper derivative U ′

of U and S′ ↔ T ∗U for a proper derivative S′ of S, and so U ′ ↔ S′. Then

induction yields R∗S = U ′ = S′ = T ∗U , and we are done. Hence, we may
assume that either I1 or J1 is empty, say J1 = ∅.

∑

i∈I1

Ri(R
∗S) + S = U. (1)

In order to derive Equation 1, we show that each summand at the left-hand
side of the equality sign is provably equal to a summand of U , and vice versa.
By definition of I1, for each Ri(R

∗S) with i ∈ I1 there is a summand αU ′ of
U such that Ri(R

∗S)↔ αU ′. According to Lemma 8 U ′ < T ∗U , so induction
yields Ri(R

∗S) = αU ′.
Consider a summand αS′ of S. Since R∗S ↔ T ∗U , and J1 = ∅, it follows that
αS′ is bisimilar with a summand αU ′ of U , so induction yields αS ′ = αU ′.
Finally, summands α of S correspond with summands α of U .
By the converse argument it follows that each summand of U is provably
equal to a summand at the left-hand side of the equality sign.

We continue with the proof of R∗S = T ∗U . Since J1 = ∅, it follows that
J0 6= ∅, so clearly also I0 6= ∅. Put R0 =

∑
i∈I0

Ri.

R0 = T. (2)

In order to prove this equation, note that by definition of I0 and J0 = J , each
Ri for i ∈ I0 is bisimilar to a Tj with j ∈ J . Since L(Ri) ≤ L(R) < L(R∗S),
induction yields Ri = Tj . Conversely, each Tj for j ∈ J is provably equal to
a Ri with i ∈ I0. Hence, R0 = T .

Since I0 ∪ I1 = I, we have R
A3
= R0 +

∑
i∈I1

Ri. Finally, we can derive
R∗S = T ∗U :

R∗S
A3
= (R0 +

∑
i∈I1

Ri)
∗S

BKS3
= R∗

0(
∑

i∈I1
Ri((R0 +

∑
i∈I1

Ri)
∗S) + S)

A3
= R∗

0(
∑

i∈I1
Ri(R

∗S) + S)
Eq.1,2
= T ∗U.

2. Let P =AC R′(R∗S) and Q =AC T ∗U . We prove R′(R∗S) = T ∗U .
|U | = |T ∗U | = |R′(R∗S)| ≥ 2, so U does not have atomic summands, so its
expansion is of the form

∑
i αiUi. Since R

′(R∗S) ↔ T ∗U , each Ui is bisimilar
to R∗S or to a term R′′(R∗S). According to Lemma 8 Ui < T ∗U , and R∗S ∼=
R′(R∗S) or R′′(R∗S) ∼= R′(R∗S), so induction yields Ui = R∗S or Ui =
R′′(R∗S) respectively. This holds for all i, so U =

∑
i αiUi = V (R∗S) for

some term V . Then R′(R∗S)↔ T ∗U ↔ (T ∗V)(R∗S), so Lemma 5 implies
R′ ↔ T ∗V . Since L(R′) < L(R′(R∗S)) and L(T ∗V) < L(T ∗U), induction

yields R′ = T ∗V . Hence, R′(R∗S) = (T ∗V)(R∗S)
BKS2
= T ∗(V (R∗S)) = T ∗U .

3. Let P =AC R′(R∗S) and Q =AC T ′(T ∗U). We prove R′(R∗S) = T ′(T ∗U).
By symmetry we may assume |R∗S| ≤ |T ∗U |. Lemma 5 distinguishes two
possible cases.

Either R′ ↔ T ′ and R∗S ↔ T ∗U . Since L(R′) < L(R′(R∗S)), induction
yields R′ = T ′, and Case 1 applied to R∗S ↔ T ∗U yields R∗S = T ∗U .
Or R′ ↔ T ′R′′ and R′′(R∗S)↔ T ∗U for a proper derivative R′′ of R′. Since
L(R′) < L(R′(R∗S)), induction yields R′ = T ′R′′. Furthermore, Case 1
applied to R′′(R∗S)↔ T ∗U yields R′′(R∗S) = T ∗U . Hence, R′(R∗S) =

(T ′R′′)(R∗S)
BKS2
= T ′(R′′(R∗S)) = T ′(T ∗U). 2

Lemma 2 implies the following corollary.

Corollary 11. The axiomatization A1-5+BKS1-3 is complete and ω-complete

for T (BPA∗(A)) modulo bisimulation.

3.5 An Example

We give an example as to how the construction in the completeness proof acts
on a particular pair of bisimilar process terms.

Example 2. Let A = {a1, b}, and consider the two bisimilar closed process terms:

a∗1b↔ a∗1(a
∗
1b).

We show how the construction in the proof of Theorem 10 applied to this pair
produces a derivation of a∗1b = a∗1(a

∗
1b).

Clearly both terms are in H, and we are dealing with the first of the three
possible cases for bisimilar terms in H that were distinguished in the com-
pleteness proof. Following the notations that were introduced there, we have
I = I0 = I1 = {1} and J = J0 = {1} and J1 = ∅. Hence, Equation 1 takes
the form a1(a

∗
1b) + b = a∗1b, which is an instantiation of BKS1, and Equation 2

takes the trivial form a1 = a1. Thus, the derivation at the end of the first case
for pairs in H here takes the following form:

a∗1b
A3
= (a1 + a1)

∗b
BKS3
= a∗1(a1((a1 + a1)

∗b) + b)
A3
= a∗1(a1(a

∗
1b) + b)

BKS1
= a∗1(a

∗
1b).

3.6 A Comparison of Proof Strategies

We discuss the strategy of the original completeness proof for T (BPA∗(A)) from
Fokkink and Zantema [13] . That proof is based on a standard rewriting tech-
nique, which means a quest for unique ground normal forms. It is noted that
this strive cannot be fulfilled for the Kleene star, so this operator is replaced
by x

⊕
y, which represents x(x∗y), and the axioms BKS1-3 are adopted for this

new operator. These axioms are turned into conditional rewrite rules, which are
applied modulo AC of the +. Four rewrite rules are added to make the rewrite

system weakly confluent, that is, if there are one-step reductions from a term P

to terms P ′ and P ′′, then both P ′ and P ′′ can be reduced to a term Q.

The next aim is to prove that the resulting conditional rewrite system is
terminating, which means that there are no infinite reductions. In this particular
case, deducing termination is a complicated matter, due to the occurrence of a
rewrite rule where the left-hand side can be obtained from the right-hand side
by the elimination of function symbols. Termination is obtained by means of the
advanced technique of semantic labelling from Zantema [24]. Hence, each process
term is provably equal to a ground normal form, which cannot be reduced by
the conditional rewrite system.

Finally, a painstaking case analysis learns that if two ground normal forms
are bisimilar, then they are the same modulo AC of the +. This observation
yields the desired completeness result.

In this paper, we presented a completeness proof for T(BPA∗(A)), based on
induction on term structure. This strategy turns out to be much more convenient
than the term rewriting analysis sketched above. Moreover, this approach is more
general, in the sense that it can be applied to variants of iteration, see for example
[3, 2].

4 The Axioms BKS1-3 are Essential for Completeness

Experience learns that axiom systems can contain embarrassing redundancies;
see [14] for an example in branching bisimulation. Therefore, we conclude this
paper by addressing the issue of the relative independence of the equations for
the Kleene star. That is, we show that each of the axioms BKS1-3 for the binary
Kleene star is essential for the obtained completeness result.

Theorem12. If one of the axioms BKS1-3 is skipped from A1-5+BKS1-3, then

this axiomatization is no longer complete for T (BPA∗(A)) modulo bisimulation.

Proof. We apply a standard technique for proving that an equation e cannot
be derived from an equational theory E , which prescribes to define a model for
E in which e is not valid.
In order to show that BKS1 cannot be derived from A1-5+BKS2,3, we define

the following interpretation function φ of open terms in the natural numbers.
It captures the intuition that BKS1 is the only equality that enables to expand
the Kleene star. Namely, it does not take into account terms that occur at the
right-hand side of a multiplication.

φ(α) = 0
φ(x) = 0

φ(P +Q) = max{φ(P), φ(Q)}
φ(P ·Q) = φ(P)
φ(P ∗Q) = max{φ(P) + 1, φ(Q) + 1}

It is easy to see that this interpretation is a model for A1-5+BKS2,3. However,
φ(a(a∗a)+a) = 0, while φ(a∗a) = 1. Hence, the equality a(a∗a)+a = a∗a cannot
be derived from A1-5+BKS2,3.
In order to show that BKS2 cannot be derived from A1-5+BKS1,3, we define

the following interpretation function ψ of open terms in the natural numbers.

ψ(α) = 0
ψ(x) = 0

ψ(P +Q) = max{ψ(P), ψ(Q)}
ψ(P ·Q) = ψ(Q)
ψ(P ∗Q) = max{ψ(P) + 1, ψ(Q)}

It is easy to see that this interpretation is a model for A1-5+BKS1,3. However,
ψ((a∗a)a) = ψ(a) = 0, while ψ(a∗(aa)) = max{ψ(a)+ 1, ψ(aa)} = 1. Hence, the
equality (a∗a)a = a∗(aa) cannot be derived from A1-5+BKS1,3.
In order to show that BKS3 cannot be derived from A1-5+BKS1,2, we define

the following interpretation function η of open terms in sets of natural numbers.
It captures the intuition that BKS3 is the only equality to change the interpre-
tation at the left-hand side of a Kleene star. Namely, η(P) collects the norms of
subterms that occur as arguments at the left-hand side of a Kleene star.

η(α) = ∅
η(x) = ∅

η(P +Q) = η(P) ∪ η(Q)
η(P ·Q) = η(P) ∪ η(Q)
η(P ∗Q) = η(P) ∪ η(Q) ∪ {|P |}

It is easy to see that this interpretation is a model for A1-5+BKS1,2. However,
η((aa)∗(a((aa + a)∗a) + a)) = {|aa|, |aa + a|} = {1, 2} while η((aa + a)∗a) =
{|aa + a|} = {1}. Hence, the equality (aa)∗(a((aa + a)∗a) + a) = (aa + a)∗a
cannot be derived from A1-5+BKS1,2. 2

References

1. L. Aceto. Personal communication, December 1995.

2. L. Aceto and W.J. Fokkink. An equational axiomatization for multi-exit iteration.
Report RS-96-22, BRICS, University of Aalborg, 1996.

3. L. Aceto, W.J. Fokkink, R.J. van Glabbeek, and A. Ingólfsdóttir. Axiomatizing
prefix iteration with silent steps. Report RS-95-56, BRICS, University of Aalborg,
1995. To appear in Information and Computation.

4. J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Decidability of bisimulation equiv-
alence for processes generating context-free languages. Journal of the ACM,
40(3):653–682, 1993.

5. J.C.M. Baeten and C. Verhoef. A congruence theorem for structured operational
semantics with predicates. In E. Best, ed., Proceedings CONCUR’93, Hildesheim,
LNCS 715, pp. 477–492. Springer, 1993.

6. J.C.M. Baeten and C. Verhoef. Concrete process algebra. In S. Abramsky,
D.M. Gabbay, and T.S.E. Maibaum, eds., Handbook of Logic in Computer Science,

Volume IV, pp. 149–268. Oxford University Press, 1995.
7. J.A. Bergstra, I. Bethke, and A. Ponse. Process algebra with iteration and nesting.

The Computer Journal, 37(4):243–258, 1994.
8. J.A. Bergstra and J.W. Klop. Verification of an alternating bit protocol by means

of process algebra. In W. Bibel and K.P. Jantke, eds., Proceedings Mathematical

Methods of Specification and Synthesis of Software Systems, Wendisch-Rietz, LNCS
215, pp. 9–23. Springer, 1985.

9. D. Caucal. Graphes canoniques de graphes algébriques. Theoretical Informatics

and Applications, 24(4):339–352, 1990.
10. J.H. Conway. Regular algebra and finite machines. Chapman and Hall, 1971.
11. W.J. Fokkink. A complete equational axiomatization for prefix iteration. Infor-

mation Processing Letters, 52(6):333–337, 1994.
12. W.J. Fokkink and R.J. van Glabbeek. Ntyft/ntyxt rules reduce to ntree rules.

Information and Computation, 126(1):1–10, 1996.
13. W.J. Fokkink and H. Zantema. Basic process algebra with iteration: completeness

of its equational axioms. The Computer Journal, 37(4):259–267, 1994.
14. R.J. van Glabbeek. A complete axiomatization for branching bisimulation con-

gruence of finite-state behaviours. In A.M. Borzyszkowski and S. SokoÃlowski, eds.,
Proceedings MFCS’93, Gdansk, LNCS 711, pp. 473–484. Springer, 1993.

15. S.C. Kleene. Representation of events in nerve nets and finite automata. In Au-

tomata Studies, pages 3–41. Princeton University Press, 1956.
16. R. Milner. A complete inference system for a class of regular behaviours. Journal

of Computer and System Sciences, 28:439–466, 1984.
17. R. Milner. A complete axiomatisation for observational congruence of finite-state

behaviors. Information and Computation, 81(2):227–247, 1989.
18. D.M.R. Park. Concurrency and automata on infinite sequences. In P. Deussen, ed-

itor, Proceedings 5th GI Conference, Karlsruhe, LNCS 104, pp. 167–183. Springer,
1981.

19. G.D. Plotkin. A structural approach to operational semantics. Report DAIMI
FN-19, Aarhus University, 1981.

20. V.N. Redko. On defining relations for the algebra of regular events. Ukrainskii

Matematicheskii Zhurnal, 16:120–126, 1964. In Russian.
21. A. Salomaa. Two complete axiom systems for the algebra of regular events. Jour-

nal of the ACM, 13(1):158–169, 1966.
22. P. Sewell. Bisimulation is not finitely (first order) equationally axiomatisable. In

Proceedings LICS’94, Paris, pp. 62–70. IEEE Computer Society Press, 1994.
23. D.R. Troeger. Step bisimulation is pomset equivalence on a parallel language

without explicit internal choice. Mathematical Structures in Computer Science,
3(1):25–62, 1993.

24. H. Zantema. Termination of term rewriting by semantic labelling. Fundamenta

Informaticae, 24(1,2):89–105, 1995.

This article was processed using the LATEX macro package with LLNCS style

