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Abstract. Static program analysis consists of compile-time techniques
for determining properties of programs without actually running them.
Using Kleene algebra, we formalize four instances of a static data flow
analysis technique known as gen/kill analysis. This formalization clearly
reveals the dualities between the four instances; although these dualities
are known, the standard formalization does not reveal them in such a
clear and concise manner. We provide two equivalent sets of equations
characterizing the four analyses for two representations of programs, one
in which the statements label the nodes of a control flow graph and one
in which the statements label the transitions.

1 Introduction

Static program analysis consists of compile-time techniques for determining
properties of programs without actually running them. Information gathered
by these techniques is traditionally used by compilers for optimizing the ob-
ject code [1] and by CASE tools for software engineering and reengineering [2,
3]. Among the more recent applications is the detection of malicious code or
code that might be maliciously exploited [4, 5]. Due to ongoing research in this
area [5], the latter application is the main motivation for developing the alge-
braic approach to static analysis described in this paper (but we will not discuss
applications to security here). Our goal is the development of an algebraic frame-
work based on Kleene algebra (KA) [6–11], in which the relevant properties can
be expressed in a compact and readable way.

In this paper, we examine four instances of a static data flow analysis tech-
nique known as gen/kill analysis [1, 12, 13]. The standard description of the four
instances is given in Sect. 2. The necessary concepts of Kleene algebra are then
presented in Sect. 3. The four gen/kill analyses are formalized with KA in Sect. 4.
This formalization clearly reveals the dualities between the four kinds of analysis;
although these dualities are known, the standard formalization does not reveal
them in such a clear and concise manner. We provide two equivalent sets of
equations characterizing the four analyses for two representations of programs,
one in which the statements label the nodes of a control flow graph and one in
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which the statements label the transitions. In the conclusion, we make additional
comments on the approach and on directions for future research.

2 Four Different Gen/Kill Analyses

The programming language we will use is the standard while language, with
atomic statements skip and x := E (assignment), and compound statements
S1;S2 (sequence), if b then S1 else S2 (conditional) and while b do S (while loop).
In data flow analysis, it is common to use an abstract graph representation of a
program from which one can extract useful information. Traditionally [1, 12, 13],
this representation is a control flow graph (CFG), which is a directed graph where
each node corresponds to a statement and the edges describe how control might
flow from one statement to another. Labeled Transition Systems (LTSs) can also
be used. With LTSs, edges (arcs, arrows) are labeled by the statements of the
program and nodes are points from which and toward which control leaves and
returns. Figure 1 shows CFGs and LTSs for the compound statements, and the
corresponding matrix representations; the CFG for an atomic statement consists
of a single node while its LTS consists of two nodes linked by an arrow labeled
with the statement. The numbers at the left of the nodes for the CFGs and inside
the nodes for the LTSs are labels that also correspond to the lines/columns in
the matrix representations. Note that the two arrows leaving node 1 in the LTSs
of the conditional and while loop are both labelled b, i.e., the cases where b holds
and does not hold are not distinguished. This distinction will not be needed here
(and it is not present in the CFGs either). For both representations, the nodes
of the graphs will usually be called program points, or points for short.
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Fig. 1. CFGs and LTSs for compound statements
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The four instances of gen/kill analysis that we will consider are Reaching
Definitions Analysis (RD), Live Variables Analysis (LV), Available Expressions
Analysis (AE) and Very Busy Expressions Analysis (VBE). An informal descrip-
tion, extracted from [13], follows.

RD Reaching definitions analysis determines, for each program point, which as-
signments may have been made and not overwritten when program execution
reaches this point along some path.
A main application of RD is in the construction of direct links between
statements that produce values and statements that use them.

LV A variable is live at the exit from a program point if there exists a path,
from that point to a use of the variable, that does not redefine the variable.
Live variables analysis determines, for each program point, which variables
are live at the exit from this point.
This analysis might be used as the basis for dead code elimination. If a
variable is not live at the exit from a statement, then, if the statement is an
assignment to the variable, the statement can be eliminated.

AE Available expressions analysis determines, for each program point, which
expressions have already been computed, and not later modified, on all paths
to the program point.
This information can be used to avoid the recomputation of an expression.

VBE An expression is very busy at the exit from a program point if, no matter
which path is taken from that point, the expression is always evaluated before
any of the variables occurring in it are redefined. Very busy expressions
analysis determines, for each program point, which expressions are very busy
at the exit from the point.
A possible optimization based on this information is to evaluate the expres-
sion and store its value for later use.

Each of the four analyses uses a universal dataset D whose type of elements
depends on the analysis. This set D contains information about the program
under consideration, and possibly also information about the environment of
the program if it appears inside a larger program. Statements generate and kill
elements from D. Statements are viewed either as producing a subset out ⊆ D
from a subset in ⊆ D, or as producing in ⊆ D from out ⊆ D, depending on the
direction of the analysis. Calculating in from out (or the converse) is the main
goal of the analysis. Each analysis is either forward or backward, and is said to
be either a may or must analysis. This is detailed in the following description.

RD The set D is a set of definitions. A definition is a pair (x, l), where l is the
label of an assignment x := E. The assignment x := E at label l generates the
definition (x, l) and kills all other definitions of x. From the above definition
of RD, it can be seen that, for each program point, the analysis looks at
paths between the entry point of the program and that program point; thus,
the analysis is a forward one. Also, it is a may analysis, since the existence
of a path with the desired property suffices.
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LV The set D is a set of variables. The analysis looks for the existence of a
path with a specific property between program points and the exit of the
program. It is thus a backward may analysis.

AE The set D is a set of expressions or subexpressions. The paths considered
are those between the entry point of the program and the program points
(forward analysis). Since all paths to a program point must have the desired
property, it is a must analysis.

VBE The set D is a set of expressions or subexpressions. The paths considered
are those between the program points and the exit point of the program
(backward analysis). Since all paths from a program point must have the
desired property, it is a must analysis.

Table 1. Gen/kill values for atomic statements and tests. The symbol l denotes a label
and the symbol b a test

l : x := E skip b
gen kill gen kill gen kill

RD {(x, l)} {(x, l′) ∈ D | l′ �= l} ∅ ∅ ∅ ∅
LV Var(E) {x} − Var(E) ∅ ∅ Var(b) ∅
AE {E′ ∈ Exp(E) | x �∈ Var(E′)} {E′ ∈ D | x ∈ Var(E′)} ∅ ∅ Exp(b) ∅
VBE Exp(E) {E′ ∈ D | x ∈ Var(E′)} − Exp(E) ∅ ∅ Exp(b) ∅

Table 1 gives the definitions of gen and kill for the atomic statements and
tests for the four analyses. Note that for each statement S, gen(S) ⊆ kill(S) (the
complement of kill(S)) for the four analyses. This is a natural property, meaning
that if something is generated, then it is not killed. In this table, Var(E) denotes
the set of variables of expression E and Exp(E) denotes the set of its subexpres-
sions. These definitions can be extended recursively to the case of compound
statements (Table 2). The forward/backward duality is apparent when compar-
ing the values of gen(S1;S2) and kill(S1;S2) for RD and AE with those for LV
and VBE. The may/must duality between RD, LV and AE, VBE is most visible
for the conditional (uses of ∪ vs ∩ in the expressions for gen).

Finally, Table 3 shows how out(S) and in(S) can be recursively calculated.
Here too, the dualities forward/backward and may/must are easily seen.

We now illustrate RD analysis with the program given in Fig. 2. We will use
this program all along the paper. The numbers at the left of the program are
labels. These labels are the same in the given CFG representation.

The set of definitions that appear in the program is {(x, 1), (x, 3), (y, 4)}.
Assume that this program is embedded in a larger program that contains the
definitions (x, 5) and (y, 6)} (they may appear before label 1, even if they have
a larger number as label) and that these definitions reach the entry point of the
example program. Using Table 1 for RD, we get the following gen/kill values for
the atomic statements, where Sl denotes the atomic statement at label l:
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Table 2. Gen/kill expressions for compound statements

S1; S2

gen kill

RD, AE gen(S2) ∪ (gen(S1) − kill(S2)) kill(S2) ∪ (kill(S1) − gen(S2))

LV, VBE gen(S1) ∪ (gen(S2) − kill(S1)) kill(S1) ∪ (kill(S2) − gen(S1))

if b then S1 else S2

gen kill

RD gen(S1) ∪ gen(S2) kill(S1) ∩ kill(S2)

LV gen(b) ∪ gen(S1) ∪ gen(S2) (kill(S1) ∩ kill(S2)) − gen(b)

AE (gen(S1) ∩ gen(S2)) ∪ (gen(b) − (kill(S1) ∪ kill(S2)) kill(S1) ∪ kill(S2)

VBE gen(b) ∪ (gen(S1) ∩ gen(S2)) (kill(S1) ∪ kill(S2)) − gen(b)

while b do S1

gen kill

RD gen(S1) ∅
LV gen(b) ∪ gen(S1) ∅
AE, VBE gen(b) kill(S1) − gen(b)

Table 3. Linking in and out (“imm.” abbreviates “immediately”)

in(S) out(S)

RD
⋃

(S′ | S′ imm. precedes S : out(S′)) gen(S) ∪ (in(S) − kill(S))

LV gen(S) ∪ (out(S) − kill(S))
⋃

(S′ | S′ imm. follows S : in(S′))
AE

⋂
(S′ | S′ imm. precedes S : out(S′)) gen(S) ∪ (in(S) − kill(S))

VBE gen(S) ∪ (out(S) − kill(S))
⋂

(S′ | S′ imm. follows S : in(S′))

gen(S1) = {(x, 1)}, kill(S1) = {(x, 3), (x, 5)},
gen(S2) = ∅, kill(S2) = ∅,
gen(S3) = {(x, 3)}, kill(S3) = {(x, 1), (x, 5)},
gen(S4) = {(y, 4)}, kill(S4) = {(y, 6)}.

(1)

Using Table 2 for RD, we get

gen(S1; if S2 then S3 else S4) = {(x, 3), (y, 4)} ∪ ({(x, 1)} − ∅)
= {(x, 1), (x, 3), (y, 4)},

kill(S1; if S2 then S3 else S4) = ∅ ∪ ({(x, 3), (x, 5)} − {(x, 3), (y, 4)})
= {(x, 5)}.

Finally, Table 3 for RD yields

in(S1; if S2 then S3 else S4) = {(x, 5), (y, 6)},
out(S1; if S2 then S3 else S4) = {(x, 1), (x, 3), (y, 4)} ∪

({(x, 5), (y, 6)} − {(x, 5)})
= {(x, 1), (x, 3), (y, 4), (y, 6)}.
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1 : x := x × y;
2 : if x > z
3 : then x := x − z
4 : else y := y + z

1 x := x × y

��2 x > z

��
�����������

		
�����������

3 x := x − z 4 y := y + z

Fig. 2. CFG for running example

3 Kleene Algebra with Tests

In this section, we first introduce Kleene algebra [6, 9] and a specialization of it,
namely Kleene algebra with tests [10]. Then, we recall the notion of matrices
over a Kleene algebra and discuss how we will use them for our application.

Definition 1. A Kleene algebra (KA) [9] is a structure K = (K,+, · , ∗, 0, 1)
such that (K,+, 0) is a commutative monoid, (K, · , 1) is a monoid, and the
following laws hold:

a+ a = a, a ·(a+ b) = a ·a+ a ·b,
a ·0 = 0 ·a = 0, (a+ b) ·c = a ·c+ b ·c,
1 + a ·a∗ = a∗, b+ a ·c ≤ c ⇒ a∗ ·b ≤ c,
1 + a∗ ·a = a∗, b+ c ·a ≤ c ⇒ b ·a∗ ≤ c,

where ≤ is the partial order induced by +, that is,

a ≤ b ⇔ a+ b = b .

A Kleene algebra with tests [10] is a two-sorted algebra (K,T,+, · , ∗, 0, 1,¬)
such that (K,+, · , ∗, 0, 1) is a Kleene algebra and (T,+, · ,¬, 0, 1) is a Boolean
algebra, where T ⊆ K and ¬ is a unary operator defined only on T .

Operator precedence, from lowest to highest, is +, · , (∗,¬).

It is immediate from the definition that t ≤ 1 for any test t ∈ T . The meet of
two tests t, u ∈ T is their product t ·u. Every KA can be made into a KA with
tests, by taking {0, 1} as the set of tests.

Models of KA with tests include algebras of languages over an alphabet,
algebras of path sets in a directed graph [14], algebras of relations over a set and
abstract relation algebras with transitive closure [15, 16].

A very simple model of KA with tests is obtained by taking K to be the
powerset of some set D and defining, for every a, b ⊆ D,

0 def= ∅, 1 def= D, a∗ def= D, ¬a def= a, a+ b def= a ∪ b, a ·b def= a ∩ b. (2)

The set of matrices of size n × n over a KA with tests can itself be turned
into a KA with tests by defining the following operations. The notation A[i, j]
refers to the entry in row i and column j of A.
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1. 0: matrix whose entries are all 0, i.e., 0[i, j] = 0,

2. 1: identity matrix (square), i.e., 1[i, j] =
{

1 if i = j
0 if i �= j,

3. (A + B)[i, j] def= A[i, j] + B[i, j],
4. (A ·B)[i, j] def=

∑
(k |: A[i, k] ·B[k, j]),

5. The Kleene star of a square matrix is defined recursively [9]. If A = ( a ), for
some a ∈ K, then A∗ def= ( a∗ ). If

A =
(
a b
c d

)
(with graphic representation 
������1

b




a

�� 
������2
c

��

d

 ) ,

for some a, b, c, d ∈ K, then

A∗ def=
(

f∗ f∗ ·b ·d∗
d∗ ·c ·f∗ d∗ + d∗ ·c ·f∗ ·b ·d∗

)
, (3)

where f = a+ b ·d∗ ·c; the automaton corresponding to A helps understand
that f∗ corresponds to paths from state 1 to state 1. If A is a larger matrix,

it is decomposed as a 2× 2 matrix of submatrices: A =
(

B C
D E

)
, where B

and E are square and nonempty. Then A∗ is calculated recursively using (3).
For our simple application below, A∗ =

∑
(n | n ≥ 0 : An), where A0 = 1

and An+1 = A ·An.

By setting up an appropriate type discipline, one can define heterogeneous
Kleene algebras as is done for heterogeneous relation algebras [17–19]. One can
get a heterogeneous KA by considering matrices with different sizes over a KA;
matrices can be joined or composed only if they satisfy appropriate size con-
straints.

In Sect. 4, we will only use matrices whose entries are all tests. Such matrices
are relations [20]; indeed, a top relation can be defined as the matrix filled with 1.
However, this is not completely convenient for our purpose. Rather, we will use
a matrix S to represent the structure of programs and consider only matrices
below the reflexive transitive closure S∗ of S. Complementation can then be
defined as complementation relative to S∗:

(A)[i, j] def= ¬(A[i, j]) ·S∗[i, j] .

It is easily checked that applying all the above operations to matrices below S∗

results in a matrix below S∗. This means that the KA we will use is Boolean,
with a top element " satisfying 1 ≤ " (reflexivity) and "·" ≤ " (transitivity).

As a final remark in this section, we point out that a (square) matrix T is a
test iff it is a diagonal matrix whose diagonal contains tests (this implies T ≤ 1).
For instance, if t1, t2 and t3 are tests,⎛
⎝ t1 0 0

0 t2 0
0 0 t3

⎞
⎠ is a test and ¬

⎛
⎝ t1 0 0

0 t2 0
0 0 t3

⎞
⎠ =

⎛
⎝¬t1 0 0

0 ¬t2 0
0 0 ¬t3

⎞
⎠ .
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4 Gen/Kill Analysis with KA

In order to illustrate the approach, we present in Sect. 4.1 the equations de-
scribing RD analysis and apply them to the same example as in Sect. 2. The
equations for the other analyses are presented in Sect. 4.2.

4.1 RD Analysis

We first explain how the data and programs to analyze are modelled. Then
we show how to carry out RD analysis, first by using a CFG-related matrix
representation and then an LTS-related matrix representation.

Recall that the set of definitions for the whole program is

D
def= {(x, 1), (x, 3), (y, 4), (x, 5), (y, 6)} . (4)

We consider the powerset of D as a Kleene algebra, as explained in Sect. 3
(see (2)).

The input to the analysis consists of three matrices S,g and k representing
respectively the structure of the program, what is generated and what is killed
at each label. Here is an abstract definition of these matrices, where gi ⊆ D and
ki ⊆ D, for i = 1, . . . , 4.

S =

⎛
⎜⎝

0 1 0 0
0 0 1 1
0 0 0 0
0 0 0 0

⎞
⎟⎠ g =

⎛
⎜⎝
g1 0 0 0
0 g2 0 0
0 0 g3 0
0 0 0 g4

⎞
⎟⎠ k =

⎛
⎜⎝
k1 0 0 0
0 k2 0 0
0 0 k3 0
0 0 0 k4

⎞
⎟⎠

Recall that 1 = D (see (2)). Using the values already found in (1), we get the
following as concrete instantiations for the example program (with gi for gen(Si)
and ki for kill(Si)):

g1
def= {(x, 1)}, g2

def= ∅, g3
def= {(x, 3)}, g4

def= {(y, 4)},
k1

def= {(x, 3), (x, 5)}, k2
def= ∅, k3

def= {(x, 1), (x, 5)}, k4
def= {(y, 6)}. (5)

Note that g and k are tests. The entries in their diagonal represent what is
generated or killed by the atomic instruction at each node. Table 1 imposes the
condition gen(S) ⊆ kill(S) for any atomic statement S; this translates to g ≤ ¬k
for the matrices given above.

Table 4 contains the equations that describe how to carry out RD analysis.
This table has a simple and natural reading:

1. G: To generate something, move on a path from an entry point (S∗), generate
that something (g), then move to an exit point while not killing what was
generated ((S ·¬k)∗).

2. K: To not kill something, do not kill it on the first step and move along the
program while not killing it, or generate it.
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Table 4. RD existential (“may”) gen/kill parameters for CFGs. Complementation is
relative to S∗

RD

G S∗ ·g ·(S ·¬k)∗

K ¬k · (S ·¬k)∗ + G

O G + i ·K

3. O: To output something, generate it or, if it comes from the environment
(the test i), do not kill it. Note how the expression for O is close to that for
out given in Table 3, namely gen(S) ∪ (in(S)− kill(S)).

We use the table to calculate G and K for RD 1. It is a simple task to verify
the following result (one has to use g ≤ ¬k, i.e., gi ≤ ¬ki, for i = 1, . . . , 4). We
give the result for the abstract matrices, because it is more instructive.

G=

⎛
⎜⎜⎝

g1 g2 + g1 ·¬k2 g3 + g2 ·¬k3 + g1 ·¬k2 ·¬k3 g4 + g2 ·¬k4 + g1 ·¬k2 ·¬k4

0 g2 g3 + g2 ·¬k3 g4 + g2 ·¬k4

0 0 g3 0
0 0 0 g4

⎞
⎟⎟⎠

K=

⎛
⎜⎜⎝
¬k1 g2 + ¬k1 ·¬k2 g3 + g2 ·¬k3 + ¬k1 ·¬k2 ·¬k3 g4 + g2 ·¬k4 + ¬k1 ·¬k2 ·¬k4

0 ¬k2 g3 + ¬k2 ·¬k3 g4 + ¬k2 ·¬k4

0 0 ¬k3 0
0 0 0 ¬k4

⎞
⎟⎟⎠

Consider the entry G[1, 3], for instance. This entry shows that what is gen-
erated when executing all paths from label 1 to label 3 – here, since there is a
single path, this means executing statements at labels 1, 2 and 3 – is what is
generated at label 3, plus what is generated at label 2 and not killed at label 3,
plus what is generated at label 1 and not killed at labels 2 and 3. Similarly,
K[1, 2] shows that what is not killed on the path from label 1 to label 2 is either
what is generated at label 2 or what is not killed at either of labels 1 and 2.

To compare these results with those of the classical approach of Sect. 2, it
suffices to collect from G the data generated and from K the data not killed
between the entry point of the program (label 1) and its exit points (labels 3
and 4). This can always be done by means of a row vector s selecting the entry
points and a column vector t selecting the exit points. For our program,

s def= ( 1 0 0 0 ) and t def=

⎛
⎜⎝

0
0
1
1

⎞
⎟⎠ ,

so that
gen = s ·G ·t = g3 + g4 + (g2 + g1 ·¬k2) ·(¬k3 + ¬k4) (6)

1 We use bold letters for matrices. Because the concepts of Table 4 may apply to other
kinds of KAs, the variables in the table are typeset in the usual mathematical font.
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and
¬kill = s ·K ·t = g3 + g4 + (g2 + ¬k1 ·¬k2) ·(¬k3 + ¬k4) .

Negating yields

kill = k3 ·k4 + k2 ·¬g3 ·¬g4 + k1 ·¬g2 ·¬g3 ·¬g4 .

This is easily read and understood by looking at the CFG. Using the concrete
values in (4) and (5) provides gen = {(x, 1), (x, 3), (y, 4)} and kill = {(x, 5)}, just
like in Sect. 2.

One can get K from the above matrix K by complementing, but complemen-
tation must be done relatively to S∗; the reason is that anything that gets killed
is killed along a program path, and unconstrained complementation incorrectly
introduces nonzero values outside program paths. The result is

K =

⎛
⎜⎜⎝

k1 k2 + k1 ·¬g2 k3 + k2 ·¬g3 + k1 ·¬g2 ·¬g3 k4 + k2 ·¬g4 + k1 ·¬g2 ·¬g4

0 k2 k3 + k2 ·¬g3 k4 + k2 ·¬g4

0 0 k3 0
0 0 0 k4

⎞
⎟⎟⎠

One might think that kill = s ·K ·t, but this is not the case. It is easy to see
that s ·K ·t = K[1, 3] + K[1, 4], whereas the value of kill that we obtained above
is ¬(K[1, 3] + K[1, 4]) = K[1, 3] ·K[1, 4], and the latter is the right value. The
reason for this behavior is that for RD, not killing, like generating, is existential,
in the sense that results from converging paths are joined (“may” analysis). In
the case of killing, these results should be intersected. But the effect of s ·K ·t is
to join all entries of the form K[entry point, exit point] (K[1, 3]+K[1, 4] for the
example). Note that if the program has only one entry and one exit point, one
may use either s ·K ·t or ¬(s ·K ·t); the equivalence follows from the fact that s
is then a total function, while t is injective and surjective.

There remains one value to find for our example, that of O. In Table 4, the
equation for O is O = G+ i ·K. The symbol i denotes a test that characterizes
the data that come from the environment of the program (a larger program
containing it). For our example, i has the form

i =

⎛
⎜⎝
i1 0 0 0
0 i2 0 0
0 0 i3 0
0 0 0 i4

⎞
⎟⎠ .

Using the same s and t as above, we calculate s ·O ·t, which is the information
that gets out at the exit points as a function of what gets in at the entry point.
We get

s ·O ·t = s ·(G + i ·K) ·t = g3 + g4 +
g2 ·(¬k3 + ¬k4) +
g1 ·¬k2 ·(¬k3 + ¬k4) +
i1 ·¬k1 ·¬k2 ·(¬k3 + ¬k4) .
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Thus, what gets out at exit labels 3 and 4 is what is generated at labels 3 and 4,
plus what is generated at labels 1 and 2 and not killed after, plus what comes
from the environment at label 1 and is not killed after. With the instantiations
given in (4) and (5),

s ·O ·t = {(x, 1), (x, 3), (y, 4)}+ i1 ·{(x, 1), (y, 4), (y, 6)} .
If – as in Sect. 2 – we assume that the data coming from the environment at
label 1 is i1

def= {(x, 5), (y, 6)}, then s ·O ·t = {(x, 1), (x, 3), (y, 4), (y, 6)} – as in
Sect. 2.

We now turn to the LTS representation of programs, which is often more
natural. For instance, it is used for the representation of automata, or for giving
relational descriptions of programs [19]. Our example program and its LTS graph
are given in Fig. 3. As mentioned in Sect. 2, we do not distinguish the two possible
run-time results of the test x > z, since this does not change any of the four
analyses.

1 : x := x × y;
2 : if x > z
3 : then x := x − z
4 : else y := y + z
5 :

�������	1

x:=x×y

���������	2
x>z

����
��

��
��

x>z

���
��

��
��

�

�������	3

x:=x−z
���

��
��

��
� �������	4

y:=y+z
����

��
��

��

�������	5

S =

⎛
⎜⎜⎜⎝

0 1 0 0 0
0 0 1 1 0
0 0 0 0 1
0 0 0 0 1
0 0 0 0 0

⎞
⎟⎟⎟⎠

g =

⎛
⎜⎜⎜⎝

0 g1 0 0 0
0 0 g2 g2 0
0 0 0 0 g3

0 0 0 0 g4

0 0 0 0 0

⎞
⎟⎟⎟⎠

k =

⎛
⎜⎜⎜⎝

0 k1 0 0 0
0 0 k2 k2 0
0 0 0 0 k3

0 0 0 0 k4

0 0 0 0 0

⎞
⎟⎟⎟⎠

Fig. 3. LTS for running example

The matrices S, g and k again respectively represent the structure of the
program, what is generated and what is killed by atomic statements. Note that
g and k are not tests as for the CFG representation. Rather, entries gi and ki

label arrows and in a way can be viewed as an abstraction of the effect of the
corresponding statements. The concrete instantiations (4) and (5) still apply.

Table 5 can then be used in the same manner as Table 4 to derive G, K
and O. In this table, as usual, a+ denotes a ·a∗. The variable i still denotes
a test. The operator ˜ denotes complementation with respect to S+, so that
K = K̃ � S+. For CFGs, complementation is done with respect to S∗, because
the instructions are on the nodes. For LTSs, the instructions are on the arcs, so
that no killing or generation can occur at a node, unless it occurs via a nonnull
circular path; this explains why complementation is done with respect to S+.
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Table 5. RD existential (“may”) gen/kill parameters for LTSs. The operator ˜ is
complementation relative to S+

RD

G S∗ ·g ·(k � S)∗

K̃ (k � S)+ + G

O G + i ·K̃

The calculation of G gives

G =

⎛
⎜⎜⎜⎝

0 g1 g2 + g1 ·¬k2 g2 + g1 ·¬k2 g3 + g4 + (g2 + g1 ·¬k2) ·(¬k3 + ¬k4)
0 0 g2 g2 g3 + g4 + g2 ·(¬k3 + ¬k4)
0 0 0 0 g3

0 0 0 0 g4

0 0 0 0 0

⎞
⎟⎟⎟⎠ .

Using

s def= ( 1 0 0 0 0 ) and t def=

⎛
⎜⎜⎜⎝

0
0
0
0
1

⎞
⎟⎟⎟⎠ ,

we obtain for gen = s ·G ·t the same result as for the CFG (see (6)).

4.2 Gen/Kill Analysis for the Four Analyses

In this section, we present the equations for all four analyses. We begin with the
CFG representation (Table 6). The following remarks are in order.

1. Reading the expressions is mostly done as for RD. For LV and VBE, it is
better to read the expressions backward, because they are backward analyses.
The reading is then the same as for RD, except that o is used instead of i
to denote what comes from the environment and I is used instead of O for
the result. This was done simply to have a more exact correspondence with
Table 3. Although o is input data, the letter o is used because the data is
provided at the exit points; similarly, the letter I is used for the output data
because it is associated with the entry points.

2. For all atomic and compound statements and all equations of Table 6, one can
do the same kind of abstract comparison with the results given by Tables 1
and 2 as we have done for the example in Sect. 4.1. The results are the same.

3. The forward/backward and may/must dualities are apparent in the tables
of Sect. 2, but they are much more visible and clear here.
(a) The forward/backward correspondences RD ↔ LV and AE ↔ VBE

are obtained by reading the expressions in the reverse direction and
by switching in and out: i ↔ o and O ↔ I. One can also use the
relational converse operator �; then, for LV, G = (¬k ·S)∗ ·g ·S∗ =
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Table 6. Existential (“may”) gen/kill parameters for CFGs. Complementation is rel-
ative to S∗

RD LV AE VBE

G S∗ ·g ·(S ·¬k)∗ (¬k ·S)∗ ·g ·S∗

G ¬g ·(S ·¬g)∗ + K (¬g ·S)∗ ·¬g + K

K S∗ ·k ·(S ·¬g)∗ (¬g ·S)∗ ·k ·S∗

K ¬k ·(S ·¬k)∗ + G (¬k ·S)∗ ·¬k + G

O G + i ·K
I G + K ·o
O K + ¬i ·G
I K + G ·¬o

(S�∗ ·g�·(S�·¬k�)∗)�. The same can be done for K and I. Thus, to
make an LV analysis, one can switch i, o, reverse the program, do the
calculations of an RD analysis, reverse the result and switch I,O (of
course, g and k are those for LV, not for RD). The same can be said
about AE and VBE.

(b) The may/must duality between RD and AE is first revealed by the fact
that G,K and O are existential for RD, whereas G,K and O are existen-
tial for AE (similar comment for LV and VBE). But the correspondences
RD ↔ AE and LV↔ VBE are much deeper and can in fact be obtained
simply by switching gen and kill, and complementing in and out: g ↔ k,
G↔ K, i↔ ¬i, o↔ ¬o, I ↔ I, O ↔ O.

These dualities mean that only one kind of analysis is really necessary, since
the other three can be obtained by simple substitutions and simple additional
operations (converse and complementation).

4. All nonempty entries in Table 6 correspond to existential cases; collecting
data with entry and exit vectors as we have done in Sect. 4.1 should be done
with the parameters as given in Table 6 and not on their negation (unless
there is only one entry and one exit point).

5. Table 6 can be applied to programs with goto statements to fixed labels
without any additional machinery.

The equations for LTSs are given in Table 7. Similar comments can be made
about this table as for Table 6.

The formulae in Tables 6 and 7 are obviously related, but it is interesting
to see how the connection can be described formally and this is what we now
do. We will also show the following: If P denotes any of the parameters in the
left column of either Table 6 or Table 7 and if s and t denote the entry and
exit vectors appropriate for the representation (CFG or LTS), then the value of
s ·P ·t is the same for both approaches, provided only the existential equations
given in the tables are used (no complementation before merging the data with
s and t). Note that the main goal of the analyses is to calculate s ·O ·t or s ·I ·t.
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Table 7. Existential (“may”) gen/kill parameters for LTSs. The operator ˜ is comple-
mentation relative to S+

RD LV AE VBE

G S∗ ·g ·(k � S)∗ (k � S)∗ ·g ·S∗

G̃ (g � S)+ + K (g � S)+ + K

K S∗ ·k ·(g � S)∗ (g � S)∗ ·k ·S∗

K̃ (k � S)+ + G (k � S)+ + G

O G + i ·K̃
I G + K̃ ·o
Õ K + ¬i ·G̃
Ĩ K + G̃ ·¬o

The basic idea is best explained in terms of graphs. To go from a CFG to an
LTS, it suffices to add a new node and to add arrows from the exit nodes of the
CFG to the new node – which becomes the new and only exit node – and then
to “push” the information associated to nodes of the CFG to the appropriate
arrows of the LTS.

Let us see how this is done with matrices. For these explanations, we append
a subscript L to the matrices related to a LTS. The following matrices S and
SL represent the structure of the CFG of Fig. 2 and that of the LTS of Fig. 3,
respectively.

S =

⎛
⎜⎜⎝

0 1 0 0
0 0 1 1
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ SL =

⎛
⎜⎜⎜⎜⎝

0 1 0 0 0
0 0 1 1 0
0 0 0 0 1
0 0 0 0 1
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ =

(
S t
0 0

)

The matrix SL is structured as a matrix of four submatrices, one of which is
the CFG matrix S and another is the column vector t that was used in (6) to
select the exit nodes of the CFG. The rôle of this vector in SL is to add links
from the exit nodes of the CFG to the new node corresponding to column 5.

Now consider the matrices of Sect. 4.1. The CFG matrix g can be converted
to the LTS matrix g, here called gL, as follows.

gL =
(
g ·S g ·t
0 0

)
=
(
g x
0 y

)
·
(
S t
0 0

)
=
(
g x
0 y

)
·SL

The value of the submatrices x and y does not matter, since these disappear in
the result of the composition. One can use the concrete values given in Sect. 4.1

and check that indeed in that case gL =
(
g ·S g ·t
0 0

)
. The same holds for G and

K. The matrix
(
g x
0 y

)
is an embedding of the CFG g in a larger graph with
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an additional node. Composition with SL “pushes” the information provided by
g on the appropriate arrows of gL.

We now abstract from the matrix context. We assume an heterogeneous
Boolean KA such that, given correctly typed elements a, b, c, d, it is possible

to form matrices like
(
a b
c d

)
. To distinguish expressions related to CFGs and

LTSs, we add a subscript L to variables in the latter expressions.
We will show that the RD CFG expressions given in Table 6 can be trans-

formed into the corresponding LTS expressions given in Table 7. An analogous
treatment can be done for the other analyses.

We begin with G, whose expression is S∗ ·g ·(S ·¬k)∗, and show that it trans-
forms to S∗

L ·gL ·(kL � SL)∗. We first note the following two properties:

(
a ?
0 ?

)
·
(
b ?
0 ?

)
=
(
a ·b ?
0 ?

)
and

(
a ?
0 ?

)∗
=
(
a∗ ?
0 ?

)
, (7)

where “?” means that the exact value is not important for our purpose (we use

the same convention below). Now let f(a) def=
(
a t
0 0

)
. We will use the assump-

tions SL = f(S), gL = f(g) ·f(S), kL = f(k) ·f(S) and GL =
(
G ·S G ·t

0 0

)
,

which hold for matrices, as noted above. Before giving the main derivation, we
prove the auxiliary result

f(¬k) ·f(S) = kL � SL . (8)

f(¬k) ·f(S)
= 〈 Definition of f 〉(¬k t

0 0

)
·
(
S t
0 0

)
= 〈 Matrix composition 〉(¬k 0

0 0

)
·
(
S t
0 0

)
= 〈 The left matrix is a test 〉
¬
(
k 0
0 0

)
·
(
S t
0 0

)
= 〈 In a Boolean KA, for any a and test p, ¬p ·a = p ·a � a 〉(

k 0
0 0

)
·
(
S t
0 0

)
�
(
S t
0 0

)
= 〈 Matrix composition 〉(

k t
0 0

)
·
(
S t
0 0

)
�
(
S t
0 0

)
= 〈 Definition of f 〉
f(k) ·f(S) � f(S)
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= 〈 Assumptions 〉
kL � SL

An now comes the proof that GL = S∗
L ·gL ·(kL � SL)∗.

GL

= 〈 Assumption 〉(
G ·S G ·t

0 0

)
= 〈 Matrix composition 〉(

G ?
0 ?

)
·
(
S t
0 0

)
= 〈 Expression for G and definition of f 〉(

S∗ ·g ·(S ·¬k)∗ ?
0 ?

)
·f(S)

= 〈 Definition of f and induction using (7) 〉
(f(S))∗ ·f(g) ·(f(S) ·f(¬k))∗ ·f(S)

= 〈 KA sliding rule: (a ·b)∗ ·a = a ·(b ·a)∗ 〉
(f(S))∗ ·f(g) ·f(S) ·(f(¬k) ·f(S))∗

= 〈 Assumptions and (8) 〉
S∗

L ·gL ·(kL � SL)∗

The transformation of the CFG subexpression ¬k ·(S ·¬k)∗ (appearing in the
definition of K in Table 6) is done in a similar fashion, except that the last steps
are

f(¬k) ·(f(S) ·f(¬k))∗ ·f(S)
= 〈 KA sliding rule: (a ·b)∗ ·a = a ·(b ·a)∗ 〉
f(¬k) ·f(S) ·(f(¬k) ·f(S))∗

= 〈 a ·a∗ = a+ and (8) 〉
(kL � SL)+

What remains to establish is the correspondence between i for CFGs and iL
for LTSs. Since we want iL to be a test just like i, we cannot take iL = f(i) ·f(S)

like for the other matrices. It turns out that iL
def=
(
i 0
0 0

)
is convenient and is

indeed what we would choose using intuition, because it does not make sense to
feed information to the additional exit node, since it is past all the instructions.
One then has

OL =
(

(G+ i ·K) ·S (G+ i ·K) ·t
0 0

)
= GL +

(
i 0
0 0

)
·(K)L = GL + iL ·K̃L .
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Finally, we show that the calculation of the information along paths between
entry and exit nodes gives the same result for CFGs and LTSs. For CFGs, this
information is obtained by calculating s ·P ·t, where s is the vector of entry
nodes, t is the vector of exit nodes and P is any of the existential parameters
(G,K,O, . . .), depending on the analysis. For LTSs, the corresponding expression

is sL ·PL ·tL. As above, we assume PL =
(
P ·S P ·t

0 0

)
, and sL =

(
s 0

)
and

tL =
(

0
1

)
, meaning essentially that the additional node cannot be an entry

point and must be the only exit point. We then have

sL ·PL ·tL =
(
s 0

) · (P ·S P ·t
0 0

)
·
(

0
1

)
=
(
s 0

) · (P ·t0

)
= s ·P ·t ,

so that using either a CFG or an LTS gives the same result.
Note that no property of s or t has been used in the explanation of the

transformation from CFGs to LTSs.

5 Conclusion

We have shown how four instances of gen/kill analysis can be described using
Kleene algebra. This has been done for a CFG-like and an LTS-like representa-
tion of programs (using matrices). The result of this exercise is a very concise
and very readable set of equations characterizing the four analyses. This has re-
vealed the symmetries between the analyses much more clearly than the classical
approach.

We have in fact used relations for the formalization, so that the framework of
relation algebra with transitive closure [15, 16] could have been used instead of
that of Kleene algebra. Note however that converse has been used only to explain
the forward/backward dualities, but is used nowhere in the calculations. We
prefer Kleene algebra or Boolean Kleene algebra because the results have wider
applicability. It is reasonable to expect to find examples where the equations of
Tables 6 and 7 could be used for something else than relations. Also, we hope to
connect the Kleene formulation of the gen/kill analyses with representations of
programs where Kleene algebra is already used. For instance, Kleene algebra is
already employed to analyze sequences of abstract program actions for security
properties [11]. Instead of keeping only the name of an action (instruction), it
would be possible to construct a triple (name, gen, kill) giving information about
the name assigned to the instruction and what it generates and kills. Such triples
can be elements of a KA by applying KA operations componentwise. Is it then
possible to prove stronger security properties in the framework of KA, given that
more information is available?

We plan to investigate other types of program analysis to see if the techniques
presented in this paper could apply to them. We would also like to describe the
analyses of this paper using a KA-based deductive approach in the style of
that used in [21]. Another intriguing question is whether the set-based program
analysis framework of [22] is related to our approach.
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The authors thank Bernhard Möller and the MPC referees for thoughtful com-
ments and additional pointers to the literature.

References

1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques and Tools.
Addison-Wesley (1989)

2. Overstreet, C.M., Cherinka, R., Sparks, R.: Using bidirectional data flow analysis
to support software reuse. Technical Report TR-94-09, Old Dominion University,
Computer Science Department (1994)

3. Moonen, L.: Data flow analysis for reverse engineering. Master’s thesis, Program-
ming Research Group, University of Amsterdam (1996)

4. Lo, R.W., Levitt, K.N., Olsson, R.A.: MCF: A malicious code filter. Computers
and Security 14 (1995) 541–566

5. Bergeron, J., Debbabi, M., Desharnais, J., Erhioui, M.M., Lavoie, Y., Tawbi, N.:
Static detection of malicious code in executable programs. In: 1st Symposium on
Requirements Engineering for Information Security, Indianapolis, IN (2001)

6. Conway, J.H.: Regular Algebra and Finite Machines. Chapman and Hall, London
(1971)
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14. Möller, B.: Derivation of graph and pointer algorithms. In Möller, B., Partsch,
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