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Abstract

Pomsets constitute one of the most basic models of concurrency. A pomset is a
generalisation of a word over an alphabet in that letters may be partially ordered
rather than totally ordered. A term t using the bi-Kleene operations 0, 1,+, · ,∗ , ‖,(∗)

defines a set [[t]] of pomsets in a natural way. We prove that every valid universal
equality over pomset languages using these operations is a consequence of the equa-
tional theory of regular languages (in which parallel multiplication and iteration
are undefined) plus that of the commutative-regular languages (in which sequential
multiplication and iteration are undefined). We also show that the class of rational
pomset languages (that is, those languages generated from singleton pomsets using
the bi-Kleene operations) is closed under all Boolean operations.

An ideal of a pomset p is a pomset using the letters of p, but having an ordering
at least as strict as p. A bi-Kleene term t thus defines the set Id([[t]]) of ideals of
pomsets in [[t]]. We prove that if t does not contain commutative iteration (∗) (in
our terminology, t is bw-rational) then Id([[t]])∩Pomsp, where Pomsp is the set of
pomsets generated from singleton pomsets using sequential and parallel multiplica-
tion (· and ‖) is defined by a bw-rational term, and if two such terms t, t′ define the
same ideal language, then t′ = t is provable from the Kleene axioms for 0, 1,+, · ,∗

plus the commutative idempotent semiring axioms for 0, 1,+, ‖ plus the exchange
law (u ‖ v) · (x ‖ y) ≤ v · y ‖ u · x.

1 Introduction

Pomsets may be regarded as a generalisation of both words over an alphabet and
commutative words over an alphabet as studied by Conway [1, Chapter 11]. Words
of the former kind are generated using sequential multiplication (·), whereas com-
mutative words are generated using parallel multiplication (‖). Both operations are
defined on the set of pomsets. Pomsets have been widely used to model the behaviour
of concurrent systems [2,3,4,5,6].
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A pomset over an alphabet Σ is defined by a finite labelled partially ordered set; that
is, a finite partially ordered set (or poset) V on which a labelling function into Σ is
defined. Since the focus is on the labelling rather than the elements of V , isomorphic
labelled posets are regarded as defining the same pomset. For pomsets p1, p2 defined
by posets V1, V2, the sequential and parallel products p1 · p2 and p1 ‖ p2 are defined,
respectively, by placing the elements of V1 below those of V2, and placing the elements
of V1 and V2 side by side.

Given any monoid (M, ·, 1), the operation · can be extended pointwise to the power
set 2M of M , and if the regular operations 0, 1,+, ·,∗ are defined in the usual way
for 2M (in particular, P ∗ = ∪i≥0P

i), then the algebra thus defined is an example
of a Kleene algebra (Definition 1). Since the set of pomsets over an alphabet Σ is a
monoid with respect to the operations ·, 1 and a commutative monoid with respect
to ‖, 1, the class of languages (sets) of pomsets over Σ is thus a bi-Kleene algebra
with respect to the bi-Kleene operations 0, 1,+, ·,∗ ‖,(∗), where parallel iteration (∗)

is defined analogously to ∗, but using parallel multiplication. A pomset language is
rational if is defined by a bi-Kleene term over an alphabet Σ. This is a simplification
of the phrase series-parallel-rational used by Lodaya and Weil [7,8]. If t is a bi-Kleene
term, then we use [[t]] to denote the language that it defines.

In this paper we prove the following theorems, for bi-Kleene terms t, t′ over an alphabet
Σ;

• The language [[t]]− [[t′]] is rational.
• It is decidable whether [[t]] = [[t′]] holds.
• If [[t]] = [[t′]] holds, then t = t′ holds in every bi-Kleene algebra. Equivalently,
the algebra of pomset languages generated by the bi-Kleene operations from the
singleton pomsets with label in Σ is the free bi-Kleene algebra with basis Σ.

This latter theorem is, in effect, a strengthening of Gischer [9, Theorem 4.3], in which
neither of the two Kleene stars ∗, (∗) was considered. Bi-Kleene algebras have been
proposed as tools for the verification of concurrent programs [10]. Our completeness
and decidability results can make reasoning about such programs simpler and less
problematic.

1.1 New theorems for pomset ideals and bw-rational operations

Given a pomset p, an ideal of p is a pomset that may be represented using the same
vertex set as p, with the same labelling, but whose partial ordering is at least as strict
as that for p. We write Id(L) for a pomset language L to denote the set of ideals of
elements of L. The function Id was first defined by Grabowski [11], who associated
pomset ideals (that is, pomset languages closed under Id) with a reachability condition
between markings of a Petri net.
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The class of pomset ideals over Σ is a Kleene algebra with respect to the Kleene opera-
tions, but is not a Kleene algebra with respect to the commutative Kleene operations
0, 1,+, ‖,(∗), since L ‖ L′ is not an ideal if L, L′ * {1}, but it can be made into a
bi-Kleene algebra if ‖ is interpreted as (L, L′) 7→ Id(L ‖ L′) and parallel iteration (∗)

is defined analogously. Additionally, the class of pomset ideals satisfies the exchange
law :

(u ‖ v) · (x ‖ y) ≤ v · y ‖ u · x (1)

where we use the abbreviation

t ≤ t′
defn
⇐⇒ t + t′ = t′. (2)

We have failed to prove an analogous result for ideals to the freeness theorem given
for pomset languages above, but by abandoning the parallel iteration operation (∗) we
have the following partial results. We will refer to 0, 1,+, ·,∗ ‖ as bw-rational operations
(‘bw’ meaning bounded width) and we call algebras over the bw-rational operations
that satisfy both the Kleene axioms for 0, 1,+, ·,∗ and the idempotent commutative
semiring axioms for 0, 1,+, ‖ bw-rational algebras and refer to a term in the bw-
rational operations as a bw-rational term. We say that a pomset is series-parallel if
it is generated from the set of singleton pomsets using only sequential and parallel
multiplication, and use Pomsp to denote the set of series-parallel pomsets. With these
definitions, we prove for bw-rational terms t, t′ over an alphabet Σ that

• the language Id([[t]]) ∩Pomsp is representable by a bw-rational term, and
• suppose that Id([[t]]) = Id([[t′]]), or equivalently Id([[t]])∩Pomsp = Id([[t′]])∩Pomsp.
Then t = t′ is a consequence of the bw-rational axioms plus the exchange law (1).
Hence the algebra of pomset ideals generated by the bi-Kleene operations from the
singleton pomsets with labels in Σ is the free algebra with basis Σ with respect to
the class of bw-rational algebras satisfying the exchange law.

This freeness result is, in effect, a generalisation of Gischer [9, Theorem 5.9], which
gave the analogous result for idempotent bi-semirings, in which the Kleene star ∗ was
not considered.

1.2 Organisation of the paper

In Section 2, we give most of the basic definitions and results that will be used
throughout the paper. In Section 3, we prove our first main theorem for rational
pomset languages; in particular, we show that if L, L′ are rational languages, then so
is L \ L′. We also show that a bi-Kleene term defining L \ L′ can be computed from
terms defining L and L′. In Section 4, we prove our second main theorem; that if two
bi-Kleene terms define the same rational language, then they define the same element
of every bi-Kleene algebra. In Section 8, we give further definitions for pomset ideals.
We also prove that the set of pomset ideals defines a bi-Kleene algebra, provided that
the operations ‖, (∗) are suitably modified. Section 5.1 gives a summary of the method
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of proof of our remaining theorems, which occupies Sections 6–8. In Section 9 we give
our conclusions.

2 Kleene algebra and pomset definitions

Definition 1 (bi-Kleene algebras and bw-rational algebras) Amonoid, as usual,
is an algebra with an associative binary operation · and identity 1. A bimonoid is an
algebra with operations ·, ‖, 1 that is a monoid with respect to ·, 1 and a commutative
monoid with respect to ‖, 1.

A Kleene algebra is an algebra K with constants 0, 1, a binary addition operation +,
a multiplication operation · (usually omitted) and a unary iteration operation ∗, such
that the following hold; (K, 1, ·) is a monoid, (K, 0,+) is a commutative monoid and
also, for all x, y, z ∈ K,

x+ x = x, x(y + z) = xy + xz, (y + z)x = yx+ yz, (3)

1 + xx∗ = 1 + x∗x = x∗, (4)

xy ≤ y ⇒ x∗y ≤ y, yx ≤ y ⇒ yx∗ ≤ y, (5)

where (2) is assumed. The identities (5) are normally called the induction axioms.
The identities in (3) together with the preceding conditions amount to stating that K
is an idempotent semiring, or dioid. We say that K is a commutative Kleene algebra
if · is commutative.

A bi-Kleene algebra is an algebra with operations 0, 1,+, ·,∗ , ‖,(∗) that is a Kleene
algebra with respect to 0, 1,+, ·,∗ and a commutative Kleene algebra with respect to
0, 1,+, ‖,(∗), with ‖ and (∗) playing the role of · and ∗ respectively in the Kleene axioms
given above. For the purposes of this paper, we need to define bw-rational algebras,
which have operations 0, 1,+, ·,∗ , ‖, and satisfy only the conditions on the definition of
a bi-Kleene algebra given above that do not mention (∗); thus, a bw-rational algebra is
a Kleene algebra with respect to 0, 1,+, ·,∗ and is a commutative idempotent semiring
with respect to the operations 0, 1,+, ‖; that is, it satisfies (3) with · replaced by ‖
and is a commutative monoid with respect to 1, ‖.

Given a set Σ, we use TReg(Σ), TComReg(Σ), Tbimonoid(Σ), Tbi−KA(Σ), and Tbw−Rat(Σ)
to denote the sets of terms generated from Σ using, respectively, the regular opera-
tions 0, 1,+, ·,∗, the commutative-regular operations 0, 1,+, ‖,(∗), the bimonoid oper-
ations 1, ·, ‖, the bi-Kleene operations 0, 1,+, ·,∗ , ‖,(∗) and the bw-rational operations
0, 1,+, ·,∗ , ‖.

An important class of naturally arising Kleene algebras is given by Proposition 2.

Proposition 2 (Kleene algebras defined on power sets of monoids) Let
(M, 1, ·) be a monoid. Then (2M , 0, 1,+, ·,∗ ), with 0 defining ∅, 1 defining {1}, +
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defining union, · given by pointwise multiplication and S∗ defn
= ∪i≥0S

i, is a Kleene
algebra.

Proof. Straightforward. ✷

Definition 3 (commutative words) A commutative word over an alphabet Σ is
a multiset over Σ; that is, a function from Σ into the set of non-negative integers.
A commuting word may be represented by a word σ1 ‖ · · · ‖ σm with each σi ∈ Σ,
with two such words representing the same commutative word if and only if for each
σ ∈ Σ, they contain the same number of occurrences of σ. Thus the set of commutative
words forms a commutative monoid with ‖ as multiplication and the empty word 1
as identity.

It follows from Proposition 2 that the set of languages of strings over an alphabet
Σ is a Kleene algebra, and the set of languages of commutative words over Σ is
a commutative Kleene algebra with respect to the commutative-regular operations
0, 1,+, ‖,(∗), when these are interpreted as given in the Proposition; in particular,
S(∗) = ∪i≥0S

(i), where we define

S(0) = 1, S(1) = S, S(2) = S ‖ S, S(3) = S ‖ S ‖ S, . . . (6)

Definition 4 (pomsets and the supp function) A labelled partial order is a 3-
tuple (V,≤, µ), where V is a set of vertices, ≤ is a partial ordering on the set V
and µ : V → Σ for an alphabet Σ is a labelling function. Two labelled partial orders
(V,≤, µ) and (V ′,≤′, µ′) are isomorphic if there is a bijection τ : V → V ′ that preserves
ordering and labelling; that is, for v, w ∈ V , v ≤ w ⇐⇒ τ(v) ≤′ τ(w) and µ(v) =
µ′(τ(v)) holds. A pomset is an isomorphism class of finite labelled partial orders, and
a set of pomsets is usually called a language. We write Pom(Σ) to denote the set of all
pomsets with labels in an alphabet Σ. If p is a pomset, then supp(p) is the set of labels
occurring in p, and if L is a pomset language, then we define supp(L) = ∪p∈L supp(p).

Observe that a pomset whose ordering ≤ is total is simply a word, in the usual sense,
over its labelling alphabet Σ. Thus the word σ of length one for σ ∈ Σ is the pomset
with a single vertex having label σ. On the other hand, a pomset over Σ whose order
relation is empty is, in effect, a commutative word σ1 ‖ . . . ‖ σm with each σi ∈ Σ.

Definition 5 (sequential and parallel multiplication of pomsets) For pomsets
p1, p2 represented by the 3-tuples (V1,≤1, µ1) and (V2,≤2, µ2) respectively, their se-
quential product p1 · p2 and parallel product p1 ‖ p2 are given as follows; these def-
initions can easily be shown to be well-defined; that is, independent of the choice of
representative 3-tuple of each pomset pi.

• p1 · p2 (usually written simply p1p2) is represented by the 3-tuple (V1 ∪ V2,≪, µ),
where the function µ agrees with each function µi on the set Vi and v ≪ w holds
if and only if either both vertices v, w lie in one set Vi for i ∈ {1, 2} and v ≤i w
holds, or v ∈ V1 and w ∈ V2.
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σ4

Fig. 1. An example of a pomset that is not series-parallel.

• the pomset p1 ‖ p2 is represented by the 3-tuple (V1 ∪ V2,≺, η), where the function
η agrees with each function µi on the set Vi and v ≺ w holds if and only if both
vertices v, w lie in one set Vi for i ∈ {1, 2}.

2.1 The bi-Kleene algebra of pomset languages

It follows from Proposition 2 that the set of pomset languages over Σ is a bi-Kleene
algebra when equipped with the constant operations 0, 1, the operations +, ·, ‖ of
arity two and the operations ∗ and (∗) of arity one, with interpretations as given in
the Proposition; in particular, 1 denotes the singleton containing the empty pomset,
also denoted by 1, whose vertex set is empty, the sequential and parallel products
of pomset languages are defined from those of pomsets by pointwise extension, and
for a pomset language P , we define P ∗ =

⋃

i≥0 P
i and P (∗) =

⋃

i≥0 P
(i), where P (i) is

defined as indicated in (6).

2.2 Series-parallel pomsets and rational pomset languages

For an alphabet Σ and σ ∈ Σ, we use σ to refer to the pomset having only one vertex
with label σ, and for any t ∈ Tbi−KA(Σ), we write [[t]] to denote the pomset language
defined by t, with operations interpreted as above. Thus if t ∈ TReg(Σ) then [[t]] is
regular; by analogy, if t ∈ TComReg(Σ) then we say that [[t]] is commutative-regular.
If a pomset p satisfies {p} = [[t]] for t ∈ Tbimonoid(Σ), then we say that p is a series-
parallel pomset. We write Pomsp and Pomsp(Σ) to denote, respectively, the set of
all series-parallel pomsets and the set of all series-parallel pomsets with labels in Σ.
Fig. 1 gives an example of a pomset that does not lie in Pomsp.
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We say that a pomset language L is rational if L = [[t]] for t ∈ Tbi−KA(Σ); if t ∈
Tbw−Rat(Σ), we say that L is bw-rational. The following freeness results for the algebras
of regular and commutative-regular languages have been proved.

Theorem 6 Let Σ be an alphabet. If t, t′ ∈ TReg(Σ) and [[t]] = [[t′]] holds, then t = t′

holds in every Kleene algebra. If instead, t, t′ ∈ TComReg(Σ) and [[t]] = [[t′]] holds, then
t = t′ holds in every commutative Kleene algebra.

Proof. The assertion for regular languages was proved by Kozen [12]. For commutative-
regular languages, the result is implicit in the work of Conway [1, chap.11]. ✷

Definition 7 (parallel and sequential pomset languages) A pomset p is







sequential if p = q1q2

parallel if p = q1 ‖ q2

for pomsets q1, q2 with each qi 6= 1 in each case. A pomset language L is sequential
if every element of L is sequential and non-sequential if none of its elements are
sequential; we define a language to be parallel analogously. We define Seq and Para
to be the language of all sequential and parallel pomsets respectively. Further, for any
i ≥ 1 we define the language Parai = {q1 ‖ · · · ‖ qi| each qi 6= 1 and not parallel}.
Thus

Para = ∪i≥2Parai

holds.

2.3 The bi-Kleene algebra of rational pomset languages is free with respect to bi-
Kleene algebras defined by power sets of bimonoids

Lemma 8 shows that a pomset cannot be both sequential and parallel, and hence a
sequential pomset language and a parallel pomset language do not intersect.

Lemma 8 Let p1, p2, q1, q2 be pomsets and suppose that each pi 6= 1, qj 6= 1. Then
p1 ‖ p2 6= q1q2 holds.

Proof. Suppose that p1 ‖ p2 = q1q2 holds, and let (Z,≤) be a poset defining q1q2.
Thus Z can be partitioned non-trivially as Z = V1 ⊎ V2 = W1 ⊎ U2, where x1 ≤ x2 if
each xi ∈ Vi and y1, y2 are incomparable with respect to ≤ if each yi ∈ Wi. Suppose
W1 ⊆ V2; then W2 ⊇ V1, giving a contradiction since the sets Vi,Wi are non-empty
and so W1∩V2, W2∩V1 6= ∅. Thus W1 * V2 and so W1∩V1 6= ∅. Similarly W2∩V2 6= ∅
also holds, again giving a contradiction. Thus the conclusion follows. ✷

Lemma 9 (uniqueness of pomset decomposition)

(1) Let p1 ‖ · · · · · · ‖ pm = q1 ‖ · · · · · · ‖ qn be a pomset and assume that no pomset pi
or qj is parallel. Then m = n and there is a permutation θ on {1, . . . , m} such
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that each pi = qθ(i).
(2) Let p1 . . . . . . pm = q1 . . . . . . qn be a pomset and assume that no pomset pi or qj is

sequential. Then m = n and each pi = qi.

Proof. (2) is proved in Gischer [9, Lemma 3.2]. (1) is proved as follows. Let (V,≤)
be a poset defining p1 ‖ . . . . . . ‖ pm. We may assume that V 6= ∅ since otherwise the
conclusion is obvious. We may define the partition V = V1⊎. . .⊎Vm, where each pomset
pi is defined by Vi 6= ∅ and the restriction of ≤ to Vi. Similarly, V = W1 ⊎ . . . ⊎Wn,
where each pomset qi is defined by Wi 6= ∅ and the restriction of ≤ to Wi. Define the
collection

S = {X ⊆ V | x ∈ X ∧ y ∈ V −X ⇒ ¬(x ≤ y ∨ y ≤ x)}.

Clearly X, Y ∈ S ⇒ X ∩ Y ∈ S holds. Owing to the indecomposability conditions on
pi and qj , the sets Vi,Wj are minimal non-empty elements of S and so Vi ∩Wj 6= ∅ ⇒
Vi = Wj holds, proving the result. ✷

Corollary 10 states that the pomset language defined by Tbimonoid(Σ) is the free bi-
monoid over Σ.

Corollary 10 Let Σ be an alphabet, let M be a bimonoid and let κ : Tbimonoid(Σ) → M
be a homomorphism of the bimonoid operations. Let t, t′ ∈ Tbimonoid(Σ) with [[t]] = [[t′]].
Then κ(t) = κ(t′) holds.

Proof. Using Theorem 8 and Lemma 9 it follows by induction on the structure of t
that t = t′ holds in any bimonoid, and hence in M . ✷

Our main result of the subsection follows.

Lemma 11 Let Σ be an alphabet, let M be a bimonoid and let κ : Tbi−KA(Σ) → 2M

be a homomorphism of the bi-Kleene operations. Suppose we extend κ to Pomsp(Σ) by
defining κ(p) = κ(t) for any t ∈ Tbimonoid(Σ) with [[t]] = {p} (well-defined by Corollary
10). Let t ∈ Tbi−KA(Σ). Then

[[κ(t)]] =
⋃

p∈[[t]]

[[κ(p)]]

holds. In particular, [[t]] = [[t′]] ⇒ κ(t) = κ(t′) holds, and hence κ defines a bi-Kleene

homomorphism from
{

[[t]]
∣
∣
∣ t ∈ Tbi−KA(Σ)

}

into 2M .

Proof. The displayed equation follows by induction on the structure of t. If t ∈
Σ∪{0, 1} then the equality is obvious, and the case where t = t1+t2 is straightforward.
We now consider the remaining cases.
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• Suppose that t = t1t2. Then

[[κ(t)]] = [[κ(t1t2)]] = [[κ(t1)κ(t2)]] = [[κ(t1)]][[κ(t2)]] =

(
⋃

p1∈[[t1]]

[[κ(p1)]]) (
⋃

p2∈[[t2]]

[[κ(p2)]]) =
⋃

p1∈[[t1]], p2∈[[t2]]

[[κ(p1p2)]] =
⋃

p∈[[t]]

[[κ(p)]]

follows, using the inductive hypothesis for each ti at the fourth equality.
• Suppose that t = s∗. Then

[[κ(t)]] =
⋃

n≥0

[[κ(s)]]n

=
⋃

n≥0

(( ⋃

p1∈[[s]]

[[κ(p1)]]
)

. . .
( ⋃

pn∈[[s]]

[[κ(pn)]]
))

=
⋃

n≥0

⋃

each pi∈[[s]]

[[κ(p1)]] . . . [[κ(pn)]] =
⋃

n≥0

⋃

q∈[[s]]n
[[κ(q)]]

=
⋃

q∈[[s∗]]

[[κ(q)]],

using the inductive hypothesis at the second equality.

The cases where t = t1 ‖ t2 or t = s(∗) are similar to those above, hence the conclusion
holds. ✷

Lemma 11 has analogues for TReg(Σ) and monoids, and TComReg(Σ) and commutative
monoids, and these have similar proofs.

2.4 Depth of a series-parallel pomset

In order to prove our main theorems, we need to find a quasi-partial order on bi-Kleene
terms in such a way that a parallel term is preceded by its sequential subterms and
ground subterms (and the analogous statement with sequential and parallel inter-
changed also holds) and this ordering is determined by the language that a term
defines. Therefore, we first define the depth of a pomset, and then extend this defini-
tion to bi-Kleene terms.

Definition 12 (depth of a series-parallel pomset) Let p ∈ Pomsp. Then we de-
fine depth(p) ∈ N recursively as follows.

• If p is a singleton pomset or p = 1, then depth(p) = 0.
• If p = p1 ‖ . . . . . . ‖ pm for m ≥ 2 and each pi is a singleton pomset or is sequential,
then

depth(p) = maxi≤m depth(pi) + 1.

• If p = q1 . . . . . . qn for n ≥ 2 and each qi is a singleton pomset or is sequential, then

depth(p) = maxi≤n depth(qi) + 1.

9



Owing to Lemma 9 and Lemma 8, this is a valid definition.

Definition 13 (width of a pomset) The width of a pomset p, width(p), is the
maximal cardinality of any set of wholly unordered vertices in a representation of
p. If L is a pomset language then width(L) is the maximum width of any pomset in
L, if this is defined, in which case we say that L has bounded width; otherwise we
define width(L) = ∞. We also define width(t) = width([[t]]) for a bi-Kleene term t.

Observe that if t ∈ Tbi−KA(Σ) and [[t]] has bounded width, then [[t]] = [[t′]] for some

t′ ∈ Tbw−Rat(Σ), since any subterm s(∗) of t can be replaced by the term
∑width(t)

i=0 s(i),
thus eliminating occurences of (∗) from t. Conversely, every term in Tbw−Rat(Σ) defines
a language of bounded width. This justifies our bw-rational terminology.

2.5 Standardising terms using the bi-Kleene axioms

In this subsection we will show that the parallel and sequential subsets of a rational
language are rational, and definable by terms that can be computed. There is a diffi-
culty, however, with the usual Kleene operations in that the way to partition a rational
language into its parallel, sequential and other pomsets is not clearly indicated by the
highest-level operation that defines it; for example, a language [[t∗]] may contain both
parallel and sequential pomsets. Therefore we consider new unary operations !, (!) that
will not be used outside this subsection. They are defined by

u! = u∗u2, u(!) = u(∗) ‖ u(2). (7)

Definition 14 gives the relations between terms with which our main theorems will be
expressed.

Definition 14 (The =bi−KA and =bw−Ratrelations) Let Σ be an alphabet and let
t, t′ ∈ Tbi−KA(Σ). We say that t =bi−KA t′ if t = t′ holds in every bi-Kleene algebra. If
t, t′ ∈ Tbw−Rat(Σ), then we say t =bw−Rat t

′ if t = t′ holds in every bw-rational algebra.
We also define the partial orderings ≤bi−KA and ≤bw−Rat by analogy with (2).

Proposition 15 shows the use of defining the new operations given in (7).

Proposition 15 Let Σ be an alphabet and let t be a term over Σ with operations
in {+, ·,! , ‖,(!) }. We extend the definition of the language [[t]] by interpreting !,(!) as
given in (7). Then 1 /∈ [[t]]; also, if the term t = uv or t = u!, then [[t]] is a sequential
language, and an analogous assertion holds for the operations ‖, (!).

Proof. The proof that 1 /∈ [[t]] follows by induction on the structure of t; in particular,
it follows from (7) that 1 /∈ [[r]] ⇒ 1 /∈ [[r!]], and analogously for r(!), if r has operations
in {+, ·, ‖,! ,(!) }. The remaining assertions follow by applying this result to u and v. ✷
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Proposition 16 Let Σ be an alphabet and let t ∈ Tbi−KA(Σ). Suppose the relation
=bi−KA is extended to terms containing the unary operations !,(!) by assuming the
substitutions indicated by (7). Then there is a term t′ with operations in {0, 1,+, ·, ‖
,! ,(!) } satisfying t =bi−KA t′ such that either t′ = 0 or 0 does not occur in t′ and 1
does not occur in the argument of any operation except possibly + in t′.

Proof. By using the Kleene-valid substitutions

u+ 0 = 0 + u → u, u0 = 0u → 0, 0∗ → 1, (8)

and their parallel analogues, we may assume that either t = 0 or 0 does not occur in
t. We now eliminate the iteration operations ∗,(∗) from t by replacing them with new
unary operations !, (!) respectively using the following identities;

u∗ = u! + 1 + u, u(∗) = u(!) + 1 + u, (9)

which follow from (7) plus the Kleene axioms. If t 6= 0, then by using the distributive
laws and the substitutions

u1 = 1u → u, (u+ 1)! = (1 + u)! → u! + 1 + u, (10)

which follow from the Kleene axioms plus (7), and their parallel analogues, we can
ensure that 1 does not occur in the resulting term in the argument of any operation
except possibly +, thus proving the result. ✷

We are now able to show that a rational language can be expressed as a sum of terms
representing its sequential, parallel and remaining pomsets.

Lemma 17 Let Σ be an alphabet and let t ∈ Tbi−KA(Σ). Then the pomset languages
[[t]] ∩ Parai for each i ≥ 1 are rational and definable by terms that are computable
from t; and there exist terms t′, t′′, t′′′ ∈ Tbi−KA(Σ) that that are computable from t
and define pomset languages [[t]] ∩ Seq, [[t]] ∩Para and [[t]] ∩ (Σ ∪ {1}) and satisfy

t =bi−KA t′ + t′′ + t′′′.

Furthermore, depth(t) < ∞.

Proof. By Proposition 16, we may assume that either t = 0 or 1 does not occur in
t in the argument of any operation except possibly +, and t has operations lying in
{1,+, ·, ‖,! ,(!) }. We prove the results (apart from the computability assertions, which
follow immediately) for the set of terms t satisfying these conditions by induction on
the structure of t, and we can then reinstate the operations ∗,(∗) in t′, t′′, t′′′ using (7).

If t ∈ Σ ∪ {0, 1} then the results are immediate. If t = t1 + t2 then the results follow
from the inductive hypothesis applied to each tj .

If t = u ‖ v then by Proposition 15 the term t is parallel and so L = L∩Para holds;
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also,
[[u ‖ v]] ∩Parai =

⋃

j+k=i

[[u]] ∩Paraj ‖ [[v]] ∩Parak

and
depth(u ‖ v) ≤ depth(u) + depth(v) + 1,

proving the rationality assertion for the languages [[t]]∩Parai and the depth assertion
for t by the inductive hypothesis. The case t = uv is analogous.

If instead t = u(!) then again by Proposition 15, t is parallel and so L = L ∩ Para
holds; also,

[[u(!)]] ∩Parai =
⋃

j≤i

⋃

2≤k1+···+kj=i

[[u]] ∩Parak1 ‖ · · · ‖ [[u]] ∩Parakj

and
depth(u(!)) ≤ depth(u) + 1

proving the rationality assertion for the languages [[t]]∩Parai and the depth assertion
for t by the inductive hypothesis. The case t = u! is analogous. ✷

Proposition 18 will be an essential tool for proving assertions on bi-Kleene terms by
induction on the depth of their languages.

Proposition 18 Let Σ be an alphabet and let t ∈ Tbi−KA(Σ). If t is parallel, then
t =bi−KA c(u1, . . . , um) for a commutative-regular term c and terms ui ∈ Tbi−KA(Σ)
defining non-empty languages that are either sequential or lie in Σ, and satisfy
depth(ui) < depth(t), with c and each ui being computable from t.

Proof. By Proposition 16, we may assume that either t = 0, or t contains only the
operations 1,+, ·,! , ‖,(!), with 1 not occurring in the argument of any operation in t
except possibly +. If t = 0 then the conclusion is obvious, so we assume the latter case.
Since t is parallel, this implies that 1 does not occur at all in t. Thus t has the form
c(u1, . . . , um) for a term c with operations in {+, ‖,(!) } and terms ui that either lie in
Σ or have the form uv or u! and are hence sequential by Proposition 15, and define
non-empty languages. For each j ≤ m, let pj be a pomset in [[uj]] of maximal depth.
We may assume that each ui actually occurs in t. Let i ≤ m. Thus for an alphabet
{σ1, . . . , σm}, the language [[c(σ1, . . . , σm)]] contains a parallel word w of width ≥ 2 in
which σi occurs, and so the pomset language [[t]] contains w(σj \ pj| j ≤ m), whose
depth is greater than that of ui, proving the depth assertion. By reinstating ∗ and (∗)

in each ui and
(∗) in c using (7), we get the result required. ✷

2.6 Regular and commutative-regular languages are closed under boolean operations

Theorem 19 recalls the fact that our first main theorem is known to hold for the
subclasses of regular and commutative-regular languages.

12



Theorem 19 Let Σ be an alphabet and let t1, t2 ∈ TReg(Σ), or alternatively t1, t2 ∈
TComReg(Σ). Then there exists a term s ∈ TReg(Σ) or TComReg, respectively, such that
[[s]] = [[t1]]− [[t2]]. Furthermore, s can be computed from t1 and t2.

Proof. If each term ti is regular, then the conclusion is a well-known theorem for
regular languages. If each term ti is commutative-regular, then it follows from Conway
[1, Chapter 11], the computability result being an implicit consequence of his method
of proof. ✷

Corollary 20 Let Σ be an alphabet and let t1, t2 be both regular or both commutative-
regular terms over Σ. Then it is decidable whether [[t1]] = [[t2]] holds.

Proof. This follows since

[[t1]] = [[t2]] ⇐⇒ ([[t1]]− [[t2]]) ∪ ([[t2]]− [[t1]]) = ∅

holds, and it is clearly possible to decide whether an element of Tbi−KA(Σ) defines the
empty language. ✷

Corollary 21 Let Σ be an alphabet and let T be a finite set of elements of Tbi−KA(Σ)
that are either all regular or all commutative-regular. Then there exists a finite set U
of terms, pairs of which define disjoint languages, and such that for each t ∈ T , there
exists Vt ⊆ U such that [[t]] =

⋃

x∈Vt
[[x]] holds. Furthermore, the set U can be computed

from T , as can the subset Vt from T and t.

Proof. Write T = {t1, . . . , tn}. By Theorem 19, for each N ⊆ {1, . . . , n}, we may define
a term sN satisfying [[sN ]] =

⋃

i∈N [[ti]] −
⋃

i/∈N [[ti]], and M 6= N ⇒ [[sM ]] ∩ [[sN ]] = ∅
holds. Clearly

[[ti]] =
⋃

i∈N

[[sN ]],

thus proving the Corollary, since from Theorem 19, the terms sN can clearly be com-
puted from T . ✷

3 Closure of rational pomset languages under Boolean operations

In this section we prove our first main theorem.

3.1 The label set LU and function ν

For the remainder of this section, and in Section 4, Definition 22 will be assumed.

Definition 22 (associating a label with a term, the function ν) For any term
u, we assume a label lu, where distinct terms define distinct labels, and for any set
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U of terms over an alphabet Σ, we define LU = {lu| u ∈ U}. We also define the
homomorphism

ν : Tbi−KA(LU) → Tbi−KA(Σ)

given by ν(lu) = u. Further, for any p ∈ Pomsp(LU), we define ν(p) = ν(t), where
t ∈ Tbimonoid(LU ) satisfies [[t]] = {p} (well-defined by Corollary 10).

Note: the assertions of Proposition 18, Lemma 23 and Corollary 24, and Lemma
28 in Section 4 have their counterparts with references to sequential and parallel
multiplication interchanged, and these have analogous proofs.

Lemma 23 Let Σ be an alphabet and let U be a set of elements of Tbi−KA(Σ) such
that every element of U either lies in Σ or is sequential. Assume that distinct terms
in U define disjoint languages. Let p be a parallel product of elements of LU and let
s ∈ TComReg(LU). Then

p /∈ [[s]] ⇒ [[ν(p)]] ∩ [[ν(s)]] = ∅

holds.

Proof. Order the terms s, firstly by the total number of occurrences of + and (∗), and
secondly by the number of occurrences of ‖. Assume that p /∈ [[s]] holds. We prove
[[ν(p)]] ∩ [[ν(s)]] = ∅ by induction using this ordering.

• Suppose that s ∈ LU . If the commutative word p /∈ LU ∪ {1}, then we may write
p = q ‖ q′ for q, q′ 6= 1 and hence ν(p) = ν(q) ‖ ν(q′) is a parallel term, whereas no
elements of [[ν(s)]] are parallel, proving [[ν(p)]] ∩ [[ν(s)]] = ∅. On the other hand, if
p ∈ LU or p = 1, then [[ν(p)]]∩ [[ν(s)]] = ∅ follows, respectively, from the disjointness
assumption on the elements of U or the fact that 1 /∈ [[u]] for all u ∈ U .

• Suppose s = s1 + s2. The conclusion follows by the inductive hypothesis applied to
each term si.

• Suppose s = s1 ‖ s2. Write p = lu1
‖ . . . ‖ lum

with each ui ∈ U . Assume the
conclusion is false for s; thus there are pomsets qi ∈ [[ν(si)]] such that q1 ‖ q2 ∈
[[ν(p)]]∩ [[ν(s)]]. Since every element of every set [[ui]] is not parallel and not 1, after
rearrangement of the labels lui

we may write q1 = v1 ‖ . . . ‖ vn and q2 = vn+1 ‖ . . . ‖
vm with each pomset vi ∈ [[ui]]. Thus lu1

‖ . . . ‖ lun
∈ [[s1]] and lun+1

‖ . . . ‖ lum
∈ [[s2]]

by the inductive hypothesis, and so p ∈ [[s1 ‖ s2]], giving a contradiction.
• Suppose s = r(∗). Thus for every n ≥ 0, [[p]] ∩ [[r ‖ . . . ‖ r

︸ ︷︷ ︸

n terms

]] = ∅ holds, and from

the minimality condition on s, [[ν(p)]] ∩ [[ν(r ‖ . . . ‖ r
︸ ︷︷ ︸

n terms

)]] = ∅ follows. Since [[ν(s)]] =

∪n≥0[[ν(r ‖ . . . ‖ r
︸ ︷︷ ︸

n terms

)]], this leads to a contradiction. ✷

Corollary 24 extends Lemma 23 by replacing p by an arbitrary commutative-regular
term.
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Corollary 24 Let Σ be an alphabet and let U be a set of elements of Tbi−KA(Σ) such
that every element of U either lies in Σ or is sequential. Assume that distinct terms
in U define disjoint languages. Let s, s′ ∈ TComReg(LU). Then

[[s]] ∩ [[s′]] = ∅ ⇒ [[ν(s)]] ∩ [[ν(s′)]] = ∅

holds.

Proof. If [[ν(s)]] and [[ν(s′)]] are not disjoint, then from the commutative-regular
analogue of Lemma 11, there exists a commutative word w such that w ∈ [[s]] and
[[ν(w)]] ⊆ [[ν(s)]] and [[ν(w)]] intersects with [[ν(s′)]], and so from Lemma 23, w ∈ [[s′]]
also follows. ✷

Lemma 25 Let Σ be an alphabet and let T be a finite set of elements of Tbi−KA(Σ).
Then there exists a finite set U of elements of Tbi−KA(Σ) defining non-empty pairwise
disjoint languages, such that for each t ∈ T , there exists Ut ⊆ U such that [[t]] =
⋃

x∈Ut
[[x]] holds. Furthermore, the set U can be computed from T and any subset Ut

can be computed from T and t.

Proof. We will prove the computability assertion separately; first we prove the pre-
ceding claims in the Lemma by induction on depth(

∑

x∈T x). If T ⊆ Σ∪ {1} then the
conclusion is obvious, and so using Lemma 17, we need only consider the case that
each term in T is parallel; the case that each term in T is sequential is analogous.

By Proposition 18, for each t ∈ T there exists a finite set Ut of terms that all either
lie in Σ or are sequential and a commutative-regular term st over LUt

such that
[[t]] = [[ν(st)]] and for each u ∈ Ut, depth(u) < depth(t), and hence

depth(
∑

x∈∪t∈TUt

x) < depth(
∑

x∈T

x) (11)

holds.

From applying the inductive hypothesis to ∪t∈TUt there is a set V of terms over
Σ defining non-empty pairwise disjoint pomset languages, and such that for each
u ∈ ∪t∈TUt, there exists Vu ⊆ V such that

[[u]] =
⋃

x∈Vu

[[x]]

holds.

For each t ∈ T , let s′t be obtained from st by replacing every letter lu by the sum
∑

x∈Vu
lx. Thus [[ν(s

′
t)]] = [[ν(st)]] = [[t]] holds by Theorem 6. By Corollary 21 applied to

the terms s′t, there is a set C of commutative-regular terms defining non-empty pair-
wise disjoint languages and such that for each t ∈ T , there are terms c1, . . . , . . . , cn ∈ C
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satisfying [[s′t]] = [[c1 + . . . . . .+ cn]] and again from Theorem 6,

[[t]] = [[ν(s′t)]] = [[ν(c1) + . . . . . .+ ν(cn)]]

holds. From Corollary 24, the terms in ν(C) also satisfy the required disjointness
property and hence satisfy the conclusion of the Lemma for U .

We now consider the computability assertion. We define a recursive algorithm A that
on input T computes the sets U and Ut for each t ∈ T satisfying the conditions
required. We may assume that each term in T defines a non-empty pomset language.
A is defined precisely as indicated by our proof above. We prove by induction on
depth(

∑

x∈T x) that A terminates with the correct outputs. We define the partition
T = Tpara ⊎ Tseq ⊎ TΣ, where Tpara contains all elements of T that are parallel, Tseq

contains all elements of T that are sequential, and TΣ ⊆ Σ∪{1} contains all remaining
elements of T . The term sets Ut and terms st can be computed from each t ∈ Tpara,
by Lemma 18. A obtains the sets V and Vu for each u ∈ ∪t∈Tpara

Ut by calling itself
with input ∪t∈Tpara

Ut; by the inductive hypothesis and (11), A terminates and returns
the correct values. Thus the terms s′t can also be computed, and so the set C and the
appropriate set of elements {c1, . . . , cn} for each term t can be computed by Corollary
21. The function ν is clearly computable and thus A returns the correct term sets for
Tpara. The correct output for Tseq is computed analogously. ✷

Our first main Theorem now follows.

Theorem 26 Let Σ be an alphabet and let t1, t2 ∈ Tbi−KA(Σ). Then there exist ele-
ments of Tbi−KA(Σ) defining the sets [[t1]] ∪ [[t2]], [[t1]] ∩ [[t2]] and [[t1]]− [[t2]], which can
be computed from t1 and t2.

Proof. The case [[t1]] ∪ [[t2]] is trivial, and since [[t1]] ∩ [[t2]] = [[t1 + t2]]− ([[t1]]− [[t2]])−
([[t2]]− [[t1]]) holds, it suffices to prove the existence of an element s ∈ Tbi−KA(Σ) such
that [[s]] = [[t1]] − [[t2]] holds. This follows from Lemma 25 with T = {t1, t2} in that
Lemma. ✷

We now give our bi-Kleene term decidability result.

Theorem 27 Let Σ be an alphabet and let t, t′ ∈ Tbi−KA(Σ). Then it is decidable
whether [[t]] = [[t′]] holds.

Proof. This follows from Theorem 26, similarly to the proof of Corollary 20.
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4 Equality between bi-Kleene terms defining pomset languages is a con-
sequence of the bi-Kleene axioms

In this section we use Lemma 25 to prove our second main theorem. We first show
that under stricter hypotheses, the converse implication to that given in Corollary 24
holds.

Lemma 28 Let Σ be an alphabet and let U be a set of elements of Tbi−KA(Σ) such that
every element of U either lies in Σ or is sequential and defines a non-empty language.
Assume that pairs of terms in U define disjoint languages. Let s, t be commutative-
regular terms over LU . Then

[[ν(s)]] = [[ν(t)]] ⇒ [[s]] = [[t]]

holds.

Proof. Suppose that [[s]] 6= [[t]] holds. Then there exists a pomset p ∈ [[s]]− [[t]] (s, t may
need to be interchanged). Let p̃ ∈ Tbimonoid(Σ) satisfy [[p̃]] = {p}. Thus [[s+p̃]] = [[s]] and
so [[ν(s)]] + [[ν(p)]] = [[ν(s) + ν(p̃)]] = [[ν(s)]] by Lemma 11, whereas [[ν(p)]]∩ [[ν(t)]] = ∅
by the commutative-regular analogue of Lemma 11. Since each element of U defines
a non-empty language, [[ν(p)]] 6= ∅ and so [[ν(s)]] 6= [[ν(t)]] follows. ✷

Our second main theorem follows.

Theorem 29 Let Σ be an alphabet and let t, t′ ∈ Tbi−KA(Σ). Assume [[t]] = [[t′]]; then
t =bi−KA t′ holds.

Proof. We prove the Theorem by induction on depth(t) = depth(t′). If [[t]] = [[t′]] ⊆
{1}∪Σ, then t =bi−KA t′ is obvious. By Lemma 17, we may assume that t, t′ are both
parallel; the case that they are both sequential is analogous.

By Proposition 18, there exists a finite set U of terms that all either lie in Σ or are
sequential and define non-empty languages, and commutative-regular terms s, s′ over
LU such that

t =bi−KA ν(s), t′ =bi−KA ν(s′). (12)

By Lemma 25, there is a finite subset V of Tbi−KA(Σ), pairs of which define disjoint
languages, and such that for each u ∈ U there exists Vu ⊆ V satisfying

[[u]] =
⋃

x∈Vu

[[x]]. (13)

For each u ∈ U , let wu be a sum of the labels lx for each x ∈ Vu. Hence by Theorem
6 and (13),

[[ν(wu)]] =
⋃

x∈Vu

[[x]] = [[u]] (14)
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holds. Let the terms r, r′ be obtained from s, s′ respectively by replacing each oc-
currence of any lu ∈ LU by wu. Thus ν(r) is obtained from ν(s) by replacing each
subterm u ∈ U by ν(wu), and similarly for ν(r′) and ν(s′). By Proposition 18 and
(14), for each u ∈ U

depth(ν(wu)) = depth(u) < depth(t) = depth(t′)

follows, and so from the inductive hypothesis, ν(wu) =bi−KA u follows from (14). Since
=bi−KA is preserved by congruence,

ν(r) =bi−KA ν(s) =bi−KA t, ν(r′) =bi−KA ν(s′) =bi−KA t′ (15)

holds using (12). Since [[t]] = [[t′]] holds, [[ν(r)]] = [[ν(r′)]] follows from (15). From
Lemma 28, r =bi−KA r′ follows from Theorem 6 since the terms r, r′ are commutative-
regular, and so ν(r) =bi−KA ν(r′) holds since =bi−KA is preserved by substitution.
Hence t =bi−KA t′ follows from (15), thus concluding the proof. ✷

Theorem 29 has an analogue for bw-rational algebras.

Theorem 30 Let Σ be an alphabet and let t, t′ ∈ Tbw−Rat(Σ). Assume [[t]] = [[t′]]; then
t =bw−Rat t

′ holds.

Proof. This has a similar proof to that of Theorem 29. The proof relies on the fact
that the proofs of Theorem 29 and its contributing lemmas and propositions can be
adapted for bw-rational algebras by ignoring the cases in their proofs that consider
the parallel iteration operation (∗). In the case of Theorem 6, the relevant result is
that the algebra of commutative-word languages generated by an alphabet Σ and the
operations 0, 1,+, ‖ is the free idempotent commutative semiring with basis Σ, and
this is straightforward to prove. ✷

5 The bi-Kleene algebra of pomset ideals

We now move on to considering pomset ideals. We first give a criterion for elements
of Pom to lie in Pomsp.

Definition 31 (N-free pomsets) A pomset defined by vertex set V with partial
order ≤ is N-free if V does not contain a 4-element subset {v1, . . . , v4} with v1 ≤ v2
and v3 ≤ v2, v3 ≤ v4, and such that ≤ when restricted to {v1, . . . , v4} does not contain
any other pairs.

Theorem 32 A pomset is series-parallel if and only if it is N-free.

Proof. Gischer [9, Theorem 3.1]. ✷
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Definition 33 (ideals of a pomset) Let p be a pomset. An ideal of p is a pomset
that may be represented using the same vertex set as p, with the same labelling, but
whose partial ordering is at least as strict as that for p. Let L be a language of pomsets.
Then Id(L) is the language of pomsets that are ideals of pomsets lying in L. We say
that L is a (pomset) ideal if Id(L) = L holds. We also define Idsp(L) = Id(L)∩Pomsp.
If Idsp(L) = L then we say that L is an sp-ideal. The functions Id and Idsp are closure
operators on the sets 2Pom(Σ) and 2Pomsp(Σ) respectively [13, chap.1].

In order to to study the sp-ideal of a parallel product p ‖ q of pomsets, we introduce
the function ⊙. The use of this operation will be demonstrated by the identity (19).

Definition 34 (the ⊙ binary function on pomset languages) Let p1, p2 be pom-
sets defined with disjoint vertex sets V1, V2. Then we define the set p2 ⊙ p2 to be the
set of all pomsets q ∈ Pomsp whose vertex set is V1 ∪ V2 and such that q retains
the vertex labelling and ordering of each pi within Vi. We extend the domain of ⊙
pointwise to pairs of pomset languages. Clearly ⊙ is associative and commutative.

Lemma 35 The following hold for pomset languages L, L′, Lj for j in an indexing
set S.

Id(∪j∈SLj) = ∪j∈S Id(Lj), (16)

Id(LL′) = Id(L) Id(L′), Id(L∗) = (Id(L))∗, (17)

Id(L ‖ L′) = Id(L ‖ Id(L′)). (18)

Furthermore, if L, L′, Lj ⊆ Pomsp then the same equalities with Id replaced by Idsp

also hold; in addition,

Idsp(L ‖ L′) = Idsp(L)⊙ Idsp(L
′). (19)

Proof. (16) and its Idsp counterpart follow immediately from the definition of an
ideal. (17) for Id is straightforward. To prove Idsp(LL

′) ⊆ Idsp(L) Idsp(L
′), observe

that any element of Id(LL′) has the form pp′ with p ∈ Id(L), p′ ∈ Id(L′). If in
addition pp′ ∈ Pomsp, then pp′ is N-free by Theorem 32, hence p, p′ are also N-
free and again by this Theorem, p, p′ ∈ Pomsp hold. The other inclusion is obvious,
and hence Idsp(L

i) = (Idsp(L))
i for each i ≥ 0 follows by induction on i. Thus

Idsp(L
∗) = (Idsp(L))

∗ follows from this and (16) for Idsp, thus proving both versions
of (17). (18) follows immediately from the definition of a (sp-)ideal and their closure
properties.

We prove (19) as follows. Suppose a pomset r ∈ Idsp(L ‖ L′). Thus r is representable
by a labelled partial order (V ∪V ′ ≤, µ) for pomsets q, q′ defined by disjoint vertex sets
V, V ′ that are ideals of pomsets lying in L, L′ respectively. By Theorem 32 applied
to r, the pomsets q, q′ are N-free; hence again by this Theorem, q, q′ ∈ Idsp(L),
Idsp(L

′) respectively. Thus r ∈ Idsp(L) ⊙ Idsp(L
′). We have shown that Idsp(L ‖

L′) ⊆ Idsp(L)⊙ Idsp(L
′), and clearly equality holds. ✷
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The set of pomset ideals is not a sub-bi-Kleene algebra of the set of pomset languages,
since if the commutative Kleene operations are defined as given by Proposition 2,
then the parallel product of two pomset ideals is not usually an ideal; an analogous
statement holds for sp-ideals. However, by taking the ideal closure, or sp-ideal closure,
respectively, of the pomset languages defined in the usual way by ‖ and (∗), we obtain
bi-Kleene algebras of pomset ideals and sp-pomset ideals.

Theorem 36 (bi-Kleene algebras of pomset ideals and sp-ideals) Let Σ be an
alphabet. Then Id(2Pom(Σ)) is a bi-Kleene algebra provided that the Kleene operations
0, 1,+, ·,∗ are interpreted as indicated in Proposition 2 and the commutative Kleene
operations ‖, (∗) are interpreted as

(I, I ′) 7→ Id(I ‖ I ′) and I 7→ ∪j≥0 Id(I
(j)) (20)

respectively.

Furthermore, the set Idsp(2
Pom(Σ)) of sp-ideals with labels in Σ is a bi-Kleene algebra

provided that the Kleene operations 0, 1,+, ·,∗ are interpreted as indicated in Proposi-
tion 2, and the commutative Kleene operations ‖, (∗) are interpreted as

(I, I ′) 7→ Idsp(I ‖ I ′) and I 7→ ∪j≥0 Idsp(I
(j)) (21)

respectively.

Lastly, the function

Idsp(2
Pom(Σ)) → Id(2Pom(Σ))

defined by

L 7→ Id(L) (22)

is an injective bi-Kleene homomorphism.

Proof. We first consider Id(2Pom(Σ)). Since this set is closed under the Kleene oper-
ations 0, 1,+, ·,∗, it is a Kleene subalgebra of 2Pom(Σ). Thus it remains to prove the
validity of the bi-Kleene axioms mentioning ‖ and (∗). Associativity of ‖ follows since
for I ′, I ′′, I ′′′ ∈ Id(2Pom(Σ)),

Id(I ′ ‖ Id(I ′′ ‖ I ′′′)) = Id(I ′ ‖ I ′′ ‖ I ′′′) = Id(Id(I ′ ‖ I ′′) ‖ I ′′′)

by (18) in Lemma 35. The remaining axioms involving only 0, 1,+, ‖ are clear. The

20



identities in (4) for ‖,(∗) follow since for I ∈ Id(2Pom(Σ)),

∪j≥0 Id(I
(j)) = ∪j≥1 Id(I

(j)) ∪ {1}

= ∪j≥0 Id(I ‖ I(j)) ∪ {1} = ∪j≥0 Id(I ‖ Id(I(j))) ∪ {1} by (18)

= Id
(

∪j≥0 (I ‖ Id(I(j)))
)

∪ {1} by (16)

= Id
(

I ‖ ∪j≥0 Id(I
(j))

)

∪ {1} since ‖ distributes over unions

= Id(I ‖ ∪j≥0I
(j)) ∪ {1} by (16) and (18)

= Id(I ‖ I(∗)) ∪ {1}.

The induction axiom s ‖ t ≤ t ⇒ s(∗) ‖ t ≤ t follows since for I, J ∈ Id(2Pom(Σ))

Id(I ‖ J) ⊆ J ⇒ I ‖ J ⊆ J ⇒ I(∗) ‖ J ⊆ J = Id(J)

⇒ Id(I(∗) ‖ J) ⊆ J.

The corresponding result for Idsp(2
Pom(Σ)) is proved analogously. We now show that

the function given by (22) is a bi-Kleene homomorphism. For the Kleene operation +
this follows from (16). For ‖, observe that Id(Idsp(I ‖ I ′)) = Id(I ‖ I ′) = Id(Id(I) ‖
Id(I ′)) using (18), and the case of (∗) then follows from (16). The cases of · and ∗ are
given by (17). To show injectivity, observe that there is a partial inverse function

L 7→ Idsp(L),

since if I ∈ Idsp(2
Pom(Σ)) then Idsp(Id(I)) = Id(I) ∩ Pomsp(Σ) = Idsp(I) = I

holds. ✷

Restricting the homomorphism from Idsp(2
Pom(Σ)) to Id(2Pom(Σ)) given by (22) to the

subalgebra of Idsp(2
Pom(Σ)) generated by the set of singleton pomsets

{

{σ}
∣
∣
∣σ ∈ Σ

}

gives an isomorphism onto the subalgebra of Id(2Pom(Σ)) generated by this set.

Theorem 37 Let Σ be an alphabet. Then the bi-Kleene algebras
{

Idsp([[t]])
∣
∣
∣ t ∈ Tbi−KA(Σ)

}

and
{

Id([[t]])
∣
∣
∣ t ∈ Tbi−KA(Σ)

}

, (23)

with the operations ‖,(∗) interpreted as given in (21) and (20) respectively, and the
Kleene operations 0, 1,+, ·,∗ interpreted as given in Proposition 2, are isomorphic; an
isomorphism is given by

Idsp([[t]]) 7→ Id([[t]]).

Proof. Immediate from Theorem 36. ✷

Proposition 38 The classes of pomset ideals and sp-ideals, with the operation ‖ in-
terpreted as in (20) and (21) respectively, satisfy the exchange law (1).

Proof. We consider the class of pomset ideals; the proof for the case of sp-ideals is
analogous, with Id replaced by Idsp. Let u, v, x, y ∈ Id(2Pom) and suppose pu ∈ u
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and similarly for pv, px, py. Then the pomset (pu ‖ pv) · (px ‖ py) ∈ Id(pv · py ‖ pu · px)
holds, and hence

(u ‖ v) · (x ‖ y) ⊆ Id(v · y ‖ u · x)

follows. Applying Id to the left side by using (17) gives Id(u ‖ v) · Id(x ‖ y) ⊆
Id(v · y ‖ u · x) and thus (1) holds. ✷

Definition 39 (The =EX relation) Let t, t′ ∈ Tbw−Rat(Σ) for an alphabet Σ. We
say that t =EX t′ if t = t′ holds in every bw-rational algebra in which the exchange
law (1) also holds. We also define the partial ordering ≤EX by analogy with (2).

In view of Theorem 30, we will broaden the use of the relations ≤EX and =EX . Clearly
≤bw−Rat ⊆≤EX holds, and we exploit this by allowing bw-rational pomset languages
to occur in the arguments of ≤EX and =EX ; for example, L =EX t′ for term t′ and
language L if t =EX t′ holds for at least one (and hence every) term t ∈ Tbw−Rat(Σ)
satisfying L = [[t]].

5.1 Summary of proof of our main theorems on pomset ideals

The reader is advised to study the proof of Theorem 50, our last main theorem, in
order to have an insight into the purpose of the lemmas and theorems preceding it.
This proof is straightforward if it is assumed that for any bw-rational term t, the
language Idsp([[t]]) is bw-rational and satisfies Idsp([[t]]) ≤EX t. This is precisely the
content of Theorem 49, which is proved by induction on the structure of t. The only
non-trivial case in this proof is that where t is a parallel product; t = r1 ‖ r2, which
implies Idsp([[t]]) = Idsp([[r1]])⊙Idsp([[r2]]) by (19) in Lemma 35. Thus it is necessary to
prove Theorem 49 for the special case that [[t]] is a ⊙-product of two bw-rational ideal
languages. This is implied by Lemma 48, which states that for bw-rational terms r1, r2,
[[r1]]⊙ [[r2]] ≤EX r1 ‖ r2 holds. Its proof is by induction on the sum of the widths of r1
and r2 and entails proving that for each k ≥ 1,

(

[[r1]]⊙ [[r2]]
)

∩Parak ≤ r1 ‖ r2 holds.
The cases k ≥ 2 can be inferred from the case k = 1 using the inductive hypothesis
and Corollary 45. The case k = 1 follows from Corollary 43, which shows that for
bw-rational terms L1, L2, the language (L1 ⊙L2)∩Seq is definable by a regular term
with ⊙-product languages substituted for its ground terms.

6 Two automata-theoretic lemmas

In order to prove our main theorems, we need the following automata-theoretic results.

Lemma 40 Let Γ be a finite alphabet and let L be a regular language over Γ. Let ≈
be a congruence of finite index of the monoid (Γ∗, 1, ·) and assume that L is a union of
some of the ≈-congruence classes. Define a finite set ∆ and a function θ : ∆ → Γ∗/ ≈.
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Define the set

V ={

δ1 . . . δb| b ≥ 0,

each δi ∈ ∆,

θ(δ1) . . . θ(δb) ⊆ L

}.

Then V is a regular language over ∆.

Proof. We define a deterministic finite state automaton B as follows. B has state set
Γ∗/ ≈. Its initial state is the ≈-class containing 1, and its final states are those whose
union is L. For each δ ∈ ∆, B has a binary transition relation ❀

δ
on Γ∗/ ≈ as follows;

for S ∈ Γ∗/ ≈, we define S ❀
δ

S ′, where Sθ(δ) ⊆ S ′. Since ≈ is a congruence, the

class S ′ exists and is uniquely determined by S and δ.

Let S0 be the initial state of B, so 1 ∈ S0. Given δ1, . . . , δb ∈ ∆ for b ≥ 0, there
are states S1, . . . , Sb of B such that S0 ❀

δ1
S1 ❀

δ2
. . . ❀

δb
Sb holds. Thus Sb ⊆ L ⇐⇒

S0 θ(δ1) . . . θ(δb) ⊆ L ⇐⇒ θ(δ1) . . . θ(δb) ⊆ L ⇐⇒ δ1 . . . δb ∈ V , proving that B
accepts V . ✷

Lemma 41 Let Γ be a finite alphabet and let L1, L2 be regular languages over Γ. Let
≈ be a congruence of finite index of the monoid (Γ∗, 1, ·) and assume that each Li is
a union of some of the ≈-congruence classes. Define a finite set ∆ and a function
θ : ∆ → Γ∗/ ≈, and define the language

U = {

(δ11, δ21) . . . (δ1b, δ2b)| b ≥ 0,

each δij ∈ ∆,

θ(δi1) . . . θ(δib) ⊆ Li for each i = 1, 2

}

over ∆×∆. Then U is regular.

Proof. For each j = 1, 2, let Vj be the language defined as U is, but satisfying only
the condition θ(δi1) . . . θ(δib) ⊆ Li for i = j. Thus U = V1∩V2. It suffices thus to prove
that each Vj is regular, and this follows from Lemma 40, since regularity is preserved
by substitution. ✷
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7 Expressing the sequential sublanguage of a ⊙-product as a regular func-
tion of ‘smaller’ non-sequential sublanguages of ⊙-products

Our main result in this section is Corollary 43, which is an essential intermediate result
for proving that the ⊙ operation preserves bw-rationality, as indicated in Section 5.1.

Lemma 42 Let Σ be an alphabet and let C1, . . . , Cm ∈ Pomsp(Σ) be non-sequential
and let {γ1, . . . , γm} be an alphabet and for i = 1, 2 let

Li = Li(γ1, . . . , γm) ⊆ {γ1, . . . , γm}
∗.

Let ∆ be a set and let ≈ be a congruence on the monoid ({γ1, . . . , γm}
∗, 1, ·) such

that each language Li is a union of ≈-classes. Let φ be a function from ∆ onto
{γ1, . . . , γm}

∗/ ≈. Define the language

U ={

(δ11, δ21) . . . (δ1b, δ2b)| b ≥ 2,

each δij ∈ ∆,

φ(δi1) . . . φ(δib) ⊆ Li for each i = 1, 2

}

over the alphabet ∆×∆, and write

Ũ = U
(

(δ1, δ2)\
(

φ(δ1)(C1, . . . , Cm)⊙ φ(δ2)(C1, . . . , Cm)
)

∩ (Para∪Σ)
∣
∣
∣ (δ1, δ2) ∈ ∆

)

,

where for each δ ∈ ∆, we write φ(δ)(C1, . . . , Cm) to denote the language φ(δ) with
each letter γi replaced by the language Ci. Then

(

L1(C1, . . . , Cm)⊙ L2(C1, . . . , Cm)
)

∩ Seq = Ũ

holds.

Proof. Let p ∈
(

L1(C1, . . . , Cm)⊙ L2(C1, . . . , Cm)
)

∩ Seq. We will show that p ∈ Ũ .
We have

p = p1 . . . pb (24)

for b ≥ 2 and each pj ∈ Para∪Σ and there are pomsets

qi ∈ Li(C1, . . . , Cm)

such that
p ∈ q1 ⊙ q2.

Clearly each qi = ri1 . . . riai for some ai ≥ 0, where each pomset rij ∈ ∪m
k=1Ck and is

hence non-sequential. Hence the vertices in any pomset rij all lie in one of the pomsets
pl and since their ordering in each qi is preserved in p, for any j < j′ the vertices in
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rij and rij′ lie in pl and pl′ respectively for some l ≤ l′. Hence by gathering together
adjacent pomsets rij whose vertices lie in the same pomset pl, we may write

qi = wi1 . . . wib

where each wij is a sequence of pomsets all lying in ∪m
k=1Ck and the vertices in wij

occur in the pomset pj. Thus each

pj ∈ w1j ⊙ w2j ∩ (Para∪Σ)

holds.

Clearly each language

Li(C1, . . . , Cm) =
⋃

v=v(γ1,...,γm)∈Li

v(C1, . . . , Cm)

and so each wi1 . . . wib = qi ∈ vi(C1, . . . , Cm) for words vi = vi(γ1, . . . , γm) ∈ Li. Since
the pomsets in the language ∪m

k=1Ck are non-sequential, by Part (2) of Lemma 9 there
are words vij = vij(γ1, . . . , γm) such that vi = vi1 . . . vib and wij ∈ vij(C1, . . . , Cm)
holds. Hence

vi1 . . . vib ∈ Li (25)

holds.

Since φ is onto, we may suppose each vij ∈ φ(δij) for δij ∈ ∆. Then each wij ∈
φ(δij)(C1, . . . , Cm) and so

pj ∈ φ(δ1j)(C1, . . . , Cm)⊙ φ(δ2j)(C1, . . . , Cm) ∩ (Para∪Σ) (26)

holds. Also, φ(δi1) . . . φ(δib) ⊆ Wi for some ≈-class Wi, since ≈ is a congruence.
From (25), Li ∩ Wi 6= ∅ holds, and so φ(δi1) . . . φ(δib) ⊆ Li follows since each Li

is a union of ≈-classes. Hence p ∈ Ũ follows from (24) and (26). Thus we have proved
(

L1(C1, . . . , Cm)⊙ L2(C1, . . . , Cm)
)

∩ Seq ⊆ Ũ .

Conversely, suppose that p ∈ Ũ holds. Then there exist b ≥ 2 and elements δij ∈ ∆
such that

φ(δi1) . . . φ(δib) ⊆ Li(γ1, . . . , γm) for each i = 1, 2

and p = p1 . . . pb, where

each pj ∈
(

φ(δ1j)(C1, . . . , Cm)⊙ φ(δ2j)(C1, . . . , Cm)
)

∩ (Para∪Σ)

and so there exist words vij = vij(γ1, . . . , γm) ∈ φ(δij) such that each

pj ∈
(

v1j(C1, . . . , Cm)⊙ v2j(C1, . . . , Cm)
)

∩ (Para∪Σ)

and hence there exist pomsets

wij ∈ vij(C1, . . . , Cm)
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such that each pj ∈
(

w1j ⊙ w2j

)

∩ (Para∪Σ). Thus

p ∈
b∏

j=1

(

(w1j ⊙ w2j) ∩ (Para∪Σ)
)

⊆ (w11 . . . w1b ⊙ w21 . . . w2b) ∩ Seq

where for each i = 1, 2, clearly vi1 . . . vib ∈ Li(γ1, . . . , γm) and thus

wi1 . . . wib ∈ vi1(C1, . . . , Cm) . . . vib(C1, . . . , Cm)

⊆ φ(δi1)(C1, . . . , Cm) . . . φ(δib)(C1, . . . , Cm)

⊆ Li(C1, . . . , Cm)

holds. Thus p ∈
(

L1(C1, . . . , Cm)⊙ L2(C1, . . . , Cm)
)

∩ Seq follows, as required. ✷

The main result of this section follows.

Corollary 43 Let Σ be an alphabet and let terms c1, . . . , cm ∈ Tbw−Rat(Σ) be non-
sequential with each [[cj]] = Cj and let

t1 = t1(γ1, . . . , γm), t2 = t2(γ1, . . . , γm)

be regular terms over an alphabet {γ1, . . . , γm}. Let ∆ be a finite set and let ≈ be a
congruence of finite index on the monoid ({γ1, . . . , γm}

∗, 1, ·) such that each language
[[ti]] is a union of ≈-classes. Let φ be a function from ∆ onto {γ1, . . . , γm}

∗/ ≈. Then
there is a regular term u over the alphabet ∆×∆ such that

t1(C1, . . . , Cm)⊙ t2(C1, . . . , Cm) ∩ Seq

=

u
(

(δ1, δ2)\φ(δ1)(C1, . . . , Cm)⊙ φ(δ2)(C1, . . . , Cm) ∩ (Para∪Σ)
∣
∣
∣ (δ1, δ2) ∈ ∆

)

(27)

holds and for each word (δ11, δ21) . . . (δ1b, δ2b) ∈ [[u]] and i = 1, 2,

φ(δi1) . . . φ(δib) ⊆ [[ti(γ1, . . . , γm)]]. (28)

Also, for each (ǫ1, ǫ2) ∈ supp(u) and i = 1, 2,

width
(

φ(ǫi)(C1, . . . , Cm)
)

≤ width
(

ti(C1, . . . , Cm)
)

(29)

holds.

Proof.
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By Lemma 41, there is a term u ∈ TReg(∆×∆) such that

[[u]] ={

(δ11, δ21) . . . (δ1b, δ2b)| b ≥ 2,

each δij ∈ ∆,

φ(δi1) . . . φ(δib) ⊆ [[ti(γ1, . . . , γm)]] for each i = 1, 2

}

and so (27) holds by Lemma 42, with [[ti]] in the role of the languages Li, and (28)
holds from the definition of u.

To prove (29), let (ǫ1, ǫ2) ∈ supp(u). Thus there is a word
(δ11, δ21) . . . (δ1b, δ2b) ∈ [[u]] in which (ǫ1, ǫ2) occurs and so there exists b′ ≤ b such that
for each j = 1, 2, ǫj = δjb′ holds and so from (28),

φ(δj1)(C1, . . . , Cm) . . . φ(δjb)(C1, . . . , Cm) ⊆ tj(C1, . . . , Cm) (30)

holds. Since the elements of φ(∆) are non-empty sublanguages of {γ1, . . . , γm}
∗, each

pomset language φ(δjk)(C1, . . . , Cm) is also non-empty and so

width
(

φ(ǫj)(C1, . . . , Cm)
)

≤ width
(

φ(δj1)(C1, . . . , Cm) . . . φ(δjb)(C1, . . . , Cm)
)

holds. Thus (29) follows from (30). ✷

Lemma 44 relates the ⊙-product of two languages defined as parallel products to
⊙-products of their respective parallel components.

Lemma 44 Let L1, L2 be bounded-width languages of sp-pomsets over an alphabet Σ,
where each

Li = Si1 ‖ · · · ‖ Simi

for mi ≥ 1 and pomset languages Sij satisfying Sij ⊆ Seq∪Σ. Let k ≥ 1. Then the
following holds; the language (L1 ⊙ L2) ∩ Parak is the union of all languages of the
form M1 ‖ · · · ‖ Mk, where each language

Mj = ( ‖
b∈T1j

S1b ⊙ ‖
b∈T2j

S2b ) ∩ (Seq∪Σ),

where for each i ∈ {1, 2}, sets Ti1, . . . , Tik partition the set {1, . . . , mi}, and such that
for each j ≤ k, the set T1j ∪ T2j 6= ∅. If additionally k ≥ 2 holds then

2∑

i=1

width(‖b∈Tij
Sib) <

2∑

i=1

width(Li)

holds for each j ≤ k.
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Proof. Observe first that each metaterm Sij occurs exactly once in both the expres-
sions L1 ⊙ L2 and M1 ‖ · · · ‖ Mk under the conditions on the sets Tij given in the
Lemma. Additionally, if any ordering occurs in a pomset in M1 ‖ · · · ‖ Mk between
vertices in a pomset in Sij and in Si′j′, then either i = i′ ∧ j = j′ or i 6= i′ holds,
and hence the same ordering can occur in L1 ⊙ L2. Thus any pomset in a language
M1 ‖ · · · ‖ Mk under the given conditions lies in (L1 ⊙ L2) ∩Parak.

Conversely, let p ∈ (L1 ⊙ L2) ∩Parak. Thus each language Sab contains a pomset qab
such that the vertex set of p is the pairwise disjoint union of all the vertex sets of the
pomsets qab, with the same labelling and the same vertex ordering within each qab.

Write p = p1 ‖ . . . ‖ pk, with each pj ∈ Seq∪Σ. Given any j ≤ k and i ∈ {1, 2}, let
Tij be the set of elements of {1, . . . , mi} such that pj contains at least one vertex from
qib if and only if b ∈ Tij . Since each qib /∈ Para, and its ordering is preserved in p, all
vertices in qib occur in pj if b ∈ Tij. Hence j 6= j′ ⇒ Tij ∩ Tij′ = ∅ follows, and since
the vertices of every pomset qib must occur in some pj, {1, . . . , mi} = ∪k

j=1Tij holds,
proving the partitioning property of the sets Tij asserted by the Lemma.

Since the ordering of the vertices in ‖b≤mi
qib and hence in ‖b∈Tij

qib is preserved in p,
and each pj ∈ Seq∪Σ, it follows that pj ∈ Mj, with Mj defined as in the statement
of the Lemma using the sets Tij . The assertion that T1j ∪ T2j 6= ∅ holds follows since
p ∈ Parak and each Mj 6= {1}.

The width property asserted by the Lemma holds if k ≥ 2 since for each j ≤ k and
i ∈ {1, 2}, Tij ⊆ {1, . . . , mi} and so

width(‖b∈Tij
Sib) ≤ width(Si1 ‖ · · · ‖ Simi

) = width(Li)

holds, with strict inequality for at least one i ∈ {1, 2}, since given any j, j′ ≤ k
with j′ 6= j, Tij′ 6= ∅ holds for at least one element i ∈ {1, 2}, and so for every
b ∈ Tij′ = Tij′ − Tij , the term Sib′ occurs in the middle term but not on the left side
of the above inequality, and Sib′ ∋ qib 6= {1}. Thus we have proved the Lemma. ✷

Corollary 45 gives an inductive step in the proof of Theorem 48, our third main
theorem.

Corollary 45 Let L1, L2 be bw-rational languages of sp-pomsets over an alphabet Σ,
and assume that for any bw-rational languages L′

1, L
′
2 satisfying

∑2
i=1width(L

′
i) <

∑2
i=1width(Li), the language (L′

1 ⊙ L′
2) ∩ (Seq∪Σ) is bw-rational and satisfies

(L′
1 ⊙ L′

2) ∩ (Seq∪Σ) ≤EX L′
1 ‖ L′

2.

Let k ≥ 2. Then (L1 ⊙ L2) ∩Parak is bw-rational and

(L1 ⊙ L2) ∩Parak ≤EX L1 ‖ L2

holds.
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Proof. Using the distributive law for ‖, we may assume that each Li = Si1 ‖ · · · ‖ Simi

for mi ≥ 1 and bw-rational pomset languages Sij satisfying Sij ⊆ Seq∪Σ.

We first prove that M1 ‖ · · · ‖ Mk ≤EX L1 ‖ L2 holds, where the languages Mj are as
defined using sets Tij as in Lemma 44; in particular, ∪k

j=1Tij = {1, . . . , mi} for each
i ∈ {1, 2}. From the conclusion of that Lemma and the extra hypotheses assumed
here, each language Mj is bw-rational and

Mj ≤EX ( ‖
b∈T1j

S1b) ‖ ( ‖
b∈T2j

S2b )

holds. Thus

M1 ‖ · · · ‖ Mk ≤EX ‖
k

j=1

(

( ‖
b∈T1j

S1b) ‖ ( ‖
b∈T2j

S2b )
)

= L1 ‖ L2

holds. Thus the Corollary follows since there are finitely many ways of defining col-
lections of sets Tij satisfying the conditions given in Lemma 44 and so by that
Lemma, L1 ⊙ L2 ∩ Parak is a finite union of bw-rational languages R satisfying
R ≤EX L1 ‖ L2. ✷

8 The main theorems for sp-ideals of rational languages

We now show that ⊙ preserves bw-rationality of pomset languages, and defines a
language that is =EX-equivalent to the parallel product of the languages. We first
need an automata-theoretic lemma.

Lemma 46 Let Γ be a finite alphabet, and let S be a finite set of regular languages
over Γ. Then there exists a congruence ≈ of finite index of the monoid (Γ∗, 1, ·) such
that each language L ∈ S is the union of a subcollection of ≈-equivalence classes.

Proof. Since the conjunction of two congruences of finite index is itself a congruence
of finite index, we may assume that S is a singleton, S = {L}. Let A be a deterministic
finite state automaton accepting the language L. We assume A has state set Q and a
binary transition relation ❀

w
⊆ Q× Q for each w ∈ Γ∗. For any function θ : Q → Q,

let
Kθ = {w ∈ Γ∗| q ❀

w
θ(q) ∀q ∈ Q}.

For any w ∈ Γ∗, there is a function θ : Q → Q such that for any q ∈ Q, there exists
a state θ(q) satisfying q ❀

w
θ(q), and so w ∈ Kθ; furthermore, if any w ∈ Kθ ∩Kθ′,

then for each q ∈ Q both q ❀
w

θ(q) and q ❀
w

θ′(q) hold. Since A is deterministic,

θ(q) = θ′(q) follows and so θ = θ′. Thus the sets Kθ partition Γ∗ and are clearly
regular, and for each θ, θ′ : Q → Q, there exists θ′′ satisfying KθKθ′ ⊆ Kθ′′ . Clearly
L is the union of a collection of languages Kθ; since there are finitely many functions
from Q into Q, the Lemma follows. ✷
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Lemma 47 will be used with Corollary 43 to transform a ‘regular over parallel’ term
given by u in the statement of this Corollary into a sum of parallel terms in Theorem
48, which shows that ⊙ preserves bw-rationality.

Lemma 47 Let {γ1, . . . , γm} be an alphabet and let terms d1, . . . , dk ∈ TReg(γ1, . . . , γm)
be such that the languages [[d1]], . . . , [[dk]] partition {γ1, . . . , γm}

∗ and for each i, i′ ≤ k
there is a term dj satisfying [[didi′]] ⊆ [[dj]].

Let ∆ be a set and let φ : ∆ → {d1, . . . , dk} be a bijection. Then for any term
u ∈ TReg(∆×∆), there is a set Λ ⊆ ∆×∆ such that

u((δ, δ′) \ φ(δ) ‖ φ(δ′)| δ, δ′ ∈ ∆) ≤EX

∑

(δ,δ′)∈Λ

φ(δ) ‖ φ(δ′)

holds and for each element (ǫ1, ǫ2) ∈ Λ, there is a word (δ11, δ21) . . . (δ1b, δ2b) ∈ [[u]]
such that [[φ(δi1) . . . φ(δib)]] ⊆ [[φ(ǫi)]] for each i ∈ {1, 2}, where if b = 0 the product
[[φ(δi1) . . . φ(δib)]] is defined to be the language {1}.

Proof. This follows by induction on the structure of u. For convenience, since φ is a
bijection we may define 1∆ ∈ ∆ to be the element satisfying 1 ∈ [[φ(1∆)]], and for any
regular term x over the alphabet ∆×∆ we define x̄ = x((δ, δ′)\φ(δ) ‖ φ(δ′)| δ, δ′ ∈ ∆).
If u is 0 or an element of ∆×∆ then Λ is as follows;

u =







0 Λ = ∅

(δ1, δ2) Λ = {(δ1, δ2)}

and the conclusion of the Lemma is immediate. If u = 1, we define Λ = {(1∆, 1∆)};
for then by Theorem 30, ū = 1 ≤bw−Rat φ(1∆) ‖ φ(1∆) and {1} ⊆ [[φ(1∆)]] hold,
as required by the Lemma. If u is a sum of terms, then the result follows from the
inductive hypothesis applied to each of these terms.

There remain two cases, in both of which it is convenient to define multiplication on
the set ∆ as follows, using the fact that φ is a bijection; if φ(δ)φ(δ′) ⊆ φ(δ′′), then
δδ′ = δ′′ holds. Clearly this definition turns ∆ into a monoid, with 1∆ as the identity
element. Furthermore, for any δ1, . . . , δr,∈ ∆,

φ(δ1) . . . φ(δr) ⊆ φ(δ1 . . . δr)

follows by induction on r. Thus the condition [[φ(δi1) . . . φ(δib)]] ⊆ [[φ(ǫi)]] in the state-
ment of the Lemma is equivalent to δi1 . . . δib = ǫi, where if b = 0 this states that
1∆ = ǫi.

• Suppose u = u1u2. By the inductive hypothesis, for each i ∈ {1, 2}, there are sets
Λi ⊆ ∆×∆ such that

ūi ≤EX

∑

(δ,δ′)∈Λi

φ(δ) ‖ φ(δ′).
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Define the set

Υ =
{

(ǫ11ǫ21, ǫ12ǫ22)| (ǫi1, ǫi2) ∈ Λi for each i ∈ {1, 2}
}

.

From the exchange law and the fact that by Theorem 30, φ(δ)φ(δ′) ≤bw−Rat φ(δδ
′)

always holds,

ū ≤EX

( ∑

(ǫ11,ǫ12)∈Λ1

φ(ǫ11) ‖ φ(ǫ12)
) ( ∑

(ǫ21,ǫ22)∈Λ2

φ(ǫ21) ‖ φ(ǫ22)
)

≤EX

∑

(ǫ11,ǫ12)∈Λ1,
(ǫ21,ǫ22)∈Λ2

φ(ǫ11)φ(ǫ21) ‖ φ(ǫ12)φ(ǫ22) ≤bw−Rat

∑

(ǫ11ǫ21,ǫ12ǫ22)∈Υ

φ(ǫ11ǫ21) ‖ φ(ǫ12ǫ22) ≤bw−Rat

∑

(δ,δ′)∈Υ

φ(δ) ‖ φ(δ′)

holds. In addition, if λ ∈ Υ, say λ = (ǫ11ǫ21, ǫ12ǫ22) with each (ǫi1, ǫi2) ∈ Λi, by the
inductive hypothesis there is a word wi = (δi11, δi21) . . . (δi1bi , δi2bi) ∈ [[ui]] such that
δij1 . . . δijbi = ǫij for each i, j ∈ {1, 2}. Thus the word w1w2 ∈ [[u]], and the product
of all the jth components of the letters of w1w2 is δ1j1 . . . δ1jb1δ2j1 . . . δ2jb2 = ǫ1jǫ2j ,
proving the result.

• Suppose u = t∗. By the inductive hypothesis, there is a set Λ ⊆ ∆×∆ such that

t̄ ≤EX

∑

(δ,δ′)∈Λ

φ(δ) ‖ φ(δ′).

Define the set

Ψ = {(δ11 . . . δb1, δ12 . . . δb2)| b ≥ 0, each (δj1, δj2) ∈ Λ}

(note that (1∆, 1∆) ∈ Ψ). For each (ǫ1, ǫ2) ∈ Λ,

φ(ǫ1) ‖ φ(ǫ2)
∑

(δ1,δ2)∈Ψ

φ(δ1) ‖ φ(δ2) ≤EX

∑

(δ1,δ2)∈Ψ

φ(ǫ1)φ(δ1) ‖ φ(ǫ2)φ(δ2) ≤bw−Rat

∑

(δ1,δ2)∈Ψ

φ(ǫ1δ1) ‖ φ(ǫ2δ2) ≤bw−Rat

∑

(δ1,δ2)∈Ψ

φ(δ1) ‖ φ(δ2)

follows from the exchange law and Theorem 30 and the fact that (δ1, δ2) ∈ Ψ ⇒
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(ǫ1δ1, ǫ2δ2) ∈ Ψ always holds, and hence

u = t̄∗ ≤bw−Rat t̄∗
∑

(δ1,δ2)∈Ψ

φ(δ1) ‖ φ(δ2)

≤EX

( ∑

(ǫ1,ǫ2)∈Λ

φ(ǫ1) ‖ φ(ǫ2)
)∗ ∑

(δ1,δ2)∈Ψ

φ(δ1) ‖ φ(δ2)

≤EX

∑

(δ1,δ2)∈Ψ

φ(δ1) ‖ φ(δ2)

using the induction axiom of Kleene algebra. In addition, if λ ∈ Ψ, then

λ = (δ11 . . . δb1, δ12 . . . δb2)

for some b ≥ 0, and each (δj1, δj2) ∈ Λ; and by the inductive hypothesis, for each
j ≤ b and i ∈ {1, 2} there is a word wj ∈ [[t]] such that the product of all the ith
components of the letters of wj is δji. Clearly the word w = w1 . . . wb ∈ [[u]], and
the product of all the ith components of the letters of w is δ1i . . . δbi, completing the
proof. ✷

Theorem 48 (⊙ preserves bw-rationality) Let r1, r2 be bw-rational terms over
an alphabet. Then the language [[r1]]⊙ [[r2]] is bw-rational and satisfies [[r1]]⊙ [[r2]] =EX

r1 ‖ r2.

Proof. Assume that each term ri ∈ Tbw−Rat(Σ) for an alphabet Σ. We will first prove
that

[[r1]]⊙ [[r2]] ≤EX r1 ‖ r2 (31)

by induction on
∑2

i=1width(ri). We will do this as follows. Clearly [[r1]] ⊙ [[r2]] ⊆

Σ ∪ {1} ∪ Seq∪ ∪
width([[r1]]⊙[[r2]])
k=1 Parak. For any k ≥ 2, it follows from Corollary 45

and the inductive hypothesis that the language [[r1]]⊙ [[r2]]∩Parak is bw-rational and
satisfies [[r1]]⊙ [[r2]]∩Parak ≤EX r1 ‖ r2. The same assertion with Parak replaced by
Σ∪{1} obviously holds. Thus it suffices to prove that [[r1]]⊙ [[r2]]∩Seq is bw-rational
and

[[r1]]⊙ [[r2]] ∩ Seq ≤EX r1 ‖ r2 (32)

holds. This will be proved using Corollary 43.

By Lemma 17 and Proposition 18 and its sequential counterpart, and by ignoring the
cases in their proofs that refer to parallel iteration (∗), there are regular terms ti =
ti(γ1, . . . , γm) over an alphabet Γ = {γ1, . . . , γm} satisfying ri =bw−Rat ti(c1, . . . , cm)
for non-sequential terms c1, . . . , cm. By Lemma 46, there exists a congruence ≈ of
finite index of the monoid (Γ∗, 1, ·) such that each language [[ti]] is the union of a
subcollection of ≈-equivalence classes. Define the languages Cj = [[cj ]] for each j ≤ m.

Let ∆ be a set such that there is a bijection φ from ∆ to the set of ≈-equivalence
classes. Then by Corollary 43, there is a regular term u with supp(u) ⊆ ∆×∆ such
that (27) holds, and for each word (δ11, δ21) . . . (δ1b, δ2b) ∈ [[u]] and i = 1, 2, (28) holds.
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Let (δ1, δ2) ∈ supp(u). Then by (29), width
(

φ(δi)(C1, . . . , Cm)
)

≤ width(ri) holds for
each i = 1, 2. Hence by the inductive hypothesis, we can apply Corollary 45 to the
languages φ(δi)(C1, . . . , Cm), and so for each k ≥ 2,

φ(δ1)(C1, . . . , Cm)⊙ φ(δ2)(C1, . . . , Cm) ∩Parak

≤EX

φ(δ1)(C1, . . . , Cm) ‖ φ(δ2)(C1, . . . , Cm)

holds. In addition, the same statement with Parak replaced by Σ is clearly true. Thus
by taking the union of the languages φ(δ1)(C1, . . . , Cm)⊙φ(δ2)(C1, . . . , Cm)

)

∩Parak

for each
k ∈ {2, . . . ,width

(

φ(δ1)(C1, . . . , Cm)⊙ φ(δ2)(C1, . . . , Cm)
)

} and also the language

φ(δ1)(C1, . . . , Cm)⊙ φ(δ2)(C1, . . . , Cm) ∩ Σ it follows that

φ(δ1)(C1, . . . , Cm)⊙ φ(δ2)(C1, . . . , Cm) ∩ (Para∪Σ)

≤EX

φ(δ1)(C1, . . . , Cm) ‖ φ(δ2)(C1, . . . , Cm)

holds. Hence by (27), the language [[r1]]⊙ [[r2]] ∩ Seq is bw-rational and

[[r1]]⊙ [[r2]] ∩ Seq

≤EX

u
(

(δ1, δ2)\
(

φ(δ1)(C1, . . . , Cm) ‖ φ(δ2)(C1, . . . , Cm)
)

| δ1, δ2 ∈ ∆
)

(33)

holds. By Lemma 47, there exists a set Λ ⊆ ∆×∆ such that

u
(

(δ1, δ2)\φ(δ1) ‖ φ(δ2)| δ1, δ2 ∈ ∆
)

≤EX

∑

(δ1,δ2)∈Λ

φ(δ1) ‖ φ(δ2) (34)

and for each (ǫ1, ǫ2) ∈ Λ, there is a word (δ11, δ21) . . . (δ1b, δ2b) ∈ [[u]] such that

∅ 6= φ(δi1) . . . φ(δib) ⊆ φ(ǫi)

for each i ∈ {1, 2}, where if b = 0 the product φ(δi1) . . . φ(δib) is defined to be the
language {1}; and since each language [[ti]] is a union of ≈-equivalence classes, φ(ǫi) ⊆
[[ti]] follows from (28) and so by Theorem 30,

∑

(ǫ1,ǫ2)∈Λ

φ(ǫ1)(C1, . . . , Cm) ‖ φ(ǫ2)(C1, . . . , Cm) ≤EX r1 ‖ r2

and so (32) follows from (33) and (34) with the languages Cj substituted for γj.

Hence we have proved (31). Since [[r1]] ⊙ [[r2]] ⊇ [[r1 ‖ r2]] clearly holds, by Theorem
30 we can replace ≤EX by =EX in (31). ✷

Our main theorems concerning pomset ideals follow.
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Theorem 49 (Idsp preserves bw-rationality of pomset languages) Let t be a
bw-rational pomset term. Then Idsp([[t]]) is bw-rational and
Idsp([[t]]) ≤EX t holds.

Proof. The result follows by induction on the structure of t. If t ∈ {0, 1} or t is a letter,
then the result is immediate. If t = u + v then the result follows since Idsp([[t]]) =
Idsp([[u]])+ Idsp([[v]]). If t = u∗ then the result follows since Idsp([[t]]) = (Idsp([[u]]))

∗. If
t = uv then the result follows since Idsp([[t]]) = Idsp([[u]]) Idsp([[v]]). Lastly if t = r1 ‖ r2
then the result follows from Theorem 48 since Idsp([[t]]) = Idsp([[r1]]) ⊙ Idsp([[r2]]) by
(19) in Lemma 35. ✷

Theorem 50 (free bw-rational algebras with exchange law given as ideals)
Let Σ be an alphabet and let a, b ∈ Tbw−Rat. Suppose that Idsp([[a]]) = Idsp([[b]]) holds.
Then a =EX b holds. Thus the isomorphic bw-rational algebras

{

Idsp([[t]])
∣
∣
∣ t ∈ Tbw−Rat(Σ)

}

and
{

Id([[t]])
∣
∣
∣ t ∈ Tbw−Rat(Σ)

}

(35)

with ‖ interpreted as in (21) and (20) respectively, are both freely generated in the
class of bw-rational algebras satisfying (1) by the elements {σ} for σ ∈ Σ.

Proof. By Theorem 49, the languages Idsp([[a]]) and Idsp([[b]]) are bw-rational, and so
we have

a ≤bw−Rat Idsp([[a]]) ≤bw−Rat Idsp([[b]]) ≤EX b,

where the first two relations follow from Theorem 30 and the last relation follows
from Theorem 49. Interchanging a and b in this argument gives a =EX b. The freeness
assertion then follows from Theorem 37. ✷

9 Conclusions

We have proved, in this paper, that the class of pomset languages is closed under all
Boolean operations, and that every identity that is valid for all pomset languages is
a consequence of the set of valid regular and commutative-regular identities. We have
also shown that the problem of establishing whether two pomset terms define the same
language is decidable. The complexity of this is not clear however. It is known that
decidability of equivalence of two regular terms is PSPACE-complete [14,15], and can
be shown that the analogous problem for commutative-regular terms lies in PSPACE,
hence it is possible that generalising to pomset terms does not increase the bound
beyond PSPACE. On the other hand, this problem may be EXPTIME-complete or
EXPSPACE-complete. This is worth investigating further.

34



References

[1] J. H. Conway, Regular Algebra and Finite Machines, Chapman and Hall, 1971.

[2] V. R. Pratt, On the composition of processes, in: R. A. DeMillo (Ed.), POPL 82, ACM,
1982, pp. 213–223.

[3] V. R. Pratt, Some constructions for order-theoretic models of concurrency, in: R. Parikh
(Ed.), Logic of Programs, Vol. 193 of LNCS, Springer, 1985, pp. 269–283.

[4] S. D. Brookes, Traces, pomsets, fairness and full abstraction for communicating
processes, in: L. Brim, P. Jancar, M. Kret́ınský, A. Kucera (Eds.), CONCUR 2002,
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