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Abstract

This paper presents an equational axiomatization of bisimulation equivalence
over the language of Basic Process Algebra (BPA) with multi-exit iteration. Multi-
exit iteration is a generalization of the standard binary Kleene star operation that
allows for the specification of agents that, up to bisimulation equivalence, are solu-
tions of systems of recursion equations of the form

X1 = P1X2 + Q1

...
Xn = PnX1 + Qn

where n is a positive integer, and the Pi and the Qi are process terms. The ad-
dition of multi-exit iteration to BPA yields a more expressive language than that
obtained by augmenting BPA with the standard binary Kleene star (BPA∗). As a
consequence, the proof of completeness of the proposed equational axiomatization
for this language, although standard in its general structure, is much more involved
than that for BPA∗. An expressiveness hierarchy for the family of k-exit iteration
operators proposed by Bergstra, Bethke and Ponse is also offered.
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1 Introduction

One of the classic topics in the theory of computation is the study of axiomatic charac-
terizations of equalities between variations on regular expressions. This field of research
has been active since Kleene’s original paper [27], where regular expressions were first
introduced, and has yielded a collection of very deep and beautiful mathematical results.
(The interested reader is invited to consult, e.g., [38, 14, 35, 29, 28] for an overview of
the results that have been obtained within this line of research.) According to the point
of view of formal language theory, a regular expression denotes a regular language, and
two regular expressions are equal exactly when they denote the same language. This
notion of semantics for regular expressions is the natural one to choose when the fi-
nite automaton associated with a regular event by Kleene’s synthesis theorem (cf., e.g.,
[27, 38]) is viewed as accepting a language. However, as first observed by Milner [30],
defining the semantics of an automaton as the language it accepts is inappropriate when
one views it as a reactive system, i.e., as a system that computes by reacting to stimuli
from its environment. For this reason, a wealth of notions of equivalence over processes
that, to different degrees, capture their behaviour as reactive machines have been pro-
posed in the literature on process theory. (The interested reader is invited to consult the
references [22, 24] for more details.) Amongst these, the notion of bisimulation equiva-
lence [34] has emerged as a fundamental semantic equivalence for reactive systems, and
the development of its theory has by now reached a level of maturity that is comparable
to that of the standard notions from the theory of formal languages. For example, the
complete axiomatization of bisimulation equivalence for the regular fragment of CCS
[32], provided by Milner in his classic paper [31], parallels those obtained by Salomaa
for regular languages [37, 38], and have contributed to the realization that the notion
of process is at least as elegant and mathematically tractable as that of language.

Despite these successes, process theory has traditionally lacked a systematic investiga-
tion of (equational) axiomatizations of process equivalences over regular expressions—a
notable exception being Milner’s seminal paper [31], where an implicational proof sys-
tem was proposed for bisimulation equivalence over regular events, and the problem of
its completeness raised. (To the best of the authors’ knowledge, this problem of Milner’s
is still awaiting a solution.)

The study of axiomatic questions for variations on the language of regular expressions
from the perspective of process theory has received new impulse after the publication
of [9]. In op. cit. the authors have investigated the expressive power of variations
on standard process description languages in which infinite behaviours are defined by
means of Kleene’s star operation [27, 15] rather than by means of systems of recursion
equations, and have proposed an axiom system for bisimulation equivalence over the
language of Basic Process Algebra [10] with the original binary version of the Kleene
star operation (BPA∗). The completeness of the axiom system proposed ibidem was
proven by Fokkink and Zantema in [20, 17], and this result has been followed by a series
of contributions in which several notions of process equivalence have been equationally
axiomatized over languages incorporating variations on the Kleene star operation—see,
e.g., [16, 3, 2, 1, 21, 18].

Interestingly, as already noted by Milner in [31, Sect. 6], not every process defined
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using finite-state systems of recursion equations can be described, up to bisimulation
equivalence, using only regular expressions. (As shown in [9], any regular process can
be specified in the axiom system ACPτ [11] with Kleene star using handshake commu-
nication.) The limited expressive power of the Kleene star operation in denoting finite
automata modulo bisimulation equivalence is highlighted in [8], where it is shown that
the process described by the following recursion equation

X
def= a · (a · X + b) + a(1)

cannot be expressed in the language BPA∗ modulo bisimulation equivalence. (Of course,
a simple use of Arden’s lemma yields that the language denoted by X is the same
associated with the regular expression (a · a)∗(a · b + a). However, the process denoted
by X above is not bisimulation equivalent to that associated with the BPA∗ term (a ·
a)∗(a · b + a).)

In order to increase the expressive power of super-languages of BPA incorporating
Kleene star-like operations, the use of k-exit iteration has been proposed in [8]. For
every positive integer k, and process terms Pi and Qi (1 ≤ i ≤ k), the process term
(P1, . . . , Pk)∗(Q1, . . . , Qk) denotes a solution to the following list of recursion equations:

X1 = P1X2 + Q1

...
Xk = PkX1 + Qk

For example, the term (a, a)∗(a, b) uses 2-exit iteration, and the reader will immediately
realize that, up to isomorphism, it denotes the finite automaton associated with the
variable X in (1).

The aim of this paper is to present an equational axiomatization of bisimulation equiv-
alence over the language obtained by augmenting Basic Process Algebra with the family
of k-exit iteration operations. In fact, we shall consider a slight syntactic generalization
of the family of k-exit iteration operations, in that we permit the construction of terms
of the form (P1, . . . , Pm)∗(Q1, . . . , Qn), with m and n two arbitrary positive integers.
The result is a purely algebraic process language that is more expressive than BPA∗.

Apart from the standard laws from the equational theory for BPA, and the adaptations
of the three axioms for the binary Kleene star [20] to multi-exit iteration, the equational
axiomatization that we propose contains the following axiom schemas for multi-exit
iteration:

MEI4 (x0, x1, �v)∗(y, x2(�v, x0(x1 + x2))∗(�w, y), �w) = (x0(x1 + x2), �v)∗(y, �w)
MEI5 ((x,�v)m)∗((y, �w)n) = (x,�v)∗(y, �w)

where we use �v and �w to stand for arbitrary vectors of process variables, and n,m are
positive integers. Typically, these two axioms deal with equalities between terms that
have distinct exit degrees.

Our proof of the completeness of this axiom system with respect to bisimulation
equivalence over BPA with multi-exit iteration uses an adaptation of a proof technique
developed by the second author in [17]. The actual details of the completeness proof
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are, however, more delicate and intricate than those of the proof given ibidem. In
particular, as the reader will realize, extra care need be taken in dealing with equalities
whose equational deduction makes an essential use of the new laws MEI4–5.

As remarked above, Bergstra, Bethke and Ponse [8, 9] have shown that the process
described by the recursion equation (1) cannot be specified in the language BPA∗ modulo
bisimulation equivalence. In this paper, we generalize this result by showing that, in
presence of a countably infinite set of actions, the family of k-exit iteration operations
from [8] induces a strict expressiveness hierarchy of super-languages of BPA. More
precisely, we prove that, for every positive integer k, the agent that corresponds to the
solution of the following system of recursion equations (with X1 as the leading variable)

X1 = a1X2 + a1

...
Xk+1 = a1X1 + ak+1

can only be specified, modulo bisimulation equivalence, with the use of multi-exit iter-
ations of the form (P1, . . . , Pm)∗(Q1, . . . , Qn) with n greater than k.

We conclude this introduction with a brief overview of the contents of this paper. We
begin by introducing the language of Basic Process Algebra with multi-exit iteration
and its operational semantics (Sects. 2.1–2.3). The equational axiomatization of bisim-
ulation equivalence over Basic Process Algebra with multi-exit iteration is presented in
Sect. 2.4. The whole of Sect. 3 is devoted to a detailed proof of the completeness of
the proposed axiomatization. The proof we present consists of three steps. First we
isolate a collection of basic process terms, which cover, up to bisimulation equivalence,
the whole language of process terms, and whose structure will simplify the proof of the
promised completeness theorem (Sect. 3.1). We then proceed to define a well-founded
ordering over basic terms which will allow for an inductive proof of our main result, and
study some of its properties (Sect. 3.2). Finally, we shall show that two bisimilar basic
terms can be proven equal using the equations in the proposed axiom system (Sect. 3.4).
The paper concludes with an expressiveness hierarchy for the family of k-exit iteration
operations (Sect. 4).

2 BPA with Multi-Exit Iteration

We begin by presenting the language of Basic Process Algebra with multi-exit iteration
and its semantics.

2.1 The Syntax

We assume a non-empty alphabet A of atomic actions, with typical elements a, b, and
a countably infinite set Var of process variables, disjoint from A, with typical elements
x, y, z. We shall use α, β to range over A ∪ Var.

The language (BPAme∗(A)) of terms over Basic Process Algebra (BPA) with multi-
exit iteration is defined inductively as follows:
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- each α ∈ A ∪ Var is a term;

- if P and Q are terms, then P + Q is a term;

- if P and Q are terms, then P · Q is a term;

- if P1, ..., Pm and Q1, ...,Qn (m,n ≥ 1) are terms, then (P1, ..., Pm)∗(Q1, ...,Qn) is
a term.

The set of closed terms, i.e., terms that do not contain occurrences of process variables,
is denoted by T(BPAme∗(A)). We shall use P, Q, . . . , Y to range over (BPAme∗(A)). In
writing terms over the above syntax, we shall always assume that the operation · binds
stronger than +. In the sequel the operation · will often be omitted, so PQ denotes
P · Q. We shall use the symbol ≡ to stand for syntactic equality of terms. The size of
a process term is the number of operations occurring in it. A (closed) substitution is a
mapping from process variables to (closed) terms in the language (BPAme∗(A)). For
every term P and (closed) substitution σ, the (closed) term obtained by replacing every
occurrence of a variable x in P with the (closed) term σ(x) will be written Pσ.

Intuitively, closed terms stand for agents whose behaviour is completely specified,
whereas terms containing occurrences of process variables denote agents with partially
specified behaviour. For example, an atomic action a stands for a process that can only
perform itself in one computational step and terminate in doing so; on the other hand,
the term a + x denotes a partially specified process, whose behaviour depends in part
on that of the process term that is substituted for the variable x.

Apart from actions and variables, the signature of the language (BPAme∗(A)) in-
cludes the binary operations of alternative composition + and sequential composition ·
familiar from the theory of Basic Process Algebra [10, 7], and a variation on the original
binary version of the Kleene star operation [27], that will be referred to as multi-exit it-
eration. For positive integers m and n, the process term (P1, ..., Pm)∗(Q1, ..., Qn) stands
for an agent whose behaviour is specified by the following defining equation:

(P1, ..., Pm)∗(Q1, ...,Qn) = P1 · (P2, ..., Pm, P1)∗(Q2, ...,Qn, Q1) + Q1 .

Multi-exit iteration is a mild syntactic generalization of the family of k-exit iteration
operations introduced in [8]—the only difference being that in op. cit. the number of
the Pi must always be equal to that of the Qj . As we shall see, multi-exit iteration
and the family of k-exit iteration operations have the same expressive power modulo
bisimulation equivalence. (Cf. Sect. 4 for some remarks on the expressive power of the
k-exit iteration operations.)

In order to simplify notation in the presentation of the operational semantics and of
the axiomatization for (BPAme∗(A)), we shall use the notion of ‘vectors of processes’.
A vector of processes is a tuple (P1, ..., Pm), where m ≥ 0. We shall use �P, �Q, �R, �S to
denote such vectors of processes. In multi-exit iteration, the expressions at the left- and
right-hand side of the star are non-empty vectors of processes.

In the sequel, (Q, �P ) represents the vector that is obtained by concatenating the
process term Q in front of vector �P , and ( �P,Q) represents the vector that is obtained
by appending the process term Q at the rear of vector �P . Furthermore, we assume the
following features for vectors:
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- Multiplication with a process term: (P1, ..., Pm) · Q equals (P1Q, ...,PmQ).

- Power of a vector: for a positive integer n, (P1, ..., Pm)n equals

(P1, ..., Pm, . . . , P1, ..., Pm︸ ︷︷ ︸
n times

)

Enclosing parentheses will always be omitted from vectors of length one, i.e., (P ) will
be written P .

2.2 Operational Semantics

The operational semantics for the language (BPAme∗(A)) is given by the labelled tran-
sition system [26, 36]

(
(BPAme∗(A)),

{
α→| α ∈ A ∪ Var

}
,
{

α→� | α ∈ A ∪ Var
})

where the transition relations α→ and the unary predicates α→� are, respectively, the
least subsets of (BPAme∗(A)) × (BPAme∗(A)) and (BPAme∗(A)) satisfying the rules
in Table 1. Intuitively, a transition P

a→ Q means that the system represented by the
term P can perform the action a, thereby evolving into Q, whereas P

x→ P ′ means
that the initial behaviour of P may depend on the term that is substituted for the
process variable x. The special symbol � stands for (successful) termination; therefore
the interpretation of the statement P

α→� is that the process term P can terminate by
performing α, if α is an atomic action, or by executing to completion the term that is
substituted for the process variable x, if α = x.

α
α→�

P
α→�

P + Q
α→�

Q
α→�

P + Q
α→�

P
α→ P ′

P + Q
α→ P ′

Q
α→ Q′

P + Q
α→ Q′

P
α→�

P · Q
α→ Q

P
α→ P ′

P · Q
α→ P ′ · Q

P
α→�

(P, �Q)∗(R, �S) α→ ( �Q,P )∗(�S,R)
P

α→ P ′

(P, �Q)∗(R, �S) α→ P ′ · ( �Q,P )∗(�S,R)

R
α→�

(P, �Q)∗(R, �S) α→�
R

α→ R′

(P, �Q)∗(R, �S) α→ R′

Table 1: Transition Rules

Definition 2.1 The term P ′ is a derivative of P if P can evolve into P ′ by zero or
more transitions. A derivative P ′ of P is proper if P can evolve into P ′ by performing
at least one transition.
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The following basic fact can be easily shown by structural induction on terms:

Fact 2.2 For every P ∈ (BPAme∗(A)), the set of derivatives of P is finite.

Process terms are considered modulo bisimulation equivalence from Park [34]. Intu-
itively, two process terms are bisimilar if they have the same branching structure.

Definition 2.3 Two process terms P and Q are bisimilar, denoted by P ↔ Q, if there
exists a symmetric binary relation B on process terms which relates P and Q, such that:

- if R B S and R
α→ R′, then there is a transition S

α→ S ′ such that R′ B S ′,

- if R B S and R
α→�, then S

α→�.

Such a relation B will be called a bisimulation (witnessing the equivalence P ↔ Q). The
relation ↔ will be referred to as bisimulation equivalence.

Note that if P is bisimilar to Q, then every (proper) derivative of P is bisimilar to some
(proper) derivative of Q, and vice versa.

The transition rules in Table 1 are in the ‘path’ format of Baeten and Verhoef [6].
Hence, bisimulation equivalence is a congruence with respect to all the operations in
the signature of (BPAme∗(A)). The interested reader is invited to consult [6] for the
definition of the path format for operational rules, and for a proof of the aforementioned
congruence result.

Remark: The proof of the congruence theorem for the path format presented in op. cit. uses
the extra assumption that the rules are well-founded. Fokkink and van Glabbeek [19] have
shown that this requirement, which is, however, met by the rules in Table 1, can be dropped.

The reader might have noticed that we have defined notions of operational semantics and
bisimulation equivalence that apply to open terms directly, following [33, 23] for process
algebra with abstraction, and [1] for process algebra with the prefix iteration operation
from [16], which is a restricted version of the Kleene star. This approach deviates from
the standard practice in process theory, which prescribes to define operational semantics
and bisimulation equivalence for closed terms only, and to give meaning to open terms
thus:

P ↔ Q
Δ= Pσ ↔ Qσ for all closed substitutions σ : Var → T(BPAme∗(A)).

(Note that this amounts to stipulating that two open terms are equivalent exactly
when the equation P = Q holds in the algebra of closed terms modulo bisimulation
equivalence.) The following result shows that both approaches yield the same notion
of bisimulation equivalence over (BPAme∗(A)), that is, in our setting, two open terms
are bisimilar if and only if all their closed instantiations are.

Lemma 2.4 For every P,Q ∈ (BPAme∗(A)),

P ↔ Q ⇔ Pσ ↔ Qσ for all closed substitutions σ : Var → T(BPAme∗(A)).
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Proof: The result can be proven following the strategy that was employed in [1] for prefix
iteration. We remark, however, that the technical details are considerably more complicated in
the case of multi-exit iteration. In particular, in the proof of the ‘if implication’, the choice of
a canonical closed substitution σ(P,Q) with the property that

Pσ(P,Q) ↔ Qσ(P,Q) ⇒ P ↔ Q

requires more care than in the aforementioned reference. The interested reader is invited to
consult [39, Theorems 3 and 4], where this type of result is proven in the more general setting
of a simply typed lambda calculus, which captures multi-exit iteration. �

Lemma 2.4 implies that any complete axiomatization of bisimulation equivalence over
the language (BPAme∗(A)) is also a complete axiomatization of the algebra of closed
terms modulo bisimulation. Such an axiomatization will, a fortiori, be ω-complete in
the sense of, e.g., [25].

2.3 Norm and L-value of Process Terms

Process terms in (BPAme∗(A)) are normed, which means that they are able to terminate
by embarking in a finite sequence of transitions. We call such a sequence a termination
trace. The norm of a process term P , denoted by |P |, is the length of its shortest
termination trace; this notion stems from [4]. Note that bisimilar process terms have
the same norm. The following lemma, which is due to Caucal [13], is typical for normed
processes. The interested reader is referred to [17] for its proof.

Lemma 2.5 Let P, Q,R, S ∈ (BPAme∗(A)) be such that PQ ↔ RS. Then the follow-
ing statements hold:

- If |Q| = |S|, then P ↔ R and Q ↔ S.

- If |Q| < |S|, then there is a proper derivative P ′ of P such that P ↔ RP ′ and
P ′Q ↔ S.

The notion of norm may be used as a measure of the complexity of terms which is
useful in inductive proofs. (Cf., e.g., the proof of the above lemma in [17].) However,
this measure of term complexity does not lend itself to use in completeness proofs like
the one presented in op. cit. because it does not respect term size. For example, the term
aa + a has smaller norm than its sub-term aa. For this reason, Fokkink and Zantema
[20] introduced the notion of L-value, which does not have this drawback.

Definition 2.6 The L-value of a process term P , notation L(P ), is defined thus:

L(P ) Δ= sup{|P ′| | P ′ a proper derivative of P} .

Note that, as the set of derivatives of P is finite for every term P ∈ (BPAme∗(A))
(Fact 2.2), the L-value of a process term is a well-defined natural number. For example,
L(α) = sup ∅ = 0.

The following basic properties of the notion of L-value will be useful in the technical
developments to follow.
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Lemma 2.7

1. If P ↔ Q, then L(P ) = L(Q);

2. L(P ) < L(PQ);

3. L(Pi) < L
(
(P1, ..., Pm)∗(Q1, ...,Qn)

)
for i = 1, ...,m.

Remark: Note that, in general, the L-values of Q and Qi are not smaller than those of
PQ and (P1, ..., Pm)∗(Q1, ..., Qn), respectively. For instance, if P ≡ a and Q ≡ a + aa, then
L(PQ) = L(Q) = 1. The reader will find the construction of a similar example for multi-exit
iteration an easy exercise.

2.4 The Axiom System

Table 2 contains our axiom system E for (BPAme∗(A)) modulo bisimulation equiva-
lence. It consists of the standard axioms A1–5 from Basic Process Algebra (cf. [10, 7])
together with five axiom schemas MEI1–5 for multi-exit iteration. In these axiom
schemas, �v and �w denote meta-variables which range over vectors of processes, and
n, m range over the set of positive integers.

Remark: For the sake of clarity, we remark that a meta-variable �v is just syntactic sugar for
an arbitrary vector of process variables. Therefore each of the axiom schemas MEI1–5 stands
for an infinite family of equations, viz. one for each instantion of the meta-variables ranging over
vectors of process variables and of those ranging over positive integers.

Laws MEI1–3 are modifications of the standard axioms for the binary Kleene star which,
together with A1–5, have been shown to be complete for bisimulation equivalence over
the language BPA∗ in [20, 17]. In particular, axiom MEI3 is the multi-exit version of
a law which originates from Troeger’s work [40]. Axioms MEI4 and MEI5 are, to the
best of our knowledge, new.

Proposition 2.8 (Soundness) If E � P = Q, then P ↔ Q.

Proof: Since bisimulation equivalence is a congruence, this can be verified by checking sound-
ness for each axiom separately, which is left to the reader. �

Remark: The fact that multi-exit iteration and the family of k-exit iteration operations (k ≥
1), as defined in [8], have the same expressive power modulo bisimulation equivalence is witnessed
by the soundness of axiom MEI5. This axiom may be used to turn every instance of a multi-exit
iteration into an equivalent one that uses k-exit iteration for an appropriate k.

In the proof of the completeness of the axiom system E for bisimulation equivalence
over the language (BPAme∗(A)), we shall find it useful to have more general variants
of the axioms MEI3,4.

Let us assume that �v0 and �w0 are vectors of process variables of the same length. The
following equation, which we shall refer to as MEI3′, can be derived easily from MEI3
using MEI1:

(�v0, x1, �v1)∗(�w0, y + x2(�v1, �v0, x1 + x2)∗(�w1, �w0, y), �w1) = (�v0, x1 + x2, �v1)∗(�w0, y, �w1) .
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A1 x + y = y + x
A2 (x + y) + z = x + (y + z)
A3 x + x = x
A4 (x + y)z = xz + yz
A5 (xy)z = x(yz)

MEI1 x(�v, x)∗(�w, y) + y = (x,�v)∗(y, �w)
MEI2 (x,�v)∗(y, �w)z = (x,�v)∗(yz, �wz)
MEI3 (x1, �v)∗(y + x2(�v, x1 + x2)∗(�w, y), �w) = (x1 + x2, �v)∗(y, �w)
MEI4 (x0, x1, �v)∗(y,x2(�v, x0(x1 + x2))∗(�w, y), �w) = (x0(x1 + x2), �v)∗(y, �w)
MEI5 ((x,�v)m)∗((y, �w)n) = (x,�v)∗(y, �w)

Table 2: The Axiom System E

Similarly, the following equation, which we shall refer to as MEI4′, can be derived easily
from MEI4 using MEI1:

(�v0, x0, x1, �v1)∗(�w0, y, x2(�v1, �v0, x0(x1 + x2))∗(�w1, �w0, y), �w1) =
(�v0, x0(x1 + x2), �v1)∗(�w0, y, �w1) .

Note that the soundness of these generalized versions of equations MEI3–4 depends
crucially on the assumption that �v0 and �w0 are vectors of process variables of the same
length, and their use in the proof of the completeness theorem will be restricted to
situations in which this requirement is met.

Notation 2.9 For an axiom system T , we write T � P = Q iff the equation P = Q
is provable from the axioms in T using the rules of equational logic. For a collection of
equations X over the signature of (BPAme∗(A)), we write P

X= Q as a short-hand for
A1,A2,X � P = Q.

For I = {i1, . . . , in} a finite, non-empty index set, we write
∑

i∈I Pi for Pi1 + · · ·+Pin
.

For notational convenience, and in order to reduce the number of cases in the com-
pleteness proof, in what follows we shall identify a term P with the meta-notations∑

i∈∅
Qi + P and

(∑
i∈∅

Qi

)
Q + P .

The collection of possible transitions of each process term P is non-empty and finite,
say {P

αi→ Pi | i = 1, ...,m} ∪ {P
βj→� | j = 1, ..., n}. We call the term

m∑
i=1

αiPi +
n∑

j=1

βj

the expansion of P . The terms αiPi and βj will be referred to as the summands of P .

Lemma 2.10 Each process term is provably equal to its expansion.

Proof: Straightforward, by structural induction on terms, using axioms A4, A5 and MEI1. �
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3 The Completeness Proof

The remainder of the paper is devoted to a proof of completeness of the axiom system E
with respect to bisimulation equivalence over the language (BPAme∗(A)). The proof of
this result will be given by adapting a proof technique developed by the second author
in [17]. A comparison between this proof technique and the one originally used in [20] to
solve the completeness problem for bisimulation equivalence over Basic Process Algebra
with binary Kleene star may be found in [17].

The proof we present consists of three steps. First we isolate a collection of basic
process terms, which cover, up to bisimulation equivalence, the whole language of pro-
cess terms, and whose structure will simplify the proof of the promised completeness
theorem. We then proceed to define a well-founded ordering over basic terms which will
allow for an inductive proof of our main result, and study some of its properties. Finally,
we shall show that two bisimilar basic terms can be proven equal using the equations
in E . This proof strategy will be familiar to readers acquainted with the literature on
completeness results from process theory. The actual details of the proof that we now
proceed to present are, however, rather challenging and novel.

3.1 Basic Terms

As a first stepping stone towards our main result, we now aim at constructing a collection
of basic process terms, with the property that each process term is provably equal to
a basic one. We shall then prove the completeness theorem by showing that bisimilar
basic terms are provably equal.

Let G denote the collection of process terms in (BPAme∗(A)) which only use action
prefixing, in the sense of Milner [32], in lieu of general sequential composition, and
in which vectors at the left- and right-hand side of multi-exit iteration have the same
length. That is, G is defined inductively as follows:

- each α ∈ A ∪ Var is in G;

- if P and Q are in G, then P + Q is in G;

- if α ∈ A ∪ Var and P is in G, then αP is in G;

- if P1, ..., Pn and Q1, ...,Qn (n ≥ 1) are in G, then (P1, ..., Pn)∗(Q1, ..., Qn) is in G.

Lemma 3.1 Every process term can be proven equal to a term in G using axioms A4,5
and MEI2,5.

The import of the above lemma is that, without loss of generality, we may restrict
ourselves to considering terms in G. However, G is not yet our desired set of basic
terms. In fact, one of the most fundamental properties that we require of a collection of
basic terms for use in the proof of the completeness theorem is that it be closed under
transitions. This is a property that G does not enjoy. For example, the term (a∗a)∗a is
clearly in G, and

(a∗a)∗a
a→ (a∗a)

(
(a∗a)∗

a
)

.

11



However, the right-hand side of the above transition is a term that is not contained in
G. In order to overcome this complication, we introduce the following collection H of
process terms:

- if a term (P1, ..., Pn)∗(Q1, ...,Qn) is in G, then it is also in H;

- if a term (P1, ..., Pn)∗(Q1, ...,Qn) is in G, and if P ′ is a proper derivative of Pn,
then P ′(P1, ..., Pn)∗(Q1, ...,Qn) is in H.

For example, the term (a∗a)
(
(a∗a)∗

a
)

is included in H because a∗a is a proper derivative
of itself.

The set B of basic terms is the union of G and H.

Lemma 3.2 If P ∈ B and P
α→ P ′, then P ′ ∈ B.

Proof: Let P
α→ P ′. If P ∈ H\G, then it is easy to see that P ′ ∈ H. If P ∈ G, then a

straightforward structural induction yields that P ′ ∈ B. �

For later use, we now define an equivalence relation ∼= on H as the least one satisfying
axiom MEI5 and the equivalences

- (P1, ..., Pn)∗(Q1, ...,Qn) ∼= (P2, ..., Pn, P1)
∗(Q2, ...,Qn, Q1);

- (Pn, P1, ..., Pn−1)∗(Qn, Q1, ...,Qn−1) ∼= P ′(P1, ..., Pn)∗(Q1, ...,Qn) if P ′ is a proper
derivative of Pn.

The key properties of the relation ∼= needed in the technical developments to follow will
be studied in the following section.

3.2 An Ordering on Terms

Having identified a set of basic terms closed under transitions, we now proceed to define
a well-founded ordering on this set that will allow us to give an inductive proof of the
main result of this paper.

Definition 3.3 We say that a term P is an exit derivative of a term Q iff P is a
derivative of Q, but not vice versa.

Let ≺ denote the least transitive relation over the set of process terms satisfying:

- P ≺ Q if L(P ) < L(Q),

- P ≺ Q if P is an exit derivative of Q.

Intuitively, if P ≺ Q, then either the set of derivatives of P is properly included in that
of Q, or the L-value of P is strictly smaller than that of Q.

Lemma 3.4 ≺ is a well-founded ordering on (BPAme∗(A)).

12



Proof: First of all, observe that if P ≺ Q then L(P ) ≤ L(Q). This follows because if P is a
derivative of Q, then L(P ) ≤ L(Q) since all proper derivatives of P are also proper derivatives
of Q.

Suppose now, towards a contradiction, that ≺ is not well-founded. This means that there
exists an infinite descending chain P0 � P1 � P2 � · · ·. As L(Pn) ≥ L(Pn+1) for all n, there is
an N such that L(PN ) = L(Pn) for all n > N . Since Pm � Pn for m, n > N with m < n, it
follows that Pn is an exit derivative of Pm for each such m, n. By Fact 2.2, each process term
has only finitely many derivatives, so there are m, n > N with m < n and Pm ≡ Pn. Then
Pm �� Pn, and we have found a contradiction. Hence, ≺ is well-founded. �

Following [17], we now proceed to study the interaction between the operational
semantics of process terms and the above-defined ordering. A technical tool we shall
use below is a weight function g that associates a natural number to each process term.
This is defined thus:

g(α) Δ= 0
g(P + Q) Δ= max{g(P ), g(Q)} + 1

g(PQ) Δ= max{g(P ), g(Q)}
g
(
(P1, ..., Pm)∗(Q1, ...,Qn)

)
Δ= max{g(P1), ..., g(Pm), g(Q1) + 1, ..., g(Qn) + 1} .

The basic property of this weight function that we shall need is expressed in the lemma
below, which follows by a straightforward structural induction.

Lemma 3.5 If P ′ is a derivative of P , then g(P ′) ≤ g(P ). Moreover, if

- P ≡ P1 + P2 for some terms P1 and P2, and P ′ is a proper derivative of P , or

- P ≡ (P1, ..., Pm)∗(Q1, ...,Qn), for some terms Pi (1 ≤ i ≤ m) and Qj (1 ≤ j ≤ n),
and P ′ is a proper derivative of some Qj,

then g(P ′) < g(P ).

The following two lemmas will play a major rôle in the proof of the main result of this
paper. The first states that, intuitively, escaping from a loop reduces the complexity of
a process term, as measured by the above defined ordering. This is due to the fact that
once a process term has exited a loop, it can never return to it.

Lemma 3.6 If Q′ is a proper derivative of Qi for some i = 1, ..., n, then

Q′ ≺ (P1, ..., Pm)∗(Q1, ..., Qn) .

Proof: If Q′ is a proper derivative of some Qi, then Lem. 3.5 gives that

g(Q′) < g
(
(P1, ..., Pm)∗(Q1, ..., Qn)

)
.

Again using Lem. 3.5, we infer from this inequality that (P1, ..., Pm)∗(Q1, ..., Qn) is not a
derivative of Q′. Since Q′ is a derivative of (P1, ..., Pm)∗(Q1, ..., Qn), it follows that Q′ ≺
(P1, ..., Pm)∗(Q1, ..., Qn). �

As witnessed by the proof of the above lemma, the exit derivatives of a term of the
form (P1, ..., Pm)∗(Q1, ...,Qn) are exactly the proper derivatives of the terms Qi. As an
immediate consequence of this observation, we note that:

13



Fact 3.7 If P, Q ∈ H and P ∼= Q, then P and Q have the same L-value and exit
derivatives.

The observations collected in the above result imply that ∼=-equivalent basic terms
dominate the same process terms with respect to the ordering ≺, i.e., that if P ≺ R ∼= S,
then P ≺ S.

The following lemma is part of the crux of the proof of the completeness theorem;
intuitively, it states that the only transitions between basic terms that do not decrease
the complexity of terms, as measured by ≺, are those belonging to some loop.

Lemma 3.8 If P ∈ B and P
α→ P ′, then either P ′ ≺ P , or P, P ′ ∈ H and P ∼= P ′.

Proof: We begin by establishing two facts that we shall use in the proof of the statement of
the lemma.

A. If P ∈ B, P ′ �∈ H and P
α→ P ′, then P ′ has smaller size than P .

Proof. First of all, note that the claim is vacuously true if P ∈ H\G, because, in that
case, it follows that P ′ ∈ H. That the claim holds for P ∈ G can be shown by a simple
structural induction on P .

B. If P ∈ H and P
α→ P ′, then either g(P ) > g(P ′), or P ′ ∈ H and P ∼= P ′.

Proof. Since P ∈ H, it follows that, for some terms Pi and Qi (1 ≤ i ≤ n),

- either P ≡ (P1, ..., Pn)∗(Q1, ..., Qn),
- or P ≡ P ′

n(P1, ..., Pn)∗(Q1, ..., Qn), for some proper derivative P ′
n of Pn.

Hence, P ′ can have one of the following three forms:

1. P ′ ≡ (P2, ..., Pn, P1)
∗(Q2, ..., Qn, Q1),

2. P ′ ≡ P ′′
n (P1, ..., Pn)∗(Q1, ..., Qn), for some proper derivative P ′′

n of Pn, or
3. P ′ ≡ Q′

1, for some proper derivative of Q1.

In the first two cases P ′ ∈ H and P ∼= P ′, and in the last case g(P ′) = g(Q′
1) < g(P )

(Lem. 3.5).

We are now in a position to prove the lemma. Assume that, for some basic term P , P
α→ P ′

and P ′ �≺ P . We prove that P, P ′ ∈ H and P ∼= P ′.
To this end, note, first of all, that, since P ′ is a proper derivative of P and P ′ �≺ P , it must

be the case that P is a proper derivative of P ′. So there exists a sequence of transitions

P0
α1→ P1

α2→ · · · αn→ Pn, n ≥ 2,

where P0 ≡ P ≡ Pn and P1 ≡ P ′. Note that each term Pk, 0 ≤ k ≤ n, is basic as P is (Lem. 3.2).
We claim that Pl ∈ H for some 0 ≤ l ≤ n. In fact, assume, towards a contradiction, that

Pk �∈ H for all k. Then fact A implies that Pk+1 has smaller size than Pk for k = 0, ..., n − 1.
Therefore P has smaller size than itself, which is impossible.

Hence, Pl ∈ H for some l. Since each Pk is a proper derivative of each Pk′ , we have g(Pk) ≤
g(Pk′) for all k and k′ (Lem. 3.5). Therefore g(Pk) must be the same for all k. Now fact B and
Pl ∈ H imply that Pk ∈ H for all k, and P0 ∼= P1 ∼= · · · ∼= Pn. �

Elements of B × B are considered modulo commutativity. The well-founded ordering ≺
on B induces an ordering on B × B as the least transitive relation satisfying:

(P,Q) � (R,S) if P ≺ R and Q ∼= S .

It is immediate to see that the above-defined ordering on B × B is also well-founded.
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3.3 A Lemma

In the proof of the completeness theorem to follow, we shall often need to analyze
equivalences between terms of the form P ′(P1, ..., Pm)∗(Q1, ...,Qm). We now aim at
establishing a lemma that will be a useful tool in the study of these equivalences.

Notation 3.9 For a term X ≡ (P1, ..., Pn)∗(Q1, ...,Qn), the expression shift(X) stands
for the term (P2, ..., Pn, P1)∗(Q2, ..., Qn, Q1). For a non-negative integer k, shiftk(X)
denotes the result of applying the function shift to the term X k times. Note that
X ↔ P1shift(X) + Q1.

The following lemma will be applied in the proof of Lem. 3.11.

Lemma 3.10 Let X ≡ (P1, ..., Pm)∗(Q1, ...,Qm) and Y ≡ (R1, ...,Rn)∗(S1, ..., Sn). As-
sume that TX ↔ UY for some T and U , and that Q1 does not have a proper derivative
that is bisimilar to Y . Then we have the following two possibilities:

1. either T ↔ U ;

2. or T ↔ U(V + W ) for some terms V and W , whose proper derivatives are con-
tained in those of T , such that V X ↔ R1shift(Y ) and WX ↔ S1.

Proof: Lem. 2.5 applied to the equivalence TX ↔ UY yields three possibilities:

A. either T ↔ U and X ↔ Y ;

B. or T ↔ UT ′ and T ′X ↔ Y for some proper derivative T ′ of T ;

C. or TU ′ ↔ Y and X ↔ U ′Y for some proper derivative U ′ of U .

Case A agrees with the first statement in the lemma.
If case B holds, then T ′X ↔ Y ↔ R1shift(Y )+ S1. Then clearly there exist terms V and W ,

whose proper derivatives are contained in those of T ′, such that T ′ ↔ V +W , V X ↔ R1shift(Y ),
and WX ↔ S1. This agrees with the second statement in the lemma.

Finally, case C contradicts one of the assumptions. In fact, as X ↔ U ′Y implies P1shift(X)+
Q1 ↔ U ′Y , in that case Q1 has a proper derivative that is bisimilar to Y . �

The following technical lemma will be used repeatedly in the proof of the promised
completeness theorem.

Lemma 3.11 Let X ≡ (P1, ..., Pm)∗(Q1, ...,Qm) and Y ≡ (R1, ...,Rn)∗(S1, ..., Sn). As-
sume that T1X ↔ R1shift(Y ) for some term T1, and that Q1 has no proper derivative
that is bisimilar to Y . Then we have the following two possibilities:

I. either there are terms U1, ...,Un, whose proper derivatives are contained in those
of T1, such that:

T1 ↔ R1(R2, ...,Rn, R1)∗(U2, ...,Un, U1)
UiX ↔ Si i = 1, ..., n
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II. or there is a k ∈ {1, ..., n} and there are terms T2, ..., Tk and U2, ...,Uk, whose
proper derivatives are contained in those of T1, such that:

Ti ↔ Ri(Ti+1 + Ui+1) i = 1, ..., k − 1
Tk ↔ Rk

TiX ↔ Rishifti(Y ) i = 2, ..., k
UiX ↔ Si i = 2, ..., k .

Proof: Assume that the proviso of the lemma holds for some terms X, Y and T1 of the required
form. Consider the following equivalence Ai for some i ≤ n:

Ai TiX ↔ Rishifti(Y ).

Recall that we assumed that it holds for i = 1.
As Q1 has no proper derivative that is bisimilar to Y , and Y is a proper derivative of shifti(Y )

for every non-negative integer i, it follows that Q1 has no proper derivative that is bisimilar to
shifti(Y ). Therefore we can apply Lem. 3.10 to equivalence Ai to obtain the following possibil-
ities; either

Bi Ti ↔ Ri,

or, if i < n, then there exist terms Ti+1 and Ui+1, whose proper derivatives are contained in
those of Ti, such that

Ci Ti ↔ Ri(Ti+1 + Ui+1), Ti+1X ↔ Ri+1shifti+1(Y ) and Ui+1X ↔ Si+1,

or, if i = n, then there exist terms Tn+1 and U1, whose proper derivatives are contained in those
of Tn, such that

Cn Tn ↔ Rn(Tn+1 + U1), Tn+1X ↔ R1shift(Y ) and U1X ↔ S1.

Note that, by transitivity, the proper derivatives of the Ti and the Ui are all contained in those
of T1.

In light of the above discussion, Lem. 3.10 gives that condition Ai implies either Bi or Ci for
i = 1, ..., n. Furthermore, Ci clearly implies Ai+1 for i = 1, ..., n− 1. So, since we assumed that
A1 holds, we can distinguish the following two cases:

I. either C1, ..., Cn hold;

II. or there is a k ∈ {1, ..., n} such that C1, ..., Ck−1 and Bk hold.

We consider these two cases in turn.

I. Suppose that C1, ..., Cn hold, so that:

Ti ↔ Ri(Ti+1 + Ui+1) i = 1, ..., n − 1
Tn ↔ Rn(Tn+1 + U1)

UiX ↔ Si i = 1, ..., n
Tn+1X ↔ R1shift(Y ) .

By assumption T1X ↔ R1shift(Y ), so the last equivalence implies Tn+1X ↔ T1X. Then
Lem. 2.5 yields Tn+1 ↔ T1. To complete the proof for this case, it is sufficient to show
that the equivalences

Ti ↔ Ri(Ti+1 + Ui+1) i = 1, ..., n− 1
Tn ↔ Rn(T1 + U1)
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together yield the following equivalence:

T1 ↔ R1(R2, ..., Rn, R1)∗(U2, ..., Un, U1) .

The construction of the required bisimulation relation is not hard, and is left to the reader.

II. Suppose that there is a k ∈ {1, ..., n} such that C1, ..., Ck−1 and Bk hold. Then

Ti ↔ Ri(Ti+1 + Ui+1) i = 1, ..., k − 1
Tk ↔ Rk

TiX ↔ Rishifti(Y ) i = 2, ..., k
UiX ↔ Si i = 2, ..., k

and we are done.

The proof of the lemma is now complete. �

3.4 The Completeness Theorem

We are finally in a position to prove the desired completeness result.

Theorem 3.12 (Completeness) Let X,Y ∈ (BPAme∗(A)). If X ↔ Y , then E �
X = Y .

Proof: First of all, note that, as each process term is provably equal to a basic term (Lem. 3.1),
it is sufficient to show that bisimilar basic terms are provably equal. This we proceed to do by
induction on the well-founded ordering � on B×B. To this end, assume that X, Y are basic terms
such that X ↔ Y . Suppose furthermore, as inductive hypothesis that if two basic terms X′, Y ′

with (X′, Y ′) � (X, Y ) are bisimilar, then E � X′ = Y ′. We proceed to show that E � X = Y .
For notational convenience, we shall write X = Y in lieu of E � X = Y . Throughout the proof,
we shall use the fact that the collection of basic terms is closed under transitions (Lem. 3.2)
without further mention. We prove the claim by considering the following two cases:

Case 1. X �∈ H or Y �∈ H;

Case 2. Both X and Y are in H.
We examine these two cases in turn.

• Case 1. Assume that X �∈ H or Y �∈ H. By symmetry, we may suppose that X �∈ H.
Since X ↔ Y , by possibly using axiom A3 we can adapt the expansions of X and Y to
the following forms:

X =
m∑

i=1

αiXi +
n∑

j=1

βj Y =
m∑

i=1

αiYi +
n∑

j=1

βj

where Xi ↔ Yi for i = 1, ..., m. As X �∈ H, Lem. 3.8 gives that Xi ≺ X for i = 1, ..., m.
Furthermore, again using Lem. 3.8, we infer that, for i = 1, ..., m, either Yi ≺ Y or Yi

∼= Y .
Therefore, for every index i, (Xi, Yi) � (X, Y ), and we may apply the inductive hypothesis
to the equivalence Xi ↔ Yi to derive that Xi = Yi. Hence, by substitutivity it follows
that X = Y , and we are done.

• Case 2. Assume that X, Y ∈ H. We proceed with the proof by considering the possible
forms these bisimilar terms may take. By symmetry, it is sufficient to distinguish the
following three cases:
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Case 2.1. X ≡ (P1, ..., Pm)∗(Q1, ..., Qm) and Y ≡ (R1, ..., Rn)∗(S1, ..., Sn);

Case 2.2. X ≡ P ′(P1, ..., Pm)∗(Q1, ..., Qm) for some proper derivative P ′ of Pm, and
Y ≡ (R1, ..., Rn)∗(S1, ..., Sn);

Case 2.3. X ≡ P ′(P1, ..., Pm)∗(Q1, ..., Qm) for some proper derivative P ′ of Pm, and
Y ≡ R′(R1, ..., Rn)∗(S1, ..., Sn) for some proper derivative R′ of Rn.
We proceed by considering each of these cases in turn.

∗ Case 2.1. Let X ≡ (P1, ..., Pm)∗(Q1, ..., Qm) and Y ≡ (R1, ..., Rn)∗(S1, ..., Sn). By
symmetry, it is sufficient to consider the following two sub-cases:

Case 2.1.1. There exist a proper derivative Q′ of some Qi with Q′ ↔ Y , and a proper
derivative S′ of some Sj with S′ ↔ X;

Case 2.1.2. No proper derivative of any Qi is bisimilar to Y .
We consider these two sub-cases in turn.

◦ Case 2.1.1. Assume that there exist a proper derivative Q′ of some Qi with Q′ ↔ Y , and
a proper derivative S′ of some Sj with S′ ↔ X.
Note that, by transitivity, we may infer that Q′ ↔ S′. As Q′ ≺ X and S′ ≺ Y (Lem. 3.6),
we may apply the inductive hypothesis to each of the aforementioned equivalences to
derive that

X = S′ = Q′ = Y

and we are done.

◦ Case 2.1.2. Assume that no proper derivative of any Qi is bisimilar to Y .
We begin the proof for this case by adapting X and Y .

Definition 3.13 For Z ≡ (T1, ..., Tj)∗(U1, ..., Uj), let K(Z) denote the number of i’s in
{1, ..., j} for which shifti(Z) ↔ Z. Note that K(Z) ≥ 1, as shiftj(Z) ≡ Z.

Put
X0 ≡ ((P1, ..., Pm)K(Y ))∗((Q1, ..., Qm)K(Y ))
Y0 ≡ ((R1, ..., Rn)K(X))∗((S1, ..., Sn)K(X)) .

It is not hard to see that, for every i ∈ {1, . . . , m} and k ∈ {0, . . . , K(Y ) − 1},

shifti(X) ↔ shifti+km(X0) .

Similarly, for every j ∈ {1, . . . , n} and k ∈ {0, . . . , K(X) − 1},

shiftj(Y ) ↔ shiftj+kn(Y0) .

Since X0 ↔ X and Y0 ↔ Y , it follows that both K(X0) and K(Y0) are equal to K(X) ·
K(Y ). Owing to axiom MEI5, the equalities X = X0 and Y = Y0 are provable. The rest
of the proof for this case will be devoted to proving X0 = Y0. For notational convenience,
put X0 ≡ (P1, ..., PM)∗(Q1, ..., QM) and Y0 ≡ (R1, ..., RN)∗(S1, ..., SN).
We shall now prove that there exists an increasing sequence of integers 0 = c0 < · · · <
cM = N such that for l = 0, ..., M :

Al shiftl(X0) ↔ shiftcl(Y0);

Bl shifti(Y0) ↔/ Y0 for cl−1 < i < cl (where, by convention, c−1
Δ= 0);

Cl X0 = (R1, ..., Rcl, Pl+1, ..., PM)∗(S1, ..., Scl, Ql+1, ..., QM).
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In fact, we shall show that the conjunction of the statements Al, Bl and Cl implies the
conjunction of Al+1, Bl+1 and Cl+1 for l < M . Since A0 (viz. X0 ↔ Y0), B0 (viz. a vacuous
statement) and C0 (viz. X0 = X0) hold, we can then conclude that CM (viz. X0 = Y0)
holds, which is what we want to prove. Throughout the proof, we shall make use of the
fact that, as X ∼= X0 and Y ∼= Y0, these terms dominate the same basic terms with
respect to the well-founded ordering ≺. This remark will allow us to apply the inductive
hypothesis to all pairs (X′, Y ′) of bisimilar terms such that (X′, Y ′) � (X0, Y0), and will
be used without further mention.
Assume now that, for some l with 0 ≤ l < M , the statements Ai, Bi and Ci hold for all
i ≤ l and some increasing sequence of integers 0 = c0 < · · · < cl < N . We set out to
deduce the statements Al+1, Bl+1 and Cl+1 for some cl+1 with cl < cl+1 ≤ N , where cl+1
equals N if and only if l + 1 = M .
First, we spell out the expansions of Pl+1 and Rcl+1:

Pl+1 =
∑
i∈I

Ti Rcl+1 =
∑
j∈J

Uj

where the summands Ti and Uj are of the form either αV or α.

As Al holds, Pl+1shiftl+1(X0)+Ql+1 ↔ Rcl+1shiftcl+1(Y0)+Scl+1. Hence, for every i ∈ I,
either there exists an index j ∈ J such that

Tishiftl+1(X0) ↔ Ujshiftcl+1(Y0)(2)

or there exists a summand αS′ of Scl+1 such that

Tishiftl+1(X0) ↔ αS′ .(3)

Thus, I can be divided into the following, not necessarily disjoint, subsets:

I0
Δ= {i ∈ I | ∃α, S′ : Scl+1

α→ S′ and (3) holds}
I1

Δ= {i ∈ I | ∃j ∈ J such that (2) holds} .

On the other hand, for every j ∈ J there exists an i ∈ I such that equivalence (2) holds.
In fact, suppose, towards a contradiction, that for some j ∈ J this does not hold. Since
Pl+1shiftl+1(X0)+Ql+1 ↔ Rcl+1shiftcl+1(Y0)+Scl+1, it follows that for this j there exists
a summand αQ′ of Ql+1 such that

αQ′ ↔ Ujshiftcl+1(Y0) .

Since Y0 is a derivative of shiftcl+1(Y0), then there is a proper derivative of Ql+1 that is
bisimilar to Y0, and therefore to Y . This contradicts the assumption for case 2.1.2.
Note that, by our previous reasoning, the index set I1 is non-empty; let V1 denote the
term

∑
i∈I1

Ti. The following equation follows by possibly using axiom A3:

Pl+1 =
∑
i∈I0

Ti + V1 .(4)

Moreover, the following equivalence is an immediate consequence of the fact that for every
j ∈ J there exists an i ∈ I such that equivalence (2) holds:

V1shiftl+1(X0) ↔ Rcl+1shiftcl+1(Y0) .(5)
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We proceed with the proof by deriving the following equality:∑
i∈I0

Tishiftl+1(X0) + Ql+1 = Scl+1 .(6)

Proof of Equation (6). We show that each summand of Scl+1 is provably equal to a
summand of the term at the left-hand side of the equation, and vice versa.
Let αS′ be a summand of Scl+1; then the transition shiftcl(Y0)

α→ S′ holds. As

Pl+1shiftl+1(X0) + Ql+1 ↔ shiftcl(Y0)

by assumption Al, either there exists an i ∈ I0 such that (3) holds, or there exists a
summand αQ′ of Ql+1 such that

Q′ ↔ S′ .(7)

If there exists an i ∈ I0 such that (3) holds, then

1. either Ti ≡ αP ′ for some proper derivative P ′ of Pl+1 such that P ′shiftl+1(X0) ↔ S′,
2. or Ti ≡ α and shiftl+1(X0) ↔ S′.

As S′ ≺ Y0 (Lem. 3.6), P ′shiftl+1(X0) ∼= X0 and shiftl+1(X0) ∼= X0, in each of these two
cases we may apply the inductive hypothesis and substitutivity to infer that

Tishiftl+1(X0) = αS′ .

If (7) holds, then Q′ ≺ X0 and S′ ≺ Y0 (Lem. 3.6), so that we may apply the inductive
hypothesis and substitutivity to infer

αQ′ = αS′ .

If α is a summand of Scl+1, then α must also be a summand of Ql+1, and therefore of the
term on the left-hand side of the equation. Hence, every summand of Scl+1 is provably
equal to a summand of the term at the left-hand side of (6).
By the symmetric argument it can be shown that every summand of the term at the
left-hand side of (6) is provably equal to a summand of Scl+1. Namely, by definition of
I0 each term Tishiftl+1(X0) for i ∈ I0 is bisimilar to a summand of Scl+1. Moreover, as
Pl+1shiftl+1(X0) +Ql+1 ↔ Rcl+1shiftcl+1(Y0)+ Scl+1, Y0 is a derivative of shift(Y0), and
no derivative of Ql+1 is bisimilar to Y0, every summand of Ql+1 must be bisimilar to a
summand of Scl+1.
End of Proof of Equation (6).

We now proceed with our argument by analyzing equivalence (5) using Lem. 3.11. Ac-
cording to this lemma two possibilities may arise, which we consider in turn.

- Case 2.1.2.1. If the first case of Lem. 3.11 holds with respect to equivalence (5), then, in
particular, there exists a term W such that

W shiftl+1(X0) ↔ Scl+1 .

Equality (6) implies the equivalence

W shiftl+1(X0) ↔
∑
i∈I0

Tishift(X0) + Ql+1 .

Since X0 is a derivative of shiftl+1(X0) and Y0 ↔ X0, it follows that there is a proper
derivative of Ql+1 which is bisimilar to Y0, and therefore to Y . This contradicts the
assumption at the start of case 2.1.2.
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- Case 2.1.2.2. In light of the previous discussion, we may assume that the second case of
Lem. 3.11 holds with respect to equivalence (5). In this case, note, first of all, that, for
every j, h ≥ 0,

shiftj(Y0) ≡ shiftj+hn(Y0) .

Therefore, by the second case of Lem. 3.11, there is an integer k ∈ {1, ..., n} and there
exist terms V2, ..., Vk and W2, ..., Wk, whose proper derivatives are contained in those of
V1, such that:

Vi ↔ Rcl+i(Vi+1 + Wi+1) i = 1, ..., k − 1(8)
Vk ↔ Rcl+k(9)

Vishiftl+1(X0) ↔ Rcl+ishiftcl+i(Y0) i = 2, ..., k(10)
Wishiftl+1(X0) ↔ Scl+i i = 2, ..., k .(11)

Put cl+1
Δ= cl + k. We now show that Al+1, Bl+1 and Cl+1 hold, and that cl+1 ≤ N , with

cl+1 = N iff l + 1 = M .
Equivalence (9) and the instance of (10) for i = k, together with Lem. 2.5, yield the
equivalence

shiftl+1(X0) ↔ shiftcl+1(Y0)

which corresponds to Al+1.
We now show that Bl+1 holds. Suppose, towards a contradiction, that shiftcl+i(Y0) ↔ Y0
for some i ∈ {1, ..., k−1}. Equivalences (10) and (11), together with A4 and MEI1, imply
that shiftcl+i(Y0) ↔ (Vi+1 + Wi+1)shiftl+1(X0). Therefore, as X0 ↔ Y0,

P1shift(X0) + Q1 ↔ Y0 ↔ shiftcl+i(Y0) ↔ (Vi+1 + Wi+1)shiftl+1(X0) .

As X0 is a derivative of shiftl+1(X0), and Y0 ↔ X0, it follows that Q1 has a derivative
bisimilar to Y0, and therefore to Y . This contradicts the assumption for case 2.1.2. So it
must be the case that shiftcl+i(Y0) ↔/ Y0 for i = 1, ..., k − 1, which corresponds to Bl+1.
As cl < N and Bl+1 holds, it follows that cl + i �= N for i = 1, ..., k − 1. Hence cl+1 ≤ N .
We now show that cl+1 = N iff l + 1 = M . By definition of K(Z) (Def. 3.13) we have:

- cl+1 = N iff there are K(Y0) indices i ∈ {1, ..., cl+1} with shifti(Y0) ↔ Y0;

- l + 1 = M iff there are K(X0) indices j ∈ {1, ..., l+ 1} with shiftj(X0) ↔ X0.

Recall that X0 and Y0 where designed such that K(X0) = K(Y0). Furthermore, Ai and Bi

for i ≤ l+1 imply that shifti(Y0) ↔ Y0 for 1 ≤ i ≤ cl+1 iff i = cj for some j ∈ {1, ..., l+1}
with shiftj(X0) ↔ X0. Hence, it follows that cl+1 = N iff l + 1 = M .
It remains to prove that Cl+1 holds. Equality (4) implies that L(V1) ≤ L(Pl+1), so, by
Lem. 2.7, L(V1) < L(X0). Since the proper derivatives of the terms Vi are contained
in those of V1, it follows that L(Vi) < L(X0) for i = 2, ..., k. Now, invariance of L-value
under bisimulation (Lem. 2.7), together with the equivalences X0 ↔ Y0, (8) and (9), yields

1. L(Rcl+i(Vi+1 + Wi+1)) < L(Y0) for i = 1, ..., k − 1 and

2. L(Rcl+1) < L(Y0).

It follows that

- Vi ≺ X0 for i = 1, ..., k,

- Ri(Vi+1 + Wi+1) ≺ Y0 for i = 1, ..., k − 1 and

- Rcl+1 ≺ Y0.
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Thus we can apply induction to equivalences (8) and (9) to derive

Vi = Rcl+i(Vi+1 + Wi+1) i = 1, ..., k − 1(12)
Vk = Rcl+1 .(13)

Furthermore, since S′ ≺ Y0 for every proper derivative S′ of each term Scl+i (Lem. 3.6),
and since each derivative in the expansion of Wishiftl+1(X0) is ∼=-equivalent to X0, we
can apply the same reasoning used in the proof of (6) to equivalence (11) to obtain

Wishiftl+1(X0) = Scl+i i = 2, ..., k .(14)

The equations that we derived up to now can be used to prove

X0 = (R1, ..., Rcl+i−1, Vi, Pl+2, ..., PM)∗(S1, ..., Scl+i−1, Scl+i, Ql+2, ..., QM)(15)

for i = 1, ..., k − 1, and

X0 = (R1, ..., Rcl+1, Pl+2, ..., PM)∗(S1, ..., Scl+1, Ql+2, ..., QM) .(16)

In order to derive these equations, we apply induction on i. First, we deal with the case
i = 1:

X0
Cl= (R1, ..., Rcl, Pl+1, ..., PM)∗(S1, ..., Scl, Ql+1, ..., QM)
(4)
= (R1, ..., Rcl,

∑
i∈I0

Ti + V1, Pl+2, ..., PM)∗(S1, ..., Scl, Ql+1, Ql+2..., QM)

MEI3′
= (R1, ..., Rcl, V1, Pl+2, ..., PM)∗(S1, ..., Scl,

∑
i∈I0

TiZ + Ql+1, Ql+2..., QM)

where

Z
(4)
= (Pl+2, ..., PM, R1, ..., Rcl, P1)∗(Ql+2..., QM, S1, ..., Scl, Ql+1) .

Applying MEI1 to the right-hand side of the above equation for M − l − 1 times, followed
by equation Cl, we obtain

Z = Pl+2(· · · (PMX0 + QM ) · · ·) + Ql+2 .

Again applying MEI1 to the above equation, but this time from right to left, we deduce
the equality Z = shiftl+1(X0). Therefore:

X0 =

(R1, ..., Rcl, V1, Pl+2, ..., PM)∗(S1, ..., Scl,
∑
i∈I0

Tishiftl+1(X0) + Ql+1, Ql+2..., QM)

(6)
= (R1, ..., Rcl, V1, Pl+2, ..., PM)∗(S1, ..., Scl, Scl+1, Ql+2..., QM) .

If k > 1, then we have proven equation (15) for i = 1. If k = 1, then cl+1 = cl + 1, and
by equation (13) V1 = Rcl+1 , which proves (16).
Next, suppose that we have proven equation (15) for i = j, where 1 ≤ j < k. We derive
either equation (15) for i = j +1, if k > j + 1, or equation (16), if k = j + 1. To this end,
we reason as follows:

X0
(15),(12)

=
(R1, ..., Rcl+j−1, Rcl+j(Vj+1 + Wj+1), Pl+2, ..., PM)∗(S1, ..., Scl+j , Ql+2, ..., QM)

MEI4′
= (R1, ..., Rcl+j , Vj+1, Pl+2, ..., PM)∗(S1, ..., Scl+j , Wj+1Z, Ql+2, ..., QM)
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where

Z
(12)
= (Pl+2, ..., PM, R1, ..., Rcl+j−1, Vj)∗(Ql+2..., QM, S1, ..., Scl+j−1, Scl+j) .

Applying MEI1 for M − l − 1 times, followed by equation (15), we obtain

Z = Pl+2(· · · (PMX0 + QM ) · · ·) + Ql+2 .

Again using MEI1, we may now deduce the equality Z = shiftl+1(X0). Therefore:

X0 =
(R1, ..., Rcl+j , Vj+1, Pl+2, ..., PM)∗(S1, ..., Scl+j , Wj+1shiftl+1(X0), Ql+2, ..., QM)

(14)
= (R1, ..., Rcl+j , Vj+1, Pl+2, ..., PM)∗(S1, ..., Scl+j , Scl+j+1, Ql+2, ..., QM) .

If k > j + 1, then we have proven equation (15) for i = j + 1. If k = j + 1, then
cl+1 = cl + j + 1, and by equation (13) Vj+1 = Rcl+1, which proves equation (16).
Equation (16) corresponds to Cl+1. Thus, we have completed the proof that the conjunc-
tion of Al, Bl and Cl implies the conjunction of Al+1, Bl+1 and Cl+1 for 0 ≤ l < M .
Since A0, B0 and C0 hold, we can then conclude CM , that is, X0 = Y0. By axiom MEI5,
it follows that X = X0 and Y = Y0. Therefore X = Y , which finishes the proof of this
case.

∗ Case 2.2. Assume that X ≡ P ′(P1, ..., Pm)∗(Q1, ..., Qm) for some proper derivative
P ′ of Pm, and Y ≡ (R1, ..., Rn)∗(S1, ..., Sn). For notational convenience we put X′ ≡
(P1, ..., Pm)∗(Q1, ..., Qm). We proceed with the proof by distinguishing two sub-cases,
depending on whether any of the terms Qi has a proper derivative that is bisimilar to Y
or not.

◦ Case 2.2.1. Suppose that there is a proper derivative Q′ of some Qi, for i = 1, ..., m, such
that Q′ ↔ Y .
As P ′X′ ↔ R1shift(Y ) + S1, and X is a derivative of X′, it follows that S1 has a proper
derivative S′ that is bisimilar to X. Hence, transitivity yields X ↔ S′ ↔ Q′ ↔ Y . Since
S′ ≺ Y and Q′ ≺ X (Lem. 3.6), we can apply induction to these three equivalences to
obtain

X = S′ = Q′ = Y .

◦ Case 2.2.2. Suppose that no proper derivative of any Qi is bisimilar to Y .
As P ′X′ ↔ Y ↔ R1shift(Y ) + S1, there exist terms T1 and U1, whose proper derivatives
are contained in those of P ′, such that:

P ′ ↔ T1 + U1(17)
T1X

′ ↔ R1shift(Y )(18)
U1X

′ ↔ S1 .(19)

As L(P ′) < L(X) (Lem. 2.7), in light of the equivalences X ↔ Y and (17), invariance of
L-value under bisimulation (Lem. 2.7) yields L(T1 + U1) < L(Y ). It follows that P ′ ≺ X′

and T1 + U1 ≺ Y . Therefore, by induction, equivalence (17) can be proven:

P ′ = T1 + U1 .(20)

Furthermore, since S′ ≺ Y for every proper derivative S′ of S1 (Lem. 3.6), and since
each derivative in the expansion of U1X

′ is ∼=-equivalent to X, we can apply the same
reasoning used in the proof of (6) to equivalence (19) to obtain

U1X
′ = S1 .(21)
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Finally, we can apply Lem. 3.11 to equivalence (18) to obtain the following two possibili-
ties:

- Case 2.2.2.1. If case I of Lem. 3.11 holds, then there are terms V1, ..., Vn, whose proper
derivatives are contained in those of T1, such that:

T1 ↔ R1(R2, ..., Rn, R1)∗(V2, ..., Vn, V1)(22)
ViX

′ ↔ Si i = 1, ..., n .(23)

By (17) and Lem. 2.7, it follows that L(T1) ≤ L(P ′) < L(X). In light of the equivalences
X ↔ Y and (22), invariance of L-value under bisimulation (Lem. 2.7), yields that

L(R1(R2, ..., Rn, R1)∗(V2, ..., Vn, V1)) < L(Y ) .

Hence, we can apply induction to equivalence (22) to obtain

T1 = R1(R2, ..., Rn, R1)∗(V2, ..., Vn, V1) .(24)

Moreover, since S′ ≺ Y for every proper derivative S′ of Si (Lem. 3.6), and since each
derivative in the expansion of ViX

′ is ∼=-equivalent to X, we can apply the same reasoning
used in the proof of (6) to derive equivalence (23):

ViX
′ = Si i = 1, ..., n .(25)

Hence, we may conclude the proof for this case thus:

X ≡ P ′X′ (20)
= (T1 + U1)X′

A4,(24),(21)
= R1(R2, ..., Rn, R1)∗(V2, ..., Vn, V1)X′ + S1

MEI2,(25)
= R1(R2, ..., Rn, R1)∗(S2, ..., Sn, S1) + S1

MEI1= Y .

- Case 2.2.2.2. If case II of Lem. 3.11 holds, then there is a k ∈ {1, ..., n} and there are
terms T2, ..., Tk and U2, ..., Uk, whose proper derivatives are contained in those of T1, such
that:

Ti ↔ Ri(Ti+1 + Ui+1) i = 1, ..., k − 1(26)
Tk ↔ Rk(27)

TkX′ ↔ Rkshiftk(Y )(28)
UiX

′ ↔ Si i = 2, ..., k .(29)

By (17) and Lem. 2.7, it follows that L(T1) ≤ L(P ′) < L(X). Since the proper derivatives
of the terms Ti are contained in those of T1, it follows that L(Ti) < L(X) for i = 2, ..., k. In
light of the equivalences X ↔ Y and (26)–(27), invariance of L-value under bisimulation
(Lem. 2.7) yields

- L(Ri(Ti+1 + Ui+1)) < L(Y ) for i = 1, ..., k − 1 and

- L(Rk) < L(Y ).

Hence, we may apply induction to equivalences (26) and (27) to infer that:

Ti = Ri(Ti+1 + Ui+1) i = 1, ..., k − 1(30)
Tk = Rk .(31)
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Reasoning as in the proof of (6), it is not hard to deduce equivalence (29):

UiX
′ = Si i = 2, ..., k .(32)

Furthermore, equivalences (27), (28), and Lem. 2.5 imply that X′ ↔ shiftk(Y ). This
equivalence can be deduced by case 2.1 of the proof:

X′ = shiftk(Y ) .(33)

We can now use these equalities to derive X = Y as follows:

X ≡ P ′X′ (20)
= (T1 + U1)X′

A4,(30),(21)
= R1(T2 + U2)X′ + S1

(30),(32)
= R1(R2(T3 + U3)X′ + S2) + S1

(30),(32)
= · · ·

(31),(32)
= R1(R2(· · · (Rk−1(RkX′ + Sk) + Sk−1) · · ·) + S2) + S1

(33)
= R1(R2(· · · (Rk−1(Rkshiftk(Y ) + Sk) + Sk−1) · · ·) + S2) + S1 .

Finally, since Rishifti(Y ) + Si
MEI1= shifti−1(Y ) for i = 1, ..., k, we can apply axiom MEI1

k times in order to reduce this last term to Y . This completes the proof for case 2.2.

∗ Case 2.3. Assume that X ≡ P ′(P1, ..., Pm)∗(Q1, ..., Qm) for some proper derivative P ′ of
Pm, and that Y ≡ R′(R1, ..., Rn)∗(S1, ..., Sn), for some proper derivative R′ of Rn. For
convenience, put X′ ≡ (P1, ..., Pm)∗(Q1, ..., Qm) and Y ′ ≡ (R1, ..., Rn)∗(S1, ..., Sn).
We proceed with the proof by analyzing the equivalence P ′X′ ↔ R′Y ′ using Lem. 2.5. By
symmetry, we may restrict ourselves to considering the following two sub-cases, depending
on whether |X′| = |Y ′| or |X′| < |Y ′|, respectively.

◦ Case 2.3.1. Assume that |X′| = |Y ′|. Then an application of Lem. 2.5 yields the equiv-
alences P ′ ↔ R′ and X′ ↔ Y ′. As L(P ′) < L(X) and L(R′) < L(Y ) (Lem. 2.7), the
inductive hypothesis yields P ′ = R′. To conclude the proof for this case, it is therefore
sufficient to note that the equality X′ = Y ′ follows from X′ ↔ Y ′ by case 2.1 of the proof.

◦ Case 2.3.2. Assume that |X′| < |Y ′|. Then an application of Lem. 2.5 yields a proper
derivative P ′′ of P ′ such that

P ′ ↔ R′P ′′

P ′′X′ ↔ Y ′ .

As L(P ′) < L(X) (Lem. 2.7), invariance of L-value under bisimulation (Lem. 2.7) yields
L(R′P ′′) < L(Y ). Then we may apply the inductive hypothesis to deduce the equality
P ′ = R′P ′′. Furthermore, P ′′X′ = Y ′ follows from the equivalence P ′′X′ ↔ Y ′ by case
2.2 of the proof. Hence, P ′X′ = R′P ′′X′ = R′Y ′.
This completes the proof for case 2.3. As we have examined all the possible forms X, Y ∈ H

may take, the proof for case 2 is complete.

We have therefore shown the completeness theorem. �

In light of Lem. 2.4, Thm. 3.12 has the following corollary.

Corollary 3.14 The axiom system E is an ω-complete axiomatization of the algebra
T(BPAme∗(A)) modulo bisimulation equivalence.

25



4 An Expressiveness Hierarchy for Multi-Exit Iteration

As shown in [8], the addition of multi-exit iteration to BPA yields a language that,
modulo bisimulation equivalence, is strictly more expressive than that obtained by aug-
menting BPA with the standard binary Kleene star. For example, if the set of actions
A contains at least two elements, then the process (a,a)∗(a, b) cannot be expressed,
modulo bisimulation equivalence, in ACP [7], and a fortiori in BPA, enriched with the
binary Kleene star (cf. Lem. 3.2.3 in op. cit.).

Let us say that a term of the form (P1, . . . , Pm)∗(Q1, . . . , Qn) has n-exit iteration. By
analogy with the aforementioned result from [8], we shall now argue that, in the presence
of a countably infinite set of actions, the sequence of k-exit iteration operations induces a
hierarchy of super-languages of BPA with a strictly increasing expressive power modulo
bisimulation equivalence. To this end, we shall show that, for every positive integer k,
there is a process over k + 1 distinct actions that can be specified using (k + 1)-exit
iteration, but not using h-exit iteration with h ≤ k.

Before embarking in the proof of this fact, we introduce some notions that will be
useful in our argument.

Definition 4.1 A non-empty sequence of transitions

P0
α1→ P1

α2→ P2 · · · αn+1→ Pn+1

is called a loop from P iff P0 ≡ Pn+1 ≡ P . The termination actions of a term P are
those actions a such that P

a→�. Finally, for every k ≥ 1, we write BPAk∗ for the set
of terms in the language (BPAme∗(A)) that may use h-exit iteration with h ≤ k.

The following lemma provides the key to our expressiveness result.

Lemma 4.2 Let k ≥ 1 and let P be a term in the language BPAk∗. Then every loop
from P traverses at most k terms with distinct, non-empty sets of termination actions.

Proof: By structural induction on P . We proceed by a case analysis on the form P may take.
The case P ≡ α is obviously vacuous because actions and variables have no loop from them.

• Case: P ≡ Q + R. By Lem. 3.5, if P ′ is a proper derivative of P ≡ Q + R, then
g(P ′) < g(P ). Moreover, again by Lem. 3.5, the function g is non-increasing with respect
to transitions. It follows that a term of the form Q + R has no loop from it. This case is
therefore vacuous.

• Case: P ≡ QR. Consider a loop

P0
α1→ P1

α2→ P2 · · · αn+1→ Pn+1

from P . Two possibilities may now arise:

1. there exists a loop
Q0

α1→ Q1
α2→ Q2 · · · αn+1→ Qn+1

from Q such that Pi ≡ QiR for every i = 0, . . . , n + 1, or
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2. there exist l ∈ {1, . . . , n} and sequences of transitions

Q ≡ Q0
α1→ Q1

α2→ Q2 · · ·Ql−1
αl→� and R ≡ Pl

αl+1→ Pl+1 · · · αn+1→ Pn+1

such that Pi ≡ QiR for i = 0, . . . , l − 1.

If the first possibility applies, then all the terms traversed by the loop from P have no
termination actions. If the second applies, then the loop from P traverses exactly the
same terms visited by the following loop from R:

R ≡ Pl
αl+1→ Pl+1 · · · αn+1→ Pn+1 ≡ P

α1→ Q1R
α2→ Q2R · · ·Ql−1R

αl→ R

and the claim follows immediately by induction.

• Case: P ≡ (Q1, . . . , Qm)∗(R1, . . . , Rh), where h ≤ k. Note, first of all, that no proper
derivative of any of the terms Ri can be traversed by a loop from P (Lem. 3.5). Thus the
only terms with non-empty sets of termination actions in loops from P are those of the
form shifti(P ) for some non-negative integer i. There are at most h terms with this form
that have distinct sets of termination actions.

�

As an immediate corollary of the above lemma, we now obtain the following result.

Corollary 4.3 Let k be a positive integer. If the set of actions A contains at least k+1
distinct actions a1, . . . , ak+1, then the process

a1
∗(a1, a2, . . . , ak+1)

cannot be specified in the language BPAk∗ modulo bisimulation equivalence.

Proof: Immediate by Lem. 4.2, because the term under consideration has a loop that traverses
k + 1 terms with distinct, non-empty sets of termination actions. �

Let now the set of actions A = {a1, a2, . . .} be countably infinite. By Cor. 4.3, it follows
that, for every k ≥ 1, the process

a1
∗(a1, a2, . . . , ak+1)

cannot be specified in the language BPAk∗ modulo bisimulation equivalence. Thus, for
every k ≥ 1, the language BPA(k+1)∗ is strictly more expressive than BPAk∗ modulo
bisimulation equivalence. This establishes the promised expressiveness hierarchy for
the collection of languages BPAk∗ (k ≥ 1).
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