
CS 6861 S24 Lectures 18–19 Coalgebraic Theory of KAT Week of March 25, 2024

In this lecture and the next we develop a coalgebraic theory of KAT, which we call Kleene coalgebra with
tests (KCT). Our treatment includes a definition of the Brzozowski derivative in the context of an automata-
theoretic formulation of KAT involving automata on guarded strings [6]. The syntactic form of the Brzozowski
derivative applies to all KAT expressions as defined in [5]. This treatment places KCT within the general
coalgebraic framework described by Bonsangue, Rutten, and Silva [1, 2]. A somewhat different approach is
given by Chen and Pucella [4].

We also give a complexity analysis of the coinductive proof principle. We show that an efficient implementa-
tion is tantamount to the construction of nondeterministic automata from the given expressions by a Kleene
construction, determinizing the two automata by a standard subset construction, and constructing a bisim-
ulation on states of the resulting deterministic automata. It follows that coinductive equivalence proofs can
be generated automatically in PSPACE. Worthington [10] has given a similar bound for equational proofs.

1 Automata on Guarded Strings

Automata on guarded strings (AGS), also known as automata with tests, were introduced in [6]. They
are a generalization of ordinary finite-state automata to include tests. An ordinary automaton with null
transitions is an AGS over the two-element Boolean algebra.

1.1 Guarded Strings

Recall that a guarded string over P,B is an alternating sequence

α0p1α1p2 · · ·αn−1pnαn,

where pi ∈ P and the αi are atoms (minimal nonzero elements) of the free Boolean algebra B generated by
B. The set of atoms is denoted At. Elements of B are called tests. Every test is equivalent to a sum of
atoms. The elements of At can be regarded either as conjunctions of literals of B (elements of B or their
negations) or as truth assignments to B. A guarded string is thus an element of (At · P)∗ · At. The set of all
guarded strings is denoted GS. Guarded strings represent the join-irreducible elements of the free KAT on
generators P,B.

1.2 Nondeterministic Automata

A nondeterministic AGS consists of a labeled directed graph with two types of transitions, action transitions
labeled with actions (elements of P) and test transitions labeled with tests (elements of B). There is a
distinguished set start of start states and a distinguished set accept of accept states.

An input to an AGS is a guarded string α0p1α1 · · ·αn−1pnαn. Intuitively, it operates as follows. It starts
with a pebble on a nondeterministically chosen start state and its input head scanning α0. In the course of
the computation, the pebble will be occupying some state s and the input head will be scanning some αi

in the input string. If i < n, it may read the next action symbol pi+1 from the input string and move the
pebble to any nondeterministically chosen state t such that there is an action transition from s to t with
label pi+1. In that case, the input head is advanced past pi+1 in the input string and is now scanning αi+1.
Alternatively, when scanning αi, it may slide the pebble along an enabled test transition at any time without
advancing the input head. A test transition is enabled if αi ≤ b, where b is the label of the transition. The
automaton accepts if it is ever scanning αn while the pebble is on an accept state. Thus the automaton

1

accepts a guarded string x if there is a directed path π from start to accept such that x ≤ e, where e is
the product of the labels of the edges along π.

Formally, a (nondeterministic) automaton on guarded strings (AGS) over P and B is a tuple

M = (Q, ∆, start, accept),

where Q is a set of states, start ⊆ Q are the start states, accept ⊆ Q are the accept states, and ∆ is the
transition function

∆ : (P+ At) → Q → 2Q,

where + denotes disjoint (marked) union.

We will define the operation of the automaton in terms of the Kleisli composition (;) on maps Q → 2Q,
defined as

(R ; S)(s)
def
=

⋃
t∈R(s)

S(t).

From this we can define powers with respect to Kleisli composition and the Kleisli asterate operation

(R0)(s)
def
= {s} Rn+1 def

= Rn ; R R∗(s)
def
=

⋃
n≥0

Rn(s).

We could have equivalently defined it in terms of binary relations, as the structures

(Q → 2Q, ; , s 7→ {s}) (2Q×Q, ; , id)

are isomorphic as monoids, where on the right, ; denotes relational composition and id is the identity relation
on Q.

The map ∆ generates a map
∆̂ : (P+ At) → Q → 2Q

defined by

∆̂α
def
= ∆†

α ∆̂p
def
= ∆p.

Intuitively, ∆̂α(s) accumulates all states accessible from s by a sequence of test transitions enabled under α.
The map ∆̂ extends further to a monoid homomorphism

∆̂ : (P+ At)∗ → Q → 2Q

from the free monoid (P+ At)∗ to the monoid Q → 2Q under Kleisli composition. Thus

∆̂ε
def
= s 7→ {s} ∆̂xy

def
= ∆̂x ; ∆̂y.

The automaton M accepts x ∈ GS if there exists s ∈ start such that ∆̂x(s) ∩ accept ̸= ∅. The set of
guarded strings accepted by M is denoted GS(M).

1.3 Deterministic Automata

The definition of deterministic AGS here differs slightly from [6] so as to conform to the coalgebraic structure
to be introduced in §2, but the difference is inessential. In [6] the set of states of a deterministic AGS is
separated into disjoint sets of action states and test states, whereas here we have not made that distinction.

2

A deterministic automaton on guarded strings (AGS) over P and B is a structure

M = (Q, δ, ε, start),

where Q is a set of states, start ∈ Q is the start state, and

δ : At · P → Q → Q ε : At → Q → 2

with components

δαp : Q → Q εα : Q → 2

for α ∈ At and p ∈ P. The components εα play the same role as the accept states in a nondeterministic
automaton.

Define the function L : Q → GS → 2 coinductively as follows:

L(u)(α)
def
= εα(u) L(u)(αpy)

def
= L(δαp(u))(y), (1)

where y ∈ GS, α ∈ At, and p ∈ P. The machine is said to accept x ∈ GS if L(start)(x) = 1. The set of
guarded strings accepted by M is denoted GS(M). Identifying a subset of GS with its characteristic function
GS → 2, we can write GS(M) = L(start).

1.4 Determinization

Nondeterministic automata on guarded strings can be determinized by a subset construction similar to that
for ordinary automata. Given a nondeterministic AGS

N = (Q, ∆, start, accept),

there is an equivalent deterministic AGS

M = (2Q, δ, ε, start),

where for A ⊆ Q,

εα(A)
def
=

{
1, if ∃s ∈ A ∆̂α(s) ∩ accept ̸= ∅,

0, otherwise
δαp(A)

def
=

⋃
s∈A

∆̂αp(s).

One can show by a straightforward induction on the length of x ∈ GS that for all A ⊆ Q,

L(A)(x) =

{
1, if ∃s ∈ A ∆̂x(s) ∩ accept ̸= ∅,

0, otherwise;

in particular,

L(start)(x) = 1 ⇔ ∃s ∈ start ∆̂x(s) ∩ accept ̸= ∅.

These are exactly the acceptance criteria for M and N respectively, so GS(M) = GS(N).

2 Kleene Coalgebra with Tests (KCT)

A Kleene coalgebra with tests (KCT) is very much like a Kleene coalgebra (KC) [8], but with the addition of
Boolean tests. Formally, a Kleene coalgebra with tests (KCT) over P and B is a structure

M = (Q, δ, ε),

3

where Q is a set of states and

δ : At · P → Q → Q ε : At → Q → 2

for α ∈ At and p ∈ P, exactly as in deterministic automata on guarded strings. Thus we can view a KCT as
simply a deterministic AGS without a designated start state. One could also say that a KCT is a coalgebra
for the functor FX = 2At ×XAt·P.

A KCT morphism h : (Q, δ, ε) → (Q′, δ′, ε′) is a set map h : Q → Q′ that commutes with δ, δ′ and ε, ε′; that
is,

δ′αp(h(u)) = h(δαp(u)) ε′α(h(u)) = εα(u).

We denote the category of KCTs and KCT morphisms over P and B also by KCT.

2.1 Brzozowski Derivative, Semantic Form

There is a natural KCT over P and B defined in terms of the Brzozowski derivative on sets of guarded strings.
The traditional Brzozowski derivative [3] is a kind of residuation operator on sets of ordinary strings. The
current form is quite similar, except that we extend the definition to accommodate tests.

We define two maps

D : At · P → 2GS → 2GS E : At → 2GS → 2,

where for A ⊆ GS,

Dαp(A)
def
= {x ∈ GS | αpx ∈ A} Eα(A)

def
=

{
1, if α ∈ A,

0, if α ̸∈ A.

It is clear that the structure

(2GS, D, E)

forms a KCT. Indeed, it is the final object in the category KCT: for any KCT (Q, δ, ε), the function
L : Q → 2GS defined in (1) is the unique KCT morphism L : (Q, δ, ε) → (2GS, D, E).

2.2 Brzozowski Derivative, Syntactic Form

As with Brzozowski’s original formulation [3], there is also a syntactic form of the Brzozowski derivative
defined on KAT expressions. Let Exp = ExpP,B, the set of KAT expressions over P and B. We define a
family of derivative operators

D : At · P → Exp → Exp E : At → Exp → 2

consisting of components

Dαp : Exp → Exp Eα : Exp → 2

defined inductively as follows. For α ∈ At, p, q ∈ P, and b ∈ B,

Dαp(e1 + e2)
def
= Dαp(e1) +Dαp(e2)

Dαp(e1e2)
def
= Dαp(e1) e2 + Eα(e1)Dαp(e2)

Dαp(e
∗)

def
= Dαp(e) e

∗

Dαp(q)
def
=

{
1, if p = q,

0, otherwise,

Dαp(b)
def
= 0.

4

Eα(e1 + e2)
def
= Eα(e1) + Eα(e2)

Eα(e1e2)
def
= Eα(e1)Eα(e2)

Eα(e
∗)

def
= 1

Eα(b)
def
=

{
1, if α ≤ b,

0, otherwise,

Eα(q)
def
= 0.

These operators on KAT expressions are collectively called the syntactic Brzozowski derivative.

The map Eα is just the evaluation morphism that for any KAT expression substitutes 0 for any p ∈ P, 1 for
any b ∈ B such that α ≤ b, and 0 for any b ∈ B such that α ≤ b, then simplifies the resulting expression over
the two-element Kleene algebra 2. It is easily shown that for any KAT expression e,

Eα(e) =

{
1, if α ≤ e,

0, if α ̸≤ e
=

{
1, if α ∈ GS(e),

0, if α ̸∈ GS(e).

The structure
(Exp, D, E)

is a KCT in the sense of §2, thus there is a unique KCT homomorphism (Exp, D, E) → (2GS, D, E) to the
final coalgebra defined in (1). We will show that this morphism is just G, the canonical interpretation of KAT
expressions as sets of guarded strings. Thus G is both a KAT homomorphism and a KCT homomorphism.

Lemma 1. For all α ∈ At, p ∈ P, and e, e′ ∈ Exp,

αpe′ ≤ e ⇔ e′ ≤ Dαp(e).

Proof. For the forward implication,

Dαp(αpe
′) = Dαp(α)pe

′ + Eα(α)Dαp(p)e
′ + Eα(α)Eα(p)Dαp(e

′) = e′.

By monotonicity of Dαp,

αpe′ ≤ e ⇒ e′ = Dαp(αpe
′) ≤ Dαp(e).

For the reverse implication, it suffices to show αpDαp(e) ≤ e. We proceed by induction on the structure of
e. For p ∈ P,

αpDαp(p) = αp ≤ p.

For the case e1e2,

αpDαp(e1e2) = αpDαp(e1)e2 + αpEα(e1)Dαp(e2)

= αpDαp(e1)e2 + αEα(e1)αpDαp(e2)

≤ e1e2.

For the case e∗,

αpDαp(e
∗) = αpDαp(e)e

∗ ≤ ee∗ ≤ e∗.

All other cases are equally straightforward.

Theorem 2. For all KAT expressions e, taking e as the start state of the automaton (Exp, D, E, e), the set
accepted by this automaton is G(e).

Proof. We wish to show that for all x ∈ GS, x ∈ G(e) iff L(e)(x) = 1, where L is the map defined in §1.3.
By the completeness theorem for KAT [7], we have x ∈ G(e) iff x ≤ e, so it suffices to show that x ≤ e iff
L(e)(x) = 1. We proceed by induction on the length of x. The basis for x an atom α is immediate from the
definition of Eα. For x = αpy, by Lemma 1,

αpy ≤ e ⇔ y ≤ Dαp(e) ⇔ L(Dαp(e))(y) = 1 ⇔ L(e)(apy) = 1.

5

3 Completeness

3.1 Bisimulation on KCTs

A bisimulation between two KCTs M = (Q, δ, ε) and M ′ = (Q′, δ′, ε′) is a binary relation ≈ ⊆ Q×Q′ such
that if s ∈ Q, t ∈ Q′, and s ≈ t, then for all α ∈ At and p ∈ P,

(i) εα(s) = ε′α(t); and

(ii) δαp(s) ≈ δ′αp(t).

Lemma 3. For s ∈ Q and t ∈ Q′,

s ≊ t
def⇔ G(s) = G(t)

is the unique maximal bisimulation between M and M ′.

Proof. It is easily shown that ≊ satisfies (i) and (ii). Moreover, if ≈ is any relation satisfying (i) and (ii), one
can show by a straightforward inductive argument that ≈ refines ≊, thus ≊ is the unique maximal relation
satisfying (i) and (ii).

An autobisimulation is a bisimulation between M and itself. Bisimulations are closed under relational
composition and arbitrary union, and the identity relation is an autobisimulation. Thus the reflexive, sym-
metric, and transitive closure of an autobisimulation is again an autobisimulation. An autobisimulation
that is so closed is called a bisimulation equivalence. Bisimulation equivalences are exactly the kernels of
KCT-morphisms.

A KCT is bisimilar to its quotient by any bisimulation equivalence under the map {(s, [s]) | s ∈ Q}, where
[s] is the bisimulation equivalence class of s. The quotient by the unique maximal autobisimulation is a
sub-coalgebra of the final coalgebra.

3.2 Bisimulation on Deterministic Automata

For deterministic automata on guarded strings M = (Q, δ, ε, start) and M ′ = (Q′, δ′, ε′, start′), we say
that they are bisimilar if there is a bisimulation ≈ between the underlying KCTs (Q, δ, ε) and (Q′, δ′, ε′)
such that start ≈ start′.

Lemma 4. M and M ′ are bisimilar iff GS(M) = GS(M ′).

Proof. Let ≊ be the maximum bisimulation relation defined in the proof of Lemma 3. If GS(M) = GS(M ′),
then L(start) = L(start′) by the definition of acceptance, therefore start ≊ start′. Then M and M ′ are
bisimilar under ≊.

Conversely, if there exists a bisimulation ≈ between M and M ′, then start ≈ start′, and by Lemma 3, ≈
refines ≊, therefore start ≊ start′. Thus ≊ is a bisimulation of automata.

The quotient of an automaton by its unique maximal autobisimulation gives the unique minimal equivalent
automaton (ignoring inaccessible states).

Theorem 5 (Completeness). The following are equivalent:

6

(i) (Exp, D, E, e) ≊ (Exp, D, E, e′);

(ii) L(e) = L(e′);

(iii) G(e) = G(e′);

(iv) KAT ⊢ e = e′.

Proof. The equivalence of (i)–(iii) follows from Theorem 2 and Lemma 4. The equivalence of (iii) and (iv)
are just the soundness and completeness of KAT for the guarded string model [7].

4 Complexity

Let Exp = ExpP,B and let e ∈ Exp. Let (Exp, D, E, e) be the syntactic automaton with start state e,
where D and E are the syntactic Brzozowski derivative. Let (Expe, D, E, e) denote the subautomaton of
(Exp, D, E, e) consisting of those expressions that are accessible from e; that is, those expressions of the
form Dx(e) for some x ∈ (At · P)∗. Theorem 5 by itself is not very useful as a deductive system or decision
procedure for equivalence, because Expe is infinite in general. However, equivalent finite systems exist. In
particular, by Theorem 5, KAT equivalence is the maximal autobisimulation on Exp. The quotient with
respect to this relation, ignoring inaccessible states, gives the minimal deterministic AGS accepting G(e),
which is finite since G(e) is regular.

To construct this automaton directly, we would need an independent algorithm to decide KAT equivalence.
Fortunately, however, we can obtain finite automata with finer congruences that are easier to decide than full
KAT equivalence. Chen and Pucella [4] use equivalence modulo additive associativity, commutativity, and
idempotence (ACI-equivalence). Here we consider equivalence modulo the axioms of idempotent commutative
monoids for +, 0 and the axioms

1 · x = x 0 · x = 0 (x+ y) · z = xz + yz. (2)

Multiplicative associativity is not assumed, nor is left distributivity. We might call structures satisfying these
axioms right presemirings. We denote by ≈ the congruence on terms generated by these axioms. We will
show that Expe /≈ has finitely many accessible classes. It is a coarser relation than ACI-equivalence, therefore
has fewer classes, but is still easy to decide, as there are normal forms up to additive commutativity. Of
course, it makes the most sense to use the coarsest relation possible that is easily decidable, because coarser
relations give smaller automata.

Because there are only finitely many ≈-classes accessible from e, the quotient automaton Expe /≈ is finite,
and we can use it to obtain finite coinductive equivalence proofs. More interestingly, we will also show that
Expe /≈ is a homomorphic image of a deterministic automaton Me obtained by creating a nondeterministic
AGS Ne from the expression e by a Kleene construction, then determinizing Ne by a subset construction
as described in §1.4. This characterization gives a bound on the size of Expe /≈, which we can then use to
argue that coinductive equivalence proofs can be generated automatically in PSPACE.

Lemma 6. The relation ≈ is a bisimulation equivalence on Exp.

Proof. We must show that if e ≈ e′, then Eα(e) = Eα(e
′) and Dαp(e) ≈ Dαp(e

′). The first conclusion follows
from Theorem 5 and the fact that ≈ refines KAT-equivalence.

For the additive axioms of idempotent commutative monoids, the second conclusion follows from the addi-
tivity of Dαp.

7

For the axioms (2),

Dαp(1x) = Dαp(1)x+ Eα(1)Dαp(x) = 0x+ 1Dαp(x) ≈ Dαp(x)

Dαp(0x) = Dαp(0)x+ Eα(0)Dαp(x) = 0x+ 0Dαp(x) ≈ Dαp(0)

Dαp((x+ y)z) = (Dαp(x) +Dαp(y))z + (Eα(x) + Eα(y))Dαp(z)

≈ Dαp(x)z + Eα(x)Dαp(z) +Dαp(y)z + Eα(y)Dαp(z)

= Dαp(xz + yz).

Finally, we must show that if e1 ≈ e2, then Dαp(e1+e3) ≈ Dαp(e2+e3), Dαp(e1e3) ≈ Dαp(e2e3), Dαp(e3e1) ≈
Dαp(e3e2), and Dαp(e

∗
1) ≈ Dαp(e

∗
2). These arguments are all quite easy. For example,

Dαp(e1e3) = Dαp(e1)e3 + Eα(e1)Dαp(e3) ≈ Dαp(e2)e3 + Eα(e2)Dαp(e3) = Dαp(e2e3)

Dαp(e
∗
1) = Dαp(e1)e

∗
1 ≈ Dαp(e2)e

∗
2 = Dαp(e

∗
2).

4.1 Closure

To establish the finiteness of the quotient automaton Expe /≈ and explain its relationship to the Kleene
construction, we derive a formal relationship between the set of accessible ≈-classes of derivatives {[Dx(e)] |
x ∈ (At · P)∗} and certain sets of terms derived from e.

For KAT term e, we define the closure of e, denoted cl(e), to be the smallest set of terms containing e and 1
and closed under the following rules:

e ∈ cl(e1)

e ∈ cl(e1 + e2)

e ∈ cl(e1)

ee2 ∈ cl(e1e2)

e ∈ cl(e1)

ee∗1 ∈ cl(e∗1)

e ∈ cl(e2)

e ∈ cl(e1 + e2)

e ∈ cl(e2)

e ∈ cl(e1e2)

e ∈ cl(b)

e ∈ cl(b)

(3)

Lemma 7. The set cl(e) contains at most |e |+ 1 elements, where |e | is the number of subterms of e.

Proof. We show by induction on e that cl′(e) contains at most |e | elements, where cl′(e) = cl(e) \ {1}. For
e ∈ P ∪ B, cl′(e) = {e}. For the other operators, from the rules (3) we have

cl′(b) = {b} ∪ cl′(b),

cl′(e1 + e2) = {e1 + e2} ∪ cl′(e1) ∪ cl′(e2),

cl′(e1e2) = {e1e2} ∪ {ee2 | e ∈ cl′(e1)} ∪ cl′(e2),

cl′(e∗1) = {e∗1} ∪ {ee∗1 | e ∈ cl′(e1)}.

The result follows.

4.2 Set Representation of Derivatives

We now construct a nondeterministic transition function ∆ on the set of states Exp+(At× Exp) as follows.
The elements of Exp are called test states and the elements of At × Exp are called action states. The test
transitions go only from test states to action states, and the action transitions go only from action states to
test states. Thus for α ∈ At and p ∈ P,

∆α : Exp → 2At×Exp ∆p : At× Exp → 2Exp.

8

The test transitions are deterministic: ∆α(e)
def
= {(α, e)}. The action transitions are defined inductively:

∆p(α, q)
def
=

{
{1}, if q ∈ P and q = p,

∅, if q ∈ P and q ̸= p or q ∈ B,

∆p(α, e1 + e2)
def
= ∆p(α, e1) ∪∆p(α, e2),

∆p(α, e1e2)
def
=

{
{ee2 | e ∈ ∆p(α, e1)} ∪∆p(α, e2), if Eα(e1) = 1,

{ee2 | e ∈ ∆p(α, e1)}, if Eα(e1) = 0,

∆p(α, e
∗
1)

def
= {ee∗1 | e ∈ ∆p(α, e1)}.

Due to the bipartite structure of the states, we have ∆̂αp = ∆α ; ∆p, where ∆̂ is the extension of ∆ defined
in §1.2. Then

∆̂αp(e) = (∆α ; ∆p)(e) =
⋃

{∆p(α, e)} = ∆p(α, e). (4)

We thus have

∆̂αp(q)
def
=

{
{1}, if q ∈ P and q = p,

∅, if q ∈ P and q ̸= p or q ∈ B,

∆̂αp(e1 + e2)
def
= ∆̂αp(e1) ∪ ∆̂αp(e2),

∆̂αp(e1e2)
def
=

{
{ee2 | e ∈ ∆̂αp(e1)} ∪ ∆̂αp(e2), if Eα(e1) = 1,

{ee2 | e ∈ ∆̂αp(e1)}, if Eα(e1) = 0,

∆̂αp(e
∗
1)

def
= {ee∗1 | e ∈ ∆̂αp(e1)}.

Lemma 8. For all KAT terms e and x ∈ (At · P)∗, ∆̂x(e) ⊆ cl(e).

Proof. We first show that for α ∈ At and p ∈ P, ∆̂αp(e) ⊆ cl(e) by induction on the structure of e. The cases
e ∈ P or e ∈ B are easy. For the other operators,

∆̂αp(e1 + e2) = ∆̂αp(e1) ∪ ∆̂αp(e2) ⊆ cl(e1) ∪ cl(e2) ⊆ cl(e1 + e2)

∆̂αp(e1e2) =

{
{ee2 | e ∈ ∆̂αp(e1)} ∪ ∆̂αp(e2), if Eα(e1) = 1

{ee2 | e ∈ ∆̂αp(e1)}, if Eα(e1) = 0

⊆ {ee2 | e ∈ cl(e1)} ∪ cl(e2) ⊆ cl(e1e2)

∆̂αp(e
∗
1) = {ee∗1 | e ∈ ∆̂αp(e1)} ⊆ {ee∗1 | e ∈ cl(e1)} ⊆ cl(e∗1).

For arbitrary x ∈ (At · P)∗, we proceed by induction on the length of x. The base case x = ε is easy and the
case x = αp is given by the previous argument. For x ̸= ε and y ̸= ε,

∆̂xy(e) = (∆̂x ; ∆̂y)(e) =
⋃

{∆̂y(d) | d ∈ ∆̂x(e)} ⊆
⋃

{cl(d) | d ∈ cl(e)} = cl(e).

Lemma 9. For all KAT terms e and x ∈ (At · P)∗, Dx(e) ≈
∑

∆̂x(e).

Proof. We first show that for α ∈ At and p ∈ P, Dαp(e) ≈
∑

∆̂αp(e) by induction on the structure of e. For
q ∈ P, we have

Dαp(q) =

{
1, if p = q

0, if p ̸= q
=

{∑
{1}, if p = q∑
∅, if p ̸= q

=
∑

∆̂αp(q).

9

For b ∈ B,

Dαp(b) = 0 =
∑

∅ =
∑

∆̂αp(b).

For the other operators,

Dαp(e1 + e2) = Dαp(e1) +Dαp(e2) ≈
∑

∆̂αp(e1) +
∑

∆̂αp(e2)

≈
∑

(∆̂αp(e1) ∪ ∆̂αp(e2)) =
∑

∆̂αp(e1 + e2),

Dαp(e1e2) = Dαp(e1)e2 + Eα(e1)Dαp(e2)

≈ (
∑

∆̂αp(e1))e2 + Eα(e1)
∑

∆̂αp(e2)

≈

{∑
{ee2 | e ∈ ∆̂αp(e1)}+

∑
∆̂αp(e2), if Eα(e1) = 1∑

{ee2 | e ∈ ∆̂αp(e1)}, if Eα(e1) = 0

≈

{∑
({ee2 | e ∈ ∆̂αp(e1)} ∪ ∆̂αp(e2)), if Eα(e1) = 1∑
{ee2 | e ∈ ∆̂αp(e1)}, if Eα(e1) = 0

=
∑

∆̂αp(e1e2),

Dαp(e
∗
1) = Dαp(e1)e

∗
1 ≈ (

∑
∆̂αp(e1))e

∗
1

≈
∑

{ee∗1 | e ∈ ∆̂αp(e1)} =
∑

∆̂αp(e
∗
1).

Now we show the result for arbitrary x ∈ (At ·P)∗ by induction on the length of x. The case x = ε is trivial,
and the case x = αp is given by the previous argument. Finally, for x ̸= ε and y ̸= ε,

Dxy(e) = Dy(Dx(e))

≈ Dy(
∑

∆̂x(e)) by Lemma 6

=
∑

{Dy(d) | d ∈ ∆̂x(e)}

≈
∑

{
∑

∆̂y(d) | d ∈ ∆̂x(e)} ≈
∑⋃

{∆̂y(d) | d ∈ ∆̂x(e)}

=
∑

(∆̂x ; ∆̂y)(e) =
∑

∆̂xy(e).

Theorem 10. The automaton Expe /≈ has at most 2|e |+1 accessible states.

Proof. The accessible states of Expe /≈ are {[Dx(e)] | x ∈ (At ·P)∗}, where [d] is the congruence class of d
modulo ≈. The stated bound follows from Lemmas 7, 8, and 9.

4.3 Brzozowski Meets Kleene

It is possible to obtain Expe /≈ by a Kleene construction to obtain a nondeterministic AGS Ne with finitely
many states, then apply the construction of §1.4 to obtain a deterministic automaton Me with at most 2|e |+1

states. The automaton Expe /≈ is a homomorphic image of Me. A version of Kleene’s theorem for KAT terms
and automata on guarded strings has been described previously in [6], but the current treatment parallels
more closely Brzozowski’s original treatment for ordinary regular expressions [3] and aligns with the general
coalgebraic structure of [1, 2].

10

Define the nondeterministic automaton

Ne
def
= (Q, ∆, start, accept),

where the set of states Q is the disjoint union cl(e) + (At× cl(e)), the transition function ∆ is that defined
in §4.2, and the start and accept states are

start def
= {e} accept def

= {(α, d) | Eα(d) = 1}.

That ∆α maps cl(e) to 2At×cl(e) is immediate from the definition of ∆α, and that ∆p maps At×cl(e) to 2cl(e)

is guaranteed by (4) and Lemma 8.

Now let

Me
def
= (2cl(e), δ, ε, start)

be the deterministic automaton obtained from Ne by the subset construction as described in §1.4. The start
state of Me is {e}, and δ and ε are given by

δαp(A) =
⋃
d∈A

∆̂αp(d) εα(A) =

{
1, if ∃d ∈ A Eα(d) = 1,

0, otherwise.

Note that the accessible states are all of the form A ⊆ cl(e), thus by Lemma 7, Me has at most 2|e |+1

accessible states.

Theorem 11. For A ⊆ Exp, the map A 7→ (
∑

A)/≈ is a KCT homomorphism. Ignoring inaccessible states,
the quotient automaton Expe /≈ is the image of Me under this map.

Proof. We must show that the function A 7→
∑

A maps the start state of Me to the start state of Expe, and
that this function is a bisimulation modulo ≈. For δ,∑

δαp(A) =
∑⋃

{∆̂αp(d) | d ∈ A}

≈
∑

{
∑

∆̂αp(d) | d ∈ A}

≈
∑

{Dαp(d) | d ∈ A} by Lemma 9

= Dαp(
∑

A),

therefore

(
∑

δαp(A))/≈ = (Dαp(
∑

A))/≈ = Dαp((
∑

A)/≈).

For ε,

εα(A) =

{
1, if ∃d ∈ A Eα(d) = 1

0, otherwise
= Eα(

∑
A) = Eα((

∑
A)/≈).

The map also preserves start states:

{e} 7→ (
∑

{e})/≈ = e/≈.

Thus the map A 7→ (
∑

A)/≈ is a KCT-morphism mapping Me to Expe /≈.

11

4.4 Automatic Proof Generation in PSPACE

The results of Sections 4.2 and 4.3 give rise to a nondeterministic linear-space algorithm for deciding the
equivalence of two given KAT terms. By Savitch’s theorem [9], there is a deterministic quadratic-space algo-
rithm. The deterministic algorithm can be used to create bisimulation proofs of equivalence or inequivalence
automatically.

To obtain the linear space bound, we first show that each element of cl(e) corresponds to an occurrence of a
subterm of e. This lets us use the occurrences of subterms of e as representatives for the elements of cl(e).
To define the correspondence, we view terms as labeled trees; that is, as partial functions

e : ω∗ ⇀ P ∪ B ∪ {+, ·, ∗, , 0, 1}

with domain of definition dom e ⊆ ω∗ such that

• dom e is finite, nonempty, and prefix-closed;

• if σ ∈ dom e and e(σ) is of arity n, then σi ∈ dom e iff i < n. The arities of elements of P and B are 0
and those of +, ·, ∗, , 0, 1 are 2, 2, 1, 1, 0, 0, respectively.

An occurrence of a subterm of e is identified by its position σ ∈ dom e. The subterm at position σ is λτ.e(στ),
and its domain is {τ | στ ∈ dom e}.

Define a partial function R : ω∗ × Exp → Exp inductively by

R(0σ, e1 + e2)
def
= R(σ, e1) R(0σ, e1e2)

def
= R(σ, e1) · e2

R(1σ, e1 + e2)
def
= R(σ, e2) R(1σ, e1e2)

def
= R(σ, e2)

R(0σ, e∗)
def
= R(σ, e) · e∗ R(ε, e)

def
= e.

One can show by induction that R(σ, e) is defined iff σ ∈ dom e, and that a term is in cl(e) iff it is either 1
or R(σ, e) for some σ ∈ dom e.

Now we show how to construct coinductive equivalence and inequivalence proofs for two given terms e1 and
e2. Construct the two nondeterministic AGS Ne1 and Ne2 as described in §4.3, representing the states by
dom e1 and dom e2, respectively (assume without loss of generality that 1 = R(σ, e1) = R(τ, e2) for some σ
and τ). If we like, we can also reduce terms modulo ≈, so that if R(σ, e1) ≈ R(τ, e1), we only need one of σ,
τ .

Place pebbles on the start states of the two automata. Nondeterministically guess a string y ∈ (At · P)∗ and
move the pebbles to all accessible states according to the transition functions of the two machines. Halt and
declare e1 and e2 inequivalent if there exists α ∈ At such that

Eα(
∑
τ∈A

R(τ, e1)) ̸= Eα(
∑
ρ∈B

R(ρ, e2)),

where A and B are the sets of states of Ne1 and Ne2 , respectively, currently occupied by pebbles; we have
found a guarded string x = yα accepted by one but not by the other, since

L(e1)(x) = Eα(Dy(e1)) = Eα(
∑
τ∈A

R(τ, e1))

L(e2)(x) = Eα(Dy(e2)) = Eα(
∑
ρ∈B

R(ρ, e2)),

therefore L(e1)(x) ̸= L(e2)(x).

12

Once we can decide equivalence in quadratic space, we can produce a bisimulation proof of equivalence in
the same amount of space. We first produce the deterministic automata Me1 and Me2 equivalent to Ne1 and
Ne2 . The states of Me1 and Me2 are represented by the powersets of dom e1 and dom e2, respectively. These
sets are of exponential size, but they can be generated sequentially in linear space. The transition function
is the action on subsets as defined in §1.4, and this can also be generated in linear space.

Now we attempt to construct the maximal bisimulation between the two deterministic automata. We iterate
through all pairs of states, testing equivalence of each pair as described above. If the states are equivalent,
we output the pair as bisimilar. The set of pairs that are ever output is the maximal bisimulation.

In case e1 and e2 are not equivalent, a witness for inequivalence can also be produced in PSPACE. A witness
for inequivalence is a guarded string x accepted by one automaton but not the other. The shortest such
string can be exponentially long in the worst case, but can be produced in the same way that one would
produce an exponential-length accepting computation of a nondeterministic linear-space Turing machine, by
a straightforward modification of the proof of Savitch’s theorem [9].

References

[1] Marcello M. Bonsangue, Jan J. M. M. Rutten, and Alexandra M. Silva. Regular expressions for polyno-
mial coalgebras. Technical Report SEN-E0703, Centrum voor Wiskunde en Informatica, Amsterdam,
December 2007.

[2] Marcello M. Bonsangue, Jan J. M. M. Rutten, and Alexandra M. Silva. A Kleene theorem for polynomial
coalgebras. Manuscript, May 2008.

[3] Janusz A. Brzozowski. Derivatives of regular expressions. J. Assoc. Comput. Mach., 11(4):481–494,
October 1964.

[4] Hubie Chen and Riccardo Pucella. A coalgebraic approach to Kleene algebra with tests. Electronic
Notes in Theoretical Computer Science, 82(1), 2003.

[5] Dexter Kozen. Kleene algebra with tests. ACM Trans. Programming Languages and Systems
(TOPLAS’97), 19(3):427–443, May 1997.

[6] Dexter Kozen. Automata on guarded strings and applications. Matématica Contemporânea, 24:117–139,
2003.

[7] Dexter Kozen and Frederick Smith. Kleene algebra with tests: Completeness and decidability. In D. van
Dalen and M. Bezem, editors, Proc. 10th Int. Workshop Computer Science Logic (CSL’96), volume
1258 of Lecture Notes in Computer Science, pages 244–259, Utrecht, The Netherlands, September 1996.
Springer-Verlag.

[8] J. Rutten. Universal coalgebra: a theory of systems. Theor. Comput. Sci., 249:3–80, 2000.

[9] W. Savitch. Relationship between nondeterministic and deterministic tape complexities. J. Comput.
Syst. Sci., 4(2):177–192, 1970.

[10] James Worthington. Automatic proof generation in Kleene algebra. In R. Berghammer, B. Möller, and
G. Struth, editors, 10th Int. Conf. Relational Methods in Computer Science (RelMiCS10) and 5th Int.
Conf. Applications of Kleene Algebra (AKA5), volume 4988 of Lect. Notes in Computer Science, pages
382–396. Springer-Verlag, 2008.

13

	Automata on Guarded Strings
	Guarded Strings
	Nondeterministic Automata
	Deterministic Automata
	Determinization

	Kleene Coalgebra with Tests (KCT)
	Brzozowski Derivative, Semantic Form
	Brzozowski Derivative, Syntactic Form

	Completeness
	Bisimulation on KCTs
	Bisimulation on Deterministic Automata

	Complexity
	Closure
	Set Representation of Derivatives
	Brzozowski Meets Kleene
	Automatic Proof Generation in PSPACE

