
CS 6861 S24 Lecture 11 Completeness of Kleene Algebra February 29, 2024

Here we finish up the program begun in the previous few lectures to show the completeness of Kleene algebra
for the equational theory of the regular sets.

As in the previous lectures, we will make extensive use of the bisimulation, sliding, and denesting rules:

xy = yz ⇒ x∗y = yz∗ (1)
(xy)∗x = x(yx)∗ (2)

(x+ y)∗ = x∗(yx∗)∗. (3)

The following two results are algebraic analogs of the determinization of automata via the subset construction
and the minimization of deterministic automata via the collapsing of equivalent states under a Myhill-Nerode
equivalence relation. The original combinatorial versions of these results are due to Rabin and Scott [7] and
Myhill and Nerode [5, 6] respectively; see [1, 3, 4] for an elementary exposition. The construction here is
from [2].

Lemma 1. Let FΣ be the free KA on generators Σ. For every simple ε-free automaton (u,A, v) over FΣ,
there is an equivalent deterministic automaton (û, Â, v̂) over FΣ. That is, uTA∗v = ûT Â∗v̂.

Proof. We model the subset construction algebraically. Let (u,A, v) be a simple ε-free automaton with states
Q. Since (u,A, v) is simple, A can be expressed as a sum

A =
∑
a∈Σ

a ·Aa, (4)

where each Aa is a matrix over the two-element KA {0, 1}.

Let 2Q denote the power set of Q. We identify elements of 2Q with their characteristic vectors in {0, 1}n.
For each s ∈ 2Q, let es be the 2Q × 1 vector with 1 in position s and 0 elsewhere.

Let X be the 2Q ×Q matrix whose sth row is sT ; that is,

eTs X = sT . (5)

For each a ∈ Σ, let Âa be the 2Q × 2Q matrix whose sth row is esTAa
; in other words,

eTs Âa = eTsTAa
. (6)

Let

û = eu Â =
∑
a∈Σ

a · Âa v̂ = Xv. (7)

The automaton (û, Â, v̂) is simple and deterministic.

The relationship between A and Â is expressed succinctly by the equation

XA = ÂX. (8)

Intuitively, this says that the actions of the two automata in the two spaces KQ and K2Q commute with the
projection X. To prove (8), observe that for any s ∈ 2Q, by (5) and (6) we have

sTAa = eTsTAa
X = eTs ÂaX,
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thus by (5), (4), and (7) we have

eTs XA = sTA =
∑
a∈Σ

a · sTAa =
∑
a∈Σ

a · eTs ÂaX = eTs ÂX.

By (8) and (1) (or rather its extension to nonsquare matrices as described in Lecture ??), we have XA∗ =

Â∗X. The theorem now follows: using (7) and (5),

ûT Â∗v̂ = eTu Â
∗Xv = eTuXA∗v = uTA∗v.

Lemma 2. Let (u,A, v) be a simple deterministic automaton, and let (u,A, v) be the equivalent minimal
deterministic automaton obtained from the classical state minimization procedure. Then

uTA∗v = uTA
∗
v.

Proof. In the combinatorial approach, the unique minimal automaton is obtained as a quotient by a Myhill-
Nerode equivalence relation after removing inaccessible states. We simulate this construction algebraically.

Let Q denote the set of states of (u,A, v). For q ∈ Q, let eq ∈ {0, 1}Q denote the vector with 1 in position q
and 0 elsewhere. Since (u,A, v) is simple, A can be written as a sum

A =
∑
a∈Σ

a ·Aa,

where the Aa are 0-1 matrices. For each a ∈ Σ and p ∈ Q, let δ(p, a) be the unique state in Q such that the
pth row of Aa is eTδ(p,a); that is,

eTp Aa = eTδ(p,a).

The state δ(p, a) exists and is unique since the automaton is deterministic.

First we show how to get rid of inaccessible states. A state q is accessible if

uTA∗eq ̸= 0,

otherwise it is inaccessible. Let R be the set of accessible states and let U = Q−R be the set of inaccessible
states. Partition A into four submatrices ARR, ARU , AUR, and AUU such that for S, T ∈ {R,U}, AST is the
S × T submatrix of A. Then ARU is the zero matrix, otherwise a state in U would be accessible. Similarly,
partition the vectors u and v into uR, uU , vR and vU . The vector uU is the zero vector, otherwise a state in
U would be accessible. We have

uTA∗v =
[
uT
R 0

]
·
[

ARR 0
AUR AUU

]∗
·
[

vR
vU

]

=
[
uT
R 0

]
·
[

A∗
RR 0

A∗
UUAURA

∗
RR A∗

UU

]
·
[

vR
vU

]
= uT

RA
∗
RRvR.

Moreover, the automaton (uR, ARR, vR) is simple and deterministic, and all states are accessible.

Assume now that (u,A, v) is simple and deterministic and all states are accessible. An equivalence relation
≡ on Q is called Myhill-Nerode if

p ≡ q ⇒ δ(p, a) ≡ δ(q, a), a ∈ Σ p ≡ q ⇒ eTp v = eTq v. (9)

In combinatorial terms, ≡ is Myhill-Nerode if it is respected by the action of the automaton under any input
symbol a ∈ Σ, and the set of final states is a union of ≡-classes.
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Let ≡ be any Myhill-Nerode equivalence relation, and let

[p]
def
= {q ∈ Q | q ≡ p} Q/≡ def

= {[p] | p ∈ Q}.

For [p] ∈ Q/≡, let e[p] ∈ {0, 1}Q/≡ denote the vector with 1 in position [p] and 0 elsewhere. Let Y be the
Q×Q/≡ matrix whose [p]th column is the characteristic vector of [p]; that is,

eTp Y = eT[p].

For each a ∈ Σ, let Aa be the Q/≡×Q/≡ matrix whose [p]th row is e[δ(p,a)]; that is,

eT[p]Aa = eT[δ(p,a)].

The matrix Aa is well-defined by the left-hand implication of (9). Let

A =
∑
a∈Σ

a ·Aa uT = uTY.

Also, let v ∈ {0, 1}Q/≡ be the vector such that

eT[p]v = eTp v.

The vector v is well-defined by the right-hand implication of (9). Note also that

eTp Y v = eT[p]v = eTp v,

therefore Y v = v. The automaton (u,A, v) is simple and deterministic.

As in the proof of Lemma 1, the actions of A and A commute with the linear projection Y :

AY = Y A. (10)

To prove (10), observe that for any p ∈ Q,

eTp AY =
∑
a∈Σ

a · eTp AaY =
∑
a∈Σ

a · eTδ(p,a)Y =
∑
a∈Σ

a · eT[δ(p,a)] =
∑
a∈Σ

a · eT[p]Aa =
∑
a∈Σ

a · eTp Y Aa = eTp Y A.

Now by (10) and (1), we have A∗Y = Y A
∗
, therefore

uTA
∗
v = uTY A

∗
v = uTA∗Y v = uTA∗v.

Lemma 3. Let p be an invertible element of a Kleene algebra with inverse p−1. Then

p−1x∗p = (p−1xp)∗.

Proof. We have

x∗p = (pp−1x)∗p = p(p−1xp)∗

by the sliding rule (2). The result follows by multiplying on the left by p−1.

Theorem 4 (Completeness). Let e1 and e2 be two regular expressions over Σ denoting the same regular set.
Then e1 = e2 is a theorem of Kleene algebra.
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Proof. Let A = (s,A, t) and B = (u,B, v) be minimal deterministic finite automata over FΣ such that

RΣ(e1) = RΣ(s
TA∗t) RΣ(e2) = RΣ(u

TB∗v).

By Lemmas ??, 1, and 2, we have

e1 = sTA∗t e2 = uTB∗v

as theorems of Kleene algebra. Since RΣ(e1) = RΣ(e2), by the uniqueness of minimal automata, A and B
are isomorphic. Let P be a permutation matrix giving this isomorphism. Then

A = PTBP s = PTu t = PT v.

Using Lemma 3, we have

e1 = sTA∗t = (PTu)T (PTBP )∗(PT v) = uTP (PTBP )∗PT v = uTPPTB∗PPT v = uTB∗v = e2.
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