
CS 6861 S24 Lectures 5–6 Axiomatizations of KA Week of February 5, 2024

There has been some disagreement regarding the proper axiomatization of Kleene algebra. Many inequivalent
axiomatizations have been proposed [5, 7, 8, 16, 17], all serving roughly the same purpose. It is important
to understand the relationships between these classes in order to extract the axiomatic essence of Kleene
algebra. In the next two lectures we present some of these alternative axiomatizations and discuss the
relationships among them. But be forewarned: some of these approaches are inelegant, ambiguous, or even
incorrect.

Recall that our official definition is that a Kleene algebra is an idempotent semiring satisfying

1 + xx∗ ≤ x∗ (1)
1 + x∗x ≤ x∗ (2)

b+ ax ≤ x ⇒ a∗b ≤ x (3)
b+ xa ≤ x ⇒ ba∗ ≤ x. (4)

Star-Continuity

A Kleene algebra is called star-continuous (or sometimes star-complete) if it satisfies the axiom

xy∗z = sup
n≥0

xynz, (5)

where y0 = 1, yn+1 = yyn, and sup refers to the supremum or least upper bound with respect to the natural
order x ≤ y

def
= x+y = y. This property says that the (possibly infinite) set {xynz | n ≥ 0} has a least upper

bound with respect to ≤, and that least upper bound is xy∗z. The property (5) is called star-continuity.
Star-continuous Kleene algebras have been used to model programs in Dynamic Logic [7].

Every star-continuous idempotent semiring is a Kleene algebra, since one can easily show that in any idem-
potent semiring, the star-continuity condition (5) implies the axioms (1)–(4) of Kleene algebra. However, as
we shall see later, there exist Kleene algebras that are not star-continuous, although most naturally occurring
ones are.

The property (5) is actually an infinitary condition. It is equivalent to infinitely many inequalities

xynz ≤ xy∗z, n ≥ 0, (6)

which together say that xy∗z is an upper bound for all xynz, n ≥ 0, along with the infinitary Horn formula

(
∧
n≥0

(xynz ≤ w)) ⇒ xy∗z ≤ w, (7)

which says that it is the least such upper bound.

Another way to view (5) is as a combination of the statement that y∗ is the supremum of yn, n ≥ 0, along
with two infinitary distributivity properties, one on the left and one on the right.

To show that every star-continuous idempotent semiring is a Kleene algebra, we first show that (1) holds.

1 + xx∗ = 1 + sup
n

xxn = x0 + sup
n

xn+1 = sup
n

xn = x∗.

The general property we have used in the third step is that if A and B are any subsets of an upper semilattice
such that supA and supB exist, then supA ∪ B exists and is equal to supA + supB. The proof of (2) is
symmetric.
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To show (3), assume that b + ax ≤ x. We would like to show that a∗b ≤ x. By star-continuity, it suffices
to show that for all n ≥ 0, anb ≤ x. This is easily shown by induction on n. For the basis n = 0, we have
a0b = b ≤ x from our assumption. Now assuming anb ≤ x, we have an+1b = aanb ≤ ax by monotonicity,
and ax ≤ x by our assumption. Again, the proof of (4) is symmetric.

Closed Semirings

In the design and analysis of algorithms, a related family of structures called closed semirings form an
important algebraic abstraction. They give a unified framework for deriving efficient algorithms for transitive
closure and all-pairs shortest paths in graphs and constructing regular expressions from finite automata
[1, 11, 19]. Very fast algorithms for all these problems can be derived as special cases of a single general
algorithm over an arbitrary closed semiring.

Closed semirings are defined in terms of a countable summation operator
∑

as well as ·, 0, and 1; the
operator ∗ is defined in terms of

∑
. Under the operations of (finite) +, ·, ∗, 0, and 1, any closed semiring is

a star-continuous Kleene algebra. In fact, in the treatment of [1, 11], the sole purpose of
∑

seems to be to
define ∗. A more descriptive name for closed semirings might be ω-complete idempotent semirings.

We will define a closed semiring to be an idempotent semiring in which every countable set A has a supremum∑
A with respect to the natural order ≤, and such that for any countable set A,

x · (
∑

A) · z =
∑
y∈A

xyz. (8)

The presence of x and z in (8) ensure a kind of infinite distributivity property on the left and right.

In any closed semiring, one can define ∗ by

x∗ def
=

∑
n≥0

xn,

where x0 = 1 and xn+1 = xxn. By infinite distributivity,

xy∗z =
∑
n

xynz,

thus any closed semiring is a star-continuous Kleene algebra.

The regular sets RegΣ do not form a closed semiring: if A is nonregular, the countable set {{x} | x ∈ A}
has no supremum. However, the power set of Σ∗ does form a closed semiring.

Similarly, the family of all binary relations on a set forms a closed semiring under the relational operations
described in Lecture 4 and set union for

∑
.

Our definition of closed semiring as given above is somewhat stronger than those found in the literature on
design and analysis of algorithms [1, 11]. In those works, the operator

∑
is not viewed as a supremum, but

as an infinitary summation operator. According to [1], a closed semiring is an idempotent semiring equipped
with a summation operator

∑
defined on countable sequences (not sets) that satisfies infinitary associativity

and distributivity. Infinitary idempotence and commutativity are not assumed. Also, the relation between
the between finitary + and infinitary

∑
is not explicitly mentioned in [1], but can be inferred from the use of

the notation x0 + x1 + x2 + · · · for the infinitary sum and infinitary associativity. The element x∗ is defined
to be 1 + x+ x2 + · · · .

Infinitary associativity is defined as follows. If (xn | n ≥ 0) is any countable sequence of elements, then for
any way of partitioning the index set N into intervals, the sum

∑
i xi is the same as the sum of the sums of

the intervals. If an interval is finite, then its sum is computed with +. If an interval is infinite, then its sum
is computed with

∑
. Note that any such partition must consist either of
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• infinitely many finite intervals, or

• finitely many intervals, all of which are finite except the last, which is infinite.

Infinitary distributivity says that

x · (
∑
i

yi) · z =
∑

xyiz.

This is not the same as (8), since it says nothing about suprema.

The axiomatization in [11] postulates infinitary commutativity as well. Infinitary commutativity says that
for any partition of the index set (not necessarily into intervals), the sum of the sums of the partition elements
is the same as the sum of the original sequence.

Infinitary idempotence says that if all xi = x, then
∑

i xi = x. This does not follow from the axiomatizations
of [1, 11], nor does the equation x∗∗ = x∗. It can be shown that 0∗ = 1, but not that 1∗ = 1.

To see this, consider an idempotent semiring with elements N ∪ {∞}. Define finitary addition + to be max
in the natural order on N, with ∞ being the largest element. Multiplication is ordinary multiplication in N,
extended to ∞ as follows:

∞ · x = x · ∞ def
=

{
0, if x = 0,

∞, otherwise.

The constants 0 and 1 in the semiring are the natural numbers 0 and 1, respectively.

To define
∑

in this algebra, define the support of an infinite sequence x = (xn | n ≥ 0) to be the set

suppx
def
= {n | xn ̸= 0}.

We define ∑
n

xn
def
=

{∑
n∈supp x xn, if suppx is finite,

∞, otherwise.

One can show that infinitary associativity, commutativity, and distributivity are satisfied, and 0∗ = 1.
However, 0∗∗ = 1∗ = ∞, so

∑
is not idempotent (since 1∗ = 1 + 1 + 1 + · · · ) and 0∗∗ ̸= 0∗.

It is conjectured that the axiomatization of [1] does not imply infinitary commutativity. In particular, it is
conjectured that

x0 + x1 + x2 + · · · = (x0 + x2 + x4 + · · · ) + (x1 + x3 + x5 + · · · )

is not provable.

One can show that our official definition of closed semirings in terms of suprema of countable sets and
infinitary distributivity is equivalent to a countable summation operator

∑
satisfying infinitary associa-

tivity, commutativity, idempotence, and distributivity. Surely supremum is associative, commutative, and
idempotent, and the axiom (8) gives distributivity as well.

Conversely, if
∑

is infinitely associative, commutative, and idempotent, then its value on a given sequence
is independent of the order and multiplicity of elements occurring in the sequence. Thus we might as well
define

∑
on finite or countable subsets instead of sequences. In this view,

∑
gives the supremum with

respect to the natural order ≤. To see this, let A be a nonempty finite or countable set of elements. If x ∈ A,
then

x+
∑

A =
∑

(A ∪ {x}) =
∑

A,
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thus x ≤
∑

A; and if x ≤ y for all x ∈ A, then x+ y = y for all x ∈ A, thus

(
∑

A) + y = (
∑
x∈A

x) + (
∑
x∈A

y) =
∑
x∈A

(x+ y) =
∑
x∈A

y = y,

therefore ∑
A ≤ y.

Thus
∑

gives the supremum of countable sets.

Conway’s Hierarchy

Closed semirings and star-continuous Kleene algebras are strongly related to several classes of algebras
defined by Conway in his 1971 monograph [5]. Conway’s S-algebras are similar to closed semirings, except
that arbitrary sums, not just countable ones, are permitted. A better name for S-algebras might be complete
idempotent semirings. These structures also make an appearance in the theory of point-free topology under
the name unital quantales. In Conway’s treatment, the operation ∗ is defined as in closed semirings in terms
of

∑
, and again this seems to be the main purpose of

∑
.

Conway’s N-algebras are algebras of signature (+, ·, ∗, 0, 1) that are subsets of S-algebras containing 0 and
1 and closed under (finite) +, ·, and ∗. We will show later that the classes of N-algebras and star-continuous
Kleene algebras coincide.

An R-algebra is any algebra of signature (+, ·, ∗, 0, 1) satisfying the equational theory of the N-algebras.

According to the definition in [5], an S-algebra

(S,
∑

, ·, 0, 1)

is similar to a closed semiring, except that
∑

is defined not on sequences but on multisets of elements of S. A
multiset is a set whose elements have multiplicity; equivalently, it is an equivalence class of sequences, where
two sequences are considered equivalent if one is a permutation of the other. In other words, a multiset is like
a sequence, except that we ignore the order of the elements. However, there is no cardinality restriction on
the multiset. One consequence of this approach is that

∑
is too big to be represented in Zermelo-Fraenkel

set theory! Since
∑

is a function that must be defined on multisets of arbitrary cardinality, it cannot be a
set itself. However, as with closed semirings, the value that

∑
takes on a given multiset is independent of the

multiplicity of the elements, so
∑

might as well be defined on subsets of S instead of multisets. So defined,∑
A gives the supremum of A with respect to the order ≤. We will also assume the axiom

∑
{a} = a, which

is omitted in [5].

Thus, the only essential difference between S-algebras and closed semirings is that closed semirings are
only required to contain suprema of countable sets, whereas S-algebras must contain suprema of all sets.
Thus every S-algebra is automatically a closed semiring and every continuous semiring morphism (semiring
morphism preserving all suprema) is automatically ω-continuous (preserves all countable suprema), and these
notions coincide on countable algebras.

In a subsequent lecture we will show some very strong relationships among these classes of algebras. We will
eventually show that the R-algebras, Kleene algebras, star-continuous Kleene algebras (a.k.a. N-algebras),
closed semirings, and S-algebras each contain the next in the list, and all inclusions are strict. Moreover, each
star-continuous Kleene algebra extends in a canonical way to a closed semiring, and each closed semiring to
an S-algebra, by a construction known as ideal completion.

Other Approaches

There are many other approaches besides these, which we will not consider in this course.
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Many authors consider Kleene algebra as synonymous with relation algebra and are not opposed to adding
other relational operators such as residuation and complementation. Relation algebras were first studied by
Tarski and his students and colleagues [6, 14, 15, 20]; see also [9, 12, 13, 18]. Bloom and Ésik [2–4] study a
related structure called iteration theories.

In [16, 17], Pratt gives two definitions of Kleene algebras in the context of dynamic algebra. In [16], Kleene
algebras are defined to be the Kleenean component of separable dynamic algebras; in [17], this class is
enlarged to contain all subalgebras of such algebras.

Generalizations of Kleene’s and Parikh’s Theorems have been given by Kuich [10] in ℓ-complete semirings,
which are similar to S-algebras in all respects except that idempotence of

∑
is replaced by a weaker condition

called ℓ-completeness.

Characterizing the Equational Theory

Most of the early work on Kleene algebra was directed toward characterizing the equational theory of the
regular sets. These are equations such as (x + y)∗ = x∗(yx∗)∗ and x(yx)∗ = (xy)∗x that hold under the
standard interpretation of regular expressions as regular sets of strings.

It turns out that this theory is quite robust and can be characterized in many different ways. We have
defined several different but related classes of algebras: Kleene algebras, star-continuous Kleene algebras,
closed semirings, and Conway’s S-algebras, N-algebras, and R-algebras, all defined axiomatically, as well as
relational and language-theoretic algebras defined model-theoretically. All these classes of models have the
same equational theory over the signature +, ·, ∗, 0, 1 of Kleene algebra, and it is the same as the equational
theory of the regular sets.

Let us say more carefully what we are talking about. Let F denote the signature +, ·, ∗, 0, 1 of Kleene
algebra. In general, a signature consists of a set of function symbols and their arities (number of inputs);
for KA, the symbols are +, ·, ∗, 0, 1 with arities 2, 2, 1, 0, 0, respectively. An F -algebra is any structure

C = (|C |,+C , ·C , ∗C , 0C , 1C)

of signature F . Here |C | is a set, called the carrier of C, with distinguished binary operations +C : |C |2 →
|C | and ·C : |C |2 → |C |, a distinguished unary operation ∗C : |C | → |C |, and distinguished constants
0C ∈ |C | and 1C ∈ |C |. The structure C need not satisfy the axioms of Kleene algebra; indeed, it need not
satisfy any equations at all.

The set of regular expressions ExpΣ over an alphabet Σ forms an F -algebra. The elements of ExpΣ are
just the well-formed terms over variables Σ and operators +, ·, ∗, 0, 1. The distinguished operations are
the syntactic ones; for example, +ExpΣ is the binary operation that takes regular expressions s and t and
produces the regular expression s + t. This F -algebra satisfies no equations except identities s = s; for
example, (s+ t) + u ̸= s+ (t+ u) in this algebra, since they are two different terms.

For any two F -algebras C and D, a homomorphism from C to D is a map h : C → D that commutes with all
the distinguished operations and constants of F . For the signature of KA, this means that for all x, y ∈ C,

h(x+C y) = h(x) +D h(y) h(x ·C y) = h(x) ·D h(y)

h(x∗C) = h(x)∗D h(0C) = 0D h(1C) = 1D.
(9)

Here the operators and constants on the left-hand sides are interpreted in C and those on the right-hand
sides in D. A homomorphism h is

• an epimorphism if it is surjective (onto); that is, if for all y ∈ D, there exists an x ∈ C such that
h(x) = y;
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• a monomorphism if it is injective (one-to-one); that is, if for all x, y ∈ C, if h(x) = h(y) then x = y;

• an isomorphism if it is both an epimorphism and a monomorphism.

An F -algebra D is an F -subalgebra of C if |D | ⊆ |C | and the F -operations of D are those of C restricted
to domain |D |; that is, the inclusion map |D | → |C | is a monomorphism D → C. An F -algebra D is a
homomorphic image of C if there is an epimorphism h : C → D.

An interpretation in an F -algebra D is just a homomorphism f : ExpΣ → D. For example, let RegΣ denote
the Kleene algebra of regular sets over alphabet Σ. The canonical interpretation over RegΣ is the unique
homomorphism RΣ : ExpΣ → RegΣ such that RΣ(a) = {a}, a ∈ Σ. We will show that this interpretation
alone characterizes the equational theory of Kleene algebras, as well as all the other classes of algebras
mentioned above (Theorem 1).

In general, for any F -algebra D and any set function f : Σ → |D | defined on Σ, f extends uniquely to an
interpretation f : ExpΣ → D. The values of f on all terms in ExpΣ are defined by induction, as there is
exactly one way to extend f to domain ExpΣ to satisfy (9) when C = ExpΣ. Because of this property, the
structure ExpΣ is called the free F -algebra on generators Σ. We say the free F -algebra because it is unique
up to isomorphism. Intuitively, once we know how to interpret the letters in Σ, that uniquely determines
the interpretation of any regular expression over Σ.

Let s, t be regular expressions and let f : ExpΣ → C be an interpretation. We write C, f ⊨ s = t say that
the equation s = t holds under f or that f satisfies s = t if f(s) = f(t). We write C ⊨ s = t say that s = t
holds in C or that C satisfies s = t if C, f ⊨ s = t for all interpretations f : ExpΣ → C. If A is a class
of algebras or a class of interpretations, we write A ⊨ s = t and say that s = t holds in A if it holds in all
members of A. The equational theory of A, denoted EqThA, is the set of equations that hold in A.

Theorem 1. The following classes of algebras all have the same equational theory: Kleene algebras, star-
continuous Kleene algebras, closed semirings, S-algebras, N-algebras, R-algebras, language models, and rela-
tional models. Moreover, an equation s = t over alphabet Σ is a member of this theory iff it holds under the
canonical interpretation RΣ : ExpΣ → RegΣ.

One can see from this theorem that the equational theory of Kleene algebras is quite robust indeed. If the
equational theory were all that we were interested in, there would not be much more to say.

Some Constructions

We will not be able to complete the proof of Theorem 1 today. Some parts of the theorem follow immediately
from inclusion relationships among the classes of interpretations, but others are more difficult.

First we note that if A and B are two classes of algebras or classes of interpretations and A ⊆ B, then
EqThB ⊆ EqThA, since any equation that holds in all members of B must perforce hold in all members of
A.

Also, the following lemma asserts that equations are preserved in subalgebras and homomorphic images.

Lemma 2. Let C and D be F -algebras.

(i) If h : D → C is a monomorphism and C ⊨ s = t, then D ⊨ s = t.

(ii) If h : C → D is an epimorphism and C ⊨ s = t, then D ⊨ s = t.

Proof. (i) Let f : ExpΣ → D be an arbitrary interpretation. Then h ◦ f : ExpΣ → C is an interpretation, as
the composition of two homomorphisms is a homomorphism. Since C ⊨ s = t, we have h(f(s)) = h(f(t)).
Since h is injective, f(s) = f(t). As f was arbitrary, D ⊨ s = t.
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(ii) Let f : ExpΣ → D be an arbitrary interpretation. For each a ∈ Σ, f(a) ∈ |D |. Since h is surjective,
there exists an element of |C |, call it g(a), such that h(g(a)) = f(a). This defines a map g : Σ → |C | such
that h(g(a)) = f(a) for all a ∈ Σ. Then g extends uniquely to an interpretation g : ExpΣ → C, and since
C ⊨ s = t, we have g(s) = g(t). Moreover, h ◦ g : ExpΣ → D is an interpretation, since the composition of
homomorphisms is a homomorphism. But h ◦ g and f agree on Σ, and since the extensions are unique, they
agree on all of ExpΣ, thus f(s) = h(g(s)) = h(g(t)) = f(t). As f was arbitrary, D ⊨ s = t.

We have already established the following inclusions among the classes mentioned in Theorem 1:

Kleene algebras

star-continuous Kleene algebras

closed semirings

S-algebras

N-algebras

relational models

language models

RegΣ

RegΣ, RΣ

����

PPPP

If class A occurs above B in this diagram and there is a path from A down to B, then EqThA ⊆ EqThB.
Note that for the two lowest entries in this diagram, the upper one RegΣ refers to the equations that hold
under any interpretation in RegΣ, whereas the lower one RegΣ, RΣ refers to the equations that hold under
the canonical interpretation only.

First we observe that the equational theories of the S-algebras and the N-algebras coincide. Recall that
the N-algebras are the subsets of S-algebras closed under the Kleene algebra operations considered as F -
algebras. We have EqThN ⊆ EqThS, since every S-algebra is a subalgebra of itself, therefore is an N-algebra.
Conversely, by Lemma 2(i), any equation holding in an S-algebra A holds in any subalgebra of A; therefore
EqThS ⊆ EqThN.

This observation says that the equational theories of the following classes of interpretations are linearly or-
dered by inclusion as follows: Kleene algebras, star-continuous Kleene algebras, closed semirings, S-algebras,
N-algebras, relational models, language models, RegΣ, and RegΣ, RΣ.

We might also add R-algebras to this list. Recall that R-algebras are those algebras that satisfy all the same
equations as N-algebras, thus EqThR = EqThN. It will turn out that all the algebras in the diagram above
are R-algebras, since they all share the same equational theory, so the class of R-algebras sits at the very top
of the diagram above and at the head of the list in the previous paragraph.

However, the concept of R-algebra is not very interesting or useful. Conway [5, p. 102] gives a four-element
R-algebra R4 that is not a star-continuous Kleene algebra. The elements of R4 are {0, 1, 2, 3}, and the
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operations are given by the following tables:

+ 0 1 2 3

0 0 1 2 3
1 1 1 2 3
2 2 2 2 3
3 3 3 3 3

· 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 2 3
3 0 3 3 3

*
0 1
1 1
2 3
3 3

To show that R4 is an R-algebra, by Lemma 2(ii) it suffices to construct an epimorphism h : RegΣ → R4,
since any equation that holds in an F -algebra also holds in all its homomorphic images. Take h(∅)

def
= 0,

h({ε}) def
= 1, and for any other set A,

h(A)
def
=

{
2, if A is finite,
3, if A is infinite.

One can verify easily that this is an epimorphism, therefore R4 is an R-algebra. It is not a star-continuous
Kleene algebra, since 2n = 2 for all n, but 2∗ = 3. It is also easily shown that all finite Kleene algebras are
star-continuous, therefore R4 is not a Kleene algebra either.

The family RegΣ of regular events over an alphabet Σ gives an example of a star-continuous Kleene algebra
that is not a closed semiring. If A is nonregular, the countable set {{x} | x ∈ A} has no supremum. However,
the power set of Σ∗ does form a closed semiring.

To construct a closed semiring that is not an S-algebra, we might take the countable and co-countable subsets
of ω1 (the first uncountable ordinal) with operations of set union for

∑
, set intersection for ·, ∅ for 0, ω1

for 1, and A∗ = ω1.

To complete the picture, we should construct a Kleene algebra that is not star-continuous. Let ω2 denote
the set of ordered pairs of natural numbers and let ⊥ and ⊤ be new elements. Order these elements such
that ⊥ is the minimum element, ⊤ is the maximum element, and ω2 is ordered lexicographically in between.
Define + to give the supremum in this order. Define · as follows:

x · ⊥ = ⊥ · x = ⊥ x · ⊤ = ⊤ · x = ⊤, x ̸= ⊥ (a, b) · (c, d) = (a+ c, b+ d).

Then ⊥ is the additive identity and (0, 0) is the multiplicative identity. Finally, define

a∗ =

{
(0, 0), if a = ⊥ or a = (0, 0),
⊤, otherwise.

It is easily checked that this is a Kleene algebra. We verify the axiom

ax ≤ x ⇒ a∗x ≤ x

explicitly. Assuming ax ≤ x, we wish to show a∗x ≤ x. If a = ⊥ or a = (0, 0), then a∗ = (0, 0) and we are
done, since (0, 0) is the multiplicative identity. If x = ⊥ or x = ⊤, we are done. Otherwise, a > (0, 0) and
x = (u, v), in which case ax > x, contradicting the assumption.

This Kleene algebra is not star-continuous, since (0, 1)∗ = ⊤, but∑
n

(0, 1)n =
∑
n

(0, n) = (1, 0).
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