
CS 6861 S24 Lecture 4 Introduction to Kleene Algebra February 1, 2024

Course Roadmap

Kleene algebra (KA) is an algebraic system that captures axiomatically the properties of a natural class of
structures arising in logic and computer science. It is named for Stephen Cole Kleene (1909–1994), who among
his many other achievements invented finite automata and regular expressions, structures of fundamental
importance in computer science. Kleene algebra is the algebraic theory of these objects, although it has
many other natural and useful interpretations.

Kleene algebras arise in various guises in many contexts: relational algebra [33,34,40], semantics and logics
of programs [19,35], automata and formal language theory [27,28], and the design and analysis of algorithms
[1,17,21,30]. Many authors have contributed to the development of Kleene algebra over the years: [2,4,5,7–
9,12,15,18–20,22,26,28,36–39], to name a few. There are various competing axiomatizations, and one topic
of our study will be to understand the relationships between these definitions.

In semantics and logics of programs, Kleene algebra forms an essential component of Propositional Dynamic
Logic (PDL) [13], in which it is mixed with Boolean algebra and modal logic to give a theoretically appealing
and practical system for reasoning about computation at the propositional level. From a practical point of
view, many simple program manipulations, such as loop unwinding and basic safety analysis, do not require
the full power of PDL, but can be carried out in a purely equational subsystem using the axioms of Kleene
algebra. The Boolean algebra component is an essential ingredient, since it is needed to model conventional
programming constructs such as conditionals and while loops that rely on Boolean tests. However, for many
applications, the modal component is not essential. We will define later a variant of Kleene algebra, called
Kleene algebra with tests (KAT), for reasoning equationally with these constructs. We will show that KAT
provides an equational approach to program verification that subsumes traditional approaches such as Hoare
logic. Quite recently, KAT has been adapted to form NetKAT, a language and logic for reasoning about
packet-switching networks [3, 14].

Cohen has studied Kleene algebra in the presence of extra Boolean and commutativity conditions. He has
given several practical examples of the use of Kleene algebra in program verification, such as lazy caching [10]
and concurrency control [11]. In addition, Kleene algebra has been used for verifying low-level compiler
optimizations [25], data restructuring operations in parallelizing compilers [6, 29], pointer analysis [31, 32],
and static analysis [24].

Much of the basic algebraic theory of KA was developed by John Horton Conway in his 1971 monograph [12].
This volume was originally published by Chapman and Hall and was out of print for many years, but due
to recent renewed interest in the topic, it reappeared in a paperback edition by Dover in 2012.

We begin our study by describing several concrete examples of Kleene algebras. These will serve as motivating
examples to provide intuition about the properties we are trying to capture axiomatically with the formal
definition. We will conclude this lecture with the formal definition of a Kleene algebra and derive some basic
properties that follow from these axioms.

Examples of Kleene Algebras

A Kleene algebra consists of a set K with distinguished binary operations + and ·, unary operation ∗, and
constants 0 and 1 with certain properties. The intuitive meaning of the operations depends on the model;
however, we can at least say that the operator ∗ typically involves some notion of iteration. The ∗ operator
is the most interesting aspect of Kleene algebra. For example, it allows us to express and reason about
properties of simple looping constructs in programming languages.

1



Here are three classes of models that motivate the definition of Kleene algebra.

Language-Theoretic Models

Let Σ∗ denote the set of finite-length strings over a finite alphabet Σ, including the null string ε. Define the
following constants and operations on subsets of Σ∗:

A+B
def
= A ∪B (1)

A ·B def
= {xy | x ∈ A, y ∈ B} (2)

0
def
= ∅ (3)

1
def
= {ε}. (4)

Thus the operation ·, applied to two sets of strings A and B, produces the set of all strings obtained by
concatenating a string from A with a string from B, in that order. The operator symbol · is often omitted,
and we just write AB for A ·B.

These operations have several agreeable properties. For example, · distributes over + on both sides, in the
sense that A(B+C) = AB+AC and (A+B)C = AC+BC; the element 0 is a both a left and right identity
for + in the sense that 0 + A = A + 0 = A; and the element 1 is both a left and right identity for · in the
sense that 1A = A1 = A.

Now define the powers of A with respect to · inductively:

A0 def
= {ε} An+1 def

= A ·An.

The unary operation ∗ on sets of strings is defined as follows:

A∗ def
=

⋃
n≥0

An = {x1 · · ·xn | n ≥ 0 and xi ∈ A, 1 ≤ i ≤ n}. (5)

Thus A∗ is the union of all powers of A; equivalently, A∗ consists of all strings obtained by concatenating
together any finite collection of strings from A in any order. By convention, the concatenation of the empty
sequence of strings is ε; this is the case n = 0 in (5). Thus ε is always a member of A∗ for any A, including
A = ∅. The operation ∗ is known as Kleene asterate.

Any subset of the full powerset of Σ∗ containing ∅ and {ε} and closed under the operations of ∪, ·, and
∗ is a Kleene algebra, and is a subalgebra of the full powerset algebra. One such subalgebra of particular
significance is the algebra of regular sets. This is the smallest subalgebra containing all sets {a} for a ∈ Σ.

As is well known, the regular sets are also the sets of strings accepted by finite-state automata, or finite-state
transition systems with an acceptance condition. The equivalence of these two representations was proved
in Kleene’s original paper [18] and is known in this context as Kleene’s theorem. A proof of this result can
be found in any introductory text in automata and computability; see for example [16,23].

Relational Algebras

Another useful interpretation involves binary relations on a set X. Recall that a binary relation on a set X
is just a set of ordered pairs of elements of X. Thus a binary relation on X is a subset of

X ×X = {(x, y) | x, y ∈ X}.

2



The set of all binary relations on a set X forms a Kleene algebra under the following definitions of the
operators. We again interpret + as set union. The multiplication operation · is interpreted as relational
composition

R ; S
def
= {(x, z) | ∃y ∈ X (x, y) ∈ R and (y, z) ∈ S}.

(A common alternative notation is S ◦ R. Note that with this notation, the order of R and S is reversed.
This is for consistency with the usage of the same notation for functional composition (g ◦ f)(x) = g(f(x)).)
If we view R as a set of labeled directed edges on X, then there is an edge from x to z labeled R ; S iff there
exists a node y, an edge from x to y labeled R, and an edge from y to z labeled S.

•x •
y

• z
R

R ; S

S

The element 0 is the null relation ∅, and 1 is the identity relation

1
def
= {(x, x) | x ∈ X}.

The operation ∗ gives the reflexive transitive closure of a relation. Recall that a relation S is reflexive if
(x, x) ∈ S for all x ∈ X; that is, if S includes the identity relation as a subset. The relation S is transitive
if (x, z) ∈ S whenever (x, y) ∈ S and (y, z) ∈ S; in other words, S is transitive if S ; S ⊆ S. The smallest
reflexive and transitive relation containing R is called the reflexive transitive closure of R and is denoted R∗.
This notation fortuitously coincides with the definition of the ∗ operation as the sum of all finite powers of
R, as with language models.

R∗ =
⋃
n≥0

Rn,

where

R0 def
= {(x, x) | x ∈ X} Rn+1 def

= R ; Rn.

Equivalently, there is an R∗ edge from x to z iff there is an R-path of length 0 or more from x to z.

•x • z
•

•

• •

•

R∗

R
R

R

R

R R

A relational Kleene algebra is any subset of 2X×X closed under these operations. These models are useful
in programming language semantics, because they can be used to represent the input/output relations of
programs.

The (min,+) Algebra

Here is a rather unusual model that turns out to be useful in shortest path algorithms in graphs. This
algebra is called the (min,+) algebra, also known as the tropical semiring. The domain is the set R+ ∪ {∞}
of nonnegative reals with an additional infinite element ∞. The Kleene algebra operation + is interpreted
as the operation min giving the minimum of two elements in the natural order on R+ ∪ {∞}. The Kleene

3



algebra operation · is interpreted as + in R+ ∪ {∞}; the usual definition of + on R+ is extended to include
∞ in the natural way:

x+∞ = ∞+ x = ∞+∞ = ∞.

The Kleene algebra constants 0 and 1 are interpreted as ∞ and the real number 0, respectively.

The ∗ operation on this algebra is not very interesting: x∗ = 1 (= the real number 0) for any x. However,
the ∗ of matrices over this algebra is quite interesting: it gives a way of calculating the shortest path between
any two points in a finite directed graph.

The (max, ·) Algebra

The domain of this algebra is the unit interval [0, 1]. The Kleene algebra operation + is interpreted as
max giving the maximum of two elements in the natural order on [0, 1]. The operation · is interpreted as
ordinary multiplication. The Kleene algebra constants 0 and 1 are the real numbers 0 and 1, respectively.
This algebra is useful in error-correcting codes and hidden Markov models using an algorithm known as the
Viterbi algorithm.

The (max, ·) algebra and the (min,+) algebra are isomorphic under the map x 7→ − log x.

Axioms of Kleene Algebra

Now we give the formal definition of a Kleene algebra and derive some basic consequences.

Semigroups and Monoids

A semigroup is an algebraic structure (S, ·), where S is a set and · is an associative binary operation on S,
which means that x · (y · z) = (x · y) · z for all x, y, z ∈ S. This allows us to write x · y · z without ambiguity.
A monoid is an algebraic structure (M, ·, 1) where (M, ·) is a semigroup and 1 is a distinguished element
of M that is both a left and right identity for · in the sense that 1 · x = x · 1 = x for all x ∈ M .

For semigroups and monoids written multiplicatively, we often omit the operator · in expressions, writing
xy for x · y.

Example 1. The following are common examples of monoids:

1. (Σ∗, ·, ε), where Σ∗ is the set of finite-length strings over an alphabet Σ, · is concatenation of strings,
and ε is the null string;

2. (2Σ
∗
, ·, {ε}), where · is set concatenation (2);

3. (2Σ
∗
, ∪, ∅), where 2Σ

∗
is the powerset or set of all subsets of Σ∗, ∪ is set union, and ∅ is the empty

set;

4. (N, +, 0), where N is the set of natural numbers {0, 1, 2, . . .};

5. (N, ·, 1);

6. (Nn, +, 0), where Nn is the Cartesian product of n copies of N, + is vector addition, and 0 is the zero
vector;

7. (R+ ∪ {∞}, min, ∞), where R+ denotes the set of nonnegative real numbers, ∞ is a special infinite
element greater than all real numbers, and min gives the minimum of two elements;

4



8. (Rn×n, ·, I), where Rn×n denotes the set of n × n matrices over a ring R, · is ordinary matrix
multiplication, and I is the identity matrix;

9. (X → X, ◦, id), where X → X denotes the set of all functions from a set X to itself, ◦ is function
composition, and id is the identity function.

Examples 3–7 are commutative monoids, which means that xy = yx for all x, y. Example 8 is never
commutative for any nontrivial ring R and n ≥ 2. Example 9 is never commutative for any X with at least
2 elements.

Idempotent Semirings

A semiring is an algebraic structure (S, +, ·, 0, 1) such that

• (S, +, 0) is a commutative monoid,

• (S, ·, 1) is a monoid,

• · distributes over + on both the left and right in the sense that x(y+z) = xy+xz and (x+y)z = xz+yz,

• 0 is an annihilator for · in the sense that 0 · x = x · 0 = 0 for all x.

A semiring is idempotent if x + x = x for all x. We often abbreviate x · y to xy, and avoid parentheses by
taking · to be higher precedence than +.

Collecting these axioms, we define an idempotent semiring to be any structure (S, +, ·, 0, 1) satisfying the
following identities for all x, y, z ∈ S:

x+ (y + z) = (x+ y) + z x+ y = y + x

x+ 0 = x x+ x = x

x(yz) = (xy)z 1x = x1 = x

x(y + z) = xy + xz (x+ y)z = xz + yz

0x = x0 = 0.

A ring is a semiring in which the additive monoid forms a group; that is, in which additive inverses exist. We
cannot have additive inverses in an idempotent semiring unless the semiring is trivial, since 0 = −x + x =
−x+ x+ x = 0 + x = x.

Order

Recall that a partial order is a binary relation on a set that is

• reflexive: for all x, x ≤ x,

• antisymmetric: for all x, y, if x ≤ y and y ≤ x, then x = y, and

• transitive: for all x, y, z, if x ≤ y and y ≤ z, then x ≤ z.

Any idempotent semiring has a naturally-defined partial order ≤ associated with it:

x ≤ y
def⇔ x+ y = y. (6)

5



The order relation ≤ is so central to the theory that one might take it as primitive, but we will consider it
an abbreviation for the equation on the right-hand side of (6).

In the language-theoretic and relational models of the last lecture, ≤ is set inclusion ⊆. But beware: in
the (min,+) algebra, ≤ is the reverse of the natural order on R extended to R+ ∪ {∞}. By (6), x ≤ y iff
minx, y = y, but this occurs iff x is greater than or equal to y in the natural order on R. (Note that we are
carefully avoiding the use of the notation ≤ for the natural order on R !)

That ≤ is a partial order follow easily from the definition (6) and the axioms of idempotent semirings.
Reflexivity is just the idempotence axiom x + x = x. Antisymmetry follows from commutativity of +: if
x ≤ y and y ≤ x, then y = x+ y = y + x = x. Finally, for transitivity, if x ≤ y and y ≤ z, then

x+ z = x+ (y + z) since y + z = z

= (x+ y) + z associativity of +
= y + z since x+ y = y

= z again since y + z = z,

therefore x ≤ z.

In any idempotent semiring, the operators + and · are monotone with respect to ≤ in the sense that for all
x, y, z ∈ S,

x ≤ y ⇒ x+ z ≤ y + z

x ≤ y ⇒ z + x ≤ z + y

x ≤ y ⇒ xz ≤ yz

x ≤ y ⇒ zx ≤ zy.

(Monotonicity will also hold for the ∗ operator of Kleene algebra, that is, x ≤ y ⇒ x∗ ≤ y∗, when we get
around to discussing it.) These properties follow easily from the axioms.

In any idempotent semiring, the operator + gives the least upper bound or supremum of any pair of elements
with respect to the natural order ≤, and 0 is the least element of the semiring with respect to ≤. To say
that x+ y is the least upper bound of x and y says that

• x+ y is an upper bound: x ≤ x+ y and y ≤ x+ y;

• x+y is the least upper bound: if z is any other upper bound, that is, if x ≤ z and y ≤ z, then x+y ≤ z.

The proof that x+y is an upper bound uses associativity and idempotence: x+(x+y) = (x+x)+y = x+y,
and similarly for y ≤ x+ y. The proof that it is the least upper bound uses only associativity: if x ≤ z and
y ≤ z, then (x+ y) + z = x+ (y + z) = x+ z = z.

One observation that is not difficult to check is that the n×n matrices over a semiring again form a semiring
under the natural definitions of the matrix operations. Moreover, if the underlying semiring is idempotent,
then so is the matrix semiring.

The ∗ Operator

Now we turn to the ∗ operator. This is the most interesting part of Kleene algebra, because it captures the
notion of iteration. Because of this, it may seem that ∗ is inherently infinitary. Indeed, there are several
infinitary axiomatizations that we will consider. However, it is possible to derive most of the interesting
parts of the theory in a purely finitary way.

6



The ∗ operator is a unary operator written in postfix. Intuitively, x∗ represents zero or more iterations of x.
In relational models, this is reflexive transitive closure; in language models, the Kleene asterate.

There are several different competing axiomatizations of ∗, and in part our study will be to understand the
relationships among them. For now, we shall pick a particular one as our official definition for the purposes
of this course. Thus we define a Kleene algebra to be a structure (K, +, ·, ∗, 0, 1) that is an idempotent
semiring under +, ·, 0, 1 satisfying the axioms (7)–(10) below for ∗. We assign precedence ∗ > · > + to the
operators to avoid unnecessary parentheses.

The axioms for ∗ consist of two equations and two equational implications or Horn formulas. (Note that up
to now, the axioms have been purely equational.) The two equational axioms for ∗ are

1 + xx∗ ≤ x∗ (7)
1 + x∗x ≤ x∗ (8)

and the two equational implications are

b+ ax ≤ x ⇒ a∗b ≤ x (9)
b+ xa ≤ x ⇒ ba∗ ≤ x. (10)

Of course, these are all considered to be implicitly universally quantified, so that (9) and (10) are assumed
to hold for all a, b, and x in any Kleene algebra.

The significance of (7)–(10) concerns the solution of linear inequalities. As we shall see, much of the theory
of Kleene algebra is concerned with the solution of finite systems of linear inequalities. For example, a
finite automaton is essentially such a system. Axioms (7) and (9) provide for the existence of a unique least
solution to a certain single linear inequality in a single variable, namely

b+ aX ≤ X, (11)

where X is a variable ranging over elements of the Kleene algebra. Axioms (7) and (9) together essentially say
that a∗b is a solution to (11), and moreover, it is the unique least solution among all solutions in the Kleene
algebra. First, (7) says that a∗b is a solution, since by monotonicity of multiplication and distributivity,

1 + aa∗ ≤ a∗ ⇒ (1 + aa∗)b ≤ a∗b

⇒ b+ a(a∗b) ≤ a∗b ;

and (9) says exactly that a∗b is less than or equal to any other solution, therefore it is the unique least
solution. Dually, the axioms (8) and (10) say that ba∗ is the unique least solution to b+Xa ≤ X.

Let us illustrate the use of (9) and (10) to show that (7) and (8) can be strengthened to equalities. We show
this for (7); the result for (8) is symmetric. We already have that 1 + xx∗ ≤ x∗, so by antisymmetry, it
suffices to show the reverse inequality; equivalently,

x∗1 ≤ 1 + xx∗.

This is the right-hand side of (9) with 1 substituted for b, x substituted for a, and 1 + xx∗ substituted for
x, so it suffices to show that the left-hand side of (9) holds under the same substitution, or

1 + x(1 + xx∗) ≤ 1 + xx∗.

But this is immediate from (7) and monotonicity.

Recall from the last lecture that in relational models, R∗ was defined to be the reflexive transitive closure of
the relation R. To be reflexive means that id ⊆ R∗, where id is the identity relation; to be transitive means

7



that R∗ ; R∗ ⊆ R∗; and to contain R means that R ⊆ R∗. Abstractly, these properties are expressed by the
inequalities

1 ≤ x∗ (12)
x∗x∗ ≤ x∗ (13)

x ≤ x∗, (14)

respectively. Equivalently,

1 + x∗x∗ + x ≤ x∗. (15)

We might interpret this inequality as saying that x∗ is a reflexive and transitive element dominating x.
It does not, however, say that it is the reflexive transitive closure of x; for that we need the equational
implication

1 + yy + x ≤ y ⇒ x∗ ≤ y, (16)

which says that x∗ is the least reflexive and transitive element dominating x.

Now in the presence of the other axioms, (15) is equivalent to (7) (and, by symmetry, to (8) as well). To
prove that (7) implies (15), it suffices to show that (7) implies (12)–(14). The inequality (12) is immediate
from (7). Also, multiplying (12) on the left by x, by monotonicity we have x ≤ xx∗; then (14) is immediate
from this and (7). The last inequality (13) requires either (9) or (10).

Conversely, to show that (15) implies (7), assume (15). Then 1 ≤ x∗ from (12). Also, by (13), (14), and
monotonicity we have xx∗ ≤ x∗x∗ ≤ x∗. Since 1 + xx∗ is the least upper bound of 1 and xx∗, we have (7).

Each of (9) and (10) alone implies (16). The converse does not hold: later, we will construct a “left-handed”
Kleene algebra that is not “right-handed” (one satisfying (9) but not (10)). To show that (9) implies (16),
suppose that (9) holds for all a, b, and x, and assume the left-hand side of (16). To show the right-hand
side of (16) holds, by (9) it suffices to show that 1 + xy ≤ y. But this follows easily from the left-hand side
of (16): we have x ≤ y, and by monotonicity, 1 + xy ≤ 1 + yy ≤ y.

In the presence of the other axioms, the implications (9) and (10) are equivalent to

ax ≤ x ⇒ a∗x ≤ x (17)
xa ≤ x ⇒ xa∗ ≤ x, (18)

respectively. These alternative forms are quite useful in some contexts.

Finally, as promised, we show that ∗ is monotone. Suppose x ≤ y. We wish to show that x∗ ≤ y∗. By (9), it
suffices to show that 1+xy∗ ≤ y∗. But since x ≤ y, by monotonicity and (7) we have 1+xy∗ ≤ 1+yy∗ ≤ y∗.

Next time we will look at some alternative axiomatizations of ∗.

References

[1] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading, MA, 1975.

[2] S. Anderaa. On the algebra of regular expressions. Appl. Math., Harvard Univ., 1965. Cambridge,
Mass., 1–18.

[3] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter Kozen, Cole
Schlesinger, and David Walker. NetKAT: Semantic foundations for networks. In Proc. 41st ACM
SIGPLAN-SIGACT Symp. Principles of Programming Languages (POPL’14), pages 113–126, San
Diego, California, USA, January 2014. ACM.

8



[4] K. V. Archangelsky. A new finite complete solvable quasiequational calculus for algebra of regular
languages. Manuscript, Kiev State University, 1992.

[5] Roland Carl Backhouse. Closure Algorithms and the Star-Height Problem of Regular Languages. PhD
thesis, Imperial College, London, U.K., 1975.

[6] Adam Barth and Dexter Kozen. Equational verification of cache blocking in LU decomposition using
Kleene algebra with tests. Technical Report TR2002-1865, Computer Science Department, Cornell
University, June 2002.

[7] Stephen L. Bloom and Zoltán Ésik. Equational axioms for regular sets. Math. Struct. Comput. Sci.,
3:1–24, 1993.

[8] Maurice Boffa. Une remarque sur les systèmes complets d’identités rationnelles. Informatique Théore-
tique et Applications/Theoretical Informatics and Applications, 24(4):419–423, 1990.

[9] Ernie Cohen. Hypotheses in Kleene algebra. Technical Report TM-ARH-023814, Bellcore, 1993.
http://citeseer.nj.nec.com/1688.html.

[10] Ernie Cohen. Lazy caching in Kleene algebra, 1994. http://citeseer.nj.nec.com/22581.html.

[11] Ernie Cohen. Using Kleene algebra to reason about concurrency control. Technical report, Telcordia,
Morristown, N.J., 1994.

[12] John Horton Conway. Regular Algebra and Finite Machines. Chapman and Hall, London, 1971. Dover
edition, 2012.

[13] Michael J. Fischer and Richard E. Ladner. Propositional dynamic logic of regular programs. J. Comput.
Syst. Sci., 18(2):194–211, 1979.

[14] Nate Foster, Dexter Kozen, Mae Milano, Alexandra Silva, and Laure Thompson. A coalgebraic decision
procedure for NetKAT. In Proc. 42nd ACM SIGPLAN-SIGACT Symp. Principles of Programming
Languages (POPL’15), pages 343–355, Mumbai, India, January 2015. ACM.

[15] P. V. Gorshkov. Rational data structures and their applications. Cybernetics, 25(6):760–765, Nov.–Dec.
1989.

[16] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and Computation.
Addison-Wesley, 1979.

[17] Kazuo Iwano and Kenneth Steiglitz. A semiring on convex polygons and zero-sum cycle problems.
SIAM J. Comput., 19(5):883–901, 1990.

[18] Stephen C. Kleene. Representation of events in nerve nets and finite automata. In C. E. Shannon and
J. McCarthy, editors, Automata Studies, pages 3–41. Princeton University Press, Princeton, N.J., 1956.

[19] Dexter Kozen. On induction vs. *-continuity. In Kozen, editor, Proc. Workshop on Logic of Programs,
volume 131 of Lecture Notes in Computer Science, pages 167–176, New York, 1981. Springer-Verlag.

[20] Dexter Kozen. On Kleene algebras and closed semirings. In Rovan, editor, Proc. Math. Found. Comput.
Sci. (MFCS’90), volume 452 of Lecture Notes in Computer Science, pages 26–47, Banska-Bystrica,
Slovakia, 1990. Springer-Verlag.

[21] Dexter Kozen. The Design and Analysis of Algorithms. Springer-Verlag, New York, 1991.

[22] Dexter Kozen. A completeness theorem for Kleene algebras and the algebra of regular events. Infor.
and Comput., 110(2):366–390, May 1994.

[23] Dexter Kozen. Automata and Computability. Springer-Verlag, New York, 1997.

[24] Dexter Kozen. Kleene algebras with tests and the static analysis of programs. Technical Report TR2003-
1915, Computer Science Department, Cornell University, November 2003.

9



[25] Dexter Kozen and Maria-Cristina Patron. Certification of compiler optimizations using Kleene algebra
with tests. In John Lloyd, Veronica Dahl, Ulrich Furbach, Manfred Kerber, Kung-Kiu Lau, Catuscia
Palamidessi, Luis Moniz Pereira, Yehoshua Sagiv, and Peter J. Stuckey, editors, Proc. 1st Int. Conf.
Computational Logic (CL’00), volume 1861 of Lecture Notes in Artificial Intelligence, pages 568–582,
London, July 2000. Springer-Verlag.

[26] Daniel Krob. A complete system of B-rational identities. Theoretical Computer Science, 89(2):207–343,
October 1991.

[27] Werner Kuich. The Kleene and Parikh theorem in complete semirings. In T. Ottmann, editor, Proc. 14th
Colloq. Automata, Languages, and Programming, volume 267 of Lecture Notes in Computer Science,
pages 212–225, New York, 1987. EATCS, Springer-Verlag.

[28] Werner Kuich and Arto Salomaa. Semirings, Automata, and Languages. Springer-Verlag, Berlin, 1986.

[29] Nikolay Mateev, Vijay Menon, and Keshav Pingali. Fractal symbolic analysis. In Proc. 15th Int. Conf.
on Supercomputing, pages 38–49. ACM, ACM Press, 2001.

[30] Kurt Mehlhorn. Data Structures and Algorithms 2: Graph Algorithms and NP-Completeness. EATCS
Monographs on Theoretical Computer Science. Springer-Verlag, 1984.

[31] B. Möller. Calculating with pointer structures. In R. Bird and L. Meertens, editors, Algorithmic
Languages and Calculi. Proc. IFIP TC2/WG2.1 Working Conference, pages 24–48. Chapman and Hall,
February 1997.

[32] B. Möller. Safer ways to pointer manipulation. Technical Report 2000-4, Institut für Informatik,
Universität Augsburg, 2000.

[33] K. C. Ng. Relation Algebras with Transitive Closure. PhD thesis, University of California, Berkeley,
1984.

[34] K. C. Ng and A. Tarski. Relation algebras with transitive closure, abstract 742-02-09. Notices Amer.
Math. Soc., 24:A29–A30, 1977.

[35] Vaughan Pratt. Dynamic algebras as a well-behaved fragment of relation algebras. In D. Pigozzi, editor,
Proc. Conf. on Algebra and Computer Science, volume 425 of Lecture Notes in Computer Science, pages
77–110, Ames, Iowa, June 1988. Springer-Verlag.

[36] Vaughan Pratt. Action logic and pure induction. In J. van Eijck, editor, Proc. Logics in AI: European
Workshop JELIA ’90, volume 478 of Lecture Notes in Computer Science, pages 97–120, New York,
September 1990. Springer-Verlag.

[37] V. N. Redko. On defining relations for the algebra of regular events. Ukrain. Mat. Z., 16:120–126, 1964.
In Russian.

[38] Jacques Sakarovitch. Kleene’s theorem revisited: A formal path from Kleene to Chomsky. In A. Kele-
menova and J. Keleman, editors, Trends, Techniques, and Problems in Theoretical Computer Science,
volume 281 of Lecture Notes in Computer Science, pages 39–50, New York, 1987. Springer-Verlag.

[39] Arto Salomaa. Two complete axiom systems for the algebra of regular events. J. Assoc. Comput. Mach.,
13(1):158–169, January 1966.

[40] A. Tarski. On the calculus of relations. J. Symbolic Logic, 6(3):73–89, 1941.

10


